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1. Let a(x) > 0, and assume that u and uh are the solutions of the Dirichlet problem:

(1) (BVP) −
(

a(x)u′(x)
)′

= f(x), 0 < x < 1 u(0) = u(1) = 0,

and its cG(1) finite element (FEM) approximation, respectively. Prove that there is a constant Ci,
depending only on a(x), such that

(2) ‖u − uh‖E ≤ Ci‖hu′′‖a.

2. Consider the estimate (2). Derive the exact relation that shows how Ci depends on a(x).

3. Consider the two-dimensional Poisson equation with Neumann boundary condition

(3) −∆u = f, in Ω ⊂ R2; −n · ∇u = k u, on ∂Ω,

where k > 0 and n is the outward unit normal to ∂Ω (∂Ω is the boundary of Ω).

a) Prove the Poincare inequality:

‖u‖L2(Ω) ≤ CΩ(‖u‖L2(∂Ω) + ‖∇u‖L2(Ω)).

b) Use the inequality in a) and show that ‖u‖L2(∂Ω) → 0 as k → ∞.

4. Consider the problem

(4)

{
−∆u = f, in Ω = {(x1, x2) : −1 < x1 < 2, 0 < x2 < 2}
u = 0, 0n Γ = ∂Ω,

where f = 1 for x1 < 0 and f = 2 for x1 > 0.

a) Write down the discrete system SU = b (S is the stiffness matrix and b is the load vector) in
approximating (4) by cG(1) FEM in the following triangulation:

x1

x2

b) Consider the same problem as in a), replacing the Dirichlet data u = 0 (only) on x1 = 2 by the
Neumann data: ∂nu = 0 on x1 = 2, 0 < x2 < 2.

5. a) Formulate a relevant minimization problem for the solution of the Poisson equation

(5) −∆u = f, in Ω ∈ R2, with n · ∇u = b(g − u), on ∂Ω,

where f > 0, b > 0 and g are given functions.

b) Derive an a priori error estimate for cG(1) approximation in the corresponding energy-norm.
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TMA372/MMG800: Partial Differential Equations, 2011–08–24; kl 8.30-13.30..

Lösningar/Solutions.

1. See Lecture Notes or text book chapter 8.

2. Note that the interpolation theorem is not in the weighted norm. The a(x) dependence of the
interpolation constant Ci can be shown as follows:

‖u′ − (πhu)′‖a =
( ∫ 1

0

a(x)(u′(x) − (πhu)′(x))2 dx
)1/2

≤
(

max
x∈[0,1]

a(x)1/2
)

· ‖u′ − (πhu)′‖L2
≤ ci

(

max
x∈[0,1]

a(x)1/2
)

‖hu′′‖L2

= ci

(

max
x∈[0,1]

a(x)1/2
)(∫ 1

0

h(x)2u′′(x)2 dx
)1/2

≤ ci

(maxx∈[0,1] a(x)1/2)

(minx∈[0,1] a(x)1/2)
·
(∫ 1

0

a(x)h(x)2u′′(x)2 dx
)1/2

.

Thus

(6) Ci = ci

(maxx∈[0,1] a(x)1/2)

(minx∈[0,1] a(x)1/2)
,

where ci is the interpolation constant independent of a(x).

3. a) There is smooth function φ such that ∆φ = 1 so that, using Greens formula

‖u‖2
Ω =

∫

Ω

u2 ∆φ =

∫

∂Ω

u2 ∂nφ −

∫

Ω

2u∇u · ∇φ

≤ C1‖u‖
2
∂Ω + C2‖u‖‖∇u‖ ≤ C1‖u‖

2
∂Ω +

1

2
‖u‖2

Ω +
1

2
C2

2‖∇u‖2
Ω.

This yields

‖u‖2
Ω ≤ 2C1‖u‖

2
∂Ω + C2

2‖∇u‖2
Ω ≤ C2(‖u‖2

∂Ω + ‖∇u‖2
Ω),

where C2 = max(2C1, C
2
2 ), C1 = max∂Ω |∂nφ|, and C2 = maxΩ(2|∇φ|).

b) Multiply the equation −∆u = f by u and integrate over Ω. Partial integration together with
the boundary data −∂nu = ku and Cauchy’s inequality, yields

‖∇u‖2
Ω + k‖u‖2

∂Ω =

∫

Ω

∇u · ∇u +

∫

∂Ω

u(−∂nu) =

∫

Ω

u(−∆u) =

∫

Ω

fu

≤ ‖u‖
‖
Ωf‖Ω ≤ CΩ(‖u‖∂Ω + ‖∇u‖Ω)‖f‖Ω = ‖u‖∂ΩCΩ‖f‖Ω + ‖∇u‖ΩCΩ‖f‖Ω

≤
1

2
‖u‖2

∂Ω +
1

2
‖∇u‖2

Ω + C2
Ω‖f‖

2
Ω.

Subtracting 1
2‖u‖

2
∂Ω + 1

2‖∇u‖2
Ω from the both sides, we end up with

(k −
1

2
)‖u‖2

∂Ω ≤
1

2
‖∇u‖2

Ω + (k −
1

2
)‖u‖2

∂Ω ≤ C2
Ω‖f‖

2
Ω,

which gives that ‖u‖∂Ω → 0 as k → ∞.
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4. Let V be the linear function space defined by

Vh := {v : v is continuous in Ω, v = 0, on ∂Ω}.

Multiplying the differential equation by v ∈ V and integrating over Ω we get that

−(∆u, v) = (f, v), ∀v ∈ V.

Now using Green’s formula we have that

−(∆u,∇v) = (∇u,∇v) −

∫

∂Ω

(n · ∇u)v ds = (∇u,∇v), ∀v ∈ V.

Thus the variational formulation is:

(∇u,∇v) = (f, v), ∀v ∈ V.

Let Vh be the usual finite element space consisting of continuous piecewise linear functions satis-
fying the boundary condition v = 0 on ∂Ω: The cG(1) method is: Find U ∈ Vh such that

(∇U,∇v) = (f, v) ∀v ∈ Vh

With this boundary conditions we have the internal nodes N1 and N2. Making the “Ansatz”

• •

•

• •
N2N1 T

3

1
2

x1

x2

U(x) =
∑2

j=1 ξjϕj(x), where ϕi are the standard basis functions, we obtain the system of equations

2∑

i=1

ξj

∫

Ω

∇ϕi · ∇ϕj dx =

∫

Ω

fϕj dx, i = 1, 2,

or, in matrix form,
Sξ = F,

where Sij = (∇ϕi,∇ϕj) is the stiffness matrix and Fj = (f, ϕj) is the load vector. We first
compute the mass and stiffness matrix for the reference triangle T . The local basis functions are

φ1(x1, x2) = 1 −
x1

h
−

x2

h
, ∇φ1(x1, x2) = −

1

h

[
1
1

]

,

φ2(x1, x2) =
x1

h
, ∇φ2(x1, x2) =

1

h

[
1
0

]

,

φ3(x1, x2) =
x2

h
, ∇φ3(x1, x2) =

1

h

[
0
1

]

.

Hence, with |T | =
∫

T dz = h2/2,

s11 = (∇φ1,∇φ1) =

∫

T

|∇φ1|
2 dx =

2

h2
|T | = 1.

Similarly we can compute the other elements and obtain

s =
1

2





2 −1 −1
−1 1 0
−1 0 1



 .

We can now assemble the global matrix S from the local one s:

S11 = 8s22 = 4, S12 = 2s12 = −1,

S21 = 2s12 = −1, S22 = 2s11 + 4s22 = 2 + 2 = 4
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As for the load vector we have
∫

Ω

fϕ1 =

∫

x1<0

ϕ1 + 2

∫

x1>0

ϕ1 = 4 ·
1

3
·
1

2
+ 2 · 4 ·

1

3
·
1

2
= 2/3 + 4/3 = 2.

∫

Ω

fϕ2 = 2

∫

x1>0

ϕ2 = 2 · 6 ·
1

3
·
1

2
= 2

Thus the equation system is given by
[

4 −1
−1 4

] [
ξ1

ξ2

]

=

[
2
2

]

.

b) With the Neumann boundary data we obtain an addition node at N3 = (2, 1) with the obvious
corresponding basis function ϕ3 which gives rise to an additional row and an additional column
viz,

∫

Ω

∇ϕ3 · ∇ϕ3 = 2,

∫

Ω

∇ϕ2 · ∇ϕ3 =

∫

Ω

∇ϕ3 · ∇ϕ2 = −1

∫

Ω

fϕ3 = 2 ·
1

2
.

Consequently the corresponding system reads as




4 −1 0
−1 4 −1

0 −1 2









ξ1

ξ2

ξ3



 =





2
2

2/3



 .

5. a) Multiply the equation by v, integrate over Ω, partial integrate, and use the boundary data
to obtain

∫

Ω

fv = −

∫

Ω

(∆u)v = −

∫

Γ

(n · ∇u)v +

∫

Ω

∇u · ∇v =

∫

Γ

buv −

∫

Γ

bgv +

∫

Ω

∇u∇v,

where Γ := ∂Ω. This can be rewritten as
∫

Ω

∇u · ∇v +

∫

Γ

buv

︸ ︷︷ ︸

:=a(u,v)

=

∫

Ω

fv +

∫

Γ

bgv

︸ ︷︷ ︸

:=l(v)

.

Let now

F (w) =
1

2
= a(w, w) − l(w) =

1

2

∫

Ω

∇w · ∇w +

∫

Γ

bww −

∫

Ω

fv +

∫

Γ

bgv,

and choose w = u + v, then

F (w) = F (u + v) = F (u)+

+

∫

Ω

∇u · ∇v +

∫

Γ

buv −

∫

Ω

fv +

∫

Γ

bgv

︸ ︷︷ ︸

=0

+
1

2

∫

Ω

∇v · ∇v +
1

2

∫

Γ

bvv

︸ ︷︷ ︸

≥0

≥ F (u).

This gives F (u) ≤ F (w) for arbitrary w.

b) Make the discrete ansatz U =
∑M

j=1 Ujϕj , and set v = ϕi, i = 1, 2, . . . , M in the variational
formulation. Then we get the equation system AU = B, where U is the column vector with entries
Uj , B is the load vector with elements

Bj =

∫

Ω

fϕi +

∫

Γ

bgϕi,

and A is the matrix with elements

Aij =

∫

Ω

∇ϕi · ∇ϕj +

∫

Γ

bϕiϕj .

Here ϕj = ϕj(x) is the basis function (hat-functions) for the set of all piecewise linear polynomials
functions on a triangulation of the domain Ω.
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Finally for the energy-norm ‖v‖ = a(v, v)1/2, using the definition for U = U(x), and the Galerkin
orthogonality, we estimate the error e = u − U as

‖e‖2 = a(e, e) = a(e, u − U) = a(e, u) − a(e, U) = a(e, u)

= a(e, u) − a(e, v) = a(e, u − v) ≤ ‖e‖‖u− v‖.

This gives ‖u−U‖ = ‖e‖ ≤ ‖u− v‖, for arbitrary piecewise linear function v, due to the fact that
for such U and v Galerkin orthogonality gives a(e, U) = 0 and a(e, v) = 0: Just notice that both
U and v are the linear combination of the basis functions ϕj for which according to the definition
of U we have that

a(e, ϕj) = a(u, ϕj) − a(U, ϕj) = l(ϕj) − l(ϕj) = 0.

In particular, we may chose the piecewise linear function v to be the interpolant u and hence get

‖u − U‖ ≤ ‖u − v‖ ≤ C‖hD2u‖,

where h is the mesh size and C is an interpolation constant independent of h and u.
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