Mathematics Chalmers & GU
MYVE455: Partial Differential Equations, 2019—-03—-18, 14:00-18:00

Telephone: Tobias Magnusson: ankn 5325

Calculators, formula notes and other subject related material are not allowed.
Each problem gives max 4p. Valid bonus poits will be added to the scores.
Breakings: 3: 10-15p, 4: 16-20p och 5: 21p-

For solutions and information about gradings see the couse diary in:
http://www.math.chalmers.se/Math/Grundutb/CTH/mve455/1718 /coursediary

1. Consider a uniform partition 0 = zg < 21 < ... < xy = 1 of the interval [0,1] and let {p;},
be a set of piecewise linear continuous basis functions: ¢;(x;) = 1 for i = j and ¢;(z;) = 0 if
i # j. Given a FEM in form of linear system of equations (S + M)¢{ = b +d, with S and M,
N-by-N matrices, and §, b and d vectors of lenght N, where for 4,7 = 1,..., N, Si; = (¢}, ¥}),
M;; = (i, ;), and b; = (¢;, f), f is a given function, dy = 3 is the only non-zero element of d.
a) Derive the variational formulation and the strong formulation for the PDE from the above data.

b) Let now both u(0) = 0 and 3 = 0 and derive the continuous stability estimate ||u,|| < 1||f]|.

2. Let Q2 be the hexagonal domain with the uniform triangulation as in the figure below. Compute

Yy
Ty : {(z,y) € 90 :y > h} (red)
2ht 0 N3 N4 n (outward unit normal to I'y)
h 3
N, N standard element
ONN\T | Ty T T
h 2h L 2

the stiffness matrix and the load vector for the ¢cG(1) approximate solution for the problem:
(1) —Au=1, in Q, u=0, onTy, Ou/On=0, on I'y
3. Derive a priori error estimate, in the energy norm |[v||% = |[v/[|* + a|[v||?, for the ¢G(1)
approximation of the boundary value problem
—u"(z) + v/ (z) + au(z) = f(z), 0<z<1l, u0)=u(l)=0, a>0.

4. a)Estimate the stability factor fOT |@t] dt/|ug| for the initial value problem
w(t) + a(t)u(t) =0, u(0) = ug, a(t) > A > 0.
b) Formulate the dG(0)-method for this problem.

5. (Poincare inequalities). Assume that v is the solution of a Dirichlet boundary value problem,
and u, v/, |Vu| € Ly() (they are square integrable in a bounded domian Q C R?, d = 1,2). Show
that there are positive constants C';, and Cgq such that

Jul < Crllv|,  Q=][0,L]
Jull < CallVul,  QCR%.
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MVEA455: Partial Differential Equations, 2019-03-18, 14:00-18:00. Solutions.

1. a) It is clear that the homogeneous Dirichlet condition is used at x = 0 since the basis function
o is not present in the matrices and there are no modifications corresponding the first element
of the load vector. (The indices start from 4,5 = 1,.... Consider now the solution space V" =
{w : |Jw] + ||w'|| < o0}, w(0) = 0} where ||-|| is the usual Lo-norm over I. Then, the variational
formulation reads as follows: find v € V9 s.t.

(2) (g, ug) + (v,u) = (v, f) + Bo(1), VoeVo

For the basis functions given, ¢ (1) = 1, which explains the last element of the vector d. Backward
integration by parts, together with the Dirichlet data on v yields

3) (v, ) + Bo(1) = (v, —tiag + u) + v(1)ua(1).
Thus, the strong formulation (PDE) is: find such that
(4) —Upp+u=f 0<z<l1 u(0) =0, wu,(l)=20.

(b) Let in (2) =0 and v = u, then
(Us, uz) + (u,u) = (u, f).
Using integration by parts and u(0) = 0, and u,(1) = 0, we get
1
[luall? + [lul[* = (f,u) < [Jul® + 211 ]

Hence,

1
lluzll < S 1,

we get the desired result.

2. Let V be the linear function space defined by
Vi={v:ve H(Q), v=0, onT}.
Multiplying the differential equation by v € V and integrating over 2 we get that
—(Au,v) = (1,v), Yv e V.

Now using Green’s formula and the fact that v = 0 on 992 \ I'1, we have that

—(Au, Vv) = (Vu, Vv) — / (n-Vu)vds

a0
= (Vu, Vv) — / (n-Vu)vds — / (n-Vu)vds = (Vu, Vv), Yv eV,
Fl 1—‘2

Hence, the variational formulation is:
(Vu, Vo) = (1,v), YveV.

Let V}, be the usual finite element space consisting of continuous piecewise linear functions sa-
tisfying the boundary condition v = 0 on I'y: Then, the ¢G(1) method is: Find U € V}, such
that
(VU,Vv) = (1,v) Yv eV,
1



Making the “Ansatz” U(x) = Z?Zl &jp;(x), where p; are the standard basis functions (1 is the
basis function for the interior node N; and - and @3 are corresponding basis functions for the
boundary nodes N7 and Na, respective) we obtain the system of equations

3
Z@/wajdx:/fsoidx, i=1,2,34.
=1 Q Q

In matrix form this can be written as S§ = F, where S;; = (V;, Vi;) is the stiffness matrix, and
F;, = (f, ¢;) is the load vector.

We first compute the stiffness matrix for the reference triangle T'. The local basis functions are

¢1($1,I2)—1—%—%7 V¢1($179€2)=—i[ } },
ba2(21,22) = %, Voo(z1,22) = % [ (1) } ,
¢3(x1,22) = %2, Vosz(z1,22) = % [ (1) } .

Hence, with |T'| = fT dz = h?/2, we can easily compute
2 2
s =(Vor,Ver) = | [Von|de = 5|T| = 1,
T

-1
s12 =521 = (V¢1, Vo) = | —[T|=-1/2,
T h?
s23 = 832 = (Vo Vp3) = 0,

1
S99 — 833 — ... = ﬁ‘T| 21/2.

Thus by symmetry we get that the local stiffness matrix for the standard element is:

2 -1 -1
1
-1 0 1

We can now assemble the global stiffness matrix S from the local stiffness matrix s:

S11 = S22 = 3511 + 2520 =3+ 1 =4, S12 = S13 = 2512 = —1
S14 = 2893 = 0, So3 =10 Sog = 2812 = -1,
S33 = 11 + S22 = 3/2 S34 = 812 = _1/2 Sia = 3822 = 3/2

The remaining matrix elements are obtained by symmetry S;; = S;;. Hence,

8 -2 -2 0
1| -2 8 0 -2
21 -2 0 3 -1

0 -2 -1 3

S:

As for the load vector we have that

1 h? 1 A2 h? 1A% h?
= =5-—.1="5h%/6 3=2-—.1=— =3-—1=—
/QSDI sz 379 / ) /QSD& 3792 37 /QS04 3792 9

Thus the load vector is given by b = %.2(5, 5,2,3)t. Observe that, here S becomes independent of

h.
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3. (a) The Variational formulation:

(Multiply the equation by v € V, integrate by parts over (0, 1) and use the boundary conditions.)

1 1 1 1
(5) Find ue V: /u'v’dm—i—/ u’vdw—l—/ auvda::/ fvdz, YvelV.
0 0 0 0
cG(1):
1 1 1 1
(6) Find U € Vj, : /U’v'dx—i—/ U'vdx—I—/ aUvdgc:/ fodx, Yv € Vy,
0 0 0 0
where

Vi, := {v : v is continuous piecewise linear in (0,1), v(0) = v(1) = 0}.
From (1)-(2), we find
The Galerkin orthogonality:

(7) /01 ((u—U)’v’—i—(u—U)’v—i—a(u—U)v)d:r:O, Yo € V.

We define the inner product (-,-)g associated to the energy norm to be
(v,w)p = /Ol(v’w' + avw) dz, Vo, w e V.

A priori error estimate:

1 1 1
1 d 1
2 _ /0 _ / _ (.2 — Z[p21l —
||6HE—/0 (ee —|—aee)d:£—{/0 eeda:—Q/O d:c(6>dx 2[6 Is 0}

2/0 (e’ +€'e + aee) dr = /0 (e'(u ~U) +¢e(u—U)+ae(u— U)) dx

~{v €1Vh} _ /01 (/a0 +¢'(u—v) + ac(u—v)) do
+1/0 (¢ -0y +ew-0) +aew-1)) de = {(3)}

:/01 (¢/(w =)' +¢'(w— ) +ae(u—v)) dz

:/0 (¢/(u—v) + ae(u—v) +€(u—v)) d

< 1€'llz, - 10w = v)'[ L, + allel|ollu = vl Ly + [l€'] |2, - [Ju = v]]L,
< €'llz, - [1(w = v)'[lL, +lelle - [Ju =],
<llelle - [lu = vllz +lel|e - |lu—vllL,

This gives the a priori error estimate:

llelle < llu —vlle + [lu = vllL,, Vv € Va.

t
4. a) u(t) = e Ay, A(t) = / a(s)ds, so that
0

T T
/ li(t)| dt = / la(t)e= AW | dt
0 0

g A(t) A(T) A
= a(t)e” Pyl dt = (1 — e~ luo| < (1 —e ) |uol
/ ( Jhuol < (1 =)
b) See the book.

5. See the book.
MA



