Mathematics Chalmers & GU
TMA372/MMGS800: Partial Differential Equations, 2010—-01-12; kl 8.30-13.30.

Telephone: Richard Lérking: 0703-088304

Calculators, formula notes and other subject related material are not allowed.

Each problem gives max 8p. Valid bonus poits will be added to the scores.
Breakings: 3: 20-29p, 4: 30-39p och 5: 40p- For GU G students :20-35p, VG: 36p-
For solutions and gradings information see the couse diary in:
http://www.math.chalmers.se/Math/Grundutb/CTH /tma372/0809 /index.html

1. Prove that if 0 < b —a < 1, then || f|z, 05 < fllz2tap) < 1l Lo (ap)-
2. U(z) = Cy sin(x) + Cysin(2x) is an approximate solution to the boundary value problem
!
—(a(a:)u’(x)) =f(z), 0<z<m, u(0) = u(r) = 0,

in two dimensions with basis functions sin(jz), j = 1,2. Let a(z) = 1+, f(z) = sinx and derive
the linear system of equations for the coefficients C7 and Cs of U, using the orthogonality

/ R(x)sin(jx)dx =0, j=1,2; where R(z) := R(U(x)) is the residual.
0

3. Consider the convection-diffusion problem
—eu"(x) + a(x)u (z) + u(z) = f(z), rel=(0,1), uw(0) =0, «/(1)=0,

where € is a positive constant and the function a satisfies a(x) > 0, a’(z) < 0. Show that
1 1/2
(@) Vell'l| < ClIfIL - (@) [la/|| < ClIfIIL - (i) ellu”]] < CIfIl,  with [Jw]| = (/0 w? () dw) :

4. Formulate the c¢G(1) piecewise continuous Galerkin method for the boundary value problem
—Autu=f, xe u=0, z€dQ\(T1UTl2), Vu-n=0, zeTl;UTly,

on the domain 2, with outward unit normal n at the boundary (see fig.). Write the matrices for
the resulting equation system using the following mesh with nodes at Ny, N and Njs.
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5. Prove an a posteriori error estimate for the ¢G(1) approximation of the two-point boundary
value problem —(a(z)u/(z)) = f, 0 < z < 1, u(0) = u(l) = 0: There is an interpolation
constant C; depending only on a such that the finite element approximation U satisfies

1 1/2
|l = Ul < Ci||AR(U)| -1, |lwlly = (/ q(z)w?(x) dx) , (g is a weight function).
0
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Losningar/Solutions.

1. Using the definition of L,-norms we write

o = [ W@t = [ s <oy < ([ 12a) ([ pew)”

—vimal [ P@ ) = il
< \/H( ’ max fz(x)dx)1/2 :\/m( ' max |f(x )|2dx)1/2

a Z€[ab] a x€[ab]

b 1/2
=vb—a max |f(x)]- (/ dx) = (b= A fllLow(ab)-

z€[a,b]
Thus, we have proved that
1fllLap) € Vb= allfllLa@p < (0= a)lfllreiap):
If now 0 < (b —a) <1 then 0 < v/b—a < 1, then we get’

1 llz@by < W llza@n) < N1 lLwan):-

2. We insert a(x) = 1+ x ans f(z) = sinz in the equation then we have

Variational formulation: Multiply the equation by v € H and integrate over [0, 7], where

ve Hy:= Hy[0,7] := {v: /01 (’UQ(I) + U'Q(x)) dx < o0, v(0) = v(mw) = 0}.
Partial integration gives that
_ /0 (1 + 20/ (@) w(a) de = (1 + ) (@)o()
With v(0) = v(r) = 0, we obtain
(VF) /OW ((1 + x)u'(x))v'(a:) dr = /07r sinz v(z) dz, Vv € Hp.

The corresponding Galerkin method in a finite dimensional space with base functions sinz and
sin(2z) is given by

(GM) /07T ((1 + a:)U’(x)) oi(x)de = /07T sinz @;(x) dz, ©i(x) = sin(iz), i = 1,2.

Now let U(x) = Cy sin(x) 4+ Co sin(2z) = Cyp1(x) + Capa(x) then, GM <~

T

+ /07T ((1 + x)u'(a:))v'(a:) dx.

0

/ ((1 + x)(Cq cos(x) + Ca2 cos(2x)>icos(ix) dx = / sinzx sin(iz) dx, 1=1,2,
0 0

which corresponds to the system of equations: A{ = b, where A = (a;5), b = (b;), £ = (Ci), 0,7 =
1,2, with

aij = ij/ (1+ z) cos(jz) cos(ix) dx, b; = / sin(ix) sin(x) du, 1,7 =1,2.
0 0
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Now using partial integration we get

a; = /Oﬂ(l + ) cos?(z) do = /Oﬁ(l +x) [% + %cos(2x)} dx

s ™ 1

. —/0 (g + Zsin(2x)) dx

™ ™ 7T2 ™ 7T2
o =M - =5t

=(1+u) [g + isin(2x)}

2

=1+ w)g - {% - écos(?x)}

a1z = az; = 2/;(1 + ) cos(x) cos(2z) dox = /077(1 +x) [cos(x) + cos(?)x)] dx

[ sin(x)—l—lsin(?)x) dx
0 3

S

s

=(1+2) [sin(m) + %sin(?)x)]

0

T

1
= [cos(x) + 9 cos(3x) .

agy = 4/;(1 + z) cos?(2x) dx = 2/;(1 +x) [1 + cos(4x)} dx

T 7'r 1
. 2/0 (x + 1 sin(4x)) dx
2

z 1 w
=201 —2[Z - —cos(4a)]|| =2m+ 207 - n® = 2w .
(1+m)m 5 16COb( x) . T4+21° -7 T+

Further by orthogonality of the set {sin(jz)}; on the interval [0, 7] we have

=2(1+x) [x + i sin(4x)}

by = / sin?(z) dz = g, by = / sin(z) sin(2z) dz = 0.
0 0
Hence the equation system for the coefficients C; and Cs is given by
1(2m +m?), -2 Ci|_| %
—%0 2 + 72 Cy ’

3. Multiply the equation by u and integrate over [0,1] to get

1
1 1
€IIU’||2+/ aw'wdz + [[ull* = (f,u) < |fllllull < S+ 5l
0

Here
1 1
1 d
/ au’udx:—/ a—u? dx
0 2 Jo dx
(1) ) L
= —a(l)u(1)? - —/ a'u?dx >0,
) 2 /,
therefore
ell'l[2 + 2 lull? < 31712
2 -2 '

This gives that
(2) Vell[T<IFIL - Tl < TIFII-

Now we multiply the equation by au’ and integrate over z € [0, 1]:

1 1
1 1
—6/ u”au'dw—|—||au'||2—|—/ au'udr < —||f||2—|—§||au’||2.
0 0
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Thus according to (1)
2 2 Lo
/ < el !/ d
o < 1P +¢ | o tu)?da

1
— 1 = a0y (0 & | ') ds
0
< I+ Ml llell/I* < 1£1I* + Cel |
Hence using (2) we get
3) llaw’l] < C||f1]-
Finally, by the differential equation and (2), (3)
ellu”l0l1f — au’ — ul] <|If]] + llaw/|| + [[ul| < C|If]I-

4. Let V be the linear function space defined by
Vi, :={v:v is continuous in Q, v =0, on IN\ (I'1 UT3)}.
Multiplying the differential equation by v € V and integrating over 2 we get that
—(Au,v) + (u,v) = (f,v), Yo e V.

Now using Green’s formula we have that

—(Au, Vv) = (Vu, Vo) — /(m(n -Vu)vds

= (Vu, Vo) — /
(’)Q\(Flul“g)
= (Vu, Vv), Yo e V.

(n-Vu)vds — / (n-Vu)vds

I ul's

Thus the variational formulation is:
(Vu, Vo) + (u,v) = (f,v), Yo e V.

Let V}, be the usual finite element space consisting of continuous piecewise linear functions satis-
fying the boundary condition v = 0 on 9Q \ (T';y UT3): The ¢G(1) method is: Find U € V}, such
that

(VU, V) + (U,v) = (f,v) Yv € Wy,
Making the “Ansatz” U(z) = 2?21 &ip;(x), where ¢; are the standard basis functions, we obtain
the system of equations

3
ij(/vwvsojder/w%dx) Z/fwdx, i=1,2,3,
= Q Q Q

or, in matrix form,

(S+M)§=F,
where S;; = (Vg;, Vo,) is the stiffness matrix, M;; = (¢, ¢;) is the mass matrix, and F; = (f, ¢;)
is the load vector.

We first compute the mass and stiffness matrix for the reference triangle T. The local basis
functions are

¢1(x1,x2):1_%_x_]12, V¢1($1,x2)=—% { 1 ],
P2(21,22) = %’ Voo(z1,22) = % { (1) } ,
P3(z1,22) = x_hQ’ Vos(x1,22) = % { (1) } )



N3

N,

Hence, with |T'| = [, dz = h?/2,

1 1—x2 h2
mi1 = (¢1,¢1) = / ¢% dx = hQ/ / (1 — 1 — 3?2)2 dridzy = —,
T 0 Jo 12

2
1 = (Vor, Vo0 = [ Vo do = 7] =1,
T

Alternatively, we can use the midpoint rule, which is exact for polynomials of degree 2 (precision
3):

(61, 61) /¢ |Z¢ )2 = <O+1+1) h2
O o
11 = (91,91 1 1 4 12°
where Z; are the midpoints of the edges. Slmllarly we can compute the other elements and obtain
2 11 2 -1 -1
h? 1
m= o7 12 17, s=3 -1 10
11 2 -1 0 1
We can now assemble the global matrices M and S from the local ones m and s:
M1 = 8mag = EhQ S11 = 8522 = 4,
Mis = 2mqg = Eh2 S12 = 2812 = —1,
Mi3 = 2mag = —h2 S13 = 2523 =0,
Moy = 4dmqy = EhQ Sop = 4511 = 4,
1
Mss = 2mqo = EhQ,, So3 = 2812 = -1,
3
M3z = 3mgs = EhQH S33 = 3822 = 3/2.
The remaining matrix elements are obtained by symmetry M;; = Mj;, S;; = Sj;. Hence,
B2 8 1 1 4 -1 0
1 1 3 0 -1 3/2

5. See lecture notes
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