Mathematics Chalmers \& GU

MVE455: Partial Differential Equations for Kf3, 2017-03-13, 14:00-18:00

Telephone: Carl Lundholm: ankn 5325
Calculators, formula notes and other subject related material are not allowed.
Each problem gives max 4 p . Valid bonus poits will be added to the scores.
Breakings from total of 24 points: $\operatorname{Exam}(20)+$ Bonus(4). 3: 10-14p, 4: 15-19p och 5: 20p-
For solutions see couse diary: http://www.math.chalmers.se/Math/Grundutb/CTH/mve455/1617/

1. Visa att för en lösning till vågekvationen, med homogena Dirichlet randvärden och $f=0$, konserveras

$$
\|\nabla \dot{u}\|^{2}+\|\Delta u\|^{2}
$$

Ledning: Multiplicera ekv med $\Delta \dot{u}$ och integrera över Ω.
2. Prove an a priori and an a posteriori error estimate (in the energy norm: $\|u\|_{E}^{2}:=\left\|u^{\prime}\right\|^{2}+\|u\|^{2}$) for the $\mathrm{cG}(1)$ finite element method for the problem

$$
-u^{\prime \prime}+\alpha u^{\prime}+u=f, \quad 0<x<1, \quad u(0)=u(1)=0
$$

where $\alpha \geq 0$. For which value of α is the a priori error estimate optimal?
3. In the square domain $\Omega:=(0,2)^{2}$, with the boundary $\Gamma:=\partial \Omega$, consider the problem of solving

$$
\begin{cases}-\Delta u=1, & \text { in } \Omega=\left\{x=\left(x_{1}, x_{2}\right): 0<x_{1}<2,0<x_{2}<2\right\}, \tag{1}\\ u=0 & \text { on } \Gamma_{1}:=\Gamma \backslash \Gamma_{2}, \\ \left.\frac{\partial u}{\partial x_{1}}\right|_{x_{1}=2}=\left.0 \quad \frac{\partial u}{\partial x_{2}}\right|_{x_{2}=2}=0, & \Gamma_{2}:=\left\{x_{1}=2\right\} \cup\left\{x_{2}=2\right\} .\end{cases}
$$

Determine the stiffness matrix and load vector if the $\mathrm{cG}(1)$ finite element method with piecewise linear approximation is applied to the equation (1) above and on the following triangulation:

4. Let Ω be a bounded domain in $\mathbb{R}^{d}, d=2,3$. Consider the boundary value problem

$$
-\Delta u=0, \quad \text { in } \Omega \quad u+\partial u / \partial n=g, \text { on } \Gamma=\partial \Omega .
$$

a) Prove the L_{2} stability estimate

$$
\|\nabla u\|_{L_{2}(\Omega)}+\frac{1}{2}\|u\|_{L_{2}(\Gamma)} \leq \frac{1}{2}\|g\|_{L_{2}(\Gamma)}
$$

b) Verify the conditions on Riesz/Lax-Milgram theorems for this problem.
5. Consider the initial value problem $\dot{u}(t)+a(t) u(t)=f(t)$, for $0<t<T$, and $u(0)=u_{0}$. Prove the stability estimates

$$
\begin{gathered}
|u(t)| \leq e^{-\alpha t}\left|u_{0}\right|+\frac{1}{\alpha}\left(1-e^{-\alpha t}\right) \max _{0 \leq s \leq t}|f(s)|, \quad a(t) \geq \alpha>0, \quad \text { and } \\
|u(t)| \leq\left|u_{0}\right|+\int_{0}^{t}|f(s)| d s, \quad a(t) \geq 0
\end{gathered}
$$

void!

MVE455: Partial Differential Equations for Kf3, 2017-03-13, 14:00-18:00. Solutions.

1. Multiply the equation by $\Delta \dot{u}$ and integrate over Ω to get

$$
\begin{aligned}
(\ddot{u}, \Delta \dot{u})-(\Delta u, \Delta \dot{u}) & =-(\nabla \ddot{u}, \nabla \dot{u})-(\Delta u, \Delta \dot{u}) \\
& =-\frac{1}{2} \frac{d}{d t}\left(\int_{\Omega}|\nabla \dot{u}|^{2} d x+\int_{\Omega}|\Delta u|^{2} d x\right)=0,
\end{aligned}
$$

where in the first equality we used Green's formula and the vanishing boundary data. Relabeling t to s and integrating over $(0, t)$ we get the desired result.
2. The Variational formulation:

Multiply the equation by $v \in V$, integrate by parts over $(0,1)$ and use the boundary conditions to obtain
(2) \quad Find $u \in V: \int_{0}^{1} u^{\prime} v^{\prime} d x+\int_{0}^{1} \alpha u^{\prime} v d x+\int_{0}^{1} u v d x=\int_{0}^{1} f v d x, \quad \forall v \in V$.
$\underline{\mathrm{cG}(1):}$
(3) Find $U \in V_{h}: \int_{0}^{1} U^{\prime} v^{\prime} d x+\int_{0}^{1} \alpha U^{\prime} v d x+\int_{0}^{1} U v d x=\int_{0}^{1} f v d x, \quad \forall v \in V_{h}$.

From (1)-(2), we find The Galerkin orthogonality:

$$
\begin{equation*}
\int_{0}^{1}\left((u-U)^{\prime} v^{\prime}+\alpha(u-U)^{\prime} v+(u-U) v\right) d x=0, \quad \forall v \in V_{h} \tag{4}
\end{equation*}
$$

We define the inner product $(\cdot, \cdot)_{E}$ associated to the energy norm to be

$$
(v, w)_{E}=\int_{0}^{1}\left(v^{\prime} w^{\prime}+v w\right) d x, \quad \forall v, w \in V
$$

Note that

$$
\begin{equation*}
\int_{0}^{1} e^{\prime} e d x=\frac{1}{2} \int_{0}^{1} \frac{d}{d x}\left(e^{2}\right) d x=\frac{1}{2}\left[e^{2}\right]_{0}^{1}=0 \tag{5}
\end{equation*}
$$

Thus using (5) we have

$$
\begin{equation*}
\|e\|_{E}^{2}=\int_{0}^{1}\left(e^{\prime} e^{\prime}+e e\right) d x=\int_{0}^{1}\left(e^{\prime} e^{\prime}+\alpha e^{\prime} e+e e\right) d x \tag{6}
\end{equation*}
$$

We split the second factor e as $e=u-U=u-v+v-U$, with $v \in V_{h}$ and write

$$
\begin{aligned}
\|e\|_{E}^{2} & =\int_{0}^{1}\left(e^{\prime}(u-U)^{\prime}+\alpha e^{\prime}(u-U)+e(u-U)\right) d x=\left\{v \in V_{h}\right\} \\
& =\int_{0}^{1}\left(e^{\prime}(u-v)^{\prime}+\alpha e^{\prime}(u-v)+e(u-v)\right) d x \\
& +\int_{0}^{1}\left(e^{\prime}(v-U)^{\prime}+\alpha e^{\prime}(v-U)+e(v-U)\right) d x \\
& =\int_{0}^{1}\left(e^{\prime}(u-v)^{\prime}+\alpha e^{\prime}(u-v)+e(u-v)\right) d x
\end{aligned}
$$

where, in the last step, we have used the Galerkin orthogonality to eliminate terms involving U. Now we can write

$$
\begin{aligned}
\|e\|_{E}^{2}= & \int_{0}^{1}\left(e^{\prime}(u-v)^{\prime}+e(u-v)+\alpha e^{\prime}(u-v)\right) d x \\
& \leq\|e\|_{E} \cdot\|u-v\|_{E}+\alpha\left\|e^{\prime}\right\|_{L_{2}}\|u-v\|_{L_{2}} \\
& \leq\|e\|_{E}\left(\|u-v\|_{E}+\alpha\|u-v\|_{L_{2}}\right) \leq\|e\|_{E}\|u-v\|_{E}(1+\alpha),
\end{aligned}
$$

and derive the a priori error estimate:

$$
\|e\|_{E} \leq\|u-v\|_{E}(1+\alpha), \quad \forall v \in V_{h} .
$$

To obtain a posteriori error estimates the idea is to eliminate u-terms, by using the differential equation, and replacing their contributions by the data f. Then this f combined with the remaining U-terms would yield to the residual error:
A posteriori error estimate:

$$
\begin{align*}
\|e\|_{E}^{2} & =\int_{0}^{1}\left(e^{\prime} e^{\prime}+e e\right) d x=\int_{0}^{1}\left(e^{\prime} e^{\prime}+\alpha e^{\prime} e+e e\right) d x \\
& =\int_{0}^{1}\left(u^{\prime} e^{\prime}+\alpha u^{\prime} e+u e\right) d x-\int_{0}^{1}\left(U^{\prime} e^{\prime}+\alpha U^{\prime} e+U e\right) d x . \tag{7}
\end{align*}
$$

Now using the variational formulation (2) we have that

$$
\int_{0}^{1}\left(u^{\prime} e^{\prime}+\alpha u^{\prime} e+u e\right) d x=\int_{0}^{1} f e d x
$$

Inserting in (7) and using (3) with $v=\Pi_{k} e$ we get

$$
\begin{align*}
\|e\|_{E}^{2}= & \int_{0}^{1} f e d x-\int_{0}^{1}\left(U^{\prime} e^{\prime}+\alpha U^{\prime} e+U e\right) d x \\
& +\int_{0}^{1}\left(U^{\prime} \Pi_{h} e^{\prime}+\alpha U^{\prime} \Pi_{h} e+U \Pi_{h} e\right) d x-\int_{0}^{1} f \Pi_{h} e d x \tag{8}
\end{align*}
$$

Thus

$$
\begin{aligned}
&\|e\|_{E}^{2}= \int_{0}^{1} f\left(e-\Pi_{h} e\right) d x-\int_{0}^{1}\left(U^{\prime}\left(e-\Pi_{h} e\right)^{\prime}+\alpha U^{\prime}\left(e-\Pi_{h} e\right)+U\left(e-\Pi_{h} e\right)\right) d x \\
&= \int_{0}^{1} f\left(e-\Pi_{h} e\right) d x-\int_{0}^{1}\left(\alpha U^{\prime}+U\right)\left(e-\Pi_{h} e\right) d x-\sum_{j=1}^{M+1} \int_{I_{j}} U^{\prime}\left(e-\Pi_{h} e\right)^{\prime} d x \\
&=\{\text { partial integration }\} \\
&= \int_{0}^{1} f\left(e-\Pi_{h} e\right) d x-\int_{0}^{1}\left(\alpha U^{\prime}+U\right)\left(e-\Pi_{h} e\right) d x+\sum_{j=1}^{M+1} \int_{I_{j}} U^{\prime \prime}\left(e-\Pi_{h} e\right) d x \\
&= \int_{0}^{1}\left(f+U^{\prime \prime}-\alpha U^{\prime}-U\right)\left(e-\Pi_{h} e\right) d x=\int_{0}^{1} R(U)\left(e-\Pi_{h} e\right) d x \\
&= \int_{0}^{1} h R(U) h^{-1}\left(e-\Pi_{h} e\right) d x \leq\|h R(U)\|_{L_{2}}\left\|h^{-1}\left(e-\Pi_{h} e\right)\right\|_{L_{2}} \\
& \leq C_{i}\|h R(U)\|_{L_{2}} \cdot\left\|e^{\prime}\right\|_{L_{2}} \leq\|h R(U)\|_{L_{2}} \cdot\|e\|_{E} .
\end{aligned}
$$

This gives the a posteriori error estimate:

$$
\|e\|_{E} \leq C_{i}\|h R(U)\|_{L_{2}}
$$

with $R(U)=f+U^{\prime \prime}-\alpha U^{\prime}-U=f-\alpha U^{\prime}-U$ on $\left(x_{i-1}, x_{i}\right), \quad i=1, \ldots, M+1$.

The a priori error estimate is optimal for $\alpha=0$.
3. Recall that the mesh size is $h=1$. Further, the first triangle (the triangle with nodes at $(0,0)$, $(1,0)$ and $(0,1))$ is not in the support of the test function of N_{1}, whereas the last triangle (the triangle with nodes at $(4,4),(2,4)$ and $(4,2))$ is in the support of the test function for all other 3 nodes: $N_{2}, N 3, N 4$!. Thus, the nodal basis function φ_{1} shares 2 triangles with φ_{2} and 2 triangles with φ_{4}. Likewise, φ_{2} and φ_{3} are sharing 1 triangle, φ_{2} and $\varphi_{4}, 2$ triangle, and finally φ_{3} and φ_{4} 1 triangle. see figure below. We define the test function space

$$
\begin{equation*}
V=\left\{v: v \in H^{1}(\Omega), \quad v=0 \quad \text { on } \Gamma_{1}\right\} . \tag{9}
\end{equation*}
$$

Multiplying the differential equation by $v \in V$ and integrating over Ω we get that

$$
-(\Delta u, v)=(1, v), \quad \forall v \in V
$$

Now using Green's formula we have that

$$
\begin{aligned}
-(\Delta u, v) & =(\nabla u, \nabla v)-\int_{\partial \Omega}(n \cdot \nabla u) v d s \\
& =(\nabla u, \nabla v)-\int_{\Gamma_{1}}(n \cdot \nabla u) v d s-\int_{\Gamma_{2}}(n \cdot \nabla u) v d s \\
& =(\nabla u, \nabla v), \quad \forall v \in V .
\end{aligned}
$$

Thus the variational formulation reads as

$$
(\nabla u, \nabla v)=(1, v), \quad \forall v \in V
$$

The corresponding $\mathrm{cG}(1)$ finite element is: Find $u_{h} \in V_{h}^{0}$ such that

$$
\left(\nabla u_{h}, \nabla v\right)=(1, v), \quad \forall v \in V_{h}^{0}
$$

where

$$
V_{h}^{0}:=\left\{v: v \text { is continuous, piecewise linear on the above partition and } v=0, \text { on } \Gamma_{1}\right\} .
$$

Making the "Ansatz" $U(x)=\sum_{j=1}^{4} \xi_{j} \varphi_{j}(x)$, where φ_{i} are the standard basis functions, we obtain the system of equations

$$
\sum_{j=1}^{4} \xi_{j}\left(\int_{\Omega} \nabla \varphi_{i} \cdot \nabla \varphi_{j} d x\right)=\int_{\Omega} \varphi_{i} d x, \quad i=1,2,3
$$

or, in matrix form,

$$
S \xi=F
$$

where $S_{i j}=\left(\nabla \varphi_{i}, \nabla \varphi_{j}\right)$ is the stiffness matrix and $F_{i}=\left(1, \varphi_{i}\right)$ is the load vector. We first compute the stiffness matrix for the reference triangle T. The local basis functions are

$$
\begin{aligned}
\phi_{1}\left(x_{1}, x_{2}\right)=1-\frac{x_{1}}{h}-\frac{x_{2}}{h}, & \nabla \phi_{1}\left(x_{1}, x_{2}\right)=-\frac{1}{h}\left[\begin{array}{l}
1 \\
1
\end{array}\right], \\
\phi_{2}\left(x_{1}, x_{2}\right)=\frac{x_{1}}{h}, & \nabla \phi_{2}\left(x_{1}, x_{2}\right)=\frac{1}{h}\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
\phi_{3}\left(x_{1}, x_{2}\right)=\frac{x_{2}}{h}, & \nabla \phi_{3}\left(x_{1}, x_{2}\right)=\frac{1}{h}\left[\begin{array}{l}
0 \\
1
\end{array}\right] .
\end{aligned}
$$

Hence, with $|T|=\int_{T} d z=h^{2} / 2$,

$$
s_{11}=\left(\nabla \phi_{1}, \nabla \phi_{1}\right)=\int_{T}\left|\nabla \phi_{1}\right|^{2} d x=\frac{2}{h^{2}}|T|=1
$$

and computing all other $s_{i j}$'s, we end up with

$$
s=\frac{1}{2}\left[\begin{array}{rrr}
2 & -1 & -1 \\
-1 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right]
$$

We can now assemble the global matrix S from the local matrix s :

$$
\begin{array}{ll}
S_{11}=2 s_{11}+4 s_{22}=4, & S_{12}=S_{14}=2 s_{12}=-1, \quad S_{13}=0 \\
S_{22}=S_{44}=s_{11}+2 s_{22}=1+1=2, & S_{23}=S_{34}=s_{12}=-1 / 2, \quad S_{24}=2 s_{23}=0 \\
S_{33}=2 s_{11}=2, & S_{44}=2 s_{22}=1
\end{array}
$$

The remaining matrix elements are obtained by symmetry $S_{i j}=S_{j i}$. Hence,

$$
S=\varepsilon\left[\begin{array}{rrrr}
4 & -1 & 0 & -1 \\
-1 & 2 & -1 / 2 & 0 \\
0 & -1 / 2 & 1 & -1 / 2 \\
-1 & 0 & -1 / 2 & 4
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{c}
\left(1, \varphi_{1}\right) \\
\left(1, \varphi_{2}\right) \\
\left(1, \varphi_{3}\right) \\
\left(1, \varphi_{4}\right)
\end{array}\right]=\left[\begin{array}{c}
6 \cdot \frac{1}{3} \cdot \frac{1}{2}=1 \\
3 \cdot \frac{1}{3} \cdot \frac{1}{2}=\frac{1}{2} \\
1 \cdot \frac{1}{3} \cdot \frac{1}{2}=\frac{1}{6} \\
3 \cdot \frac{1}{3} \cdot \frac{1}{2}=\frac{1}{2}
\end{array}\right] .
$$

4. a) Using Greens formula we have that

$$
\int_{\Omega}|\nabla u|^{2}=\int_{\Omega} \nabla u \cdot \nabla u=-\int_{\Omega}(\Delta u) u+\int_{\partial \Omega} \frac{\partial u}{\partial n} u=\int_{\partial \Omega}(g-u) u .
$$

In other words

$$
\|\nabla u\|_{L_{2}(\Omega)}^{2}+\|u\|_{L_{2}(\Gamma)}^{2}=\int_{\partial \Omega} g u \leq\|g\|_{L_{2}(\Gamma)}^{2}\|u\|_{L_{2}(\Gamma)}^{2} \leq \frac{1}{2}\|g\|_{L_{2}(\Gamma)}^{2}+\frac{1}{2}\|u\|_{L_{2}(\Gamma)}^{2},
$$

which gives the desired estimate. To show the Riesz/Lax-Milgram conditions we introduce the notation

$$
a(u, v)=\int_{\Omega} \nabla u \cdot \nabla v+\int_{\partial \Omega} u v, \quad \text { and } \quad L(v)=\int_{\partial \Omega} g v .
$$

Then $a(u, v)$ is a scalar product with the corresponding norm $\|v\|_{a}=a(v, v)^{1 / 2}$. For instance we have that $\|v\|_{a}=0$, only if $v=0$:

$$
0=\|v\|_{a}^{2}=a(u, v)=\int_{\Omega}|\nabla v|^{2}+\int_{\partial \Omega} v^{2} \geq \alpha \int_{\Omega} v^{2}, \quad \text { for some } \alpha>0 \Rightarrow v=0
$$

Further $L(v)$ is bounded in this norm, e.g. if $\|g\|_{\partial \Omega}<\infty$, then

$$
|L(v)| \leq\|g\|_{\partial \Omega}\|v\|_{\partial \Omega} \leq\|g\|_{\partial \Omega}\|v\|_{a}
$$

We can also apply Riesz theorem in the sense that there existes u such that

$$
a(u, v)=L(v), \quad \forall v
$$

and u is uniquely determined by

$$
\|u\|_{a}=\|g\|_{\partial \Omega}
$$

Moreover since

$$
a(u, v)=-\int_{\Omega} \Delta u v+\int_{\partial \Omega}\left(\frac{\partial u}{\partial n}+u\right) v
$$

we have that

$$
\Delta u=0, \quad \text { in } \Omega \quad \frac{\partial u}{\partial n}+u=g \quad \text { on } \Gamma .
$$

5. See the lecture notes.

MA

