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1. The dG(0) solution U for the scalar population dynamics, u(t) + au(t) = f, u(0) = ug, in the
subinterval I, = (t,—1,t,] with k, =t, —t,—1, n=1,2,... N, and f =0 is given by

ak, Uy, + (Up, —Up—1) =0, U,=Ul, =U, =U],.
Let a > 0 and show the discrete stability estimate

N-1
U12v + Z ‘[UnHz < U(?» [Un] = U: = U, =Unt1 — U,
n=0

2. Let « and (8 be positive constants. Give the piecewise linear finite element approximation
procedure and derive the corresponding stiffness matrix, covection matrix and load vector using
the uniform mesh with size h = 1/3 for the problem

—u"(z)+2u/ () =3, 0<z<l; W(0)=a, u(l)=24.

3. Derive an a priori and an a posteriori error estimate in the energy norm: |lullg = [|v||z,(0,1),
for the ¢G(1) finite element method for the problem

"+ 220 +u=f 0<z<Il, u(0) = u(1) = 0.

4. Consider the convection-diffusion problem
—div(eVu+ fBu) = f, in QCR? u=0, on 09, for u € Hé (Q),

where € is a bounded convex polygonal domain, e > 0 is constant, 3 = (81(x), B2(z)) and f = f(x).
Determine the conditions in the Lax-Milgram theorem that would guarantee existence of a unique
solution for this problem. Prove a stability estimate for u i terms of ||f|[1,(q), € and diam(Q),
and under the conditions that you derived.

5. Derive the variational formulation (VF) and formulate a minimization problem (MP) for the
boundary value problrm:

—(a(x)u/(z)) = f(z), 0<z<l, w(0) = u(1) =0,
and show that (VF) <= (MP).
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1. For dG(0) we have discontinuous, piecewise constant test functions, hence in the variational

formulation below
(@,v) + (au,v) = (f,v),

we may take v = 1 and hence we have for a single subinterval I, = (¢,,-1,t,] the dG(0) approxi-

mation
/ (U +aU(t)dt + (U, — Up_y) dt = / fdt.
I, In
For f = 0 this yields (see als)o Fig below)
(1) aKnUn + (Un - Un—l) =0.

UuqQ

Uln-1
. . Un

to=0 t1 to t3 the1  tn tn_1tn =1
Multiplying by U,, we get
ak U2 +U? ~U,U,_1 =0,

where a > 0, whence
U2 -U,U,_; <0.

Now we use, forn=1,2,..., N,
1 1
U2 - U U,y = 5U{fj + 5U{;’ —U,Upn_1,

and sum over n = 1,2,..., N to write

N
S (U2~ UuUnor) = U} — UnUn-1 + U3y — Uy 1iUn-a + —...U2 — Uiy

n=1

1 1
=U% —UnUn_14+U% | —Un_1\Un_o+ —...U: —U Uy + 5U§2 — 5Ug

1 1 1 1 1 1
= §U12v + i(UN —Un-1)* + §U]2\]71 ..+ §U12 + 5(Ul —Up)? - §Ug

<0.

Further by the definition [U,,] = U,+1 — Uy, hence the above inequality yields the desired result

N-1
Uk + Y U < UG
n=0

1



2. Since we have a Dirichlet boundary condition at x = 1, therefore, the test functions are chosen
to be 0 at © = 1. Henve we multiply the pde by a test function v with v(1) = 0, integrate over
2 € (0,1) and use partial integration to get

1 1 1
—[u’v]é—i—/ u’v'd$+2/ u'vdsz/ vdz =
0 0 0
1 1 1
(2) —/(1)v(1) + u'(0)v(0) +/ u'v' dr + 2/ wodr = 3/ vdr <
0 0 0

1 1 1
+ av(0) +/ u'v’dm—l—?/ Wvdr = 3/ vdx.
0 0 0
The continuous variational formulation is now formulated as follows: Find
1
(VF) weV :={w: / (w(:c)z + w’(a:)Z) dr < 00, w(l) =g},
0
such that
1 1 1
/ u’v'dm—i—Z/ uvdr = 3/ vdr — av(0), Yve VO,
0 0 0
where )
Vo= {v: / (v(:c)2 +v'(:17)2> dr < oo, w(1)=0}.
0

For the discrete version we let 7;, be a uniform partition: 0 = zo < 1 < ... < xpr41 of [0,1] into
the subintervals I, = [2,,_1,2,], n =1,... M + 1. Here, we have M interior nodes: 1, ...z, two
boundary points: g = 0 and zps4+1 = 1 and hence M + 1 subintervals.

%o ®1 ¥2 ¥3

basis functions for V3, (M = 2)

I
zo =0 r1=1/3 25=2/3 xg =1
The finite element method (discrete variational formulation) is now formulated as follows: Find

(FEM) U €V}, := {wy, : wy, is piecewise linear, continuous on 7, wy(1) = B},
such that

1 1 1
(3) / U’v%dm—i—?/ U’vhdw:3/ vy dx — av,(0), Yo € V),
0 0 0

where
Vi := {vy, : vy, is piecewise linear, continuous on 7y, vx(1) = 0}.
Using the basis functions ¢;, j = 0,...M + 1, where ¢1,...pn are the usual hat-functions

%0 Y1 P2
basis functions for V!, (M = 2)

] {1
2o =0 r=1/3  x9=2/3 r3 =1
whereas ¢¢ and @41 are semi-hat-functions viz;

0, @ lfrj,
(4) pj(z) = ;CZT”; zj <z<wz; , j=1,...M
Jj+1—

vy <x <Xy
2
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and
= h =T _ Ty ST < Ty
#o(@) { 0, n<s<1 > Punl® { 0, 0<e<au
In this way we may write

Vi = [0y o) ® Boms1, Vi = [0 - om)-
Thus every U € V}, can ve written as U = vy, + Bpar+1 where vy, € V,?, ie.,

M

U =&opo+&ipr+ ...+ Enyom + Borir = apo + Y &ipi + Bonrsr = U + Bonr 1,
1=0

where U € V,?, and hence the problem (3) can be formulated as to find &g, ... & such that

1 M 1 M 1
/0 (ijw}Jrﬁcp’MH)@é dw+2/0 (Zﬁjwﬁﬁwhﬂ)% dr = 3/0 i dr—ap;(0), j=0,...,M,
=0 =0

which can be written as find §;,j =0,..., M such that for ¢ =0,..., M

9

M 1 1 1 1
> (/ (¢0} + 26}0:) d ) &+ = —ﬁ/ Cri 110, dw—?ﬁ/ Phii10i dfc+3/ o1 dz — ap;(0),
0 0 0 0

i=0
or equivalently A = b where A = S 4 2K where S is the stifness matrix and K is the convection
matrix. For h = 1/3 and recalling the half-hat function at = 0 we end up with

1 1 -1 0 1 -1 1 0 2 =2 0
S=—-1] -1 2 -1 |, K:§ -1 0 1|, hence A=| -4 6 -2 |,
0 -1 2 0 -1 0 0 -4 6
and the unkown £ and the data b are given by
& 0+3h/2 —
.§1 9+3h—0 1/2 - a
§=1. o b= ={h=1/3}=| 1
2 1
§v—1 0+3h—0 A+
3 —B(=1/h) = 28(1/2) + 3h

3. We multiply the differential equation by a test function v € H} = {v : |Jv|| +|[v'|| < o0, v(0) =
v(1) = 0} and integrate over I. Using partial integration and the boundary conditions we get the
following variational problem: Find u € H}(I) such that

(5) /(u'v’ + 2zu'v + wv) = /fv, Vv € Hy(I).
I I
A Finite Element Method with ¢G(1) reads as follows: Find U € V}? such that

(6) /(U’v'+2xU’v+UU):/fv, Vo e V¥ c HA(I),
I I

where
V0 = {v : v is piecewise linear and continuous in a partition of I, v(0) = v(1) = 0}.

Now let e = u — U, then (5)-(6) gives that
(7) /(e’v’ + 2ze'v +ev) =0, Yo €V, (Galerkin Orthogonality).
I

We note that using e(0 =0, we get

(8) /mee—/ 3(:E62)|(1J—/162:—/Ie2



A priori error estimate: We use (7) and (8) to get

llel|% _H6/||L2(01)_/66 _/e'e + 2z¢€’e + ee)
f/<e(ufU) +2ze(ufU)+6(u*U)>:{U:U*Whum(n}
I
:/I(e/(ufwhu)/+2x€/(u77rhu)+6(U*7Thu))

< [ = mnw) [[le'l| + 2llu = mrulllle’l] + lu = maull[le]
< A{Ilw = mnu)'[| + 3llu — mhull He'|
< Ci{llhu || + 3lIh*a" e e,

where in the last step we used Poincare inequality |le|| < |l¢/||. This yielda the a priori error
estimate:

lellzr < 2C:{[[hu”|| + 3||h*u"[|}.

A posteriori error estimate:
lel% = lle'I2, ) = / (¢'e’ + 2ele + ce)

= /((uf U)e +2z(u—U)e+ (u—Ue)={v=ce in (5)}

I

(9) /fe—/(U'e'+2xU'e+Ue)—{v—whe in (7)}
/f (e — mhe) /(U’(e—whe)'+2xU'(e—7rhe)+U(e—7rhe))

= {P.I. on each subinterval} = /R(U) (e — mhe),
I

where R(U) := f+U" — 22U’ — U = f — 22U’ — U, (for approximation with piecewise linears,
U =0, on each subinterval). Thus (9) implies that

lellz = lle'lIZ,ry < IRR@IHIAT" (e = mne)l
where Cj; is an interpolation constant, and hence we have with || - || = || - ||z, () that
lelle < Cil|AR(U)]-
4. Recall that H} (Q) := {w : w € Ly(Q), |Vw| € L2(Q), w=0on 90N}. Consider the problem
(10) —div(eVu+ fu) = f, in Q, u=0 on I =00.
a) Multiply the equation (10) by v € H}(Q) and integrate over € to obtain the Green’s formula

—/ div(eVu + fu)v dz :/(EVu—i—ﬁu) -Voudz = / fvdx.
Q Q

Q
Thus the variational formulation for (10) is as follows: Find u € H} () such that
(11) a(u,v) = L(v), Vv e H(}(Q%
where

a(u,v) = /Q(SVU + pu) - Vo dez,

U):/vadx.

According to the Lax-Milgram theorem, for a unique solution for (11) we need to verify that the
following relations are valid:

i

and

la(v, w)] <Allullm@llwllae), Yo, we Hy (),
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ii
) a(v,v) > alv]| 3 ), Vo € Hy (%),
iii)
IL(v)] < Aljollaiey, Vo€ Hg(),
for some 7y, a, A > 0.
Now since

|L(v)] = I/vadrr\ < Mz llvlla@) < W llLa@llvl @),

thus iii) follows with A = [|f]|1, ). Thus the first condition is that f € Ly(€).
Further we have that

la(v, w)| g/ |va+6vHVw\dx§/(5|Vv|—|—|B||v|)|Vw|dx
Q

< ([ el + 1ol ds) ([ 19 ds)”
< V2max(e, ||8]l) /Q <|W|2+v2>dx) lollen o)

=Yl o) llwllm (),
which, with v = v2max(e, ||3]|), gives i). Hence the second condition is that 8 € L., (9).
Finally, if divg < 0, then

a(v,v)z/ﬂ(quF—k(ﬂ-VU)v) d;v:/ (6|Vv|2+(ﬂ1%+62%)v) do
_/9(5|Vv|2—|—;(618(z( )2+ B2 2( v) )) dx = Green’s formula

:/ (5|Vv|2 — }(divﬂ)f) dx > / e|Vo|? da.
Q 2 Q

Now by the Poincare’s inequality
[ vekde = [ (90 +02) dz = Clol e

for some constant C' = C(diam(2)), we have
a(v,v) > a||v||§{1(m, with a = Ce,
thus ii) is valid under the condition that divf < 0.
From ii), (11) (with v = u) and iii) we get that
allul|F gy < a(u,u) = L(u) < Aljul|g1q),
which gives the stability estimate
ull @) <

with A = [|f||z,(q) and a = Ce defined above.

LI

5. See the Book and/or Lecture Notes.
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