## Mathematics Chalmers \& GU

TMA372/MMG800: Partial Differential Equations, 2011-03-14; kl 8.30-13.30.
Telephone: Oskar Hamlet: 0703-088304
Calculators, formula notes and other subject related material are not allowed.
Each problem gives max 5p. Valid bonus poits will be added to the scores.
Breakings: 3: $15-20$ p, 4: 21-27p och 5: 28 p- For GU studentsG:15-27p, VG: 28 p-
For solutions and gradings information see the couse diary in:
http://www.math.chalmers.se/Math/Grundutb/CTH/tma372/1011/index.html

1. Formulate and prove the Lax-Milgram theorem in the case of symmetric bilinear form.
2. Let $\alpha(x)$ be a bounded positive function on $[0,1]$, i.e. $0 \leq \alpha(x) \leq M$. Prove an a priori and an a posteriori error estimate for the $\mathrm{cG}(1)$ finite element method for the problem

$$
\begin{equation*}
-u^{\prime \prime}+\alpha u=f, \quad 0<x<1, \quad u(0)=u(1)=0 \tag{1}
\end{equation*}
$$

in the energy norm defined by $\|w\|_{E}^{2}:=\int_{I}\left(\left(w^{\prime}\right)^{2}+\alpha(w)^{2}\right) d x, \quad I=(0,1)$.
3. Let $\varepsilon$ be a positive constant, and $f \in L_{2}(I)$. Consider the problem

$$
-\varepsilon u^{\prime \prime}+x u^{\prime}+u=f \quad \text { in } I=(0,1), \quad u(0)=u^{\prime}(1)=0
$$

Prove that $\quad\left\|\varepsilon u^{\prime \prime}\right\| \leq\|f\|, \quad\left(\|\cdot\|\right.$ is the $L_{2}(I)$ - norm $)$.
4. In the square domain $\Omega:=(0,1)^{2}$, with the boundary $\Gamma:=\partial \Omega$, consider the problem of solving

$$
\left\{\begin{array}{lr}
-\frac{\partial^{2} u}{\partial x_{1}^{2}}-2 \frac{\partial^{2} u}{\partial x_{2}^{2}}=1, & \text { in } \Omega=\left\{x=\left(x_{1}, x_{2}\right): 0<x_{1}<2,0<x_{2}<2\right\}  \tag{2}\\
u=0 \text { on } \Gamma_{1}:=\Gamma \backslash \Gamma_{2}, & \frac{\partial u}{\partial x_{1}}=0 \text { on } \Gamma_{2}=\left\{x=\left(x_{1}, x_{2}\right): x_{1}=2, \quad 0<x_{2}<2\right\}
\end{array}\right.
$$

Determine the stiffness matrix and load vector if the $\mathrm{cG}(1)$ finite element method with piecewise linear approximation is applied to the equation (2) above and on the following triangulation:

5. Consider the Poisson equation

$$
\begin{equation*}
-\Delta u=f, \quad \text { in } \Omega \in \mathbf{R}^{2}, \quad \text { with } \quad-\mathbf{n} \cdot \nabla u=k u, \text { on } \partial \Omega \tag{3}
\end{equation*}
$$

where $k>0$ and $\mathbf{n}$ is the outward unit normal to $\partial \Omega$ ( $\partial \Omega$ is the boundary of $\Omega$ ).
a) Prove the Poincare inequality: $\quad\|u\|_{L_{2}(\Omega)} \leq C_{\Omega}\left(\|u\|_{L_{2}(\partial \Omega)}+\|\nabla u\|_{L_{2}(\Omega)}\right)$.
b) Use the inequality in a) and the boundary data to show that $\|u\|_{L_{2}(\partial \Omega)} \rightarrow 0$ as $k \rightarrow \infty$.
6. a) Formulate a relevant minimization problem for the solution of the Poisson equation

$$
-\Delta u=f, \quad \text { in } \Omega \in \mathbf{R}^{2}, \quad \text { with } \quad \mathbf{n} \cdot \nabla u=b(g-u), \quad \text { on } \partial \Omega,
$$

where $f>0, b>0$ and $g$ are given functions.
b) Derive an a priori error estimate for $\mathrm{cG}(1)$ approximation in the corresponding energy-norm.
void!

TMA372/MMG800: Partial Differential Equations, 2011-03-14; kl 8.30-13.30.. Lösningar/Solutions.

1. See Lecture Notes or text book chapter 21.
2. Multiply (1) by $v \in H_{0}^{1}(I)$ and integrate over $I$. Then, partial integration yields

$$
\begin{equation*}
\int_{I}\left(u^{\prime} v^{\prime}+\alpha u v\right) d x=\int_{I} f v d x \tag{4}
\end{equation*}
$$

Hence we may formulate the Variational formulation: as Find $u \in H_{0}^{1}(I)$ such that

$$
\begin{equation*}
\int_{I}\left(u^{\prime} v^{\prime}+\alpha u v\right) d x=\int_{I} f v d x, \quad \forall v \in H_{0}^{1}(I) . \tag{VF}
\end{equation*}
$$

The corresponding finite element formulation, for the $\mathrm{cG}(1)$ method reads: Find $U \in V_{h}^{0}$ such that

$$
\begin{equation*}
(\mathrm{FEM}) \quad \int_{I}\left(U^{\prime} v^{\prime}+\alpha U v\right) d x=\int_{I} f v d x, \quad \forall v \in V_{h}^{0} \tag{6}
\end{equation*}
$$

Then, with $e:=u-U(5)-(6)$ gives the Galerkin orthogonality:

$$
\begin{equation*}
\left(\mathrm{G}^{\perp}\right) \quad \int_{I}\left(e^{\prime} v^{\prime}+\alpha e v\right) d x=0, \quad \forall v \in V_{h}^{0} \subset H_{0}^{1}(I) \tag{7}
\end{equation*}
$$

We define the scalar product

$$
(v, w)_{E}:=\int_{I}\left(v^{\prime} w^{\prime}+\alpha v w\right) d x
$$

which, by letting $w=v$ ends up to our choice of the energy norm:

$$
\|v\|_{E}^{2}:=(v, v)_{E}=\int_{I}\left(\left(v^{\prime}\right)^{2}+\alpha(v)^{2}\right) d x
$$

Note also that (7) is written in concise form as

$$
\begin{equation*}
\left(\mathrm{G}^{\perp}\right) \quad(e, v)_{E}=0, \quad \forall v \in V_{h}^{0} \subset H_{0}^{1}(I) \tag{8}
\end{equation*}
$$

A priori error estimate: Using (8) with $v=\pi_{h} u-U$ and Cauchy-Schwarz inequality, we can write

$$
\|e\|_{E}^{2}=(e, e)_{E}=(e, u-U)_{E}=\left(e, u-\pi_{h} u+\pi_{h} u-U\right)_{E}=\left(e, u-\pi_{h}\right)_{E} \leq\|e\|_{E}\left\|u-\pi_{h}\right\|_{E}
$$

On the other hand by the definition of the energy norm, and interpolation estimates

$$
\begin{equation*}
\left\|u-\pi_{h}\right\|_{E}^{2} \leq\left\|\left(u-\pi_{h}\right)^{\prime}\right\|_{L_{2}(I)}^{2}+\left\|\sqrt{\alpha}\left(u-\pi_{h}\right)\right\|_{L_{2}(I)}^{2} \leq C_{i}^{2}\left\|h u^{\prime \prime}\right\|_{L_{2}(I)}^{2}+C_{i}^{2} M\left\|h^{2} u^{\prime \prime}\right\|_{L_{2}(I)}^{2} \tag{10}
\end{equation*}
$$

Thus, combining (9) and (10) we get the a priori error estimate, viz

$$
\begin{equation*}
\|e\|_{E} \leq C_{i}\left(\left\|h u^{\prime \prime}\right\|_{L_{2}(I)}+\left\|h^{2} u^{\prime \prime}\right\|_{L_{2}(I)}\right) \tag{11}
\end{equation*}
$$

A posteriori error estimate: (This time we aim to eliminate $u$, and keep $U$ and $f$ ).

$$
\begin{align*}
\|e\|_{E}^{2} & =\int_{I}\left(e^{\prime} e^{\prime}+\alpha e e\right) d x=\int_{I}(u-U)^{\prime} e^{\prime} d x+\int_{I} \alpha(u-U) e d x=\{v=e \text { in }(5)\} \\
& =\int_{I} f e-\int_{I}\left(U^{\prime} e^{\prime}+\alpha U e\right) d x=\left\{v=\pi_{h} e \text { in }(6)\right\}  \tag{12}\\
& \int_{I} f\left(e-\pi_{h} e\right)-\int_{I}\left(U^{\prime}\left(e-\pi_{h} e\right)^{\prime}+\alpha U\left(e-\pi_{h} e\right)\right) d x=\{P . I . \text { over each subinterval }\} \\
& =\int_{I}\left(f+U^{\prime \prime}-\alpha U\right)\left(e-\pi_{h} e\right) \equiv \int_{I} R(U)\left(e-\pi_{h} e\right) d x
\end{align*}
$$

where $R(U)=f+U^{\prime \prime}-\alpha U=f-\alpha U\left(U^{\prime \prime} \equiv 0\right.$, since $U$ is linear on each subinterval).

Now using Cauchy-Schwarz and interpolation estimate we get

$$
\begin{align*}
\|e\|_{E}^{2} & \leq\|h R(U)\|_{L_{2}(I)}\left\|h^{-1}\left(e-\pi_{h} e\right)\right\|_{L_{2}(I)}  \tag{13}\\
& \leq C_{i}\|h R(U)\|_{L_{2}(I)}\left\|e^{\prime}\right\|_{L_{2}(I)} \leq C_{i}\|h R(U)\|_{L_{2}(I)}\|e\|_{E}
\end{align*}
$$

Hence, finally we have the a posteriori error estimate:

$$
\|e\|_{E} \leq C_{i}\|h R(U)\|_{L_{2}(I)}
$$

3. Multiply the equation $-\varepsilon u^{\prime \prime}+x u^{\prime}+u=f$, by $-\varepsilon u^{\prime \prime}$ and integrate over $I=(0,1)$ :

$$
\begin{equation*}
\left\|\varepsilon u^{\prime \prime}\right\|_{L_{2}(I)}^{2}-\varepsilon \int_{0}^{1} x u^{\prime} u^{\prime \prime} d x-\varepsilon \int_{0}^{1} u u^{\prime \prime} d x=\int_{0}^{1}\left(-\varepsilon u^{\prime \prime}\right) f d x \tag{14}
\end{equation*}
$$

Integration by parts, and using the boundary data $u^{\prime}(1)=0$ yields

$$
\begin{equation*}
\int_{0}^{1} x u^{\prime} u^{\prime \prime} d x=\left[x u^{\prime 2}\right]_{0}^{1}-\int_{0}^{1}\left(u^{\prime}+x u^{\prime \prime}\right) u^{\prime} d x=-\int_{0}^{1} u^{\prime 2} d x-\int_{0}^{1} x u^{\prime} u^{\prime \prime} d x \tag{15}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\int_{0}^{1} x u^{\prime} u^{\prime \prime} d x=-\frac{1}{2} \int_{0}^{1} u^{\prime 2} d x \tag{16}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
\int_{0}^{1} u u^{\prime \prime} d x=\left[u u^{\prime}\right]_{0}^{1}-\int_{0}^{1} u^{\prime 2} d x \tag{17}
\end{equation*}
$$

Inserting (16)-(17) in (14) we have

$$
\begin{equation*}
\left\|\varepsilon u^{\prime \prime}\right\|_{L_{2}(I)}^{2}+\frac{\varepsilon}{2} \int_{0}^{1}{u^{\prime}}^{2} d x+\varepsilon \int_{0}^{1}{u^{\prime}}^{2} d x=\int_{0}^{1}\left(-\varepsilon u^{\prime \prime}\right) f d x \tag{18}
\end{equation*}
$$

Hence, using Cauchy-Schwarz inequality

$$
\begin{equation*}
\left\|\varepsilon u^{\prime \prime}\right\|_{L_{2}(I)}^{2} \leq i n t_{0}^{1}\left(-\varepsilon u^{\prime \prime}\right) f d x \leq\{C-S\} \leq\left\|\varepsilon u^{\prime \prime}\right\|_{L_{2}(I)}\|f\|_{L_{2}(I)} \tag{19}
\end{equation*}
$$

and we have the desired result:

$$
\begin{equation*}
\left\|\varepsilon u^{\prime \prime}\right\|_{L_{2}(I)} \leq\|f\|_{L_{2}(I)} \tag{20}
\end{equation*}
$$

4. Recall that the mesh size is $h=1$. Further, the first triangle (the triangle with nodes at $(0,0)$, $(1,0)$ and $(0,1))$ is not in the support of the test function of $N_{1}$, whereas the last triangle (the triangle with nodes at $(4,4),(2,4)$ and $(4,2))$ is in the support of the test function for $N_{2}$ !. Thus, the nodal bases functions $\varphi_{1}$ and $\varphi_{2}$ share the two triangles $K_{1}$ and $K_{2}$, see figure below. We

define the test function space

$$
\begin{equation*}
V=\left\{v: v \in H^{1}(\Omega), \quad v=0 \quad \text { on } \Gamma_{1}\right\} . \tag{21}
\end{equation*}
$$

We multiply the differential equation in (2) by $v \in V$ and integrate over $\Omega$. Using Green's formula, the boundary data $\left(v=0\right.$ on $\Gamma_{1}$ and $\frac{\partial u}{\partial x_{1}}=0$ on $\Gamma_{2}$ ), and the standard notation $\vec{n}=\left(n_{1}, n_{2}\right)$ for the outward unit normal on $\Gamma_{1} \cup \Gamma_{2}$, we end up with

$$
\begin{align*}
\int_{\Omega}\left(\frac{\partial u}{\partial x_{1}} \frac{\partial v}{\partial x_{1}}\right. & \left.+2 \frac{\partial u}{\partial x_{2}} \frac{\partial v}{\partial x_{2}}\right) d x_{1} d x_{2}-\int_{\Gamma}\left(\frac{\partial u}{\partial x_{1}} v n_{1}+2 \frac{\partial u}{\partial x_{2}} v n_{2}\right) d s \\
& =\int_{\Omega}\left(\frac{\partial u}{\partial x_{1}} \frac{\partial v}{\partial x_{1}}+2 \frac{\partial u}{\partial x_{2}} \frac{\partial v}{\partial x_{2}}\right) d x_{1} d x_{2}=\int_{\Omega} v d x_{1} d x_{2} \tag{22}
\end{align*}
$$

Hence, we have the variational formulation: Find $u \in V$ such that

$$
\begin{equation*}
\int_{\Omega}\left(\frac{\partial u}{\partial x_{1}} \frac{\partial v}{\partial x_{1}}+2 \frac{\partial u}{\partial x_{2}} \frac{\partial v}{\partial x_{2}}\right) d x_{1} d x_{2}=\int_{\Omega} v d x_{1} d x_{2}, \quad \forall v \in V \tag{23}
\end{equation*}
$$

and the corresponding finite element method: Find $U \in V_{h}$ such that

$$
\begin{equation*}
\int_{\Omega}\left(\frac{\partial U}{\partial x_{1}} \frac{\partial v}{\partial x_{1}}+2 \frac{\partial U}{\partial x_{2}} \frac{\partial v}{\partial x_{2}}\right) d x_{1} d x_{2}=\int_{\Omega} v d x_{1} d x_{2}, \quad \forall v \in V_{h}(\subset V) \tag{24}
\end{equation*}
$$

where

$$
\begin{equation*}
V_{h}:=\left\{v: v \text { is piecewise linear and continuous on the partition of } \Omega, v=0 \text { on } \Gamma_{1}\right\} . \tag{25}
\end{equation*}
$$

A basis for $V_{h}$ consists of $\left\{\varphi_{i}\right\}_{i=1}^{2}$, where

$$
\begin{cases}\varphi_{i} \in V_{h}, & i=1,2 \\ \varphi_{i}\left(N_{j}\right)=\delta_{i j}, & i, j=1,2\end{cases}
$$

Then, (25) is equivalent to: find $U \in V_{h}$ such that

$$
\begin{equation*}
\int_{\Omega}\left(\frac{\partial U}{\partial x_{1}} \frac{\partial \varphi_{i}}{\partial x_{1}}+2 \frac{\partial U}{\partial x_{2}} \frac{\partial \varphi_{i}}{\partial x_{2}}\right) d x_{1} d x_{2}=\int_{\Omega} \varphi_{i} d x_{1} d x_{2}, \quad i=1,2 \tag{26}
\end{equation*}
$$

Now, we make the ansatz: $U=\sum_{j=1}^{2} \xi_{j} \varphi_{j}$. Inserting in (26) gives

$$
\begin{equation*}
\sum_{j=1}^{2} \xi_{j}\left\{\int_{\Omega}\left(\frac{\partial \varphi_{j}}{\partial x_{1}} \frac{\partial \varphi_{i}}{\partial x_{1}}+2 \frac{\varphi_{j}}{\partial x_{2}} \frac{\partial \varphi_{i}}{\partial x_{2}}\right) d x_{1} d x_{2}\right\}=\int_{\Omega} \varphi_{i} d x_{1} d x_{2}, \quad i=1,2 \tag{27}
\end{equation*}
$$

which can be written in the equivalent form as

$$
\begin{equation*}
A \xi=b, \quad a_{i j}=\int_{\Omega}\left(\frac{\partial \varphi_{j}}{\partial x_{1}} \frac{\partial \varphi_{i}}{\partial x_{1}}+2 \frac{\varphi_{j}}{\partial x_{2}} \frac{\partial \varphi_{i}}{\partial x_{2}}\right) d x_{1} d x_{2}, \quad b_{i}=\int_{\Omega} \varphi_{i} d x_{1} d x_{2} \tag{28}
\end{equation*}
$$

We can easily compute that

$$
\begin{array}{ll}
a_{11}=\int_{\Omega}\left(\frac{\partial \varphi_{1}}{\partial x_{1}} \frac{\partial \varphi_{1}}{\partial x_{1}}+2 \frac{\partial \varphi_{1}}{\partial x_{2}} \frac{\partial \varphi_{1}}{\partial x_{2}}\right) d x_{1} d x_{2}=6, & b_{1}=\int_{\Omega} \varphi_{1} d x_{1} d x_{2}=1 \\
a_{22}=\int_{\Omega}\left(\frac{\partial \varphi_{2}}{\partial x_{2}} \frac{\partial \varphi_{2}}{\partial x_{2}}+2 \frac{\partial \varphi_{2}}{\partial x_{2}} \frac{\partial \varphi_{2}}{\partial x_{2}}\right) d x_{1} d x_{2}=\frac{a_{11}}{2}=3, & b_{1}=\int_{\Omega} \varphi_{2} d x_{1} d x_{2}=\frac{b_{1}}{2}=\frac{1}{2}, \tag{29}
\end{array}
$$

and

$$
\begin{align*}
a_{12}=a_{21}= & \int_{\Omega}\left(\frac{\partial \varphi_{2}}{\partial x_{1}} \frac{\partial \varphi_{1}}{\partial x_{2}}+2 \frac{\partial \varphi_{2}}{\partial x_{2}} \frac{\partial \varphi_{1}}{\partial x_{2}}\right) d x_{1} d x_{2}=\{\text { see Fig. }\}=\int_{K_{1}} \ldots+\int_{K_{2}} \ldots  \tag{30}\\
& \left.=\left(\frac{1}{h}\left(-\frac{1}{h}\right)+2 \cdot \frac{1}{h} \cdot 0\right) \cdot \frac{h^{2}}{2}\right)+\left(\frac{1}{h}\left(-\frac{1}{h}\right)+2 \cdot 0 \cdot\left(-\frac{1}{h}\right) \cdot \frac{h^{2}}{2}\right)=-\frac{1}{2}-\frac{1}{2}=-1 .
\end{align*}
$$

So, in summary we have that the stiffness matrix $A$, and the load vector $b$ are given by

$$
A=\left[\begin{array}{lr}
6 & -1 \\
-1 & 2
\end{array}\right] \quad b=\left[\begin{array}{r}
1 \\
1 / 2
\end{array}\right]
$$

5. a) There is smooth function $\phi$ such that $\Delta \phi=1$ so that, using Greens formula

$$
\begin{aligned}
\|u\|_{\Omega}^{2} & =\int_{\Omega} u^{2} \Delta \phi=\int_{\partial \Omega} u^{2} \partial_{n} \phi-\int_{\Omega} 2 u \nabla u \cdot \nabla \phi \\
& \leq C_{1}\|u\|_{\partial \Omega}^{2}+C_{2}\|u\|\|\nabla u\| \leq C_{1}\|u\|_{\partial \Omega}^{2}+\frac{1}{2}\|u\|_{\Omega}^{2}+\frac{1}{2} C_{2}^{2}\|\nabla u\|_{\Omega}^{2}
\end{aligned}
$$

This yields

$$
\|u\|_{\Omega}^{2} \leq 2 C_{1}\|u\|_{\partial \Omega}^{2}+C_{2}^{2}\|\nabla u\|_{\Omega}^{2} \leq C^{2}\left(\|u\|_{\partial \Omega}^{2}+\|\nabla u\|_{\Omega}^{2}\right)
$$

where $C^{2}=\max \left(2 C_{1}, C_{2}^{2}\right), C_{1}=\max _{\partial \Omega}\left|\partial_{n} \phi\right|$, and $C_{2}=\max _{\Omega}(2|\nabla \phi|)$.
b) Multiply the equation $-\Delta u=f$ by $u$ and integrate over $\Omega$. Partial integration together with the boundary data $-\partial_{\mathbf{n}} u=k u$ and Cauchy's inequality, yields

$$
\begin{aligned}
\|\nabla u\|_{\Omega}^{2}+k\|u\|_{\partial \Omega}^{2} & =\int_{\Omega} \nabla u \cdot \nabla u+\int_{\partial \Omega} u\left(-\partial_{\mathbf{n}} u\right)=\int_{\Omega} u(-\Delta u)=\int_{\Omega} f u \\
& \leq\|u\|_{\Omega}^{\|} f\left\|_{\Omega} \leq C_{\Omega}\left(\|u\|_{\partial \Omega}+\|\nabla u\|_{\Omega}\right)\right\| f\left\|_{\Omega}=\right\| u\left\|_{\partial \Omega} C_{\Omega}\right\| f\left\|_{\Omega}+\right\| \nabla u\left\|_{\Omega} C_{\Omega}\right\| f \|_{\Omega} \\
& \leq \frac{1}{2}\|u\|_{\partial \Omega}^{2}+\frac{1}{2}\|\nabla u\|_{\Omega}^{2}+C_{\Omega}^{2}\|f\|_{\Omega}^{2}
\end{aligned}
$$

Subtracting $\frac{1}{2}\|u\|_{\partial \Omega}^{2}+\frac{1}{2}\|\nabla u\|_{\Omega}^{2}$ from the both sides, we end up with

$$
\left(k-\frac{1}{2}\right)\|u\|_{\partial \Omega}^{2} \leq \frac{1}{2}\|\nabla u\|_{\Omega}^{2}+\left(k-\frac{1}{2}\right)\|u\|_{\partial \Omega}^{2} \leq C_{\Omega}^{2}\|f\|_{\Omega}^{2}
$$

which gives that $\|u\|_{\partial \Omega} \rightarrow 0$ as $k \rightarrow \infty$.
6. a) Multiply the equation by $v$, integrate over $\Omega$, partial integrate, and use the boundary data to obtain

$$
\int_{\Omega} f v=-\int_{\Omega}(\Delta u) v=-\int_{\Gamma}(\mathbf{n} \cdot \nabla u) v+\int_{\Omega} \nabla u \cdot \nabla v=\int_{\Gamma} b u v-\int_{\Gamma} b g v+\int_{\Omega} \nabla u \nabla v
$$

where $\Gamma:=\partial \Omega$. This can be rewritten as

$$
\underbrace{\int_{\Omega} \nabla u \cdot \nabla v+\int_{\Gamma} b u v}_{:=a(u, v)}=\underbrace{\int_{\Omega} f v+\int_{\Gamma} b g v}_{:=l(v)}
$$

Let now

$$
F(w)=\frac{1}{2}=a(w, w)-l(w)=\frac{1}{2} \int_{\Omega} \nabla w \cdot \nabla w+\int_{\Gamma} b w w-\int_{\Omega} f v+\int_{\Gamma} b g v
$$

and choose $w=u+v$, then

$$
\begin{aligned}
F(w) & =F(u+v)=F(u)+ \\
& +\underbrace{\int_{\Omega} \nabla u \cdot \nabla v+\int_{\Gamma} b u v-\int_{\Omega} f v+\int_{\Gamma} b g v}_{=0}+\underbrace{\frac{1}{2} \int_{\Omega} \nabla v \cdot \nabla v+\frac{1}{2} \int_{\Gamma} b v v}_{\geq 0} \geq F(u)
\end{aligned}
$$

This gives $F(u) \leq F(w)$ for arbitrary $w$.
b) Make the discrete ansatz $U=\sum_{j=1}^{M} U_{j} \varphi_{j}$, and set $v=\varphi_{i}, i=1,2, \ldots, M$ in the variational formulation. Then we get the equation system $A U=B$, where $U$ is the column vector with entries $U_{j}, B$ is the load vector with elements

$$
B_{i}=\int_{\Omega} f \varphi_{i}+\int_{\Gamma} b g \varphi_{i}
$$

and $A$ is the matrix with elements

$$
A_{i j}=\int_{\Omega} \nabla \varphi_{i} \cdot \nabla \varphi_{j}+\int_{\Gamma} b \varphi_{i} \varphi_{j}
$$

Here $\varphi_{j}=\varphi_{j}(x)$ is the basis function (hat-functions) for the set of all piecewise linear polynomials functions on a triangulation of the domain $\Omega$.

Finally for the energy-norm $\|v\|=a(v, v)^{1 / 2}$, using the definition for $U=U(x)$, and the Galerkin orthogonality, we estimate the error $e=u-U$ as

$$
\begin{aligned}
\|e\|^{2} & =a(e, e)=a(e, u-U)=a(e, u)-a(e, U)=a(e, u) \\
& =a(e, u)-a(e, v)=a(e, u-v) \leq\|e\|\|u-v\|
\end{aligned}
$$

This gives $\|u-U\|=\|e\| \leq\|u-v\|$, for arbitrary piecewise linear function $v$, due to the fact that for such $U$ and $v$ Galerkin orthogonality gives $a(e, U)=0$ and $a(e, v)=0$ : Just notice that both $U$ and $v$ are the linear combination of the basis functions $\varphi_{j}$ for which according to the definition of $U$ we have that

$$
a\left(e, \varphi_{j}\right)=a\left(u, \varphi_{j}\right)-a\left(U, \varphi_{j}\right)=l\left(\varphi_{j}\right)-l\left(\varphi_{j}\right)=0
$$

In particular, we may chose the piecewise linear function $v$ to be the interpolant $u$ and hence get

$$
\|u-U\| \leq\|u-v\| \leq C\left\|h D^{2} u\right\|
$$

where $h$ is the mesh size and $C$ is an interpolation constant independent of $h$ and $u$.

MA

