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1. The dG(0) solution U for the scalar population dynamics, u̇(t) + au(t) = f, u(0) = u0, in the
subinterval In = (tn−1, tn] with kn = tn − tn−1, n = 1, 2, . . . N , and f ≡ 0 is given by

aknUn + (Un − Un−1) = 0, Un = U |In
= U−

n = U+
n−1.

Let a > 0 and show the discrete stability estimate

U2
N +

N−1
∑

n=0

|[Un]|2 ≤ U2
0 , [Un] := U+

n − U−

n = Un+1 − Un.

2. Let α and β be positive constants. Give the piecewise linear finite element approximation
procedure and derive the corresponding stiffness matrix, covection matrix and load vector using
the uniform mesh with size h = 1/3 for the problem

−u′′(x) + 2u′(x) = 3, 0 < x < 1; u′(0) = α, u(1) = β.

3. Derive an a priori and an a posteriori error estimate in the energy norm: ‖u‖E = ‖u′‖L2(0,1),
for the cG(1) finite element method for the problem

−u′′ + 2xu′ + u = f, 0 < x < 1, u(0) = u(1) = 0.

4. Consider the convection-diffusion problem

−div(ε∇u + βu) = f, in Ω ⊂ R
2, u = 0, on ∂Ω, for u ∈ H1

0 (Ω),

where Ω is a bounded convex polygonal domain, ε > 0 is constant, β = (β1(x), β2(x)) and f = f(x).
Determine the conditions in the Lax-Milgram theorem that would guarantee existence of a unique
solution for this problem. Prove a stability estimate for u i terms of ||f ||L2(Ω), ε and diam(Ω),
and under the conditions that you derived.

5. Derive the variational formulation (VF) and formulate a minimization problem (MP) for the
boundary value problrm:

−(a(x)u′(x))′ = f(x), 0 < x < 1, u(0) = u(1) = 0,

and show that (VF) ⇐⇒ (MP).
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1. For dG(0) we have discontinuous, piecewise constant test functions, hence in the variational
formulation below

(u̇, v) + (au, v) = (f, v),

we may take v ≡ 1 and hence we have for a single subinterval In = (tn−1, tn] the dG(0) approxi-
mation

∫

In

(U̇ + aU(t)dt + (Un − Un−1) dt =

∫

In

f dt.

For f = 0 this yields (see als)o Fig below)

(1) aKnUn + (Un − Un−1) = 0.

u0

t0 = 0 t1 t2 t3 tn−1 tn tN−1 tN = 1

[U ]0

[U ]1

[U ]2

[U ]3

[U ]N−1

UN
t

Multiplying by Un we get

aknU2
n + U2

n − UnUn−1 = 0,

where a > 0, whence

U2
n − UnUn−1 ≤ 0.

Now we use, for n = 1, 2, . . . , N ,

U2
n − UnUn−1 =

1

2
U2

n +
1

2
U2

n − UnUn−1,

and sum over n = 1, 2, . . . , N to write

N
∑

n=1

(U2
n − UnUn−1) = U2

N − UNUN−1 + U2
N−1 − UN−1UN−2 + − . . . U2

1 − U1U0

= U2
N − UNUN−1 + U2

N−1 − UN−1UN−2 + − . . . U2
1 − U1U0 +

1

2
U2

0 2 − 1

2
U2

0

=
1

2
U2

N +
1

2
(UN − UN−1)

2 +
1

2
U2

N−1 + . . . +
1

2
U2

1 +
1

2
(U1 − U0)

2 − 1

2
U2

0 ≤ 0.

Further by the definition [Un] = Un+1 − Un, hence the above inequality yields the desired result

U2
N +

N−1
∑

n=0

|[Un]|2 ≤ U2
0 .
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2. Since we have a Dirichlet boundary condition at x = 1, therefore, the test functions are chosen
to be 0 at x = 1. Henve we multiply the pde by a test function v with v(1) = 0, integrate over
x ∈ (0, 1) and use partial integration to get

− [u′v]10 +

∫ 1

0

u′v′ dx + 2

∫ 1

0

u′v dx = 3

∫ 1

0

v dx ⇐⇒

− u′(1)v(1) + u′(0)v(0) +

∫ 1

0

u′v′ dx + 2

∫ 1

0

u′v dx = 3

∫ 1

0

v dx ⇐⇒

+ αv(0) +

∫ 1

0

u′v′ dx + 2

∫ 1

0

u′v dx = 3

∫ 1

0

v dx.

(2)

The continuous variational formulation is now formulated as follows: Find

(V F ) u ∈ V := {w :

∫ 1

0

(

w(x)2 + w′(x)2
)

dx < ∞, w(1) = β},

such that
∫ 1

0

u′v′ dx + 2

∫ 1

0

u′v dx = 3

∫ 1

0

v dx − αv(0), ∀v ∈ V 0,

where

V 0 := {v :

∫ 1

0

(

v(x)2 + v′(x)2
)

dx < ∞, v(1) = 0}.

For the discrete version we let Th be a uniform partition: 0 = x0 < x1 < . . . < xM+1 of [0, 1] into
the subintervals In = [xn−1, xn], n = 1, . . . M +1. Here, we have M interior nodes: x1, . . . xM , two
boundary points: x0 = 0 and xM+1 = 1 and hence M + 1 subintervals.

ϕ0 ϕ1 ϕ2 ϕ3

basis functions for Vh, (M = 2)

x0 = 0 x1 = 1/3 x2 = 2/3 x3 = 1

The finite element method (discrete variational formulation) is now formulated as follows: Find

(FEM) U ∈ Vh := {wh : wh is piecewise linear, continuous on Th, wh(1) = β},
such that

(3)

∫ 1

0

U ′v′

h dx + 2

∫ 1

0

U ′vh dx = 3

∫ 1

0

vh dx − αvh(0), ∀v ∈ V 0
h ,

where
V 0

h := {vh : vh is piecewise linear, continuous on Th, vh(1) = 0}.
Using the basis functions ϕj , j = 0, . . . M + 1, where ϕ1, . . . ϕM are the usual hat-functions

ϕ0 ϕ1 ϕ2

basis functions for V 0
h , (M = 2)

x0 = 0 x1 = 1/3 x2 = 2/3 x3 = 1

whereas ϕ0 and ϕM+1 are semi-hat-functions viz;

(4) ϕj(x) =







0, x /∈ [xj−1, xj ]
x−xj−1

h xj−1 ≤ x ≤ xj
xj+1−x

h xj ≤ x ≤ xj+1

, j = 1, . . . M.
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and

ϕ0(x) =

{

x1−x
h 0 ≤ x ≤ x1

0, x1 ≤ x ≤ 1
, ϕM+1(x) =

{

x−xM

h xM ≤ x ≤ xM+1

0, 0 ≤ x ≤ xM .

In this way we may write

Vh = [ϕ0, . . . , ϕM ] ⊕ βϕM+1, V 0
h = [ϕ0, . . . , ϕM ].

Thus every U ∈ Vh can ve written as U = vh + βϕM+1 where vh ∈ V 0
h , i.e.,

U = ξ0ϕ0 + ξ1ϕ1 + . . . + ξM+ϕM + βϕM+1 = αϕ0 +

M
∑

i=0

ξiϕi + βϕM+1 ≡ Ũ + βϕM+1,

where Ũ ∈ V 0
h , and hence the problem (3) can be formulated as to find ξ0, . . . ξM such that

∫ 1

0

(

M
∑

j=0

ξjϕ
′

j+βϕ′

M+1

)

ϕ′

i dx+2

∫ 1

0

(

M
∑

j=0

ξjϕ
′

j+βϕ′

M+1

)

ϕi dx = 3

∫ 1

0

ϕi dx−αϕi(0), j = 0, . . . ,M,

which can be written as find ξj , j = 0, . . . ,M such that for i = 0, . . . ,M ,

M
∑

i=0

(

∫ 1

0

(ϕ′

jϕ
′

i + 2ϕ′

jϕi) dx
)

ξj+ = −β

∫ 1

0

ϕ′

M+1ϕ
′

i dx − 2β

∫ 1

0

ϕ′

M+1ϕi dx + 3

∫ 1

0

ϕi dx − αϕi(0),

or equivalently Aξ = b where A = S + 2K where S is the stifness matrix and K is the convection
matrix. For h = 1/3 and recalling the half-hat function at x = 0 we end up with

S =
1

h





1 −1 0
−1 2 −1

0 −1 2



 , K =
1

2





−1 1 0
−1 0 1

0 −1 0



 , hence A =





2 −2 0
−4 6 −2

0 −4 6



 ,

and the unkown ξ and the data b are given by

ξ =

















ξ0

ξ1

·
·
ξM−1

ξM

















, b =

















0 + 3h/2 − α
0 + 3h − 0
·
·
0 + 3h − 0
−β(−1/h) − 2β(1/2) + 3h

















= {h = 1/3} =





1/2 − α
1
2β + 1



 .

3. We multiply the differential equation by a test function v ∈ H1
0 = {v : ||v||+ ||v′|| < ∞, v(0) =

v(1) = 0} and integrate over I. Using partial integration and the boundary conditions we get the
following variational problem: Find u ∈ H1

0 (I) such that

(5)

∫

I

(u′v′ + 2xu′v + uv) =

∫

I

fv, ∀v ∈ H1
0 (I).

A Finite Element Method with cG(1) reads as follows: Find U ∈ V 0
h such that

(6)

∫

I

(U ′v′ + 2xU ′v + Uv) =

∫

I

fv, ∀v ∈ V 0
h ⊂ H1

0 (I),

where

V 0
h = {v : v is piecewise linear and continuous in a partition of I, v(0) = v(1) = 0}.

Now let e = u − U , then (5)-(6) gives that

(7)

∫

I

(e′v′ + 2xe′v + ev) = 0, ∀v ∈ V 0
h , (Galerkin Orthogonality).

We note that using e(0) = e(1) = 0, we get

(8) 2

∫

I

xe′e =

∫

I

x
d

dx
(e2) = (xe2)|10 −

∫

I

e2 = −
∫

I

e2,
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A priori error estimate: We use (7) and (8) to get

‖e‖2
E := ‖e′‖2

L2(0,1) =

∫

I

e′e′ =

∫

I

(e′e′ + 2xe′e + ee)

=

∫

I

(

e′(u − U)′ + 2xe′(u − U) + e(u − U)
)

= {v = U − πhu in (7)}

=

∫

I

(

e′(u − πhu)′ + 2xe′(u − πhu) + e(u − πhu)
)

≤ ‖(u − πhu)′‖‖e′‖ + 2‖u − πhu‖‖e′‖ + ‖u − πhu‖‖e‖
≤ {‖(u − πhu)′‖ + 3‖u − πhu‖}‖e′‖
≤ Ci{‖hu′′‖ + 3‖h2u′′‖}‖e‖H1 ,

where in the last step we used Poincare inequality ‖e‖ ≤ ‖e′‖. This yielda the a priori error
estimate:

‖e‖H1 ≤ 2Ci{‖hu′′‖ + 3‖h2u′′‖}.
A posteriori error estimate:

‖e‖2
E := ‖e′‖2

L2(I) =

∫

I

(e′e′ + 2xe′e + ee)

=

∫

I

((u − U)′e′ + 2x(u − U)′e + (u − U)e) = {v = e in (5)}

=

∫

I

fe −
∫

I

(U ′e′ + 2xU ′e + Ue) = {v = πhe in (7)}

=

∫

I

f(e − πhe) −
∫

I

(

U ′(e − πhe)′ + 2xU ′(e − πhe) + U(e − πhe)
)

= {P.I. on each subinterval} =

∫

I

R(U)(e − πhe),

(9)

where R(U) := f + U ′′ − 2xU ′ − U = f − 2xU ′ − U , (for approximation with piecewise linears,
U ≡ 0, on each subinterval). Thus (9) implies that

‖e‖2
E := ‖e′‖2

L2(I) ≤ ‖hR(U)‖‖h−1(e − πhe)‖
where Ci is an interpolation constant, and hence we have with ‖ · ‖ = ‖ · ‖L2(I) that

‖e‖E ≤ Ci‖hR(U)‖.

4. Recall that H1
0 (Ω) := {w : w ∈ L2(Ω), |∇w| ∈ L2(Ω), w = 0 on ∂Ω}. Consider the problem

(10) −div(ε∇u + βu) = f, in Ω, u = 0 on Γ = ∂Ω.

a) Multiply the equation (10) by v ∈ H1
0 (Ω) and integrate over Ω to obtain the Green’s formula

−
∫

Ω

div(ε∇u + βu)v dx =

∫

Ω

(ε∇u + βu) · ∇v dx =

∫

Ω

fv dx.

Thus the variational formulation for (10) is as follows: Find u ∈ H1
0 (Ω) such that

(11) a(u, v) = L(v), ∀v ∈ H1
0 (Ω),

where

a(u, v) =

∫

Ω

(ε∇u + βu) · ∇v dx,

and

L(v) =

∫

Ω

fv dx.

According to the Lax-Milgram theorem, for a unique solution for (11) we need to verify that the
following relations are valid:

i)
|a(v, w)| ≤ γ||u||H1(Ω)||w||H1(Ω), ∀v, w ∈ H1

0 (Ω),
4



ii)
a(v, v) ≥ α||v||2H1(Ω), ∀v ∈ H1

0 (Ω),

iii)
|L(v)| ≤ Λ||v||H1(Ω), ∀v ∈ H1

0 (Ω),

for some γ, α, Λ > 0.

Now since

|L(v)| = |
∫

Ω

fv dx| ≤ ||f ||L2(Ω)||v||L2(Ω) ≤ ||f ||L2(Ω)||v||H1(Ω),

thus iii) follows with Λ = ||f ||L2(Ω). Thus the first condition is that f ∈ L2(Ω).

Further we have that

|a(v, w)| ≤
∫

Ω

|ε∇v + βv||∇w| dx ≤
∫

Ω

(ε|∇v| + |β||v|)|∇w| dx

≤
(

∫

Ω

(ε|∇v| + |β||v|)2 dx
)1/2(

∫

Ω

|∇w|2 dx
)1/2

≤
√

2 max(ε, ||β||∞)
(

∫

Ω

(|∇v|2 + v2) dx
)1/2

||w||H1(Ω)

= γ||v||H1(Ω)||w||H1(Ω),

which, with γ =
√

2 max(ε, ||β||∞), gives i). Hence the second condition is that β ∈ L∞(Ω).

Finally, if divβ ≤ 0, then

a(v, v) =

∫

Ω

(

ε|∇v|2 + (β · ∇v)v
)

dx =

∫

Ω

(

ε|∇v|2 + (β1
∂v

∂x1
+ β2

∂v

∂x2
)v

)

dx

=

∫

Ω

(

ε|∇v|2 +
1

2
(β1

∂

∂x1
(v)2 + β2

∂

∂x2
(v)2)

)

dx = Green’s formula

=

∫

Ω

(

ε|∇v|2 − 1

2
(divβ)v2

)

dx ≥
∫

Ω

ε|∇v|2 dx.

Now by the Poincare’s inequality
∫

Ω

|∇v|2 dx ≥ C

∫

Ω

(|∇v|2 + v2) dx = C||v||2H1(Ω),

for some constant C = C(diam(Ω)), we have

a(v, v) ≥ α||v||2H1(Ω), with α = Cε,

thus ii) is valid under the condition that divβ ≤ 0.

From ii), (11) (with v = u) and iii) we get that

α||u||2H1(Ω) ≤ a(u, u) = L(u) ≤ Λ||u||H1(Ω),

which gives the stability estimate

||u||H1(Ω) ≤
Λ

α
,

with Λ = ||f ||L2(Ω) and α = Cε defined above.

5. See the Book and/or Lecture Notes.
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