Mathematic Chalmers \& GU

TMA372/MMG800: Partial Differential Equations, 2012-08-29, kl 8:30-12:30 V Halls

Telephone: Magnus Önnheim: 0703-088304
Calculators, formula notes and other subject related material are not allowed.
Each problem gives max 6 p. Valid bonus poits will be added to the scores.
Breakings: 3: $15-20$ p, 4: 21-27p och 5: 28 p- For GU studentsG:15-24p, VG: $25 \mathrm{p}-$
For solutions and gradings information see the couse diary in:
http://www.math.chalmers.se/Math/Grundutb/CTH/tma372/1112/index.html

1. Prove the following error estimate for the linear interpolation for a function $f \in C^{2}(0,1)$,

$$
\left\|\pi_{1} f-f\right\|_{L_{\infty}(0,1)} \leq \frac{1}{8} \max _{0 \leq \xi \leq 1}\left|f^{\prime \prime}(\xi)\right|
$$

2. Let α and β be positive constants. Give the piecewise linear finite element approximation procedure, on the uniform mesh, for the problem

$$
-u^{\prime \prime}(x)=1, \quad 0<x<1 ; \quad u(0)=\alpha, \quad u^{\prime}(1)=\beta
$$

3. Formulate the $c G(1)$ method for the boundary value problem

$$
-\Delta u+u=f, \quad x \in \Omega ; \quad u=0, \quad x \in \partial \Omega
$$

Write down the matrix form of the resulting equation system using the following uniform mesh:

4. Prove an a priori and an a posteriori error estimate for the $\mathrm{cG}(1)$ finite element method for

$$
-u^{\prime \prime}(x)+x u^{\prime}(x)+u(x)=f(x), \quad 0<x<1, \quad u(0)=u(1)=0
$$

in the energy norm $\|v\|_{E}$ with $\|v\|_{E}^{2}=\|v\|_{L_{2}(I)}^{2}+\left\|v^{\prime}\right\|_{L_{2}(I)}^{2}, \quad I:=(0.1)$.
5. Formulate and prove the Lax-Milgram theorem.

MA
void!

TMA372/MMG800: Partial Differential Equations, 2012-08-29, kl 8:30-12:30 V Halls. Lösningar.

1. By the Lagrange interpolation theorem

$$
\left\|f-\pi_{1} f\right\|_{L_{\infty}(0,1)} \leq \frac{1}{2}(x-0) \cdot(1-x) \max _{x \in[0,1]}\left|f^{\prime \prime}\right|
$$

Further, the function $g(x)=x(1-x)$ has minimum when $g^{\prime}(x)=0$, i.e. $1 \cdot(1-x)+x \cdot(-1)=0$, or for $x=1 / 2$. Therefore, $\max _{x \in[0,1]}[x(1-x)]=\max _{x \in[0,1]} g(x)=1 / 2(1-1 / 2)=1 / 4$. Hence

$$
\left\|f-\pi_{1} f\right\|_{L_{\infty}(0,1)} \leq \frac{1}{8}\|f\|_{L_{\infty}(0,1)}
$$

2. Multiply the pde by a test function v with $v(0)=0$, integrate over $x \in(0,1)$ and use partial integration to get

$$
\begin{align*}
& -\left[u^{\prime} v\right]_{0}^{1}+\int_{0}^{1} u^{\prime} v^{\prime} d x=\int_{0}^{1} v d x \quad \Longleftrightarrow \\
& -u^{\prime}(1) v(1)+u^{\prime}(0) v(0)+\int_{0}^{1} u^{\prime} v^{\prime} d x=\int_{0}^{1} v d x \Longleftrightarrow \tag{1}\\
& -\beta v(1)+\int_{0}^{1} u^{\prime} v^{\prime} d x=\int_{0}^{1} v d x
\end{align*}
$$

The continuous variational formulation is now formulated as follows: Find

$$
(V F) \quad u \in V:=\left\{w: \int_{0}^{1}\left(w(x)^{2}+w^{\prime}(x)^{2}\right) d x<\infty, \quad w(0)=\alpha\right\}
$$

such that

$$
\int_{0}^{1} u^{\prime} v^{\prime} d x=\int_{0}^{1} v d x+\beta v(1), \quad \forall v \in V^{0}
$$

where

$$
V^{0}:=\left\{v: \int_{0}^{1}\left(v(x)^{2}+v^{\prime}(x)^{2}\right) d x<\infty, \quad v(0)=0\right\}
$$

For the discrete version we let \mathcal{T}_{h} be a uniform partition: $0=x_{0}<x_{1}<\ldots<x_{M+1}$ of [0, 1] into the subintervals $I_{n}=\left[x_{n-1}, x_{n}\right], n=1, \ldots M+1$. Here, we have M interior nodes: $x_{1}, \ldots x_{M}$, two boundary points: $x_{0}=0$ and $x_{M+1}=1$ and hence $M+1$ intervals.

The finite element method (discrete variational formulation) is now formulated as follows: Find
$(F E M) \quad U \in V_{h}:=\left\{w_{h}: w_{h}\right.$ is piecewise linear, continuous on $\left.\mathcal{T}_{h}, w_{h}(0)=\alpha\right\}$,
such that

$$
\begin{equation*}
\int_{0}^{1} U^{\prime} v_{h}^{\prime} d x=\int_{0}^{1} v_{h} d x+\beta v_{h}(1), \quad \forall v \in V_{h}^{0} \tag{2}
\end{equation*}
$$

where

$$
V_{h}^{0}:=\left\{v_{h}: v_{h} \text { is piecewise linear, continuous on } \mathcal{T}_{h}, v_{h}(0)=0\right\}
$$

Using the basis functions $\varphi_{j}, j=0, \ldots M+1$, where $\varphi_{1}, \ldots \varphi_{M}$ are the usual hat-functions whereas φ_{0} and φ_{M+1} are semi-hat-functions viz;

$$
\varphi_{j}(x)= \begin{cases}0, & x \notin\left[x_{j-1}, x_{j}\right] \tag{3}\\ \frac{x-x_{j-1}}{h} & x_{j-1} \leq x \leq x_{j} \quad, \quad j=1, \ldots M \\ \frac{x_{j+1}-x}{h} & x_{j} \leq x \leq x_{j+1}\end{cases}
$$

and

$$
\varphi_{0}(x)=\left\{\begin{array}{ll}
\frac{x_{1}-x}{h} & 0 \leq x \leq x_{1} \\
0, & x_{1} \leq x \leq 1
\end{array}, \quad \varphi_{M+1}(x)= \begin{cases}\frac{x-x_{M}}{h} & x_{M} \leq x \leq x_{M+1} \\
0, & 0 \leq x \leq x_{M}\end{cases}\right.
$$

In this way we may write

$$
V_{h}=\alpha \varphi_{0} \oplus\left[\varphi_{1}, \ldots, \varphi_{M+1}\right], \quad V_{h}^{0}=\left[\varphi_{1}, \ldots, \varphi_{M+1}\right] .
$$

Thus every $U \in V_{h}$ can ve written as $U=\alpha \varphi_{0}+v_{h}$ where $v_{h} \in V_{h}^{0}$, i.e.,

$$
U=\alpha \varphi_{0}+\xi_{1 \varphi_{1}}+\ldots \xi_{M+1} \varphi_{M+1}=\alpha \varphi_{0}+\sum_{i=1}^{M+1} \xi_{i} \varphi_{i} \equiv \alpha \varphi_{0}+\tilde{U}
$$

where $\tilde{U} \in V_{h}^{0}$, and hence the problem (2) can equivalently be formulated as to find $\xi_{1}, \ldots \xi_{M+1}$ such that

$$
\int_{0}^{1}\left(\alpha \varphi_{0}^{\prime}+\sum_{i=1}^{M+1} \xi_{i} \varphi_{i}^{\prime}\right) \varphi_{j}^{\prime} d x=\int_{0}^{1} \varphi_{j} d x+\beta \varphi_{j}(1), \quad j=1, \ldots M+1
$$

which can be written as

$$
\sum_{i=1}^{M+1}\left(\int_{0}^{1} \varphi_{j}^{\prime} \varphi_{i}^{\prime} d x\right) \xi_{i}=-\int_{0}^{1} \varphi_{0}^{\prime} \varphi_{j}^{\prime} d x+\int_{0}^{1} \varphi_{j} d x+\beta \varphi_{j}(1), \quad j=1, \ldots M+1
$$

or equivalently $A \xi=b$ where $A=\left(a_{i j}\right)$ is the tridiagonal matrix with entries

$$
a_{i i}=2, \quad a_{i, i+1}=a_{i+1, i}=-1, \quad i=1, \ldots M, \quad \text { and } \quad a_{M+1, M+1}=1,
$$

i.e.,

$$
A=\frac{1}{h}\left[\begin{array}{rrrrrrr}
2 & -1 & 0 & 0 & \ldots & 0 & 0 \\
-1 & 2 & -1 & 0 & \ldots & 0 & 0 \\
\ldots & & & & & & \\
\ldots & & & & & & \\
\ldots & & & & & & \\
0 & 0 & \ldots & 0 & -1 & 2 & -1 \\
0 & 0 & \ldots & 0 & 0 & -1 & 1
\end{array}\right]
$$

and the unkown ξ and the data b are given by

$$
\xi=\left[\begin{array}{l}
\xi_{1} \\
\xi_{2} \\
\cdot \\
\cdot \\
\xi_{M} \\
\xi_{M+1}
\end{array}\right], \quad b=\left[\begin{array}{l}
\int_{0}^{1} \varphi_{1} d x-\alpha \int_{0}^{1} \varphi_{0}^{\prime} \varphi_{1}^{\prime} d x \\
\int_{0}^{1} \varphi_{2} d x \\
\cdot \\
\cdot \\
\int_{0}^{1} \varphi_{M} d x \\
\int_{0}^{1} \varphi_{M+1} d x+\beta \varphi_{M+1}(1)
\end{array}\right]=\left[\begin{array}{l}
h+\frac{1}{h} \alpha \\
h \\
\cdot \\
\cdot \\
h \\
\frac{h}{2}+\beta
\end{array}\right] .
$$

3. Let V_{h} be the usual finite element space cosisting of continuous piecewise linear functions satisfying the boundary condition $v=0$ on $\partial \Omega$. The $c G(1)$ method is: Find $U \in V_{h}$ such that

$$
(\nabla U, \nabla v)+(U, v)=(f, v) \quad \forall v \in V_{h}
$$

Making the "Ansatz" $U(x)=\sum_{i=1}^{4} \xi_{i} \varphi_{i}(x)$, where φ_{i} are the standard basis functions, we obtain the system of equations

$$
\sum_{i=1}^{4} \xi_{i}\left(\int_{\Omega} \nabla \varphi_{i} \cdot \nabla \varphi_{j} d x+\int_{\Omega} \varphi_{i} \varphi_{j} d x\right)=\int_{\Omega} f \varphi_{j} d x, \quad j=1, \ldots, 4
$$

or, in matrix form,

$$
(S+M) \xi=F,
$$

where $S_{i j}=\left(\nabla \varphi_{i}, \nabla \varphi_{j}\right)$ is the stiffness matrix, $M_{i j}=\left(\varphi_{i}, \varphi_{j}\right)$ is the mass matrix, and $F_{j}=\left(f, \varphi_{j}\right)$ is the load vector.
We first compute the mass and stiffness amtrix for the reference triangle T. The local basis functions are

$$
\begin{aligned}
\phi_{1}\left(x_{1}, x_{2}\right)=1-\frac{x_{1}}{h}-\frac{x_{2}}{h}, & \nabla \phi_{1}\left(x_{1}, x_{2}\right)=-\frac{1}{h}\left[\begin{array}{l}
1 \\
1
\end{array}\right], \\
\phi_{2}\left(x_{1}, x_{2}\right)=\frac{x_{1}}{h}, & \nabla \phi_{2}\left(x_{1}, x_{2}\right)=\frac{1}{h}\left[\begin{array}{l}
1 \\
0
\end{array}\right], \\
\phi_{3}\left(x_{1}, x_{2}\right)=\frac{x_{2}}{h}, & \nabla \phi_{3}\left(x_{1}, x_{2}\right)=\frac{1}{h}\left[\begin{array}{l}
0 \\
1
\end{array}\right] .
\end{aligned}
$$

Hence, with $|T|=\int_{T} d z=h^{2} / 2$,

$$
\begin{aligned}
& m_{11}=\left(\phi_{1}, \phi_{1}\right)=\int_{T} \phi_{1}^{2} d x=h^{2} \int_{0}^{1} \int_{0}^{1-x_{2}}\left(1-x_{1}-x_{2}\right)^{2} d x_{1} d x_{2}=\frac{h^{2}}{12} \\
& s_{11}=\left(\nabla \phi_{1}, \nabla \phi_{1}\right)=\int_{T}\left|\nabla \phi_{1}\right|^{2} d x=\frac{2}{h^{2}}|T|=1
\end{aligned}
$$

Alternatively, we can use the midpoint rule, which is exact for polynomials of degree 2 (precision $3)$:

$$
m_{11}=\left(\phi_{1}, \phi_{1}\right)=\int_{T} \phi_{1}^{2} d x=\frac{|T|}{3} \sum_{j=1}^{3} \phi_{1}\left(\hat{x}_{j}\right)^{2}=\frac{h^{2}}{6}\left(0+\frac{1}{4}+\frac{1}{4}\right)=\frac{h^{2}}{12}
$$

where \hat{x}_{j} are the midpoins of the edges. Similarly we can compute the other elements and obtain

$$
m=\frac{h^{2}}{24}\left[\begin{array}{lll}
2 & 1 & 1 \\
1 & 2 & 1 \\
1 & 1 & 2
\end{array}\right], \quad s=\frac{1}{2}\left[\begin{array}{rrr}
2 & -1 & -1 \\
-1 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right]
$$

We can now assemble the global matrices M and S from the local ones m and s :

$$
\begin{array}{ll}
M_{11}=M_{44}=8 m_{22}=\frac{8}{12} h^{2}, & S_{11}=S_{44}=8 s_{22}=4, \\
M_{12}=M_{13}=M_{24}=M_{34}=2 m_{12}=\frac{1}{12} h^{2}, & S_{12}=S_{13}=S_{24}=S_{34}=2 s_{12}=-1, \\
M_{14}=2 m_{23}=\frac{1}{12} h^{2}, & S_{14}=2 s_{23}=0, \\
M_{22}=M_{33}=4 m_{11}=\frac{4}{12} h^{2}, & S_{22}=S_{33}=4 s_{11}=4, \\
M_{23}=0, & S_{23}=0 .
\end{array}
$$

The remaining matrix elements are obtained by symmetry $M_{i j}=M_{j i}, S_{i j}=S_{j i}$. Hence,

$$
M=\frac{h^{2}}{12}\left[\begin{array}{llll}
8 & 1 & 1 & 1 \\
1 & 4 & 0 & 1 \\
1 & 0 & 4 & 1 \\
1 & 1 & 1 & 8
\end{array}\right], \quad S=\left[\begin{array}{rrrr}
4 & -1 & -1 & 0 \\
-1 & 4 & 0 & -1 \\
-1 & 0 & 4 & -1 \\
0 & -1 & -1 & 4
\end{array}\right]
$$

4. We multiply the differential equation by a test function $v \in H_{0}^{1}=\left\{v:\|v\|+\left\|v^{\prime}\right\|<\infty, v(0)=\right.$ $0\}$ and integrate over I. Using partial integration and the boundary conditions we get the following variational problem: Find $u \in H_{0}^{1}(I)$ such that

$$
\begin{equation*}
\int_{I}\left(u^{\prime} v^{\prime}+x u^{\prime} v+u v\right)=\int_{I} f v, \quad \forall v \in H_{0}^{1}(I) \tag{4}
\end{equation*}
$$

A Finite Element Method with $c G(1)$ reads as follows: Find $U \in V_{h}^{0}$ such that

$$
\begin{equation*}
\int_{I}\left(U^{\prime} v^{\prime}+x U^{\prime} v+U v\right)=\int_{I} f v, \quad \forall v \in V_{h}^{0} \subset H_{0}^{1}(I) \tag{5}
\end{equation*}
$$

where

$$
V_{h}^{0}=\{v: v \text { is piecewise linear and continuous in a partition of } I, v(0)=v(1)=0\}
$$

Now let $e=u-U$, then (4)-(5) gives that

$$
\begin{equation*}
\int_{I}\left(e^{\prime} v^{\prime}+x e^{\prime} v+e v\right)=0, \quad \forall v \in V_{h}^{0}, \quad \text { (Galerkin Ortogonalitet). } \tag{6}
\end{equation*}
$$

We note that using $e(0)=e(1)=0$, we get

$$
\begin{equation*}
\int_{I} x e^{\prime} e=\frac{1}{2} \int_{I} x \frac{d}{d x}\left(e^{2}\right)=\left.\frac{1}{2}\left(x e^{2}\right)\right|_{0} ^{1}-\frac{1}{2} \int_{I} e^{2}=-\frac{1}{2} \int_{I} e^{2}, \tag{7}
\end{equation*}
$$

Further, using Poincare inequality we have

$$
\|e\|^{2} \leq\left\|e^{\prime}\right\|^{2}
$$

A priori error estimate: We use (6) and (7) to get

$$
\begin{aligned}
\left\|e^{\prime}\right\|_{L_{2}(I)}^{2}+\frac{1}{2}\|e\|_{L_{2}}^{2} & =\int_{I}\left(e^{\prime} e^{\prime}+\frac{1}{2} e e\right)=\int_{I}\left(e^{\prime} e^{\prime}+x e^{\prime} e+e e\right) \\
& =\int_{I}\left(e^{\prime}(u-U)^{\prime}+x e^{\prime}(u-U)+e(u-U)\right)=\left\{v=U-\pi_{h} u \mathrm{i}(6)\right\} \\
& =\int_{I}\left(e^{\prime}\left(u-\pi_{h} u\right)^{\prime}+x e^{\prime}\left(u-\pi_{h} u\right)+e\left(u-\pi_{h} u\right)\right) \\
& \leq\left\|\left(u-\pi_{h} u\right)^{\prime}\right\|\left\|e^{\prime}\right\|+\left\|u-\pi_{h} u\right\|\left\|e^{\prime}\right\|+\left\|u-\pi_{h} u\right\|\|e\| \\
& \leq\left\{\left\|\left(u-\pi_{h} u\right)^{\prime}\right\|+\sqrt{2}\left\|u-\pi_{h} u\right\|\right\}\|e\|_{H^{1}} \\
& \leq C_{i}\left\{\left\|h u^{\prime \prime}\right\|+\sqrt{2}\left\|h^{2} u^{\prime \prime}\right\|\right\}\|e\|_{H^{1}} .
\end{aligned}
$$

this gives that

$$
\|e\|_{H^{1}} \leq 2 C_{i}\left\{\left\|h u^{\prime \prime}\right\|+\sqrt{2}\left\|h^{2} u^{\prime \prime}\right\|\right\}
$$

which is the a priori error estimate.
A posteriori error estimate:

$$
\begin{align*}
\left\|e^{\prime}\right\|_{L_{2}(I)}^{2}+\frac{1}{2}\|e\|_{L_{2}}^{2} & =\int_{I}\left(e^{\prime} e^{\prime}+\frac{1}{2} e e\right)=\int_{I}\left(e^{\prime} e^{\prime}+x e^{\prime} e+e e\right) \\
& =\int_{I}\left((u-U)^{\prime} e^{\prime}+x(u-U)^{\prime} e+(u-U) e\right)=\{v=e \text { in }(4)\} \\
& =\int_{I} f e-\int_{I}\left(U^{\prime} e^{\prime}+x U^{\prime} e+U e\right)=\left\{v=\pi_{h} e \text { in }(6)\right\} \tag{8}\\
& =\int_{I} f\left(e-\pi_{h} e\right)-\int_{I}\left(U^{\prime}\left(e-\pi_{h} e\right)^{\prime}+x U^{\prime}\left(e-\pi_{h} e\right)+U\left(e-\pi_{h} e\right)\right) \\
& =\{P . I . \text { on each subinterval }\}=\int_{I} \mathcal{R}(U)\left(e-\pi_{h} e\right),
\end{align*}
$$

where $\mathcal{R}(U):=f+U^{\prime \prime}-x U^{\prime}-U=f-x U^{\prime}-U$, (for approximation with piecewise linears, $U \equiv 0$, on each subinterval). Thus (5) implies that
$\left\|e^{\prime}\right\|_{L_{2}(I)}^{2}+\frac{1}{2}\|e\|_{L_{2}}^{2} \leq\|h \mathcal{R}(U)\|\left\|h^{-1}\left(e-\pi_{h} e\right)\right\| \leq C_{i}\|h \mathcal{R}(U)\|\left\|e^{\prime}\right\| \leq \frac{1}{2} C_{i}^{2}\|h \mathcal{R}(U)\|^{2}+\frac{1}{2}\left\|e^{\prime}\right\|_{L_{2}(I)}^{2}$, where C_{i} is an interpolation constant, and hence we have with $\|\cdot\|=\|\cdot\|_{L_{2}(I)}$ that

$$
\|e\|_{H^{1}} \leq C_{i}\|h \mathcal{R}(U)\|
$$

5. See the Book and/or Lecture Notes.

MA

