Mathematics Chalmers \& GU

MVE455: Partial Differential Equations, 2017-06-08, 14:00-18:00

Telephone: Felix Held: ankn 5325
Calculators, formula notes and other subject related material are not allowed.
Each problem gives max 4 p. Valid bonus poits will be added to the scores.
Breakings from total of 24 points: $\operatorname{Exam}(20)+$ Bonus(4). 3: 10-14p, 4: 15-19p och 5: 20p-
For solutions see couse diary: http://www.math.chalmers.se/Math/Grundutb/CTH/tma372/1617/

1. Consider the Dirichlet problem: $\quad-\nabla \cdot(a(x) \nabla u)=f(x), \quad x \in \Omega \subset \mathbb{R}^{2}, \quad u=0$, for $x \in \partial \Omega$. Assume that c_{0} and c_{1} are constants such that $c_{0} \leq a(x) \leq c_{1}, \forall x \in \Omega$ and let $U=\sum_{j=1}^{N} \alpha_{j} w_{j}(x)$ be a Galerkin approximation of u in a finite dimensional subspace M of $H_{0}^{1}(\Omega)$. Prove the a priori error estimate below and specify C as best you can

$$
\|u-U\|_{H_{0}^{1}(\Omega)} \leq C \inf _{\chi \in M}\|u-\chi\|_{H_{0}^{1}(\Omega)}
$$

2. Let n be the outward unit normal to $\Gamma=\partial \Omega$. Consider the Neumann problem

$$
-\Delta u+u=f, \quad x \in \Omega \subset \mathbb{R}^{d}, \quad n \cdot \nabla u=g, \quad \text { on } \quad \Gamma:=\partial \Omega
$$

(a) Show the following stability estimate: for some constant C,

$$
\|\nabla u\|_{L_{2}(\Omega)}^{2}+\|u\|_{L_{2}(\Omega)}^{2} \leq C\left[\|f\|_{L_{2}(\Omega)}^{2}+\|g\|_{L_{2}(\Gamma)}^{2}\right] .
$$

(b) Formulate a finite element method for the $1 D$-case and derive the resulting system of equations for $\Omega=[0,1], f(x)=1, g(0)=3$ and $g(1)=0$.
3. Formulate the $\mathrm{cG}(1)$ Galerkin finite element method for the Dirichlet boundary value problem

$$
-\Delta u+u=f, \quad x \in \Omega ; \quad u=0, \quad x \in \partial \Omega
$$

on a smooth domain Ω. Write the matrices for the resulting equation system using the partition below (see fig.) with the nodes at $N_{1}, N_{2}, N_{3}, N_{4}$ and N_{5} and a uniform mesh size h.

4. Let p be a positive constant. Prove an a priori and an a posteriori error estimate (in the H^{1}-norm: $\left.\|e\|_{H^{1}}^{2}=\left\|e^{\prime}\right\|^{2}+\|e\|^{2}\right)$ for the standard $\mathrm{cG}(1)$ finite element method for problem

$$
-u^{\prime \prime}+p x u^{\prime}+\left(1+\frac{p}{2}\right) u=f, \quad \text { in }(0,1), \quad u(0)=u(1)=0 .
$$

5. Prove that there exists a unique solution to the abstract minimization problem.
void!

MVE455: Partial Differential Equations, 2017-06-08, 14:00-18:00. Solutions.

1. Recall the continuous and approximate weak formulations:

$$
\begin{equation*}
(a \nabla u, \nabla v)=(f, v), \quad \forall v \in H_{0}^{1}(\Omega) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
(a \nabla U, \nabla v)=(f, v), \quad \forall v \in M \tag{2}
\end{equation*}
$$

respectively, so that

$$
\begin{equation*}
(a \nabla(u-U), \nabla v)=0, \quad \forall v \in M \tag{3}
\end{equation*}
$$

We may write

$$
u-U=u-\chi+\chi-U
$$

where χ is an arbitrary element of M, it follows that

$$
\begin{align*}
(a \nabla(u-U), \nabla(u-U))= & (a \nabla(u-U), \nabla(u-\chi)) \\
& \leq\|a \nabla(u-U)\| \cdot\|u-\chi\|_{H_{0}^{1}(\Omega)} \tag{4}\\
& \leq c_{1}\|u-U\|_{H_{0}^{1}(\Omega)}\|u-\chi\|_{H_{0}^{1}(\Omega)}
\end{align*}
$$

on using (3), Schwarz's inequality and the boundedness of a. Also, from the boundedness condition on a, we have that

$$
\begin{equation*}
(a \nabla(u-U), \nabla(u-U)) \geq c_{0}\|u-U\|_{H_{0}^{1}(\Omega)}^{2} \tag{5}
\end{equation*}
$$

Combining (4) and (5) gives

$$
\|u-U\|_{H_{0}^{1}(\Omega)} \leq \frac{c_{1}}{c_{0}}\|u-\chi\|_{H_{0}^{1}(\Omega)}
$$

Since χ is an arbitrary element of M, we obtain the result.
2. a) Multiplying the equation by u and performing partial integration we get

$$
\int_{\Omega} \nabla u \cdot \nabla u+u u-\int_{\Gamma} n \cdot \nabla u u=\int_{\Omega} f u
$$

i.e.,

$$
\begin{equation*}
\|\nabla u\|^{2}+\|u\|^{2}=\int_{\Omega} f u+\int_{\Gamma} g u \leq\|f\|\|u\|+\|g\|_{\Gamma} C_{\Omega}(\|\nabla u\|+\|u\|) \tag{6}
\end{equation*}
$$

where $\|\cdot\|=\|\cdot\|_{L_{2}(\Omega)}$ and we have used the inequality $\|u\| \leq C_{\Omega}(\|\nabla u\|+\|u\|)$. Further using the inequality $a b \leq a^{2}+b^{2} / 4$ we have

$$
\|\nabla u\|^{2}+\|u\|^{2} \leq\|f\|^{2}+\frac{1}{4}\|u\|^{2}+C\|g\|_{\Gamma}^{2}+\frac{1}{4}\|\nabla u\|^{2}+\frac{1}{4}\|u\|^{2}
$$

which gives the desired inequality.
b) Consider the variational formulation

$$
\begin{equation*}
\int_{\Omega} \nabla u \cdot \nabla v+u v=\int_{\Omega} f v+\int_{\Gamma} g v \tag{7}
\end{equation*}
$$

set $U(x)=\sum U_{j} \psi_{j}(x)$ and $v=\psi_{i}$ in (7) to obtain

$$
\sum_{j=1}^{N} U_{j} \int_{\Omega} \nabla \psi_{j} \cdot \nabla \psi_{i}+\psi_{j} \psi_{i}=\int_{\Omega} f \psi_{i}+\int_{\Gamma} g \psi_{i}, \quad i=1, \ldots, N
$$

This gives $A U=b$ where $U=\left(U_{1}, \ldots, U_{N}\right)^{T}, b=\left(b_{i}\right)$ with the elements

$$
b_{i}=h, i=2, \ldots, N-1, \quad b(N)=h / 2, \quad b(1)=h / 2+3,
$$

and $A=\left(a_{i j}\right)$ with the elements

$$
a_{i j}=\left\{\begin{array}{lll}
-1 / h+h / 6, & \text { for } i=j+1 & \text { and } i=j-1 \\
2 / h+2 h / 3, & \text { for } i=j & \text { and } i=2, \ldots, N-1 \\
0, & \text { else. } &
\end{array}\right.
$$

3. Let V be the linear function space defined by

$$
V:=\{v: v \text { is continuous in } \Omega, v=0, \text { on } \partial \Omega\} .
$$

Multiplying the differential equation by $v \in V$ and integrating over Ω we get that

$$
-(\Delta u, v)+(u, v)=(f, v), \quad \forall v \in V
$$

Now using Green's formula we have that

$$
-(\Delta u, \nabla v)=(\nabla u, \nabla v)-\int_{\partial \Omega}(n \cdot \nabla u) v d s=(\nabla u, \nabla v), \quad \forall v \in V
$$

Thus, since $v=0$ on $\partial \Omega$, the variational formulation is:

$$
(\nabla u, \nabla v)+(u, v)=(f, v), \quad \forall v \in V
$$

Let now V_{h} be the usual finite element space consisting of continuous piecewise linear functions, on the given partition (triangulation), satisfying the boundary condition $v=0$ on $\partial \Omega$:

$$
V_{h}:=\{v: v \text { is continuous piecewise linear in } \Omega, v=0, \text { on } \partial \Omega\} .
$$

The $c G(1)$ method is: Find $U \in V_{h}$ such that

$$
(\nabla U, \nabla v)+(U, v)=(f, v) \quad \forall v \in V_{h}
$$

Making the "Ansatz" $U(x)=\sum_{j=1}^{5} \xi_{i} \varphi_{j}(x)$, where φ_{j} are the standard basis functions, we obtain the system of equations

$$
\sum_{j=1}^{5} \xi_{j}\left(\int_{\Omega} \nabla \varphi_{i} \cdot \nabla \varphi_{j} d x+\int_{\Omega} \varphi_{i} \varphi_{j} d x\right)=\int_{\Omega} f \varphi_{i} d x, \quad i=1,2,3,4,5
$$

or, in matrix form,

$$
(S+M) \xi=F,
$$

where $S_{i j}=\left(\nabla \varphi_{i}, \nabla \varphi_{j}\right)$ is the stiffness matrix, $M_{i j}=\left(\varphi_{i}, \varphi_{j}\right)$ is the mass matrix, and $F_{j}=\left(f, \varphi_{j}\right)$ is the load vector.
We first compute the mass and stiffness matrix for the reference triangle T. The local basis functions are

$$
\begin{aligned}
\phi_{1}\left(x_{1}, x_{2}\right)=1-\frac{x_{1}}{h}-\frac{x_{2}}{h}, & \nabla \phi_{1}\left(x_{1}, x_{2}\right)=-\frac{1}{h}\left[\begin{array}{l}
1 \\
1
\end{array}\right], \\
\phi_{2}\left(x_{1}, x_{2}\right)=\frac{x_{1}}{h}, & \nabla \phi_{2}\left(x_{1}, x_{2}\right)=\frac{1}{h}\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
\phi_{3}\left(x_{1}, x_{2}\right)=\frac{x_{2}}{h}, & \nabla \phi_{3}\left(x_{1}, x_{2}\right)=\frac{1}{h}\left[\begin{array}{l}
0 \\
1
\end{array}\right] .
\end{aligned}
$$

Hence, with $|T|=\int_{T} d z=h^{2} / 2$,

$$
\begin{aligned}
& m_{11}=\left(\phi_{1}, \phi_{1}\right)=\int_{T} \phi_{1}^{2} d x=h^{2} \int_{0}^{1} \int_{0}^{1-x_{2}}\left(1-x_{1}-x_{2}\right)^{2} d x_{1} d x_{2}=\frac{h^{2}}{12} \\
& s_{11}=\left(\nabla \phi_{1}, \nabla \phi_{1}\right)=\int_{T}\left|\nabla \phi_{1}\right|^{2} d x=\frac{2}{h^{2}}|T|=1
\end{aligned}
$$

Alternatively, we can use the midpoint rule, which is exact for polynomials of degree 2 (precision $3)$:

$$
m_{11}=\left(\phi_{1}, \phi_{1}\right)=\int_{T} \phi_{1}^{2} d x=\frac{|T|}{3} \sum_{j=1}^{3} \phi_{1}\left(\hat{x}_{j}\right)^{2}=\frac{h^{2}}{6}\left(0+\frac{1}{4}+\frac{1}{4}\right)=\frac{h^{2}}{12}
$$

where \hat{x}_{j} are the midpoints of the edges. Similarly we can compute the other elements and obtain

$$
m=\frac{h^{2}}{24}\left[\begin{array}{lll}
2 & 1 & 1 \\
1 & 2 & 1 \\
1 & 1 & 2
\end{array}\right], \quad s=\frac{1}{2}\left[\begin{array}{rrr}
2 & -1 & -1 \\
-1 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right] .
$$

We can now assemble the global matrices M and S from the local ones m and s :

$$
\begin{array}{ll}
M_{11}=M_{33}=M_{55}=8 m_{22}=8 \times \frac{h^{2}}{12}, & S_{11}=S_{33}=S_{55}=8 s_{22}=8 \times \frac{1}{2} 8=4 \\
M_{22}=M_{44}=4 m_{11}=4 \times \frac{h^{2}}{12}=\frac{h^{2}}{3}, & S_{22}=S_{44}=4 s_{11}=4 \times 1=4 \\
M_{12}=M_{23}=M_{34}=M_{45}=2 m_{12}=\frac{1}{12} h^{2}, & S_{12}=S_{23}=S_{34}=S_{45}=2 s_{12}=-1 \\
M_{13}=M_{14}=M_{15}=M_{24}=M_{25}=M_{35}=0, & S_{13}=S_{14}=S_{15}=S_{24}=S_{25}=S_{35}=0
\end{array}
$$

The remaining matrix elements are obtained by symmetry $M_{i j}=M_{j i}, S_{i j}=S_{j i}$. Hence,

$$
M=\frac{h^{2}}{12}\left[\begin{array}{lllll}
8 & 1 & 0 & 0 & 0 \\
1 & 4 & 1 & 0 & 0 \\
1 & 1 & 8 & 1 & 0 \\
0 & 0 & 1 & 4 & 1 \\
0 & 0 & 0 & 1 & 8
\end{array}\right], \quad S=\left[\begin{array}{rrrrr}
4 & -1 & 0 & 0 & 0 \\
-1 & 4 & -1 & 0 & 0 \\
0 & -1 & 4 & -1 & 0 \\
0 & 0 & -1 & 4 & -1 \\
0 & 0 & 0 & -1 & 4
\end{array}\right]
$$

4. We multiply the differential equation by a test function $v \in H_{0}^{1}(I), I=(0,1)$ and integrate over I. Using partial integration and the boundary conditions we get the following variational problem: Find $u \in H_{0}^{1}(I)$ such that

$$
\begin{equation*}
\int_{I}\left(u^{\prime} v^{\prime}+p x u^{\prime} v+\left(1+\frac{p}{2}\right) u v\right)=\int_{I} f v, \quad \forall v \in H_{0}^{1}(I) . \tag{8}
\end{equation*}
$$

A Finite Element Method with $c G(1)$ reads as follows: Find $U \in V_{h}^{0}$ such that

$$
\begin{equation*}
\int_{I}\left(U^{\prime} v^{\prime}+p x U^{\prime} v+\left(1+\frac{p}{2}\right) U v\right)=\int_{I} f v, \quad \forall v \in V_{h}^{0} \subset H_{0}^{1}(I) \tag{9}
\end{equation*}
$$

where

$$
V_{h}^{0}=\{v: v \text { is piecewise linear and continuous in a partition of } I, v(0)=v(1)=0\}
$$

Now let $e=u-U$, then (1)-(2) gives that

$$
\begin{equation*}
\int_{I}\left(e^{\prime} v^{\prime}+p x e^{\prime} v+\left(1+\frac{p}{2}\right) e v\right)=0, \quad \forall v \in V_{h}^{0} \tag{10}
\end{equation*}
$$

A posteriori error estimate: We note that using $e(0)=e(1)=0$, we get

$$
\begin{equation*}
\int_{I} p x e^{\prime} e=\frac{p}{2} \int_{I} x \frac{d}{d x}\left(e^{2}\right)=\left.\frac{p}{2}\left(x e^{2}\right)\right|_{0} ^{1}-\frac{p}{2} \int_{I} e^{2}=-\frac{p}{2} \int_{I} e^{2}, \tag{11}
\end{equation*}
$$

so that

$$
\begin{align*}
\|e\|_{H^{1}}^{2} & =\int_{I}\left(e^{\prime} e^{\prime}+e e\right)=\int_{I}\left(e^{\prime} e^{\prime}+p x e^{\prime} e+\left(1+\frac{p}{2}\right) e e\right) \\
& =\int_{I}\left((u-U)^{\prime} e^{\prime}+p x(u-U)^{\prime} e+\left(1+\frac{p}{2}\right)(u-U) e\right)=\{v=e \text { in }(8)\} \\
& =\int_{I} f e-\int_{I}\left(U^{\prime} e^{\prime}+p x U^{\prime} e+\left(1+\frac{p}{2}\right) U e\right)=\left\{v=\pi_{h} e \text { in }(9)\right\} \tag{12}\\
& =\int_{I} f\left(e-\pi_{h} e\right)-\int_{I}\left(U^{\prime}\left(e-\pi_{h} e\right)^{\prime}+p x U^{\prime}\left(e-\pi_{h} e\right)+\left(1+\frac{p}{2}\right) U\left(e-\pi_{h} e\right)\right) \\
& =\{\text { P.I. on each subinterval }\}=\int_{I} \mathcal{R}(U)\left(e-\pi_{h} e\right),
\end{align*}
$$

where $\mathcal{R}(U):=f+U^{\prime \prime}-p x U^{\prime}-\left(1+\frac{p}{2}\right) U=f-p x U^{\prime}-\left(1+\frac{p}{2}\right) U$, (for approximation with piecewise linears, $U \equiv 0$, on each subinterval). Thus (12) implies that

$$
\begin{aligned}
\|e\|_{H^{1}}^{2} & \leq\|h \mathcal{R}(U)\|\left\|h^{-1}\left(e-\pi_{h} e\right)\right\| \\
& \leq C_{i}\|h \mathcal{R}(U)\|\left\|e^{\prime}\right\| \leq C_{i}\|h \mathcal{R}(U)\|\|e\|_{H^{1}}
\end{aligned}
$$

where C_{i} is an interpolation constant, and hence we have with $\|\cdot\|=\|\cdot\|_{L_{2}(I)}$ that

$$
\|e\|_{H^{1}} \leq C_{i}\|h \mathcal{R}(U)\|
$$

A priori error estimate: We use (11) and write

$$
\begin{aligned}
\|e\|_{H^{1}}^{2} & =\int_{I}\left(e^{\prime} e^{\prime}+e e\right)=\int_{I}\left(e^{\prime} e^{\prime}+p x e^{\prime} e+\left(1+\frac{p}{2}\right) e e\right) \\
& =\int_{I}\left(e^{\prime}(u-U)^{\prime}+p x e^{\prime}(u-U)+\left(1+\frac{p}{2}\right) e(u-U)\right)=\left\{v=U-\pi_{h} u \text { in }(10)\right\} \\
& =\int_{I}\left(e^{\prime}\left(u-\pi_{h} u\right)^{\prime}+p x e^{\prime}\left(u-\pi_{h} u\right)+\left(1+\frac{p}{2}\right) e\left(u-\pi_{h} u\right)\right) \\
& \leq\left\|\left(u-\pi_{h} u\right)^{\prime}\right\|\left\|e^{\prime}\right\|+p\left\|u-\pi_{h} u\right\|\left\|e^{\prime}\right\|+\left(1+\frac{p}{2}\right)\left\|u-\pi_{h} u\right\|\|e\| \\
& \leq\left\{\left\|\left(u-\pi_{h} u\right)^{\prime}\right\|+(1+p)\left\|u-\pi_{h} u\right\|\right\}\|e\|_{H^{1}} \\
& \leq C_{i}\left\{\left\|h u^{\prime \prime}\right\|+(1+p)\left\|h^{2} u^{\prime \prime}\right\|\right\}\|e\|_{H^{1}}
\end{aligned}
$$

this gives that

$$
\|e\|_{H^{1}} \leq C_{i}\left\{\left\|h u^{\prime \prime}\right\|+(1+p)\left\|h^{2} u^{\prime \prime}\right\|\right\}
$$

which is the a priori error estimate.
5. See the lecture notes.

MA

