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MVE455: Partial Differential Equations, 2019–03–18, 14:00-18:00

Telephone: Tobias Magnusson: ankn 5325
Calculators, formula notes and other subject related material are not allowed.
Each problem gives max 4p. Valid bonus poits will be added to the scores.
Breakings: 3: 10-15p, 4: 16-20p och 5: 21p-
For solutions and information about gradings see the couse diary in:
http://www.math.chalmers.se/Math/Grundutb/CTH/mve455/1718/coursediary

1. Consider a uniform partition 0 = x0 < x1 < . . . < xN = 1 of the interval [0, 1] and let {ϕi}
N
i=0

be a set of piecewise linear continuous basis functions: ϕi(xj) = 1 for i = j and ϕi(xj) = 0 if
i 6= j. Given a FEM in form of linear system of equations (S + M)ξ = b + d, with S and M ,
N -by-N matrices, and ξ, b and d vectors of lenght N , where for i, j = 1, . . . , N , Sij = (ϕ′

i, ϕ
′

j),
Mij = (ϕi, ϕj), and bi = (ϕi, f), f is a given function, dN = β is the only non-zero element of d.

a) Derive the variational formulation and the strong formulation for the PDE from the above data.

b) Let now both u(0) = 0 and β = 0 and derive the continuous stability estimate ||ux|| ≤
1
2 ||f ||.

2. Let Ω be the hexagonal domain with the uniform triangulation as in the figure below. Compute

Ω
n (outward unit normal to Γ2)
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the stiffness matrix and the load vector for the cG(1) approximate solution for the problem:

(1) −∆u = 1, in Ω, u = 0, on Γ1, ∂u/∂n = 0, on Γ2

3. Derive a priori error estimate, in the energy norm ||v||2E = ||v′||2 + a||v||2, for the cG(1)
approximation of the boundary value problem

−u′′(x) + u′(x) + au(x) = f(x), 0 < x < 1, u(0) = u(1) = 0, a ≥ 0.

4. a)Estimate the stability factor
∫ T

0
|u̇| dt/|u0| for the initial value problem

u̇(t) + a(t)u(t) = 0, u(0) = u0, a(t) ≥ λ > 0.

b) Formulate the dG(0)-method for this problem.

5. (Poincare inequalities). Assume that u is the solution of a Dirichlet boundary value problem,
and u, u′, |∇u| ∈ L2(Ω) (they are square integrable in a bounded domian Ω ⊂ R

d, d = 1, 2). Show
that there are positive constants CL and CΩ such that

‖u‖ ≤ CL‖u
′‖, Ω = [0, L]

‖u‖ ≤ CΩ‖∇u‖, Ω ⊂ R
2.
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MVE455: Partial Differential Equations, 2019–03–18, 14:00-18:00. Solutions.

1. a) It is clear that the homogeneous Dirichlet condition is used at x = 0 since the basis function
ϕ0 is not present in the matrices and there are no modifications corresponding the first element
of the load vector. (The indices start from i, j = 1, . . .. Consider now the solution space V 0 =
{w : ‖w‖ + ‖w′‖ < ∞}, w(0) = 0} where ||·|| is the usual L2-norm over I. Then, the variational
formulation reads as follows: find u ∈ V 0 s.t.

(2) (vx, ux) + (v, u) = (v, f) + βv(1), ∀ v ∈ V 0.

For the basis functions given, ϕN (1) = 1, which explains the last element of the vector d. Backward
integration by parts, together with the Dirichlet data on v yields

(3) (v, f) + βv(1) = (v,−uxx + u) + v(1)ux(1).

Thus, the strong formulation (PDE) is: find such that

(4) −uxx + u = f 0 < x < 1 u(0) = 0, ux(1) = β.

(b) Let in (2) β = 0 and v = u, then

(ux, ux) + (u, u) = (u, f).

Using integration by parts and u(0) = 0, and ux(1) = 0, we get

||ux||
2 + ||u||2 = (f, u) ≤ ||u||2 +

1

4
||f ||2

Hence,

||ux|| ≤
1

2
||f ||,

we get the desired result.

2. Let V be the linear function space defined by

V := {v : v ∈ H1(Ω), v = 0, on Γ1}.

Multiplying the differential equation by v ∈ V and integrating over Ω we get that

−(∆u, v) = (1, v), ∀v ∈ V.

Now using Green’s formula and the fact that v = 0 on ∂Ω \ Γ1, we have that

−(∆u,∇v) = (∇u,∇v)−

∫

∂Ω

(n · ∇u)v ds

= (∇u,∇v)−

∫

Γ1

(n · ∇u)v ds−

∫

Γ2

(n · ∇u)v ds = (∇u,∇v), ∀v ∈ V,

Hence, the variational formulation is:

(∇u,∇v) = (1, v), ∀v ∈ V.

Let Vh be the usual finite element space consisting of continuous piecewise linear functions sa-
tisfying the boundary condition v = 0 on Γ1: Then, the cG(1) method is: Find U ∈ Vh such
that

(∇U,∇v) = (1, v) ∀v ∈ Vh
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Making the “Ansatz” U(x) =
∑4

j=1 ξjϕj(x), where ϕj are the standard basis functions (ϕ1 is the
basis function for the interior node N1 and ϕ2 and ϕ3 are corresponding basis functions for the
boundary nodes N1 and N2, respective) we obtain the system of equations

3
∑

j=1

ξj

∫

Ω

∇ϕi · ∇ϕj dx =

∫

Ω

fϕi dx, i = 1, 2, 3, 4.

In matrix form this can be written as Sξ = F, where Sij = (∇ϕi,∇ϕj) is the stiffness matrix, and
Fi = (f, ϕi) is the load vector.

We first compute the stiffness matrix for the reference triangle T . The local basis functions are

φ1(x1, x2) = 1−
x1

h
−

x2

h
, ∇φ1(x1, x2) = −

1

h

[

1
1

]

,

φ2(x1, x2) =
x1

h
, ∇φ2(x1, x2) =

1

h

[

1
0

]

,

φ3(x1, x2) =
x2

h
, ∇φ3(x1, x2) =

1

h

[

0
1

]

.

Hence, with |T | =
∫

T
dz = h2/2, we can easily compute

s11 = (∇φ1,∇φ1) =

∫

T

|∇φ1|
2 dx =

2

h2
|T | = 1,

s12 = s21 = (∇φ1,∇φ2) =

∫

T

−1

h2
|T | = −1/2,

s23 = s32 = (∇φ2,∇φ3) = 0,

s22 = s33 = . . . =
1

h2
|T | = 1/2.

Thus by symmetry we get that the local stiffness matrix for the standard element is:

s =
1

2





2 −1 −1
−1 1 0
−1 0 1



 .

We can now assemble the global stiffness matrix S from the local stiffness matrix s:

S11 = S22 = 3s11 + 2s22 = 3 + 1 = 4, S12 = S13 = 2s12 = −1

S14 = 2s23 = 0, S23 = 0 S24 = 2s12 = −1,

S33 = s11 + s22 = 3/2 S34 = s12 = −1/2 S44 = 3s22 = 3/2

The remaining matrix elements are obtained by symmetry Sij = Sji. Hence,

S =
1

2









8 −2 −2 0
−2 8 0 −2
−2 0 3 −1
0 −2 −1 3









.

As for the load vector we have that
∫

Ω

ϕ1 =

∫

Ω

ϕ2 = 5
1

3

h2

2
.1 = 5h2/6,

∫

Ω

ϕ3 = 2
1

3

h2

2
.1 =

h2

3
,

∫

Ω

ϕ4 = 3
1

3

h2

2
.1 =

h2

2
,

Thus the load vector is given by b = h2

6 (5, 5, 2, 3)t. Observe that, here S becomes independent of
h.
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3. (a) The Variational formulation:

(Multiply the equation by v ∈ V , integrate by parts over (0, 1) and use the boundary conditions.)

(5) Find u ∈ V :

∫ 1

0

u′v′ dx+

∫ 1

0

u′v dx+

∫ 1

0

auv dx =

∫ 1

0

fv dx, ∀v ∈ V.

cG(1):

(6) Find U ∈ Vh :

∫ 1

0

U ′v′ dx+

∫ 1

0

U ′v dx+

∫ 1

0

aUv dx =

∫ 1

0

fv dx, ∀v ∈ Vh,

where
Vh := {v : v is continuous piecewise linear in (0, 1), v(0) = v(1) = 0}.

From (1)-(2), we find

The Galerkin orthogonality:

(7)

∫ 1

0

(

(u− U)′v′ + (u− U)′v + a(u− U)v
)

dx = 0, ∀v ∈ Vh.

We define the inner product (·, ·)E associated to the energy norm to be

(v, w)E =

∫ 1

0

(v′w′ + avw) dx, ∀v, w ∈ V.

A priori error estimate:

||e||2E =

∫ 1

0

(e′e′ + aee) dx =
{

∫ 1

0

e′e dx =
1

2

∫ 1

0

d

dx

(

e2
)

dx =
1

2
[e2]10 = 0

}

=

∫ 1

0

(e′e′ + e′e+ aee) dx =

∫ 1

0

(

e′(u− U)′ + e′(u− U) + ae(u− U)
)

dx

=
{

v ∈ Vh

}

=

∫ 1

0

(

e′(u− v)′ + e′(u− v) + ae(u− v)
)

dx

+

∫ 1

0

(

e′(v − U)′ + e′(v − U) + ae(v − U)
)

dx =
{

(3)
}

=

∫ 1

0

(

e′(u− v)′ + e′(u− v) + ae(u− v)
)

dx

=

∫ 1

0

(

e′(u− v)′ + ae(u− v) + e′(u− v)
)

dx

≤ ||e′||L2
· ||(u− v)′||L2

+ a||e||L2
||u− v||L2

+ ||e′||L2
· ||u− v||L2

≤ ||e′||L2
· ||(u− v)′||L2

+ ||e||E · ||u− v||L2

≤ ||e||E · ||u− v||E + ||e||E · ||u− v||L2

This gives the a priori error estimate:

||e||E ≤ ||u− v||E + ||u− v||L2
, ∀v ∈ Vh.

4. a) u(t) = e−A(t)u0, A(t) =

∫ t

0

a(s) ds, so that

∫ T

0

|u̇(t)| dt =

∫ T

0

|a(t)e−A(t)u0| dt

=

∫ T

0

a(t)e−A(t)|u0| dt =
(

1− e−A(T )
)

|u0| ≤
(

1− e−λt
)

|u0|

b) See the book.

5. See the book.
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