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1. Consider the initial value problem

W(t) +au(t) =0, t>0,
u(0) = uo, a >0, (a=constant).

Assume a constant time step k and verify the iterative formulas for dG(0) and ¢G(1) approxima-
tions U and U respectively: i.e.

0= () Oo= (1) o

2. Let Ty, : zop = 0,21 = 1/3,22 = 2/3, 23 = 1 be a partition of the interval [0,1]. Write down the
equation system A& = b (determine A and b) for the piecewise linear Galerkin approximation on
Tr, for the problem:

—u"(z) + 18u(z) = 6, for z€(0,1)
u'(0) = -1, u(1) = 0.
3. Prove an a priori and an a posteriori error estimate (in the H'-norm: ||ul|3,, := [|u/[|* + 2||ul]?)
for a finite element method for the problem
—u(z) + 2zu/(z) + 3u(z) = f(z), for z€(0,1)
u(0) =u(1) =0.

4. Prove that if v = 0 on the boundary of the unit square €2, then
1/2 1/2
(/ |u)? dx) < (/ |Vul|* dz’) ) (Poincare inequality in 2D).
Q Q

5. Consider the boundary value problem

—Au =0, inabounded domain Q C R?, d=2,3.
g—x+u:g, on I' =00.

a) Prove the Lo stability estimate

1 1
[[VullL,@) + §||U||L2(F) < Sllgllza@)-
b) Verify the conditions on Riesz/Lax-Milgram theorem for this problem.
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1. See the Book and Lecture notes.

2. Multiply the equation with a test function v € HL = {v : ||v||+|]v'|]| < 00, v(1) = 0}. Partial
integration over I = (0,1) yields

1

1 o (z)v' (z) dz — [u' (z)v(z) dz]2= + 18 | u(z)v(z) dz = 6 1 v(z) dz.
J J J

Using the boundary data we get the variational formulation: Find u € H} (I) such that
1 1 1
(1) / u' () (z) dz + 18/ u(z)v(z) dr = 6/ v(z) dz + v(0)
0 0 0

A Finite element Method with piecewise linear approximation is formulated as: Find U € V,? such
that

1
/U' d:c+18/ Uz )da::6/ v(z)dr + +v(0), Yo eV c HY(I),
0

where

VY = {v : v piecewise linear and continuous on the partition 75, wv(1) = 0}.

For the partition 7, and with the Neumann boundary data at £ = 0 : «/'(0) = —1, and the
Dirichlet data at £ =1: wu(1) = 0 our bases functions are as follows:
3z, 0<z<1/3
w={ 7% 1525/ w@={ 2 w 13<a<ops

’ s*s L 0, 2/3<z<1

and
0, 0<z<1/3
pa(z) =4 3—1, 1/3<z<2/3

3-3z, 2/3<z<1

%o ¥ ¥2

zo=0 x1=1/3 22=2/3 xz3=1

In this base we may use the ansatz U(z) = Z?:o &pj(x) in (4) and choose v(z) = pi(z), i =
0,1, 2. Then the finite element method (4) can be rewritten as

2 1 1
Z&/ e -(m)d:c+1szsj/0 «m(w)goj(w)dx:o‘/o pi@)de + 0i(0),  §i=0,1,2,

Jj=0
1



or as a linear system of equations A =b, A = (a;;), with

1

1 2
ai; = / () (@) dr +18 3¢ / ci@)es@)de,  ivj=0,1,2.

7=0
1
b= (b), bz-=6/ oile)do + pi(0),  i,j=0,1,2
0

Observe that the Neumann boundary condition «'(0) = —1, would yield a half-base function g
at x = 0, and therefore compared to the standard case, the values of the first diagonal elements in
both mass and stiffness matrices M and S are half of the values in the Dirichlet boundary value
case. Thus we end up with the equation system

() () ) () (2 (8)
-l -1 2 -1 & | +18n| 1/6 2/3 1/6 & | =626 |+]0
0 -1 2 & 0 1/6 1/3 & 2/6 0

Finally with h = 1/3 we end up with

3 -3 0 L[ /3 1/6 0 5 -2 0 2
A= -3 6 -3 )+18;| 1/6 2/3 1/6 | =( -2 10 -2 ), b=[2].
0 -3 6 0 1/6 2/3 0 -2 10 2

3. We multiply the differential equation by a test function v € H(I), I = (0,1) and integrate
over I. Using partial integration and the boundary conditions we get the following variational
problem: Find u € H}(I) such that

(3) /(u'v' + 2zu'v + 3uw) = /va, Yo € Hy(I).

I
A Finite Element Method with ¢G(1) reads as follows: Find U € V}? such that

=

@) / (U + 22U + 3Uv) = / fo, Voe VP c HAD),
1 1

where
V;? = {v : v is piecewise linear and continuous in a partition of I, v(0) = v(1) = 0}.
Now let e = u — U, then (3)-(4) gives that
(5) /(e'v' + 2ze'v +3ev) =0, Vv € V.
I

A posteriori error estimate: We note that using e(0) = e(1) = 0, we get

(6) /121’6'62/11’%(6 (ze?)|s — /e = /e )

so that using variational formulation (3) to replace the terms involving continuous solution u and
the finite element method (4) to insert the interpolant mhe of the error we can compute

lellZ: = /1 (e'e’ + 2ee) = /1 (e’ + 2ze’e + 3ee)
- /I((u _UYe + 20(u—UYe+3(u—U)e) = {v = e in (3)}
) / fe— / (U’ + 200" + 3Ue) = {v = mre in (4)}
/f e — The) / (U'(e — mhe) + 22U (e — mhe) + 3U (e — Whe))

= {P.I. on each subinterval} = /R(U)(e — The),
I
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where R(U) := f+U" — 2zU' — 3U = f — 22U’ — 3U, (for approximation with piecewise linears,
U =0, on each subinterval). Thus (7) implies that

lellz < IRR@)IIIR™ (e = mhe)l
< GilllRU) e’ < CillkRU) el 2,
where C; is an interpolation constant, and hence we have with || - || = || - ||z,(r) that

llellz: < CillPR(U)I-

A priori error estimate: We use (6) and write
llel|3: = /(e'e' + 2ee) = /(e'e' + 2ze’e + 3ee)
I I
= / (e'(u —U) +2ze'(u—U) + 3e(u — U)) ={v=U — mu in(5)}
T

— /I (e’(u —mpu) + 2ze’ (u — mhu) + 3e(u — ﬂhu))

< N = mnw)'[[lle'll + 2llw — mrulllle'l] + 3llu — mnull[le]
< A{ll(w = mnu)'ll + 4llu — mpull Hlell g
< Cifllha"|| + [IB*u” |1} lel| 222,

this gives that
llellers < Cifllhu”|| + [IB*u"|]},

which is the a priori error estimate.

4. This is inspired from the proof of the Poincare inequality in the 1D case: We have, due to the
vanishing boundary data, that

T1 a
o) = fuar,a2) — u22)| = | [ 5 Zutar,ma) oy
0

‘ / —u (£1,22) dwl‘ < {Cauchy’s inequality}
1/2 LN 1/2
2 ) _ 2 5
< (/0 1 dxl) (/0 (—am_lu(ml,xg)) dxl)

(/Ol(a%u(fl,xz))z’ da:‘l)l/2.

IA

This implies that

/|u|2 d;z:</ /(&fz1 (#1,22))? diy ) da
/ / / 6.771 xl,wg))de_l) dzq dxs
:/0 (/ (ail (471, 22))> d:cl dry = // 6331 u(z1,2))? dzy drs

0
= R <
/Q(amlu(xl,@)) dw_/Q|Vu| dr,

which gives the desired result:
1/2 1/2
u|? dz < / Vul? dz
(e )™ < ([ 7P
3



5. a) Using Greens formula we have that

/qulzz/Vu-Vu:—/(Au)u+/ g—uu:/ (9 —w)u,
Q Q Q aq on o0

where, in the last equality, we have used both equation and the data. In other words

1 1
IVullZ, @) + llulli,r = /69 gu < 9117,y llullZ, iy < §||g||i2(r) + §||U||%2(r)>

which gives the desired estimate.
b) To show the Riesz/Lax-Milgram conditions we introduce the notation

a(u,v) = / VU‘VU+/ wv, and L(v) :/ gu.
Q o0 a0

Then a(u,v) is a scalar product with the corresponding norm ||v||, = a(v,v)'/2. For instance we
have that ||v|| =0, only if v = 0:

0=||v||§:a(v,v)=/|Vv|2+/ 112204/112, for some a > 0 = v =0.
Q o) Q

Further L(v) is bounded in this norm, e.g. if ||g||aq < o0, then

IL(v)] < [lglloallvllac < llgllocllvlla-
We can also apply Riesz theorem in the sense that there exists u such that
a(u,v) = L(v), Y,
and u is uniquely determined by
[ulla = llglloa-

Ou
a(u,v) = —/QAuv—l—/ém(% + u)v,

Au=0, inQ and @+u:g onT.
on

Moreover since

we have that



