
Mathematics Chalmers & GU

MVE455: Partial Differential Equations, 2017–06–08, 14:00-18:00

Telephone: Felix Held: ankn 5325
Calculators, formula notes and other subject related material are not allowed.
Each problem gives max 4p. Valid bonus poits will be added to the scores.
Breakings from total of 24 points: Exam(20)+Bonus(4). 3: 10-14p, 4: 15-19p och 5: 20p-
For solutions see couse diary: http://www.math.chalmers.se/Math/Grundutb/CTH/tma372/1617/

1. Consider the Dirichlet problem: −∇·(a(x)∇u) = f(x), x ∈ Ω ⊂ R
2, u = 0, for x ∈ ∂Ω.

Assume that c0 and c1 are constants such that c0 ≤ a(x) ≤ c1, ∀x ∈ Ω and let U =
∑N

j=1 αjwj(x)

be a Galerkin approximation of u in a finite dimensional subspace M of H1
0 (Ω). Prove the a priori

error estimate below and specify C as best you can

||u− U ||H1

0
(Ω) ≤ C inf

χ∈M
||u− χ||H1

0
(Ω).

2. Let n be the outward unit normal to Γ = ∂Ω. Consider the Neumann problem

−∆u+ u = f, x ∈ Ω ⊂ R
d, n · ∇u = g, on Γ := ∂Ω,

(a) Show the following stability estimate: for some constant C,

||∇u||2L2(Ω) + ||u||2L2(Ω) ≤ C[||f ||2L2(Ω) + ||g||2L2(Γ)
].

(b) Formulate a finite element method for the 1D-case and derive the resulting system of equations
for Ω = [0, 1], f(x) = 1, g(0) = 3 and g(1) = 0.

3. Formulate the cG(1) Galerkin finite element method for the Dirichlet boundary value problem

−∆u+ u = f, x ∈ Ω; u = 0, x ∈ ∂Ω,

on a smooth domain Ω. Write the matrices for the resulting equation system using the partition
below (see fig.) with the nodes at N1, N2, N3, N4 and N5 and a uniform mesh size h.
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4. Let p be a positive constant. Prove an a priori and an a posteriori error estimate (in the
H1-norm: ‖e‖2H1 = ‖e′‖2 + ‖e‖2) for the standard cG(1) finite element method for problem

−u′′ + pxu′ + (1 +
p

2
)u = f, in (0, 1), u(0) = u(1) = 0.

5. Prove that there exists a unique solution to the abstract minimization problem.
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MVE455: Partial Differential Equations, 2017–06–08, 14:00-18:00. Solutions.

1. Recall the continuous and approximate weak formulations:

(1) (a∇u,∇v) = (f, v), ∀v ∈ H1
0 (Ω),

and

(2) (a∇U,∇v) = (f, v), ∀v ∈M,

respectively, so that

(3) (a∇(u− U),∇v) = 0, ∀v ∈M.

We may write
u− U = u− χ+ χ− U,

where χ is an arbitrary element of M , it follows that

(a∇(u− U),∇(u− U)) =(a∇(u− U),∇(u− χ))

≤ ||a∇(u− U)|| · ||u− χ||H1

0
(Ω)

≤ c1||u− U ||H1

0
(Ω)||u− χ||H1

0
(Ω),

(4)

on using (3), Schwarz’s inequality and the boundedness of a. Also, from the boundedness condition
on a, we have that

(5) (a∇(u− U),∇(u− U)) ≥ c0||u− U ||2H1

0
(Ω).

Combining (4) and (5) gives

||u− U ||H1

0
(Ω) ≤

c1
c0

||u− χ||H1

0
(Ω).

Since χ is an arbitrary element of M , we obtain the result.

2. a) Multiplying the equation by u and performing partial integration we get
∫

Ω

∇u · ∇u+ uu−

∫

Γ

n · ∇uu =

∫

Ω

fu,

i.e.,

(6) ||∇u||2 + ||u||2 =

∫

Ω

fu+

∫

Γ

gu ≤ ||f ||||u||+ ||g||ΓCΩ(||∇u||+ ||u||)

where || · || = || · ||L2(Ω) and we have used the inequality ||u|| ≤ CΩ(||∇u|| + ||u||). Further using

the inequality ab ≤ a2 + b2/4 we have

||∇u||2 + ||u||2 ≤ ||f ||2 +
1

4
||u||2 + C||g||2Γ +

1

4
||∇u||2 +

1

4
||u||2

which gives the desired inequality.

b) Consider the variational formulation

(7)

∫

Ω

∇u · ∇v + uv =

∫

Ω

fv +

∫

Γ

gv,

set U(x) =
∑

Ujψj(x) and v = ψi in (7) to obtain

N
∑

j=1

Uj

∫

Ω

∇ψj · ∇ψi + ψjψi =

∫

Ω

fψi +

∫

Γ

gψi, i = 1, . . . , N.

This gives AU = b where U = (U1, . . . , UN )T , b = (bi) with the elements

bi = h, i = 2, . . . , N − 1, b(N) = h/2, b(1) = h/2 + 3,
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and A = (aij) with the elements

aij =







−1/h+ h/6, for i = j + 1 and i = j − 1
2/h+ 2h/3, for i = j and i = 2, . . . , N − 1
0, else.

3. Let V be the linear function space defined by

V := {v : v is continuous in Ω, v = 0, on ∂Ω}.

Multiplying the differential equation by v ∈ V and integrating over Ω we get that

−(∆u, v) + (u, v) = (f, v), ∀v ∈ V.

Now using Green’s formula we have that

−(∆u,∇v) = (∇u,∇v)−

∫

∂Ω

(n · ∇u)v ds = (∇u,∇v), ∀v ∈ V.

Thus, since v = 0 on ∂Ω, the variational formulation is:

(∇u,∇v) + (u, v) = (f, v), ∀v ∈ V.

Let now Vh be the usual finite element space consisting of continuous piecewise linear functions,
on the given partition (triangulation), satisfying the boundary condition v = 0 on ∂Ω:

Vh := {v : v is continuous piecewise linear in Ω, v = 0, on ∂Ω}.

The cG(1) method is: Find U ∈ Vh such that

(∇U,∇v) + (U, v) = (f, v) ∀v ∈ Vh

Making the “Ansatz” U(x) =
∑5

j=1 ξiϕj(x), where ϕj are the standard basis functions, we obtain
the system of equations

5
∑

j=1

ξj

(

∫

Ω

∇ϕi · ∇ϕj dx+

∫

Ω

ϕiϕj dx
)

=

∫

Ω

fϕi dx, i = 1, 2, 3, 4, 5

or, in matrix form,
(S +M)ξ = F,

where Sij = (∇ϕi,∇ϕj) is the stiffness matrix,Mij = (ϕi, ϕj) is the mass matrix, and Fj = (f, ϕj)
is the load vector.

We first compute the mass and stiffness matrix for the reference triangle T . The local basis
functions are

φ1(x1, x2) = 1−
x1
h

−
x2
h
, ∇φ1(x1, x2) = −

1

h

[

1
1

]

,

φ2(x1, x2) =
x1
h
, ∇φ2(x1, x2) =

1

h

[

1
0

]

,

φ3(x1, x2) =
x2
h
, ∇φ3(x1, x2) =

1

h

[

0
1

]

.

Hence, with |T | =
∫

T
dz = h2/2,

m11 = (φ1, φ1) =

∫

T

φ21 dx = h2
∫ 1

0

∫ 1−x2

0

(1− x1 − x2)
2 dx1dx2 =

h2

12
,

s11 = (∇φ1,∇φ1) =

∫

T

|∇φ1|
2 dx =

2

h2
|T | = 1.

Alternatively, we can use the midpoint rule, which is exact for polynomials of degree 2 (precision
3):

m11 = (φ1, φ1) =

∫

T

φ21 dx =
|T |

3

3
∑

j=1

φ1(x̂j)
2 =

h2

6

(

0 +
1

4
+

1

4

)

=
h2

12
,

2



where x̂j are the midpoints of the edges. Similarly we can compute the other elements and obtain

m =
h2

24





2 1 1
1 2 1
1 1 2



 , s =
1

2





2 −1 −1
−1 1 0
−1 0 1



 .

We can now assemble the global matrices M and S from the local ones m and s:

M11 =M33 =M55 = 8m22 = 8×
h2

12
, S11 = S33 = S55 = 8s22 = 8×

1

2
8 = 4,

M22 =M44 = 4m11 = 4×
h2

12
=
h2

3
, S22 = S44 = 4s11 = 4× 1 = 4,

M12 =M23 =M34 =M45 = 2m12 =
1

12
h2, S12 = S23 = S34 = S45 = 2s12 = −1,

M13 =M14 =M15 =M24 =M25 =M35 = 0, S13 = S14 = S15 = S24 = S25 = S35 = 0,

The remaining matrix elements are obtained by symmetry Mij =Mji, Sij = Sji. Hence,

M =
h2

12













8 1 0 0 0
1 4 1 0 0
1 1 8 1 0
0 0 1 4 1
0 0 0 1 8













, S =













4 −1 0 0 0
−1 4 −1 0 0
0 −1 4 −1 0
0 0 −1 4 −1
0 0 0 −1 4













.

4. We multiply the differential equation by a test function v ∈ H1
0 (I), I = (0, 1) and integrate

over I. Using partial integration and the boundary conditions we get the following variational

problem: Find u ∈ H1
0 (I) such that

(8)

∫

I

(

u′v′ + pxu′v + (1 +
p

2
)uv

)

=

∫

I

fv, ∀v ∈ H1
0 (I).

A Finite Element Method with cG(1) reads as follows: Find U ∈ V 0
h such that

(9)

∫

I

(

U ′v′ + pxU ′v + (1 +
p

2
)Uv

)

=

∫

I

fv, ∀v ∈ V 0
h ⊂ H1

0 (I),

where

V 0
h = {v : v is piecewise linear and continuous in a partition of I, v(0) = v(1) = 0}.

Now let e = u− U , then (1)-(2) gives that

(10)

∫

I

(

e′v′ + pxe′v + (1 +
p

2
)ev

)

= 0, ∀v ∈ V 0
h .

A posteriori error estimate: We note that using e(0) = e(1) = 0, we get

(11)

∫

I

pxe′e =
p

2

∫

I

x
d

dx
(e2) =

p

2
(xe2)|10 −

p

2

∫

I

e2 = −
p

2

∫

I

e2,

so that

‖e‖2H1 =

∫

I

(e′e′ + ee) =

∫

I

(

e′e′ + pxe′e+ (1 +
p

2
)ee

)

=

∫

I

(

(u− U)′e′ + px(u− U)′e+ (1 +
p

2
)(u− U)e

)

= {v = e in (8)}

=

∫

I

fe−

∫

I

(

U ′e′ + pxU ′e+ (1 +
p

2
)Ue

)

= {v = πhe in (9)}

=

∫

I

f(e− πhe)−

∫

I

(

U ′(e− πhe)
′ + pxU ′(e− πhe) + (1 +

p

2
)U(e− πhe)

)

= {P.I. on each subinterval} =

∫

I

R(U)(e− πhe),

(12)
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where R(U) := f+U ′′−pxU ′−(1+ p
2 )U = f−pxU ′−(1+ p

2 )U , (for approximation with piecewise
linears, U ≡ 0, on each subinterval). Thus (12) implies that

‖e‖2H1 ≤ ‖hR(U)‖‖h−1(e− πhe)‖

≤ Ci‖hR(U)‖‖e′‖ ≤ Ci‖hR(U)‖‖e‖H1 ,

where Ci is an interpolation constant, and hence we have with ‖ · ‖ = ‖ · ‖L2(I) that

‖e‖H1 ≤ Ci‖hR(U)‖.

A priori error estimate: We use (11) and write

‖e‖2H1 =

∫

I

(e′e′ + ee) =

∫

I

(e′e′ + pxe′e+ (1 +
p

2
)ee)

=

∫

I

(

e′(u− U)′ + pxe′(u− U) + (1 +
p

2
)e(u− U)

)

= {v = U − πhu in (10)}

=

∫

I

(

e′(u− πhu)
′ + pxe′(u− πhu) + (1 +

p

2
)e(u− πhu)

)

≤ ‖(u− πhu)
′‖‖e′‖ + p‖u− πhu‖‖e

′‖ + (1 +
p

2
)‖u− πhu‖‖e‖

≤ {‖(u− πhu)
′‖ + (1 + p)‖u− πhu‖}‖e‖H1

≤ Ci{‖hu
′′‖ + (1 + p)‖h2u′′‖}‖e‖H1 ,

this gives that
‖e‖H1 ≤ Ci{‖hu

′′‖ + (1 + p)‖h2u′′‖},

which is the a priori error estimate.

5. See the lecture notes.
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