Mathematics Chalmers & GU

TMA372/MMG800: Partial Differential Equations, 2010-01-12; kl 8.30-13.30.

Telephone: Richard Lärkäng: 0703-088304

Calculators, formula notes and other subject related material are not allowed.

Each problem gives max 8p. Valid bonus poits will be added to the scores.

Breakings: 3: 20-29p, 4: 30-39p och 5: 40p- For GU G students: 20-35p, VG: 36p-

For solutions and gradings information see the couse diary in:

http://www.math.chalmers.se/Math/Grundutb/CTH/tma372/0809/index.html

- **1.** Prove that if $0 < b a \le 1$, then $||f||_{L_1(a,b)} \le ||f||_{L_2(a,b)} \le ||f||_{L_\infty(a,b)}$.
- **2.** $U(x) = C_1 \sin(x) + C_2 \sin(2x)$ is an approximate solution to the boundary value problem

$$-(a(x)u'(x))' = f(x), \quad 0 < x < \pi, \qquad u(0) = u(\pi) = 0,$$

in two dimensions with basis functions $\sin(jx)$, j=1,2. Let a(x)=1+x, $f(x)=\sin x$ and derive the linear system of equations for the coefficients C_1 and C_2 of U, using the orthogonality

$$\int_0^\pi R(x)\sin(jx)\,dx = 0, \quad j = 1, 2; \quad \text{where} \quad R(x) := R(U(x)) \text{ is the residual.}$$

3. Consider the convection-diffusion problem

$$-\varepsilon u''(x) + a(x)u'(x) + u(x) = f(x), \qquad x \in I = (0,1), \qquad u(0) = 0, \quad u'(1) = 0,$$

where ε is a positive constant and the function a satisfies $a(x) \ge 0$, $a'(x) \le 0$. Show that

$$(i) \ \sqrt{\varepsilon}||u'|| \le C||f||, \quad (ii) \ ||au'|| \le C||f||, \quad (iii) \ \varepsilon||u''|| \le C||f||, \quad \text{with } ||w|| = \Big(\int_0^1 w^2(x) \, dx\Big)^{1/2}.$$

4. Formulate the cG(1) piecewise continuous Galerkin method for the boundary value problem

$$-\Delta u + u = f, \quad x \in \Omega; \qquad u = 0, \quad x \in \partial\Omega \setminus (\Gamma_1 \cup \Gamma_2), \quad \nabla u \cdot \mathbf{n} = 0, \quad x \in \Gamma_1 \cup \Gamma_2,$$

on the domain Ω , with outward unit normal **n** at the boundary (see fig.). Write the matrices for the resulting equation system using the following mesh with nodes at N_1 , N_2 and N_3 .

5. Prove an a posteriori error estimate for the cG(1) approximation of the two-point boundary value problem -(a(x)u'(x))' = f, 0 < x < 1, u(0) = u(1) = 0: There is an interpolation constant C_i depending only on a such that the finite element approximation U satisfies

$$||u' - U'||_a \le C_i ||hR(U)||_{a^{-1}}, \qquad ||w||_q = \left(\int_0^1 q(x)w^2(x) dx\right)^{1/2}, \quad (q \text{ is a weight function}).$$

void!

TMA372/MMG800: Partial Differential Equations, 2010–01–12; kl 8.30-13.30.. Lösningar/Solutions.

1. Using the definition of L_p -norms we write

$$||f||_{L_{1}(a,b)} = \int_{a}^{b} |f(x)| \, bx = \int_{a}^{b} 1 \cdot |f(x)| \, bx \le \{\text{C-S}\} \le \left(\int_{a}^{b} 1^{2} \, dx\right)^{1/2} \left(\int_{a}^{b} f^{2}(x) \, dx\right)^{1/2}$$

$$= \sqrt{b-a} \left(\int_{a}^{b} f^{2}(x) \, dx\right)^{1/2} = \sqrt{b-a} ||f||_{L_{2}(a,b)}$$

$$\le \sqrt{b-a} \left(\int_{a}^{b} \max_{x \in [a,b]} f^{2}(x) \, dx\right)^{1/2} = \sqrt{b-a} \left(\int_{a}^{b} \max_{x \in [a,b]} |f(x)|^{2} \, dx\right)^{1/2}$$

$$= \sqrt{b-a} \max_{x \in [a,b]} |f(x)| \cdot \left(\int_{a}^{b} dx\right)^{1/2} = (b-a) ||f||_{L_{\infty}(a,b)}.$$

Thus, we have proved that

$$||f||_{L_1(a,b)} \le \sqrt{b-a} ||f||_{L_2(a,b)} \le (b-a) ||f||_{L_\infty(a,b)}.$$

If now $0 < (b-a) \le 1$ then $0 < \sqrt{b-a} \le 1$, then we get

$$||f||_{L_1(a,b)} \le ||f||_{L_2(a,b)} \le ||f||_{L_\infty(a,b)}$$

2. We insert a(x) = 1 + x ans $f(x) = \sin x$ in the equation then we have Variational formulation: Multiply the equation by $v \in H_0^1$ and integrate over $[0, \pi]$, where

$$v \in H^1_0 := H^1_0[0,\pi] := \{v : \int_0^1 \left(v^2(x) + v'2(x)\right) dx < \infty, \, v(0) = v(\pi) = 0\}.$$

Partial integration gives that

$$-\int_0^\pi \left((1+x)u'(x) \right)' v(x) \, dx = -(1+x)u'(x)v(x) \Big|_0^\pi + \int_0^\pi \left((1+x)u'(x) \right) v'(x) \, dx.$$

With $v(0) = v(\pi) = 0$, we obtain

$$(VF) \qquad \int_0^{\pi} \Big((1+x)u'(x) \Big) v'(x) \, dx = \int_0^{\pi} \sin x \, v(x) \, dx, \qquad \forall v \in H_0^1.$$

The corresponding Galerkin method in a finite dimensional space with base functions $\sin x$ and $\sin(2x)$ is given by

$$(GM) \qquad \int_0^{\pi} \left((1+x)U'(x) \right) \varphi_i'(x) \, dx = \int_0^{\pi} \sin x \, \varphi_i(x) \, dx, \qquad \varphi_i(x) = \sin(ix), \ i = 1, 2.$$

Now let $U(x) = C_1 \sin(x) + C_2 \sin(2x) = C_1 \varphi_1(x) + C_2 \varphi_2(x)$ then, $GM \iff$

$$\int_0^{\pi} \left((1+x)(C_1 \cos(x) + C_2 \cos(2x)) i \cos(ix) \, dx = \int_0^{\pi} \sin x \, \sin(ix) \, dx, \qquad i = 1, 2,$$

which corresponds to the system of equations: $A\xi = \mathbf{b}$, where $A = (a_{ij})$, $\mathbf{b} = (b_i)$, $\xi = (C_i)$, i, j = 1, 2, with

$$a_{ij} = ij \int_0^{\pi} (1+x)\cos(jx)\cos(ix) dx, \qquad b_i = \int_0^{\pi} \sin(ix)\sin(x) dx, \qquad i, j = 1, 2.$$

Now using partial integration we get

$$a_{11} = \int_0^{\pi} (1+x)\cos^2(x) \, dx = \int_0^{\pi} (1+x) \left[\frac{1}{2} + \frac{1}{2}\cos(2x) \right] dx$$

$$= (1+x) \left[\frac{x}{2} + \frac{1}{4}\sin(2x) \right] \Big|_0^{\pi} - \int_0^{\pi} \left(\frac{x}{2} + \frac{1}{4}\sin(2x) \right) dx$$

$$= (1+\pi) \frac{\pi}{2} - \left[\frac{x^2}{4} - \frac{1}{8}\cos(2x) \right] \Big|_0^{\pi} = (1+\pi) \frac{\pi}{2} - \frac{\pi^2}{4} = \frac{\pi}{2} + \frac{\pi^2}{4}.$$

$$a_{12} = a_{21} = 2 \int_0^{\pi} (1+x)\cos(x)\cos(2x) \, dx = \int_0^{\pi} (1+x) \left[\cos(x) + \cos(3x) \right] dx$$

$$= (1+x) \left[\sin(x) + \frac{1}{3}\sin(3x) \right] \Big|_0^{\pi} - \int_0^{\pi} \left(\sin(x) + \frac{1}{3}\sin(3x) \right) dx$$

$$= \left[\cos(x) + \frac{1}{9}\cos(3x) \right]_0^{\pi} = \left[(-1) + \frac{1}{9}(-1) - 1 - \frac{1}{9} \right] = -2 - \frac{2}{9} = -\frac{20}{9}.$$

$$a_{22} = 4 \int_0^{\pi} (1+x)\cos^2(2x) \, dx = 2 \int_0^{\pi} (1+x) \left[1 + \cos(4x) \right] dx$$

$$= 2(1+x) \left[x + \frac{1}{4}\sin(4x) \right] \Big|_0^{\pi} - 2 \int_0^{\pi} \left(x + \frac{1}{4}\sin(4x) \right) dx$$

$$= 2(1+\pi)\pi - 2 \left[\frac{x^2}{2} - \frac{1}{16}\cos(4x) \right] \Big|_0^{\pi} = 2\pi + 2\pi^2 - \pi^2 = 2\pi + \pi^2.$$

Further by orthogonality of the set $\{\sin(jx)\}_j$ on the interval $[0,\pi]$ we have

$$b_1 = \int_0^{\pi} \sin^2(x) dx = \frac{\pi}{2}, \qquad b_2 = \int_0^{\pi} \sin(x) \sin(2x) dx = 0.$$

Hence the equation system for the coefficients C_1 and C_2 is given by

$$\begin{bmatrix} \frac{1}{4}(2\pi + \pi^2), & -\frac{20}{9} \\ -\frac{10}{9} & 2\pi + \pi^2 \end{bmatrix} \begin{bmatrix} C_1 \\ C_2 \end{bmatrix} = \begin{bmatrix} \frac{\pi}{2} \\ 0 \end{bmatrix}.$$

3. Multiply the equation by u and integrate over [0,1] to get

$$\varepsilon||u'||^2 + \int_0^1 au'u \, dx + ||u||^2 = (f, u) \le ||f||||u|| \le \frac{1}{2}||f||^2 + \frac{1}{2}||u||^2.$$

Here

(1)
$$\int_0^1 au'u \, dx = \frac{1}{2} \int_0^1 a \frac{d}{dx} u^2 \, dx$$
$$= \frac{1}{2} a(1)u(1)^2 - \frac{1}{2} \int_0^1 a' u^2 \, dx \ge 0,$$

therefore

$$\varepsilon ||u'||^2 + \frac{1}{2}||u||^2 \le \frac{1}{2}||f||^2.$$

This gives that

(2)
$$\sqrt{\varepsilon}||u'|| \le ||f||, \qquad ||u|| \le ||f||.$$

Now we multiply the equation by au' and integrate over $x \in [0, 1]$:

$$-\varepsilon \int_0^1 u'' a u' \, dx + ||au'||^2 + \int_0^1 a u' u \, dx \le \frac{1}{2} ||f||^2 + \frac{1}{2} ||au'||^2.$$

Thus according to (1)

$$||au'||^{2} \le ||f||^{2} + \varepsilon \int_{0}^{1} a \frac{d}{dx} (u')^{2} dx$$

$$= ||f||^{2} - \varepsilon a(0)u'(0)^{2} - \varepsilon \int_{0}^{1} a'(u')^{2} dx$$

$$\le ||f||^{2} + ||a'||\varepsilon||u'||^{2} \le ||f||^{2} + C\varepsilon||u'||^{2}.$$

Hence using (2) we get

$$(3) ||au'|| \le C||f||.$$

Finally, by the differential equation and (2), (3)

$$\varepsilon||u''||0||f - au' - u|| \le ||f|| + ||au'|| + ||u|| \le C||f||.$$

4. Let V be the linear function space defined by

$$V_h := \{v : v \text{ is continuous in } \Omega, v = 0, \text{ on } \partial\Omega \setminus (\Gamma_1 \cup \Gamma_2)\}.$$

Multiplying the differential equation by $v \in V$ and integrating over Ω we get that

$$-(\Delta u, v) + (u, v) = (f, v), \qquad \forall v \in V.$$

Now using Green's formula we have that

$$\begin{split} -(\Delta u, \nabla v) &= (\nabla u, \nabla v) - \int_{\partial \Omega} (n \cdot \nabla u) v \, ds \\ &= (\nabla u, \nabla v) - \int_{\partial \Omega \backslash (\Gamma_1 \cup \Gamma_2)} (n \cdot \nabla u) v \, ds - \int_{\Gamma_1 \cup \Gamma_2} (n \cdot \nabla u) v \, ds \\ &= (\nabla u, \nabla v), \qquad \forall v \in V. \end{split}$$

Thus the variational formulation is:

$$(\nabla u, \nabla v) + (u, v) = (f, v), \quad \forall v \in V.$$

Let V_h be the usual finite element space consisting of continuous piecewise linear functions satisfying the boundary condition v=0 on $\partial\Omega\setminus(\Gamma_1\cup\Gamma_2)$: The cG(1) method is: Find $U\in V_h$ such that

$$(\nabla U, \nabla v) + (U, v) = (f, v) \quad \forall v \in V_b$$

Making the "Ansatz" $U(x) = \sum_{j=1}^{3} \xi_j \varphi_j(x)$, where φ_i are the standard basis functions, we obtain the system of equations

$$\sum_{i=1}^{3} \xi_{j} \left(\int_{\Omega} \nabla \varphi_{i} \cdot \nabla \varphi_{j} \, dx + \int_{\Omega} \varphi_{i} \varphi_{i} \, dx \right) = \int_{\Omega} f \varphi_{j} \, dx, \quad i = 1, 2, 3,$$

or, in matrix form,

$$(S+M)\xi = F$$
,

where $S_{ij} = (\nabla \varphi_i, \nabla \varphi_j)$ is the stiffness matrix, $M_{ij} = (\varphi_i, \varphi_j)$ is the mass matrix, and $F_i = (f, \varphi_i)$ is the load vector.

We first compute the mass and stiffness matrix for the reference triangle T. The local basis functions are

$$\begin{split} \phi_1(x_1,x_2) &= 1 - \frac{x_1}{h} - \frac{x_2}{h}, & \nabla \phi_1(x_1,x_2) &= -\frac{1}{h} \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \\ \phi_2(x_1,x_2) &= \frac{x_1}{h}, & \nabla \phi_2(x_1,x_2) &= \frac{1}{h} \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \\ \phi_3(x_1,x_2) &= \frac{x_2}{h}, & \nabla \phi_3(x_1,x_2) &= \frac{1}{h} \begin{bmatrix} 0 \\ 1 \end{bmatrix}. \end{split}$$

Hence, with $|T| = \int_T dz = h^2/2$,

$$m_{11} = (\phi_1, \phi_1) = \int_T \phi_1^2 dx = h^2 \int_0^1 \int_0^{1-x_2} (1 - x_1 - x_2)^2 dx_1 dx_2 = \frac{h^2}{12},$$

$$s_{11} = (\nabla \phi_1, \nabla \phi_1) = \int_T |\nabla \phi_1|^2 dx = \frac{2}{h^2} |T| = 1.$$

Alternatively, we can use the midpoint rule, which is exact for polynomials of degree 2 (precision 3):

$$m_{11} = (\phi_1, \phi_1) = \int_T \phi_1^2 dx = \frac{|T|}{3} \sum_{i=1}^3 \phi_1(\hat{x}_i)^2 = \frac{h^2}{6} \left(0 + \frac{1}{4} + \frac{1}{4}\right) = \frac{h^2}{12},$$

where \hat{x}_j are the midpoints of the edges. Similarly we can compute the other elements and obtain

$$m = \frac{h^2}{24} \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix}, \qquad s = \frac{1}{2} \begin{bmatrix} 2 & -1 & -1 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}.$$

We can now assemble the global matrices M and S from the local ones m and s:

$$M_{11} = 8m_{22} = \frac{8}{12}h^2, \qquad S_{11} = 8s_{22} = 4,$$

$$M_{12} = 2m_{12} = \frac{1}{12}h^2, \qquad S_{12} = 2s_{12} = -1,$$

$$M_{13} = 2m_{23} = \frac{1}{12}h^2, \qquad S_{13} = 2s_{23} = 0,$$

$$M_{22} = 4m_{11} = \frac{4}{12}h^2, \qquad S_{22} = 4s_{11} = 4,$$

$$M_{23} = 2m_{12} = \frac{1}{12}h^2, \qquad S_{23} = 2s_{12} = -1,$$

$$M_{33} = 3m_{22} = \frac{3}{12}h^2, \qquad S_{33} = 3s_{22} = 3/2.$$

The remaining matrix elements are obtained by symmetry $M_{ij} = M_{ji}$, $S_{ij} = S_{ji}$. Hence,

$$M = \frac{h^2}{12} \begin{bmatrix} 8 & 1 & 1 \\ 1 & 4 & 1 \\ 1 & 1 & 3 \end{bmatrix}, \qquad S = \begin{bmatrix} 4 & -1 & 0 \\ -1 & 4 & -1 \\ 0 & -1 & 3/2 \end{bmatrix}.$$

5. See lecture notes

ΜA