Mathematic Chalmers & GU
TMA372/MMGS800: Partial Differential Equations, 2009—-03—09; k1 8.30-13.30.

Telephone: Jonatan Vasilis: 0762-721860

Calculators, formula notes and other subject related material are not allowed.

Each problem gives max 8p. Valid bonus poits will be added to the scores.

Breakings: 3: 20-29p, 4: 30-39p och 5: 40p- GU G:20-39p, VG: 40p-

Gradings can be checked: week 12 all afternoons 13.00-17.00 except 20/03, or by apointment.

1. Consider the Dirichlet boundary value problem:
—(a(z)u'(z)) = f(z), for 0<z<1,
LA W
where a(x) > 0 (the modulus of elasticity). Formulate the corresponding variational formulation
(VF), the minimization problem (MP) and prove that

(BVP) < (VF) < (MP).

2. Let Tp : g = 0,21 = 1/3,22 = 2/3,23 = 1 be a partition of the interval [0,1]. Write down
the equation system A¢ = b (determine A and b) for the continuous, piecewise linear Galerkin
approximation on 7 for the problem:
—u"'(z) + 18u(z) = 6, for z € (0,1)
uw'(0)=-1,  wu(l)=0.

3. Prove an a priori and an a posteriori error estimate (in the H!-norm: ||u||§:l1 = ||u']|? + 2||ul?)
for the ¢G(1) finite element method for the following convection-diffusion-absorption problem
—u"(z) + 2zu' () + 3u(z) = f(z), for z€(0,1)
u(0) =u(1) =0.

4. Prove that if u = 0 on the boundary of the unit square Q = [0,1] x [0, 1], then

1/2
lull < [[Vull, (A Poincare inequality in 2D),  |jw]| = (/ |w|2dm) .
Q

5. Consider the following boundary value problem (Robin boundary condition and a convex boun-
ded domain) in @ C R?, d = 2,3,

—Au =0, in Q,
g—z+u:g, on I' =01.

a) Prove the L, stability estimate
1 1
IVullza@) + llullzamy < 5llgllza@)-

b) Verify the conditions on Riesz/Lax-Milgram theorem for this problem, i.e., prove V-ellipticity
and continuity of the corresponding bilinear form as well as the continuity of the corresponding
linear form.
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TMA372/MMGS800: Partial Differential Equations, 2009-03-09; k1 8.30-13.30..
Lésningar/Solutions.

1. See the Book and Lecture notes.

2. Multiply the equation with a test function v € Hy = {v : ||v|| +|[v'|| < 00, (1) = 0}. Partial
integration over I = (0,1) yields

Azumuwmx—w()(mx -+w£1(w@mx:génumm

Using the boundary data we get the variational formulation: Find u € H¢ (I) such that

(1) /1 u'(z)v'(z) dz + 18 /1 u(z)v(z)de = 6/1 v(x) dz + v(0)
0 0 0

A Finite element Method with piecewise linear approximation is formulated as: Find U € V)? such
that

1
/U' da:+18/ Uz )d:c=6/ v(z)dr + +v(0), Yo eV c HY(I),
0

where

V? = {v : v piecewise linear and continuous on the partition 75, wv(1) =0}.

For the partition 7, and with the Neumann boundary data at z = 0 : «'(0) = —1, and the
Dirichlet data at z =1 : u(1) = 0 our bases functions are as follows:
3z, 0<z<1/3
@ ={ 7 ISISYY a@={ 2lu 1B<asys

’ ST L 0, 2/3<z<1

and
0, 0<z<1/3
p2(z) =< 3x—-1, 1/3<2<2/3

3-3z, 2/3<z<1

Yo Y1 Y2

o =0 . =1/3 z5=2/3 r3 =1

In this base we may use the ansatz U(z) = Z?:o &pj(x) in (4) and choose v(z) = p;(z), i =
0,1, 2. Then the finite element method (4) can be rewritten as

2 1 1
Z&/ e -(m)d:c+1szsj/0 wi(w)wj(w)dw=6/0 pi@)de +0i(0),  i=0,1,2,

Jj=0
1



or as a linear system of equations A =b, A = (a;;), with

1

1 2
ai; = / () (@) dr +18 3¢ / ei@)es@)de,  ivj=0,1,2.

7=0
1
b= (b), bz-=6/ oi(e)do + pi(0),  i,j=0,1,2
0

Observe that the Neumann boundary condition «'(0) = —1, would yield a half-base function g
at x = 0, and therefore compared to the standard case, the values of the first diagonal elements in
both mass and stiffness matrices M and S are half of the values in the Dirichlet boundary value
case. Thus we end up with the equation system

() (8o Ot ) (5) () (1)
~ -1 2 -1 & | +18r| 1/6 2/3 1/6 & | =6 2/6 |+]| 0
0 -1 2 & 0 1/6 1/3 & 2/6 0

Finally with h = 1/3 we end up with

3 -3 0 L[ /3 1/6 0 5 -2 0 2
A= -3 6 -3 )+18;| 1/6 2/3 1/6 | =( -2 10 -2 ), b=[2].
0 -3 6 0 1/6 2/3 0 -2 10 2

3. We multiply the differential equation by a test function v € H(I), I = (0,1) and integrate
over I. Using partial integration and the boundary conditions we get the following variational
problem: Find u € H}(I) such that

(3) /(u'v' + 2zu'v + 3uw) = /va, Yo € Hy(I).

I
A Finite Element Method with ¢G(1) reads as follows: Find U € V}? such that

=

@) / (U + 22U + 3U) = / fo, Voe VP c HAD),
1 1

where
V;? = {v : v is piecewise linear and continuous in a partition of I, v(0) = v(1) = 0}.
Now let e = u — U, then (3)-(4) gives that
(5) /(e'v' +2ze'v +3ev) =0, Yoe VL.
I

A posteriori error estimate: We note that using e(0) = e(1) = 0, we get

(6) /121’6'62/11’%(6 (ze?)|s — /e = /e )

so that using variational formulation (3) to replace the terms involving continuous solution u and
the finite element method (4) to insert the interpolant mpe of the error we can compute

lellZ: = /1 (¢'e’ + 2ee) = /1 (e’ + 2ze’e + 3ee)
- /I((u _UYe' + 20(u—U)e+3(u—U)e) = {v = e in (3)}
1) / fe— / (U'e + 2aU"e + 3Ue) = {v = mhe in (4)}
/f e — mhe) / <U'(e — mhe)' + 22U (e — mhe) + 3U (e — Whe))

= {P.I. on each subinterval} = /R(U)(e — The),
I

2



where R(U) := f+U" — 2zU' — 3U = f — 22U’ — 3U, (for approximation with piecewise linears,
U =0, on each subinterval). Thus (7) implies that

lellz < IBR@)IIh™" (e = me)
< GillRRU)|lle'll < CillARU) | llel| a1,
where C}; is an interpolation constant, and hence we have with || - [| = || - [|z,(r) that

llellz: < Cill PR(U)I-

A priori error estimate: We use (6) and write
llel|3: = /(e'e' + 2ee) = /(e'e' + 2ze'e + 3ee)
I I
= / (e'(u —U) +2ze'(u—U) + 3e(u — U)) ={v=U — mpu in(5)}
T

= / (e'(u — mpu) + 2ze' (u — whu) + 3e(u — ﬂhu))
I
< (w = mnw) e’ + 2llu — mrulllle']] + 3llu — mnull[le]]
< {I(u = mrw)' || + 4llu — mrull Hlel
< Ci{[lhu"[| + [|h*u" (| }Hlell a1

this gives that
llellers < Cifllhu”|| + [|B*u"|[},

which is the a priori error estimate.

4. This is inspired from the proof of the Poincare inequality in the 1D case: We have, due to the
vanishing boundary data, that

1 a
lu(@)] = |u(z1, 72) — u(0,z2)| = ‘/0 T@U(flam2)dfl‘
‘ / —u (%1, 22) dml‘ < {Cauchy’s inequality}
1/2 LN 1/2
<([ van)"”. / 9 (@1, 22))? d
([ ) ([t ron)

(/Ol(a%u(fl,xz))z’ da:‘l)l/2.

IN

This implies that

/|u|2 d;z:</ /(&fz1 (#1,22))? diy ) da
/ / / 6.771 ml,wg))de_l) dzy dxy
:/0 (/ (ail (471, 22))> d:cl dzy = // 6331 u(z1,2))? dzy drs

0
= R <
/Q(amlu(xl,@)) dw_/Q|Vu| dr,

which gives the desired result:
1/2 1/2
u|? dz < / Vul? dz
(fyor ) < (o)
3



5. a) Using Greens formula we have that

/qulzz/Vu-Vu:—/(Au)u+/ g—uu:/ (9 —w)u,
Q Q Q aq on o0

where, in the last equality, we have used both equation and the data. In other words

1 1
IVullZ, ) + llulli,m = /69 gu < gl17, ) llullZ, i < 5”9”%2@) + §||U||%2(r)>

which gives the desired estimate.
b) To show the Riesz/Lax-Milgram conditions we introduce the notation

a(u,v) = / VU‘V’U+/ wv, and L(v) :/ gu.
Q 0 a0

Then a(u,v) is a scalar product with the corresponding norm ||v||, = a(v,v)'/2. For instance we
have that ||v|| =0, only if v = 0:

0:||v||§:a(v,v)=/|Vv|2+/ U22a/v2, for some o > 0 = v =0.
Q o) Q

Further L(v) is bounded in this norm, e.g. if ||g||aa < oo, then

IL()| < llgllsallvllaa < llglloellv]la-
We can also apply Riesz theorem in the sense that there exists w such that
a(u,v) = L(v), Y,
and u is uniquely determined by
[lulla = llglloa-

Ou
a(u,v) = —/QAuv—i—/BQ(% + u)v,

Au=0, inQ and @+u:g onT.
on

Moreover since

we have that



