Mathematics Chalmers & GU
TMA372/MMGS800: Partial Differential Equations, 2011-03-14; kl 8.30-13.30.

Telephone: Oskar Hamlet: 0703-088304

Calculators, formula notes and other subject related material are not allowed.
Each problem gives max 5p. Valid bonus poits will be added to the scores.
Breakings: 3: 15-20p, 4: 21-27p och 5: 28p-  For GU studentsG:15-27p, VG: 28p-
For solutions and gradings information see the couse diary in:
http://www.math.chalmers.se/Math/Grundutb/CTH /tma372/1011 /index.html

1. Formulate and prove the Lax-Milgram theorem in the case of symmetric bilinear form.

2. Let a(x) be a bounded positive function on [0, 1], i.e. 0 < a(z) < M. Prove an a priori and an
a posteriori error estimate for the ¢cG(1) finite element method for the problem

—u" +au=f, 0<z<l, u(0) = u(1) =0, (1)
in the energy norm defined by ||w||% = fI ((w’)2 + oz(w)Q) dz, I=1(0,1).
3. Let € be a positive constant, and f € Lo(I). Consider the problem
—eu' +zu' +u=f in I=(0,1), u(0) =u/(1) =0,

Prove that llew” || < |If1I, (I - | is the Lgo(I)- norm).

4. In the square domain Q := (0,1)2, with the boundary I' := 9, consider the problem of solving
—3%‘—2‘31%:1, in Q={z=(21,22):0<21 <2, 0<my <2}, @)
u=0 on I'y:=T\Ty, g;ﬁ =0 on Deo={x=(21,22): 21 =2, 0<uz3<2}.

Determine the stiffness matrix and load vector if the ¢G(1) finite element method with piecewise
linear approximation is applied to the equation (2) above and on the following triangulation:

L2
I'y

Ny Ny

Iy

X
T, 9 !

5. Consider the Poisson equation
—Au=f, in QeR? with —n-Vu=ku, on 0%, (3)

where £ > 0 and n is the outward unit normal to 9Q (9€2 is the boundary of Q).

a) Prove the Poincare inequality: |lul|z,) < Ca(llullz,00) + VUl L,@)-

b) Use the inequality in a) and the boundary data to show that ||u(|1,@q0) — 0 as k — oco.

6. a) Formulate a relevant minimization problem for the solution of the Poisson equation
—Au=f, in QeR? with n-Vu=>5b(g—u), on 09,

where f > 0, b > 0 and g are given functions.

b) Derive an a priori error estimate for cG(1) approximation in the corresponding energy-norm.
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TMA372/MMGS800: Partial Differential Equations, 2011-03—14; kl 8.30-13.30..
Losningar/Solutions.

1. See Lecture Notes or text book chapter 21.

2. Multiply (1) by v € H}(I) and integrate over I. Then, partial integration yields

/(uv + auv) dm—/fvdx (4)

Hence we may formulate the Variational formulation: as Find u € H}(I) such that
(VF) /(uv + aquv dx—/fvda: Yo € HY(I). (5)

The corresponding finite element formulation, for the cG(1) method reads: Find U € V)0 such that

(FEM) /I(U’v’ +aUv)dx = /va dz, Yo € V. (6)

Then, with e :=u — U (5)-(6) gives the Galerkin orthogonality:
(Gh) /(e’v’ + aev)dz =0, Yo e VP ¢ Hy(I). (7)
1

We define the scalar product

(v,w)g = /(v'w/ + avw) dex,
I
which, by letting w = v ends up to our choice of the energy norm:

Iolf = (0.0 = [ ()7 +a0)?) do
Note also that (7) is written in concise form as
(Gh) (e,v)p =0,  YveV2c HMI). (8)
A priori error estimate: Using (8) with v = mu — U and Cauchy-Schwarz inequality, we can write
el = (e,€) = (e = U)s = (e, = my+ mo = U)is = (e, = m)is < el llu = mlle. (9)
On the other hand by the definition of the energy norm, and interpolation estimates
llu = 7nllE < 11w —7mn)' 12,y + IValu = m)l[7, ) < CEllhu" |2,y + CEM| W27, p)- (10)

Thus, combining (9) and (10) we get the a priori error estimate, viz
el < e (b lacry + 1H0 o)) )

A posteriori error estimate: (This time we aim to eliminate u, and keep U and f).
llel|% = /(e'e' + aee) dr = /(u —U)e dx +/a(u —U)edz ={v=cein (5)}
I I I

/fe — /(U’e’ +aUe)dr = {v = mpe in (6)}
(12)
/f € — mhe) / (U’(e —mhe) +al(e — 77;,,6)) dx = {P.I. over each subinterval}

z/(f+U"—aU)(e—7The) E/R(U)(e—ﬂ'he)dx,
I I

where R({U) = f+U" —aU = f —aU (U"” =0, since U is linear on each subinterval).
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Now using Cauchy-Schwarz and interpolation estimate we get

llel|% < WhRU)||onl1h ™ (e = mne)ll Ly
< CillARU)|Lop €'l La(ry < CillRRO)|| Ly (1) el | -

Hence, finally we have the a posteriori error estimate:

llelle < Cil[RR(U)| a1y

3. Multiply the equation —eu” + v’ +u = f, by —eu” and integrate over I = (0, 1):

1 1 1
leu"11Z,r) —5/0 zu'u” dm—s/o uu' dx :/0 (—eu”) f da.

Integration by parts, and using the boundary data «/(1) = 0 yields

1 1 1 1
2 2
/ wu'u” dr = [zu'"] — / (v + 2u" ) dx = —/ ' dr — / au'u” dz.
0 0 0 0

Thus

! /o 1 ! 2
/ zu'u dx:——/ u'’ dz.
0 2 Jo
1 1
/ uu”dx:[uu’](l)—/ W da.
0 0

Inserting (16)-(17) in (14) we have

1 1 1
llew"|[Z,r) + % / W do+ 6/ wde = / (Feu')f de.
0 0 0

Hence, using Cauchy-Schwarz inequality

Similarly,

leu"||Z,ry < into(—eu")f de < {C = S} <|lew”|| LIl Lty
and we have the desired result:

llew Loy < M1fllLan-

(13)

(16)

(17)

(19)

(20)

4. Recall that the mesh size is h = 1. Further, the first triangle (the triangle with nodes at (0,0),
(1,0) and (0,1)) is not in the support of the test function of Ny, whereas the last triangle (the
triangle with nodes at (4,4), (2,4) and (4, 2)) is in the support of the test function for N!. Thus,
the nodal bases functions ¢; and @2 share the two triangles K7 and Ks, see figure below. We

Lo
2 I
K3
N N.
T - Y (h=1)
9) K, |2
T, 9

define the test function space

V={v:ive H'(Q), v=0 onTy}.
2
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We multiply the differential equation in (2) by v € V and integrate over 2. Using Green’s formula,
the boundary data (v =0 on I'; and 68_;1 = 0 on I'y), and the standard notation 7 = (ny,ng) for

the outward unit normal on I';y U T3, we end up with
Ou v Ou v Ou ou
—— 2 ——)duidas — [ (5— 90U p
/Q (3331 o1 * Oxo 3332) L1 AT /F <8xlvm + B vnz) s
du v du dv
/ﬂ (5% oz1 | 0 8x2) dzy dzy /deﬂfl d:

Hence, we have the variational formulation: Find v € V such that

ou Ov Oou Ov
/gz(8—m8—m+28—a628—x2) dxldxg—/ﬂvdmldxg, Yo eV,

and the corresponding finite element method: Find U € V}, such that
/ (8U v 5 oU ov
Q

8—5518—;51 8—1.26—1.2) dl‘ldl‘gz/s;vdxldxg, V’UEV}L (C V),

where

Vi, := {v : v is piecewise linear and continuous on the partition of Q, v =0 on I'1}.

A basis for V}, consists of {¢;}7_;, where

{%ew, i=1,2
ng(NJ) = (Sij, i,j = 1,2.

Then, (25) is equivalent to: find U € V}, such that
Q

dx1 Oy | dap Oy

) dl‘l d.]?g = / 23 d.]?l d.]?g, L= 1,2.
Q

Now, we make the ansatz: U = 25:1 &j@;. Inserting in (26) gives

2 90 s "y
ij{/ (ﬂﬁ+2&ﬁ)d$1d$2}Z/(p7d$1d$2, i=1,2,
e Q 8x1 8x1 awg awg Q
which can be written in the equivalent form as

8(9. &91‘ 0 a<9i /
A = i = 7 +2 L ; i = i .
E=0b, ay /Q ( o 001 s x2) dxy dxy, b A w; dxy dzo

We can easily compute that

arn = g %%+2%% dxy dzy = 6, br = [qer1drydey =1
agngﬂ g—ﬁg—ﬁ+2g—ﬁg—ﬁ dmldm:%:i’), blzfQ(pgdxldifg:%:%,
and
02 01 Oz 01 . / /
a1z = a9 = ——+2——)dm drs = { see Fig. } = R
12 2 A (83?1 (9.132 83?2 83?2 ! 2 { & } K, Ko
1, 1 1 h? 1, 1 1. h? 1 1
—(=(—= 2-—-0-—) (——— 2-0-——-—):————:—1.
(h( h)+ h ) 2 h( h)+ (h) 2 2 2

So, in summary we have that the stiffness matrix A, and the load vector b are given by

=[] el
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(26)

(28)



5. a) There is smooth function ¢ such that A¢ = 1 so that, using Greens formula

||u||é=/um¢:/ u2an¢_/2uvu.v¢
Q o0 Q

1 1
< Cillull3a + Collull|Vull < Cullull3a + 5l + 5C3ITul},

This yields
lullf, < 2C1|ull3e + CFIVully, < C*(lullfa + Vulld),
where C? = max(2C1, C%), C; = maxyq |0, 6|, and Cz = maxq(2|Ve|).
b) Multiply the equation —Awu = f by u and integrate over ). Partial integration together with
the boundary data —dpu = ku and Cauchy’s inequality, yields

HVuH%—I—kHuH%Q:/Vu-Vu—i—/ u(—@nu):/u(—Au):/fu
Q o0 Q Q
lullbfle < Callullag + | Vulo)fle = luloaCallfllo + I VullaCall fllo

1 1
Slullde + S19ulh + CRIL I3

IN

IN

Subtracting %||u|3, + 3]|Vul|3 from the both sides, we end up with
1 1 1
(k — D)l < IVul? + (k— Dllul < CAIFIR,
which gives that ||u||oq — 0 as k — oo.

6. a) Multiply the equation by v, integrate over €2, partial integrate, and use the boundary data
to obtain

/va:—/Q(Au)v:—/F(n-Vu)v—f—/QVu-Vv:/Fbuv—/rbgv—i—/QVqu,

where I' := 0f). This can be rewritten as

/Vu-Vv—l—/buv:/fv—i—/bgv.
Q r Q r

:=a(u,v) :=l(v)

Let now

F(w):%:a(w,w)—l(w):%LVw-Vw+Abww—[)fv+Abgv,

and choose w = u + v, then
F(w) = F(u+v) = F(u)+

1 1
+/Vu-Vv+/buv—/fv+/bgv —l——/Vv-Vv—l——/bvsz(u).
Q r Q r 2 Jo 2 Jr

=0 >0
This gives F(u) < F(w) for arbitrary w.

b) Make the discrete ansatz U = Z;Vil Ujp;, and set v = @;, i = 1,2,..., M in the variational
formulation. Then we get the equation system AU = B, where U is the column vector with entries
U;, B is the load vector with elements

B; = / feoi + / bgpi,
Q T
and A is the matrix with elements

Ayl :/VQOi'v‘Pj‘f'/b(Pi@j-
Q N

Here ¢; = ¢;(x) is the basis function (hat-functions) for the set of all piecewise linear polynomials
functions on a triangulation of the domain €.
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Finally for the energy-norm ||v|| = a(v,v)'/2, using the definition for U = U(z), and the Galerkin
orthogonality, we estimate the error e = u — U as

He||2 =ale,e) =ale,u—U) =ale,u) —ale,U) = ale,u)
=a(e,u) —ale,v) = a(e,u —v) < |efllu—v|.
This gives ||u—Ul| = |le|| < ||u—v]|, for arbitrary piecewise linear function v, due to the fact that
for such U and v Galerkin orthogonality gives a(e,U) = 0 and a(e,v) = 0: Just notice that both

U and v are the linear combination of the basis functions ¢; for which according to the definition
of U we have that

a(e, ;) = alu, ;) — a(U,p;) = U(g;) — lg;) = 0.
In particular, we may chose the piecewise linear function v to be the interpolant u and hence get

lu=Ull < flu—vll < ChDul,

where h is the mesh size and C is an interpolation constant independent of h and wu.
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