Mathematic Chalmers & GU
TMA372/MMGS800: Partial Differential Equations, 2009—-08-26; k1 8.30-13.30.

Telephone: Karin Kraft: 0762-721861

Calculators, formula notes and other subject related material are not allowed.
Each problem gives max 8p. Valid bonus poits will be added to the scores.
Breakings: 3: 20-29p, 4: 30-39p och 5: 40p- GU G:20-39p, VG: 40p-

1. Consider the boundary value problem:
() { —(a(z)u'(z)) = f(z), for 0<z<1,
w(©0)=0,  a(l)u'(1) =g,
Formulate a finite element method for this problem and show the a posteriori error estimate:
(2) [(w = U)o < CillhRU)||1/a-

2. a) Let a(z) = 1 for z < 1/2, a(z) = 2 for x > 1/2 and g, = —2. Formulate a finite element
method for (1). Dervie the matrix equation AU = b arising in discretizing the problem by c¢G(1)
FEM in a uniform partition of I = (0,1) into 4 intervals. Compute, explicitely, only the matrix
elements asy and az4 and the vector element by.

b) Show, using (2), that the above finite element approximation is actually exact, i.e., u — U = 0.

3. Consider the problem

3) —Au = f, in Q={(z1,22): -1<21<2,0< 22 <2}
u =0, On ' =09,

where f =1 for 1 < 0 and f =2 for z; > 0.

a) Write down the discrete system SU = b (S is the stiffness matrix and b is the load vextor) in
approximating (3) using cG(1) FEM in the following triangulation:

Z2

T1

b) Consider the same problem as in a), replacing the Dirichlet 4 = 0 (only) on z; = 2 by the
Neuman data: d,u =0on 7, =2,0 < z2 < 2.

4. Let M € (0,1). Consider the problem

(4) (1= M*)ugy + uyy = f, (z,y) € R%.
Determine the solution u for f(z) = g(x)d(z) where 0 is the Dirac § function and
_J/L |z <1
9(z) = { 0, |z| > 1.

1
z2+y>2

Hint: The fundamental solution for —A in R? is given by E(z,y) = 3= log

5. Formulate and prove the Lax-Milgram theorem.
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TMA372/MMGS800: Partial Differential Equations, 2009-08-26; kl 8.30-13.30..
Lésningar/Solutions.

1. Define the continuous and discrete function spaces
1
V= fo: / [(v/)? + v’ dz < 00, w(0) = O},
0

and
Vi, = {v € V : vis piecewise linear and continuous on the partition ofl = [0,1]},

Multiply the differential equation by a test function v € V' and integrate over I. Partial integration
yields the variational formulation: Find u € V such that

1
/ au'v' dz = g1v(1), Yv e V.
0
The corresponding finite element method is: Find U € V}, such that
1
/ aU'v' dz = g1v(1), Yo € V.
0
For the inequality (2), se lecture notes.

2. a) A uniform partition for I = (0,1) into 4 subintervals I; = (0,1/4), I, = (1/4,1/2), I3 =
(1/2,3/4) and Iy = (3/4,1) would have the piecewise linear basis functions {;}j_,, where for V},
defined by ¢; € V3 and
_J L =]
(P](-Z'z)—{ 0, 7/¢]

12

{E(]'ZO 1'1:'1/4 .'L'2:]./2 5173:3/4 .Z'4'=1

With the ansatz U(z) = E;l-zl Ujp;j(x) the FEM, in the basis functions {p;}j_,, can be formulated
as follows: Find U € V}, such that

1
/ aU,QO{i dx = glgpz(l)’ i = 1527374‘
0
Inserting the ansatz for U yields
4 1

YU [ adeid =), i=1234

j=1 70
In this way we obtain a matrix problem AU = b with the element of A giver by

1
aij =/ ay’;p; di, and b; = g1i(1).
0

With a(z) and g1 given as in the problem and h = 1/4 we have that

[l ke [ G G

/2
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and

L s |
a34—/3/42-ﬁ-(7)dx——8, and by=(-2)-1=-2.

b) Due to the fact tha a(x) is chosen to br piecewise constant and U € Vj we get R(U) =
a'U' +aU" = 0. Thus by (2)
lle'le <0=>e(z) =C.
Now since e is continuous and e(0) = 0, hence e(z) = 0.
3. Let V be the linear function space defined by
Vi :={v:v is continuous in 2, v =0, on 9N}.
Multiplying the differential equation by v € V' and integrating over 2 we get that
—(Au,v) = (f,v), Yv e V.
Now using Green’s formula we have that

—(Au, Vv) = (Vu, Vv) — / (n-Vu)vds = (Vu, Vv), Yo e V.
80

Thus the variational formulation is:
(Vu, Vv) = (f,v), Yo e V.

Let V}, be the usual finite element space consisting of continuous piecewise linear functions satis-
fying the boundary condition v = 0 on 9: The ¢G(1) method is: Find U € V}, such that

(VU,Vv) = (f,v) Yv € Vy
With this boundary conditions we have the internal nodes N; and N;. Making the “Ansatz”

Z2

No

L1

Uz) = E?Zl &ip;j(x), where @; are the standard basis functions, we obtain the system of equations

2
>6 [ Vo Vosdo = [ fosdn, i=1.2
=1 7 Q

or, in matrix form,

S¢=F,
where S;; = (Vy;, Vip;) is the stiffness matrix and F; = (f,¢;) is the load vector. We first
compute the mass and stiffness matrix for the reference triangle T'. The local basis functions are

¢1($1,$2)=1—$—};—%, V¢1($1,$2)=—%[ } ];
$a(x1,22) = %; Vo(x1,22) = % [ (1) ] ;
¢3(z1,12) = %, Vs (z1,22) = % [ (1) ] .

Hence, with |T| = [, dz = h?/2,

2
i1 = (V61,900 = [ [Von de = 17| =1.
T
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Similarly we can compute the other elements and obtain

1 2 -1 -1
-1 0 1
We can now assemble the global matrix S from the local one s:
S11 = 8899 = 4, S12 = 2812 = -1,
Sa1 = 2813 = —1, Sz = 2811 +4s90=2+2=4

As for the load vector we have

11 1
f901=/ <P1+2/ pr=4----+2-4---
/Q x1<0 z1>0 3 2 3

1 1
f(p2:2/ @2:2'6'—'—:2
V/S; x1>0 3 2

Thus the equatuion system is given by

4 -1 & |2
-1 4 || 2]
b) With the Neumann boundary data we obtain an addition node at N3 = (2, 1) with the obvious
corresponding basis function (3 which gives rize to an addtional row and an addtional column viz,

1
/chg-ch3=2, /V(pz-Vgog:/chg-Vgag:—l /f(p3=2-§.
Q Q Q Q

Consequently the corresponding system reads as

=2/3+4/3=2.

N | =

4 -1 0 & 2
-1 4 -1 & | =] 2
0 -1 2 & 2/3
4. Notre that M < 1. The substitution of variables
o =1 4 I 2 = 5
{ [1 V1-M?2 1 [ 8$21 B ll—M azzl BEQZ B g& :}umllzll +uzl2zl2 = f(_'[,'ll’xg),
Ty = To o7 = oM 5,7 823 = Bap
Here f(a},25) = g(x1)é(x5) and
]-a |$11| < Y e e
9(z) =14 | o Vg and —A'=—f.
) |1 > iz
Thus
1 1 1 1
! ! ! ! !
[ (reon () =< e )it
) = g7 Jou (2000 ) o8 () 7 = g J ot (e ) 44
and hence L
1 Vi-a2
u() = 5o [V g (1(24,25) - (51,001 d
T Vionz
so that
u(zy,24) = u(L,zz) gives  u=wu(z1,22).
V1 — M2

5. See lecture notes
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