Mathematics Chalmers \& GU

TMA372/MMG800: Partial Differential Equations, 2011-08-24; kl 8.30-13.30.
Telephone: Ida Säfström: 0703-088304
Calculators, formula notes and other subject related material are not allowed.
Each problem gives max 6 p. Valid bonus poits will be added to the scores.
Breakings: 3: $15-20$ p, 4: 21-27p och 5: 28 p- For GU studentsG:15-27p, VG: 28 p-
For solutions and gradings information see the couse diary in:
http://www.math.chalmers.se/Math/Grundutb/CTH/tma372/1011/index.html

1. Let $a(x)>0$, and assume that u and u_{h} are the solutions of the Dirichlet problem:
(BVP) $\quad-\left(a(x) u^{\prime}(x)\right)^{\prime}=f(x), \quad 0<x<1 \quad u(0)=u(1)=0$,
and its $c G(1)$ finite element (FEM) approximation, respectively. Prove that there is a constant C_{i}, depending only on $a(x)$, such that

$$
\begin{equation*}
\left\|u-u_{h}\right\|_{E} \leq C_{i}\left\|h u^{\prime \prime}\right\|_{a} \tag{2}
\end{equation*}
$$

2. Consider the estimate (2). Derive the exact relation that shows how C_{i} depends on $a(x)$.
3. Consider the two-dimensional Poisson equation with Neumann boundary condition

$$
\begin{equation*}
-\Delta u=f, \quad \text { in } \Omega \subset \mathbf{R}^{2} ; \quad-\mathbf{n} \cdot \nabla u=k u, \text { on } \partial \Omega \tag{3}
\end{equation*}
$$

where $k>0$ and \mathbf{n} is the outward unit normal to $\partial \Omega$ ($\partial \Omega$ is the boundary of Ω).
a) Prove the Poincare inequality:

$$
\|u\|_{L_{2}(\Omega)} \leq C_{\Omega}\left(\|u\|_{L_{2}(\partial \Omega)}+\|\nabla u\|_{L_{2}(\Omega)}\right)
$$

b) Use the inequality in a) and show that $\|u\|_{L_{2}(\partial \Omega)} \rightarrow 0$ as $k \rightarrow \infty$.
4. Consider the problem

$$
\begin{cases}-\Delta u=f, & \text { in } \Omega=\left\{\left(x_{1}, x_{2}\right):-1<x_{1}<2,0<x_{2}<2\right\} \tag{4}\\ u=0, & \text { on } \Gamma=\partial \Omega,\end{cases}
$$

where $f=1$ for $x_{1}<0$ and $f=2$ for $x_{1}>0$.
a) Write down the discrete system $S U=\mathbf{b}$ (S is the stiffness matrix and \mathbf{b} is the load vector) in approximating (4) by cG(1) FEM in the following triangulation:

b) Consider the same problem as in a), replacing the Dirichlet data $u=0$ (only) on $x_{1}=2$ by the Neumann data: $\partial_{n} u=0$ on $x_{1}=2,0<x_{2}<2$.
5. a) Formulate a relevant minimization problem for the solution of the Poisson equation

$$
\begin{equation*}
-\Delta u=f, \quad \text { in } \Omega \in \mathbf{R}^{2}, \quad \text { with } \quad \mathbf{n} \cdot \nabla u=b(g-u), \quad \text { on } \partial \Omega, \tag{5}
\end{equation*}
$$

where $f>0, b>0$ and g are given functions.
b) Derive an a priori error estimate for $\mathrm{cG}(1)$ approximation in the corresponding energy-norm. MA
void!

TMA372/MMG800: Partial Differential Equations, 2011-08-24; kl 8.30-13.30.. Lösningar/Solutions.

1. See Lecture Notes or text book chapter 8.
2. Note that the interpolation theorem is not in the weighted norm. The $a(x)$ dependence of the interpolation constant C_{i} can be shown as follows:

$$
\begin{aligned}
\left\|u^{\prime}-\left(\pi_{h} u\right)^{\prime}\right\|_{a} & =\left(\int_{0}^{1} a(x)\left(u^{\prime}(x)-\left(\pi_{h} u\right)^{\prime}(x)\right)^{2} d x\right)^{1 / 2} \\
& \leq\left(\max _{x \in[0,1]} a(x)^{1 / 2}\right) \cdot\left\|u^{\prime}-\left(\pi_{h} u\right)^{\prime}\right\|_{L_{2}} \leq c_{i}\left(\max _{x \in[0,1]} a(x)^{1 / 2}\right)\left\|h u^{\prime \prime}\right\|_{L_{2}} \\
& =c_{i}\left(\max _{x \in[0,1]} a(x)^{1 / 2}\right)\left(\int_{0}^{1} h(x)^{2} u^{\prime \prime}(x)^{2} d x\right)^{1 / 2} \\
& \leq c_{i} \frac{\left(\max _{x \in[0,1]} a(x)^{1 / 2}\right)}{\left(\min _{x \in[0,1]} a(x)^{1 / 2}\right)} \cdot\left(\int_{0}^{1} a(x) h(x)^{2} u^{\prime \prime}(x)^{2} d x\right)^{1 / 2} .
\end{aligned}
$$

Thus

$$
\begin{equation*}
C_{i}=c_{i} \frac{\left(\max _{x \in[0,1]} a(x)^{1 / 2}\right)}{\left(\min _{x \in[0,1]} a(x)^{1 / 2}\right)} \tag{6}
\end{equation*}
$$

where c_{i} is the interpolation constant independent of $a(x)$.
3. a) There is smooth function ϕ such that $\Delta \phi=1$ so that, using Greens formula

$$
\begin{aligned}
\|u\|_{\Omega}^{2} & =\int_{\Omega} u^{2} \Delta \phi=\int_{\partial \Omega} u^{2} \partial_{n} \phi-\int_{\Omega} 2 u \nabla u \cdot \nabla \phi \\
& \leq C_{1}\|u\|_{\partial \Omega}^{2}+C_{2}\|u\|\|\nabla u\| \leq C_{1}\|u\|_{\partial \Omega}^{2}+\frac{1}{2}\|u\|_{\Omega}^{2}+\frac{1}{2} C_{2}^{2}\|\nabla u\|_{\Omega}^{2}
\end{aligned}
$$

This yields

$$
\|u\|_{\Omega}^{2} \leq 2 C_{1}\|u\|_{\partial \Omega}^{2}+C_{2}^{2}\|\nabla u\|_{\Omega}^{2} \leq C^{2}\left(\|u\|_{\partial \Omega}^{2}+\|\nabla u\|_{\Omega}^{2}\right)
$$

where $C^{2}=\max \left(2 C_{1}, C_{2}^{2}\right), C_{1}=\max _{\partial \Omega}\left|\partial_{n} \phi\right|$, and $C_{2}=\max _{\Omega}(2|\nabla \phi|)$.
b) Multiply the equation $-\Delta u=f$ by u and integrate over Ω. Partial integration together with the boundary data $-\partial_{\mathbf{n}} u=k u$ and Cauchy's inequality, yields

$$
\begin{aligned}
\|\nabla u\|_{\Omega}^{2}+k\|u\|_{\partial \Omega}^{2} & =\int_{\Omega} \nabla u \cdot \nabla u+\int_{\partial \Omega} u\left(-\partial_{\mathbf{n}} u\right)=\int_{\Omega} u(-\Delta u)=\int_{\Omega} f u \\
& \leq\|u\|_{\Omega}^{\|} f\left\|_{\Omega} \leq C_{\Omega}\left(\|u\|_{\partial \Omega}+\|\nabla u\|_{\Omega}\right)\right\| f\left\|_{\Omega}=\right\| u\left\|_{\partial \Omega} C_{\Omega}\right\| f\left\|_{\Omega}+\right\| \nabla u\left\|_{\Omega} C_{\Omega}\right\| f \|_{\Omega} \\
& \leq \frac{1}{2}\|u\|_{\partial \Omega}^{2}+\frac{1}{2}\|\nabla u\|_{\Omega}^{2}+C_{\Omega}^{2}\|f\|_{\Omega}^{2}
\end{aligned}
$$

Subtracting $\frac{1}{2}\|u\|_{\partial \Omega}^{2}+\frac{1}{2}\|\nabla u\|_{\Omega}^{2}$ from the both sides, we end up with

$$
\left(k-\frac{1}{2}\right)\|u\|_{\partial \Omega}^{2} \leq \frac{1}{2}\|\nabla u\|_{\Omega}^{2}+\left(k-\frac{1}{2}\right)\|u\|_{\partial \Omega}^{2} \leq C_{\Omega}^{2}\|f\|_{\Omega}^{2}
$$

which gives that $\|u\|_{\partial \Omega} \rightarrow 0$ as $k \rightarrow \infty$.
4. Let V be the linear function space defined by

$$
V_{h}:=\{v: v \text { is continuous in } \Omega, v=0, \text { on } \partial \Omega\} .
$$

Multiplying the differential equation by $v \in V$ and integrating over Ω we get that

$$
-(\Delta u, v)=(f, v), \quad \forall v \in V
$$

Now using Green's formula we have that

$$
-(\Delta u, \nabla v)=(\nabla u, \nabla v)-\int_{\partial \Omega}(n \cdot \nabla u) v d s=(\nabla u, \nabla v), \quad \forall v \in V
$$

Thus the variational formulation is:

$$
(\nabla u, \nabla v)=(f, v), \quad \forall v \in V
$$

Let V_{h} be the usual finite element space consisting of continuous piecewise linear functions satisfying the boundary condition $v=0$ on $\partial \Omega$: The $c G(1)$ method is: Find $U \in V_{h}$ such that

$$
(\nabla U, \nabla v)=(f, v) \quad \forall v \in V_{h}
$$

With this boundary conditions we have the internal nodes N_{1} and N_{2}. Making the "Ansatz"

$U(x)=\sum_{j=1}^{2} \xi_{j} \varphi_{j}(x)$, where φ_{i} are the standard basis functions, we obtain the system of equations

$$
\sum_{i=1}^{2} \xi_{j} \int_{\Omega} \nabla \varphi_{i} \cdot \nabla \varphi_{j} d x=\int_{\Omega} f \varphi_{j} d x, \quad i=1,2
$$

or, in matrix form,

$$
S \xi=F
$$

where $S_{i j}=\left(\nabla \varphi_{i}, \nabla \varphi_{j}\right)$ is the stiffness matrix and $F_{j}=\left(f, \varphi_{j}\right)$ is the load vector. We first compute the mass and stiffness matrix for the reference triangle T. The local basis functions are

$$
\begin{aligned}
\phi_{1}\left(x_{1}, x_{2}\right)=1-\frac{x_{1}}{h}-\frac{x_{2}}{h}, & \nabla \phi_{1}\left(x_{1}, x_{2}\right)=-\frac{1}{h}\left[\begin{array}{l}
1 \\
1
\end{array}\right], \\
\phi_{2}\left(x_{1}, x_{2}\right)=\frac{x_{1}}{h}, & \nabla \phi_{2}\left(x_{1}, x_{2}\right)=\frac{1}{h}\left[\begin{array}{l}
1 \\
0
\end{array}\right], \\
\phi_{3}\left(x_{1}, x_{2}\right)=\frac{x_{2}}{h}, & \nabla \phi_{3}\left(x_{1}, x_{2}\right)=\frac{1}{h}\left[\begin{array}{l}
0 \\
1
\end{array}\right] .
\end{aligned}
$$

Hence, with $|T|=\int_{T} d z=h^{2} / 2$,

$$
s_{11}=\left(\nabla \phi_{1}, \nabla \phi_{1}\right)=\int_{T}\left|\nabla \phi_{1}\right|^{2} d x=\frac{2}{h^{2}}|T|=1
$$

Similarly we can compute the other elements and obtain

$$
s=\frac{1}{2}\left[\begin{array}{rrr}
2 & -1 & -1 \\
-1 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right]
$$

We can now assemble the global matrix S from the local one s :

$$
\begin{array}{ll}
S_{11}=8 s_{22}=4, & S_{12}=2 s_{12}=-1 \\
S_{21}=2 s_{12}=-1, & S_{22}=2 s_{11}+4 s_{22}=2+2=4
\end{array}
$$

As for the load vector we have

$$
\begin{gathered}
\int_{\Omega} f \varphi_{1}=\int_{x_{1}<0} \varphi_{1}+2 \int_{x_{1}>0} \varphi_{1}=4 \cdot \frac{1}{3} \cdot \frac{1}{2}+2 \cdot 4 \cdot \frac{1}{3} \cdot \frac{1}{2}=2 / 3+4 / 3=2 \\
\int_{\Omega} f \varphi_{2}=2 \int_{x_{1}>0} \varphi_{2}=2 \cdot 6 \cdot \frac{1}{3} \cdot \frac{1}{2}=2
\end{gathered}
$$

Thus the equation system is given by

$$
\left[\begin{array}{rr}
4 & -1 \\
-1 & 4
\end{array}\right]\left[\begin{array}{l}
\xi_{1} \\
\xi_{2}
\end{array}\right]=\left[\begin{array}{l}
2 \\
2
\end{array}\right] .
$$

b) With the Neumann boundary data we obtain an addition node at $N_{3}=(2,1)$ with the obvious corresponding basis function φ_{3} which gives rise to an additional row and an additional column viz,

$$
\int_{\Omega} \nabla \varphi_{3} \cdot \nabla \varphi_{3}=2, \quad \int_{\Omega} \nabla \varphi_{2} \cdot \nabla \varphi_{3}=\int_{\Omega} \nabla \varphi_{3} \cdot \nabla \varphi_{2}=-1 \quad \int_{\Omega} f \varphi_{3}=2 \cdot \frac{1}{2} .
$$

Consequently the corresponding system reads as

$$
\left[\begin{array}{rrr}
4 & -1 & 0 \\
-1 & 4 & -1 \\
0 & -1 & 2
\end{array}\right]\left[\begin{array}{l}
\xi_{1} \\
\xi_{2} \\
\xi_{3}
\end{array}\right]=\left[\begin{array}{r}
2 \\
2 \\
2 / 3
\end{array}\right] .
$$

5. a) Multiply the equation by v, integrate over Ω, partial integrate, and use the boundary data to obtain

$$
\int_{\Omega} f v=-\int_{\Omega}(\Delta u) v=-\int_{\Gamma}(\mathbf{n} \cdot \nabla u) v+\int_{\Omega} \nabla u \cdot \nabla v=\int_{\Gamma} b u v-\int_{\Gamma} b g v+\int_{\Omega} \nabla u \nabla v
$$

where $\Gamma:=\partial \Omega$. This can be rewritten as

$$
\underbrace{\int_{\Omega} \nabla u \cdot \nabla v+\int_{\Gamma} b u v}_{:=a(u, v)}=\underbrace{\int_{\Omega} f v+\int_{\Gamma} b g v}_{:=l(v)}
$$

Let now

$$
F(w)=\frac{1}{2}=a(w, w)-l(w)=\frac{1}{2} \int_{\Omega} \nabla w \cdot \nabla w+\int_{\Gamma} b w w-\int_{\Omega} f v+\int_{\Gamma} b g v,
$$

and choose $w=u+v$, then

$$
\begin{aligned}
F(w) & =F(u+v)=F(u)+ \\
& +\underbrace{\int_{\Omega} \nabla u \cdot \nabla v+\int_{\Gamma} b u v-\int_{\Omega} f v+\int_{\Gamma} b g v}_{=0}+\underbrace{\frac{1}{2} \int_{\Omega} \nabla v \cdot \nabla v+\frac{1}{2} \int_{\Gamma} b v v}_{\geq 0} \geq F(u) .
\end{aligned}
$$

This gives $F(u) \leq F(w)$ for arbitrary w.
b) Make the discrete ansatz $U=\sum_{j=1}^{M} U_{j} \varphi_{j}$, and set $v=\varphi_{i}, i=1,2, \ldots, M$ in the variational formulation. Then we get the equation system $A U=B$, where U is the column vector with entries U_{j}, B is the load vector with elements

$$
B_{j}=\int_{\Omega} f \varphi_{i}+\int_{\Gamma} b g \varphi_{i}
$$

and A is the matrix with elements

$$
A_{i j}=\int_{\Omega} \nabla \varphi_{i} \cdot \nabla \varphi_{j}+\int_{\Gamma} b \varphi_{i} \varphi_{j}
$$

Here $\varphi_{j}=\varphi_{j}(x)$ is the basis function (hat-functions) for the set of all piecewise linear polynomials functions on a triangulation of the domain Ω.

Finally for the energy-norm $\|v\|=a(v, v)^{1 / 2}$, using the definition for $U=U(x)$, and the Galerkin orthogonality, we estimate the error $e=u-U$ as

$$
\begin{aligned}
\|e\|^{2} & =a(e, e)=a(e, u-U)=a(e, u)-a(e, U)=a(e, u) \\
& =a(e, u)-a(e, v)=a(e, u-v) \leq\|e\|\|u-v\|
\end{aligned}
$$

This gives $\|u-U\|=\|e\| \leq\|u-v\|$, for arbitrary piecewise linear function v, due to the fact that for such U and v Galerkin orthogonality gives $a(e, U)=0$ and $a(e, v)=0$: Just notice that both U and v are the linear combination of the basis functions φ_{j} for which according to the definition of U we have that

$$
a\left(e, \varphi_{j}\right)=a\left(u, \varphi_{j}\right)-a\left(U, \varphi_{j}\right)=l\left(\varphi_{j}\right)-l\left(\varphi_{j}\right)=0
$$

In particular, we may chose the piecewise linear function v to be the interpolant u and hence get

$$
\|u-U\| \leq\|u-v\| \leq C\left\|h D^{2} u\right\|
$$

where h is the mesh size and C is an interpolation constant independent of h and u.
MA

