Mathematics Chalmers & GU
TMA372/MMGS800: Partial Differential Equations, 2011-08—24; kl 8.30-13.30.

Telephone: Ida Safstrom: 0703-088304

Calculators, formula notes and other subject related material are not allowed.
Each problem gives max 6p. Valid bonus poits will be added to the scores.
Breakings: 3: 15-20p, 4: 21-27p och 5: 28p-  For GU studentsG:15-27p, VG: 28p-
For solutions and gradings information see the couse diary in:
http://www.math.chalmers.se/Math/Grundutb/CTH /tma372/1011 /index.html

1. Let a(z) > 0, and assume that u and up, are the solutions of the Dirichlet problem:
!
(1) (BVP) - (a(a:)u’(a:)) = f(x), 0<az<1 u(0)=u(l)=0,
and its ¢G(1) finite element (FEM) approximation, respectively. Prove that there is a constant Cj;,

depending only on a(z), such that
(2) [u = unllp < Cil[hu"|[a.

2. Consider the estimate (2). Derive the exact relation that shows how C; depends on a(x).

3. Consider the two-dimensional Poisson equation with Neumann boundary condition
(3) —Au=f, in QcR?% —n-Vu=ku, on 08,
where £ > 0 and n is the outward unit normal to 9Q (9€2 is the boundary of ).
a) Prove the Poincare inequality:
[ull o) < CalllullLo0) + 1VullLy@)-

b) Use the inequality in a) and show that ||u[|z,@0) — 0 as k — oo.

4. Consider the problem

@) —Au = f, in Q={(z1,22): -1 <21 <2,0<22 <2}
u =0, On T'= 09,

where f =1 for 1 < 0 and f =2 for z; > 0.

a) Write down the discrete system SU = b (S is the stiffness matrix and b is the load vector) in
approximating (4) by ¢G(1) FEM in the following triangulation:

)

X1

b) Consider the same problem as in a), replacing the Dirichlet data u = 0 (only) on 1 = 2 by the
Neumann data: d,u =0on 1 =2, 0 < x5 < 2.

5. a) Formulate a relevant minimization problem for the solution of the Poisson equation

(5) —Au=f, in QeR? with n-Vu=0b(g—wu), on 09,

where f > 0, b > 0 and g are given functions.

b) Derive an a priori error estimate for ¢cG(1) approximation in the corresponding energy-norm.
VA
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Losningar/Solutions.

1. See Lecture Notes or text book chapter 8.

2. Note that the interpolation theorem is not in the weighted norm. The a(x) dependence of the
interpolation constant C; can be shown as follows:

1/2

o = o = o(a) (@) — (o) () )

< ( max a(x)l/Q) ' = (mpw) || L, < Ci( max a(ﬂf)l/Q)”hU”HLg
z€[0,1] z€[0,1]

1/2
:ci< max a(z)'/? / )2u”( dx)
z€[0,1]

(maxge (x) 2) ! o g o \1/2
<c [0.1] @ | /0 a(e)h(a)u (2)” d)

= ' (mingepo,1) a(x)/?)

Thus
(maxyefo,) a(z)'/?)

' (minme[o,l] a(x)1/2) ’

(6) Ci =cC
where ¢; is the interpolation constant independent of a(z).

3. a) There is smooth function ¢ such that A¢ = 1 so that, using Greens formula
fult = [ w2do= [ won- [ 2uvu-vo
Q o0 Q
< Cillulfia + Callull |Vl < Cullullba + 5 lulls + 5C3IVul,
This yields
[ullg, < 2C1||ull3q + CFVulg < C*([lullfa + [IVull?),

where C? = max(2C1, C3), C; = maxgq |0, 6|, and Cz = maxq(2|Ve|).

b) Multiply the equation —Awu = f by u and integrate over ). Partial integration together with
the boundary data —dpu = ku and Cauchy’s inequality, yields

HVUH%—}—kHuH%Q:/Vu-Vu—l—/aQu(—anu):/u(—Au)z/fu

lullgflle < Callullon + [IVulo)lflo = lullaaCallflla + [VullaCal o

IN

/\

Sl + 5 19ul + GBI 73

Subtracting 1||ul|3, + 3]|Vul|? from the both sides, we end up with

1
(k= S)lulloa < HVUIIQ + (k- _)HuHaQ < Gallf I3

which gives that ||uljan — 0 as k — oo.



4. Let V be the linear function space defined by
Vi, :={v:v is continuous in ©, v =0, on 9N}.
Multiplying the differential equation by v € V and integrating over 2 we get that
—(Au,v) = (f,v), Yv e V.

Now using Green’s formula we have that

—(Au, Vv) = (Vu, Vo) — / (n-Vu)vds = (Vu, Vv), Vv e V.
G19)

Thus the variational formulation is:
(Vu, Vo) = (f,v), Yo e V.

Let V}, be the usual finite element space consisting of continuous piecewise linear functions satis-
fying the boundary condition v = 0 on 9Q: The ¢G(1) method is: Find U € V}, such that

(VU,Vv) = (f,v) Yv € V,
With this boundary conditions we have the internal nodes N; and N,. Making the “Ansatz”

L2

T1

U(z) = Z?Zl &jpj(x), where @; are the standard basis functions, we obtain the system of equations

2
Zgj/vwv@jdxz/f@jdx, i=1,2,
i=1 Q Q

or, in matrix form,

SE=F,
where S;; = (Vi, Vi;) is the stiffness matrix and F; = (f,¢;) is the load vector. We first
compute the mass and stiffness matrix for the reference triangle 7. The local basis functions are

¢1({E1,(E2)—1—%—x—h2, V¢1($1,$2):—% |: 1 :|7
Pa(w1,22) = %, Voa(r1,22) = % { (1) } )
¢3(x1,x2) = x_hz, Vos(x1,x2) = % { (1) } .

Hence, with |T'| = [ dz = h?/2,

S11:<v¢1,v¢1>=/ Vo2 do = 2 |T] =
T

Similarly we can compute the other elements and obtain

1 2 -1 -1
-1 0 1
We can now assemble the global matrix S from the local one s:
S11 = 8822 = 4, S12 = 2812 = —1,

So1 = 2812 = —1, Sog =2811 + 4822 =2+2=4
2



As for the load vector we have

1 1 1 1
/f901=/ 901-1-2/ pr=4----4+2-4.----=2/34+4/3=2.
Q @1<0 21>0 3 2 3 2

1 1
fsp2:2/ @2:2.6._._:2
~/§; x1>0 3 2

Thus the equation system is given by

4 —1]7&a]l [2
1 4|l &e |72
b) With the Neumann boundary data we obtain an addition node at N3 = (2, 1) with the obvious
corresponding basis function 3 which gives rise to an additional row and an additional column

viz
1
/V¢3-V¢3=2, /V<P2'V<P3=/VSD3'V<P2=—1 /fs03=2-§
Q Q Q Q

Consequently the corresponding system reads as

3

4 -1 0 & 2
-1 4 -1 & | = 2
0 -1 2 & 2/3

5. a) Multiply the equation by v, integrate over €2, partial integrate, and use the boundary data
to obtain

/va:—/Q(Au)v:—/F(n-Vu)v—f—/QVu-Vv:/Fbuv—/rbgv—i—/QVqu,

where I' := 0f). This can be rewritten as

/Vu-Vv—l—/buv:/fv—i—/bgv.
Q r Q r

=a(u,v) :=l(v)

F(w):%:a( w) — l(w /Vw Vw+/bww /fv+/bgv

and choose w = u + v, then

F(w)=F(u+v)=F(u)+
/Vu Vv+/buv—/fv+/bgv + = /Vv Vo + - /bvv>F

This gives F(u) < F(w) for arbitrary w.

b) Make the discrete ansatz U = Z;‘il Ujp;, and set v = @;, i = 1,2,..., M in the variational
formulation. Then we get the equation system AU = B, where U is the column vector with entries
U;, B is the load vector with elements

B; = / f<,0i+/bg%,
Q T
and A is the matrix with elements

Ayj :/VQOz"v‘Pj‘f'/b(Pi@j-
Q I

Here ¢; = ¢;(x) is the basis function (hat-functions) for the set of all piecewise linear polynomials
functions on a triangulation of the domain 2.

Let now
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Finally for the energy-norm ||v|| = a(v,v)'/2, using the definition for U = U(z), and the Galerkin
orthogonality, we estimate the error e = u — U as

He||2 =ale,e) =ale,u—U) =ale,u) —ale,U) = ale,u)
=a(e,u) —ale,v) = a(e,u —v) < |efllu—v|.
This gives ||u—Ul| = |le|| < ||u—v]|, for arbitrary piecewise linear function v, due to the fact that
for such U and v Galerkin orthogonality gives a(e,U) = 0 and a(e,v) = 0: Just notice that both

U and v are the linear combination of the basis functions ¢; for which according to the definition
of U we have that

a(e, ;) = alu, ;) — a(U,p;) = U(g;) — lg;) = 0.
In particular, we may chose the piecewise linear function v to be the interpolant u and hence get

lu=Ull < flu—vll < ChDul,

where h is the mesh size and C is an interpolation constant independent of h and wu.
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