Mathematic Chalmers \& GU

TMA372/MMG800: Partial Differential Equations, 2013-03-13, 14:00-18:00 V Halls

Telephone: Oskar Hamlet: 0703-088304
Calculators, formula notes and other subject related material are not allowed.
Each problem gives max 6 p. Valid bonus poits will be added to the scores.
Breakings: 3: $15-20$ p, 4: 21-27p och 5: 28 p- For GU students G:15-24p, VG: 25p-
For solutions and gradings information see the couse diary in:
http://www.math.chalmers.se/Math/Grundutb/CTH/tma372/1213/index.html

1. The $\mathrm{dG}(0)$ solution U for the scalar population dynamics, $\dot{u}(t)+a u(t)=f, u(0)=u_{0}$, in the subinterval $I_{n}=\left(t_{n-1}, t_{n}\right]$ with $k_{n}=t_{n}-t_{n-1}, n=1,2, \ldots N$, and $f \equiv 0$ is given by

$$
a k_{n} U_{n}+\left(U_{n}-U_{n-1}\right)=0, \quad U_{n}=\left.U\right|_{I_{n}}=U_{n}^{-}=U_{n-1}^{+} .
$$

Let $a>0$ and show the discrete stability estimate

$$
U_{N}^{2}+\sum_{n=0}^{N-1}\left|\left[U_{n}\right]\right|^{2} \leq U_{0}^{2}, \quad\left[U_{n}\right]:=U_{n}^{+}-U_{n}^{-}=U_{n+1}-U_{n}
$$

2. Let α and β be positive constants. Give the piecewise linear finite element approximation procedure and derive the corresponding stiffness matrix, covection matrix and load vector using the uniform mesh with size $h=1 / 3$ for the problem

$$
-u^{\prime \prime}(x)+2 u^{\prime}(x)=3, \quad 0<x<1 ; \quad u^{\prime}(0)=\alpha, \quad u(1)=\beta
$$

3. Derive an a priori and an a posteriori error estimate in the energy norm: $\|u\|_{E}=\left\|u^{\prime}\right\|_{L_{2}(0,1)}$, for the $\mathrm{cG}(1)$ finite element method for the problem

$$
-u^{\prime \prime}+2 x u^{\prime}+u=f, \quad 0<x<1, \quad u(0)=u(1)=0
$$

4. Consider the convection-diffusion problem

$$
-\operatorname{div}(\varepsilon \nabla u+\beta u)=f, \text { in } \Omega \subset \mathbb{R}^{2}, \quad u=0, \text { on } \quad \partial \Omega, \quad \text { for } u \in H_{0}^{1}(\Omega)
$$

where Ω is a bounded convex polygonal domain, $\varepsilon>0$ is constant, $\beta=\left(\beta_{1}(x), \beta_{2}(x)\right)$ and $f=f(x)$. Determine the conditions in the Lax-Milgram theorem that would guarantee existence of a unique solution for this problem. Prove a stability estimate for u i terms of $\|f\|_{L_{2}(\Omega)}, \varepsilon$ and $\operatorname{diam}(\Omega)$, and under the conditions that you derived.
5. Derive the variational formulation (VF) and formulate a minimization problem (MP) for the boundary value problrm:

$$
-\left(a(x) u^{\prime}(x)\right)^{\prime}=f(x), \quad 0<x<1, \quad u(0)=u(1)=0
$$

and show that $(\mathrm{VF}) \Longleftrightarrow(\mathrm{MP})$.
void!

TMA372/MMG800: Partial Differential Equations, 2013-03-13, 14:00-18:00 V Halls. Lösningar.

1. For $\mathrm{dG}(0)$ we have discontinuous, piecewise constant test functions, hence in the variational formulation below

$$
(\dot{u}, v)+(a u, v)=(f, v)
$$

we may take $v \equiv 1$ and hence we have for a single subinterval $I_{n}=\left(t_{n-1}, t_{n}\right]$ the $\mathrm{dG}(0)$ approximation

$$
\int_{I_{n}}\left(\dot{U}+a U(t) d t+\left(U_{n}-U_{n-1}\right) d t=\int_{I_{n}} f d t .\right.
$$

For $f=0$ this yields (see als)o Fig below)

$$
\begin{equation*}
a K_{n} U_{n}+\left(U_{n}-U_{n-1}\right)=0 \tag{1}
\end{equation*}
$$

Multiplying by U_{n} we get

$$
a k_{n} U_{n}^{2}+U_{n}^{2}-U_{n} U_{n-1}=0
$$

where $a>0$, whence

$$
U_{n}^{2}-U_{n} U_{n-1} \leq 0
$$

Now we use, for $n=1,2, \ldots, N$,

$$
U_{n}^{2}-U_{n} U_{n-1}=\frac{1}{2} U_{n}^{2}+\frac{1}{2} U_{n}^{2}-U_{n} U_{n-1}
$$

and sum over $n=1,2, \ldots, N$ to write

$$
\begin{aligned}
\sum_{n=1}^{N}\left(U_{n}^{2}-U_{n} U_{n-1}\right) & =U_{N}^{2}-U_{N} U_{N-1}+U_{N-1}^{2}-U_{N-1} U_{N-2}+-\ldots U_{1}^{2}-U_{1} U_{0} \\
& =U_{N}^{2}-U_{N} U_{N-1}+U_{N-1}^{2}-U_{N-1} U_{N-2}+-\ldots U_{1}^{2}-U_{1} U_{0}+\frac{1}{2} U_{0}^{2} 2-\frac{1}{2} U_{0}^{2} \\
& =\frac{1}{2} U_{N}^{2}+\frac{1}{2}\left(U_{N}-U_{N-1}\right)^{2}+\frac{1}{2} U_{N-1}^{2}+\ldots+\frac{1}{2} U_{1}^{2}+\frac{1}{2}\left(U_{1}-U_{0}\right)^{2}-\frac{1}{2} U_{0}^{2} \leq 0 .
\end{aligned}
$$

Further by the definition $\left[U_{n}\right]=U_{n+1}-U_{n}$, hence the above inequality yields the desired result

$$
U_{N}^{2}+\sum_{n=0}^{N-1}\left|\left[U_{n}\right]\right|^{2} \leq U_{0}^{2}
$$

2. Since we have a Dirichlet boundary condition at $x=1$, therefore, the test functions are chosen to be 0 at $x=1$. Henve we multiply the pde by a test function v with $v(1)=0$, integrate over $x \in(0,1)$ and use partial integration to get

$$
\begin{align*}
& -\left[u^{\prime} v\right]_{0}^{1}+\int_{0}^{1} u^{\prime} v^{\prime} d x+2 \int_{0}^{1} u^{\prime} v d x=3 \int_{0}^{1} v d x \quad \Longleftrightarrow \\
& -u^{\prime}(1) v(1)+u^{\prime}(0) v(0)+\int_{0}^{1} u^{\prime} v^{\prime} d x+2 \int_{0}^{1} u^{\prime} v d x=3 \int_{0}^{1} v d x \quad \Longleftrightarrow \tag{2}\\
& +\alpha v(0)+\int_{0}^{1} u^{\prime} v^{\prime} d x+2 \int_{0}^{1} u^{\prime} v d x=3 \int_{0}^{1} v d x
\end{align*}
$$

The continuous variational formulation is now formulated as follows: Find

$$
\begin{equation*}
u \in V:=\left\{w: \int_{0}^{1}\left(w(x)^{2}+w^{\prime}(x)^{2}\right) d x<\infty, \quad w(1)=\beta\right\} \tag{VF}
\end{equation*}
$$

such that

$$
\int_{0}^{1} u^{\prime} v^{\prime} d x+2 \int_{0}^{1} u^{\prime} v d x=3 \int_{0}^{1} v d x-\alpha v(0), \quad \forall v \in V^{0}
$$

where

$$
V^{0}:=\left\{v: \int_{0}^{1}\left(v(x)^{2}+v^{\prime}(x)^{2}\right) d x<\infty, \quad v(1)=0\right\}
$$

For the discrete version we let \mathcal{T}_{h} be a uniform partition: $0=x_{0}<x_{1}<\ldots<x_{M+1}$ of $[0,1]$ into the subintervals $I_{n}=\left[x_{n-1}, x_{n}\right], n=1, \ldots M+1$. Here, we have M interior nodes: $x_{1}, \ldots x_{M}$, two boundary points: $x_{0}=0$ and $x_{M+1}=1$ and hence $M+1$ subintervals.

The finite element method (discrete variational formulation) is now formulated as follows: Find
$(F E M) \quad U \in V_{h}:=\left\{w_{h}: w_{h}\right.$ is piecewise linear, continuous on $\left.\mathcal{T}_{h}, w_{h}(1)=\beta\right\}$,
such that

$$
\begin{equation*}
\int_{0}^{1} U^{\prime} v_{h}^{\prime} d x+2 \int_{0}^{1} U^{\prime} v_{h} d x=3 \int_{0}^{1} v_{h} d x-\alpha v_{h}(0), \quad \forall v \in V_{h}^{0} \tag{3}
\end{equation*}
$$

where

$$
V_{h}^{0}:=\left\{v_{h}: v_{h} \text { is piecewise linear, continuous on } \mathcal{T}_{h}, v_{h}(1)=0\right\} .
$$

Using the basis functions $\varphi_{j}, j=0, \ldots M+1$, where $\varphi_{1}, \ldots \varphi_{M}$ are the usual hat-functions

whereas φ_{0} and φ_{M+1} are semi-hat-functions viz;

$$
\varphi_{j}(x)=\left\{\begin{array}{ll}
0, & x \notin\left[x_{j-1}, x_{j}\right] \tag{4}\\
\frac{x-x_{j-1}}{h} & x_{j-1} \leq x \leq x_{j} \\
\frac{x_{j+1}-x}{h} & x_{j} \leq x \leq x_{j+1}
\end{array} \quad \quad j=1, \ldots M\right.
$$

and

$$
\varphi_{0}(x)=\left\{\begin{array}{ll}
\frac{x_{1}-x}{h} & 0 \leq x \leq x_{1} \\
0, & x_{1} \leq x \leq 1
\end{array}, \quad \varphi_{M+1}(x)= \begin{cases}\frac{x-x_{M}}{h} & x_{M} \leq x \leq x_{M+1} \\
0, & 0 \leq x \leq x_{M}\end{cases}\right.
$$

In this way we may write

$$
V_{h}=\left[\varphi_{0}, \ldots, \varphi_{M}\right] \oplus \beta \varphi_{M+1}, \quad V_{h}^{0}=\left[\varphi_{0}, \ldots, \varphi_{M}\right]
$$

Thus every $U \in V_{h}$ can ve written as $U=v_{h}+\beta \varphi_{M+1}$ where $v_{h} \in V_{h}^{0}$, i.e.,

$$
U=\xi_{0} \varphi_{0}+\xi_{1} \varphi_{1}+\ldots+\xi_{M+} \varphi_{M}+\beta \varphi_{M+1}=\alpha \varphi_{0}+\sum_{i=0}^{M} \xi_{i} \varphi_{i}+\beta \varphi_{M+1} \equiv \tilde{U}+\beta \varphi_{M+1}
$$

where $\tilde{U} \in V_{h}^{0}$, and hence the problem (3) can be formulated as to find $\xi_{0}, \ldots \xi_{M}$ such that
$\int_{0}^{1}\left(\sum_{j=0}^{M} \xi_{j} \varphi_{j}^{\prime}+\beta \varphi_{M+1}^{\prime}\right) \varphi_{i}^{\prime} d x+2 \int_{0}^{1}\left(\sum_{j=0}^{M} \xi_{j} \varphi_{j}^{\prime}+\beta \varphi_{M+1}^{\prime}\right) \varphi_{i} d x=3 \int_{0}^{1} \varphi_{i} d x-\alpha \varphi_{i}(0), \quad j=0, \ldots, M$,
which can be written as find $\xi_{j}, j=0, \ldots, M$ such that for $i=0, \ldots, M$,
$\sum_{i=0}^{M}\left(\int_{0}^{1}\left(\varphi_{j}^{\prime} \varphi_{i}^{\prime}+2 \varphi_{j}^{\prime} \varphi_{i}\right) d x\right) \xi_{j}+=-\beta \int_{0}^{1} \varphi_{M+1}^{\prime} \varphi_{i}^{\prime} d x-2 \beta \int_{0}^{1} \varphi_{M+1}^{\prime} \varphi_{i} d x+3 \int_{0}^{1} \varphi_{i} d x-\alpha \varphi_{i}(0)$,
or equivalently $A \xi=b$ where $A=S+2 K$ where S is the stifness matrix and K is the convection matrix. For $h=1 / 3$ and recalling the half-hat function at $x=0$ we end up with

$$
S=\frac{1}{h}\left[\begin{array}{rrr}
1 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 2
\end{array}\right], \quad K=\frac{1}{2}\left[\begin{array}{rrr}
-1 & 1 & 0 \\
-1 & 0 & 1 \\
0 & -1 & 0
\end{array}\right], \quad \text { hence } \quad A=\left[\begin{array}{rrr}
2 & -2 & 0 \\
-4 & 6 & -2 \\
0 & -4 & 6
\end{array}\right],
$$

and the unkown ξ and the data b are given by

$$
\xi=\left[\begin{array}{l}
\xi_{0} \\
\xi_{1} \\
\cdot \\
\cdot \\
\xi_{M-1} \\
\xi_{M}
\end{array}\right], \quad b=\left[\begin{array}{l}
0+3 h / 2-\alpha \\
0+3 h-0 \\
\cdot \\
\cdot \\
0+3 h-0 \\
-\beta(-1 / h)-2 \beta(1 / 2)+3 h
\end{array}\right]=\{h=1 / 3\}=\left[\begin{array}{l}
1 / 2-\alpha \\
1 \\
2 \beta+1
\end{array}\right]
$$

3. We multiply the differential equation by a test function $v \in H_{0}^{1}=\left\{v:\|v\|+\left\|v^{\prime}\right\|<\infty, v(0)=\right.$ $v(1)=0\}$ and integrate over I. Using partial integration and the boundary conditions we get the following variational problem: Find $u \in H_{0}^{1}(I)$ such that

$$
\begin{equation*}
\int_{I}\left(u^{\prime} v^{\prime}+2 x u^{\prime} v+u v\right)=\int_{I} f v, \quad \forall v \in H_{0}^{1}(I) \tag{5}
\end{equation*}
$$

A Finite Element Method with $c G(1)$ reads as follows: Find $U \in V_{h}^{0}$ such that

$$
\begin{equation*}
\int_{I}\left(U^{\prime} v^{\prime}+2 x U^{\prime} v+U v\right)=\int_{I} f v, \quad \forall v \in V_{h}^{0} \subset H_{0}^{1}(I) \tag{6}
\end{equation*}
$$

where

$$
V_{h}^{0}=\{v: v \text { is piecewise linear and continuous in a partition of } I, v(0)=v(1)=0\}
$$

Now let $e=u-U$, then (5)-(6) gives that

$$
\begin{equation*}
\int_{I}\left(e^{\prime} v^{\prime}+2 x e^{\prime} v+e v\right)=0, \quad \forall v \in V_{h}^{0}, \quad \text { (Galerkin Orthogonality). } \tag{7}
\end{equation*}
$$

We note that using $e(0)=e(1)=0$, we get

$$
\begin{equation*}
2 \int_{I} x e^{\prime} e=\int_{I} x \frac{d}{d x}\left(e^{2}\right)=\left.\left(x e^{2}\right)\right|_{0} ^{1}-\int_{I} e^{2}=-\int_{I} e^{2}, \tag{8}
\end{equation*}
$$

A priori error estimate: We use (7) and (8) to get

$$
\begin{aligned}
\|e\|_{E}^{2}:=\left\|e^{\prime}\right\|_{L_{2}(0,1)}^{2} & =\int_{I} e^{\prime} e^{\prime}=\int_{I}\left(e^{\prime} e^{\prime}+2 x e^{\prime} e+e e\right) \\
& =\int_{I}\left(e^{\prime}(u-U)^{\prime}+2 x e^{\prime}(u-U)+e(u-U)\right)=\left\{v=U-\pi_{h} u \text { in }(7)\right\} \\
& =\int_{I}\left(e^{\prime}\left(u-\pi_{h} u\right)^{\prime}+2 x e^{\prime}\left(u-\pi_{h} u\right)+e\left(u-\pi_{h} u\right)\right) \\
& \leq\left\|\left(u-\pi_{h} u\right)^{\prime}\right\|\left\|e^{\prime}\right\|+2\left\|u-\pi_{h} u\right\|\left\|e^{\prime}\right\|+\left\|u-\pi_{h} u\right\|\|e\| \\
& \leq\left\{\left\|\left(u-\pi_{h} u\right)^{\prime}\right\|+3\left\|u-\pi_{h} u\right\|\right\}\left\|e^{\prime}\right\| \\
& \leq C_{i}\left\{\left\|h u^{\prime \prime}\right\|+3\left\|h^{2} u^{\prime \prime}\right\|\right\}\|e\|_{H^{1}}
\end{aligned}
$$

where in the last step we used Poincare inequality $\|e\| \leq\left\|e^{\prime}\right\|$. This yielda the a priori error estimate:

$$
\|e\|_{H^{1}} \leq 2 C_{i}\left\{\left\|h u^{\prime \prime}\right\|+3\left\|h^{2} u^{\prime \prime}\right\|\right\}
$$

A posteriori error estimate:

$$
\begin{align*}
\|e\|_{E}^{2}:=\left\|e^{\prime}\right\|_{L_{2}(I)}^{2} & =\int_{I}\left(e^{\prime} e^{\prime}+2 x e^{\prime} e+e e\right) \\
& =\int_{I}\left((u-U)^{\prime} e^{\prime}+2 x(u-U)^{\prime} e+(u-U) e\right)=\{v=e \text { in (5) }\} \\
& =\int_{I} f e-\int_{I}\left(U^{\prime} e^{\prime}+2 x U^{\prime} e+U e\right)=\left\{v=\pi_{h} e \text { in }(7)\right\} \tag{9}\\
& =\int_{I} f\left(e-\pi_{h} e\right)-\int_{I}\left(U^{\prime}\left(e-\pi_{h} e\right)^{\prime}+2 x U^{\prime}\left(e-\pi_{h} e\right)+U\left(e-\pi_{h} e\right)\right) \\
& =\{P . I . \text { on each subinterval }\}=\int_{I} \mathcal{R}(U)\left(e-\pi_{h} e\right),
\end{align*}
$$

where $\mathcal{R}(U):=f+U^{\prime \prime}-2 x U^{\prime}-U=f-2 x U^{\prime}-U$, (for approximation with piecewise linears, $U \equiv 0$, on each subinterval). Thus (9) implies that

$$
\|e\|_{E}^{2}:=\left\|e^{\prime}\right\|_{L_{2}(I)}^{2} \leq\|h \mathcal{R}(U)\|\left\|h^{-1}\left(e-\pi_{h} e\right)\right\|
$$

where C_{i} is an interpolation constant, and hence we have with $\|\cdot\|=\|\cdot\|_{L_{2}(I)}$ that

$$
\|e\|_{E} \leq C_{i}\|h \mathcal{R}(U)\|
$$

4. Recall that $H_{0}^{1}(\Omega):=\left\{w: w \in L_{2}(\Omega),|\nabla w| \in L_{2}(\Omega), w=0\right.$ on $\left.\partial \Omega\right\}$. Consider the problem

$$
\begin{equation*}
-\operatorname{div}(\varepsilon \nabla u+\beta u)=f, \text { in } \Omega, \quad u=0 \text { on } \Gamma=\partial \Omega \tag{10}
\end{equation*}
$$

a) Multiply the equation (10) by $v \in H_{0}^{1}(\Omega)$ and integrate over Ω to obtain the Green's formula

$$
-\int_{\Omega} \operatorname{div}(\varepsilon \nabla u+\beta u) v d x=\int_{\Omega}(\varepsilon \nabla u+\beta u) \cdot \nabla v d x=\int_{\Omega} f v d x
$$

Thus the variational formulation for (10) is as follows: Find $u \in H_{0}^{1}(\Omega)$ such that

$$
\begin{equation*}
a(u, v)=L(v), \quad \forall v \in H_{0}^{1}(\Omega) \tag{11}
\end{equation*}
$$

where
and

$$
a(u, v)=\int_{\Omega}(\varepsilon \nabla u+\beta u) \cdot \nabla v d x
$$

$$
L(v)=\int_{\Omega} f v d x
$$

According to the Lax-Milgram theorem, for a unique solution for (11) we need to verify that the following relations are valid:
i)

$$
|a(v, w)| \leq \gamma\|u\|_{H^{1}(\Omega)}| | w \|_{H^{1}(\Omega)}, \quad \forall v, w \in H_{0}^{1}(\Omega)
$$

ii)

$$
a(v, v) \geq \alpha\|v\|_{H^{1}(\Omega)}^{2}, \quad \forall v \in H_{0}^{1}(\Omega)
$$

iii)

$$
|L(v)| \leq \Lambda\|v\|_{H^{1}(\Omega)}, \quad \forall v \in H_{0}^{1}(\Omega)
$$

for some $\gamma, \alpha, \Lambda>0$.
Now since

$$
|L(v)|=\left|\int_{\Omega} f v d x\right| \leq\|f\|_{L_{2}(\Omega)} \mid\|v\|_{L_{2}(\Omega)} \leq\|f\|_{L_{2}(\Omega)}\|v\|_{H^{1}(\Omega)}
$$

thus iii) follows with $\Lambda=\|f\|_{L_{2}(\Omega)}$. Thus the first condition is that $f \in L_{2}(\Omega)$.
Further we have that

$$
\begin{aligned}
|a(v, w)| & \leq \int_{\Omega}|\varepsilon \nabla v+\beta v||\nabla w| d x \leq \int_{\Omega}(\varepsilon|\nabla v|+|\beta||v|)|\nabla w| d x \\
& \leq\left(\int_{\Omega}(\varepsilon|\nabla v|+|\beta||v|)^{2} d x\right)^{1 / 2}\left(\int_{\Omega}|\nabla w|^{2} d x\right)^{1 / 2} \\
& \leq \sqrt{2} \max \left(\varepsilon,\|\beta\|_{\infty}\right)\left(\int_{\Omega}\left(|\nabla v|^{2}+v^{2}\right) d x\right)^{1 / 2}\|w\|_{H^{1}(\Omega)} \\
& =\gamma\|v\|_{H^{1}(\Omega)}\|w\|_{H^{1}(\Omega)},
\end{aligned}
$$

which, with $\gamma=\sqrt{2} \max \left(\varepsilon,\|\beta\|_{\infty}\right)$, gives i). Hence the second condition is that $\beta \in L_{\infty}(\Omega)$. Finally, if $\operatorname{div} \beta \leq 0$, then

$$
\begin{aligned}
a(v, v) & =\int_{\Omega}\left(\varepsilon|\nabla v|^{2}+(\beta \cdot \nabla v) v\right) d x=\int_{\Omega}\left(\varepsilon|\nabla v|^{2}+\left(\beta_{1} \frac{\partial v}{\partial x_{1}}+\beta_{2} \frac{\partial v}{\partial x_{2}}\right) v\right) d x \\
& =\int_{\Omega}\left(\varepsilon|\nabla v|^{2}+\frac{1}{2}\left(\beta_{1} \frac{\partial}{\partial x_{1}}(v)^{2}+\beta_{2} \frac{\partial}{\partial x_{2}}(v)^{2}\right)\right) d x=\text { Green's formula } \\
& =\int_{\Omega}\left(\varepsilon|\nabla v|^{2}-\frac{1}{2}(\operatorname{div} \beta) v^{2}\right) d x \geq \int_{\Omega} \varepsilon|\nabla v|^{2} d x
\end{aligned}
$$

Now by the Poincare's inequality

$$
\int_{\Omega}|\nabla v|^{2} d x \geq C \int_{\Omega}\left(|\nabla v|^{2}+v^{2}\right) d x=C| | v \|_{H^{1}(\Omega)}^{2}
$$

for some constant $C=C(\operatorname{diam}(\Omega))$, we have

$$
a(v, v) \geq \alpha\|v\|_{H^{1}(\Omega)}^{2}, \quad \text { with } \alpha=C \varepsilon
$$

thus ii) is valid under the condition that $\operatorname{div} \beta \leq 0$.
From ii), (11) (with $v=u$) and iii) we get that

$$
\alpha\|u\|_{H^{1}(\Omega)}^{2} \leq a(u, u)=L(u) \leq \Lambda\|u\|_{H^{1}(\Omega)},
$$

which gives the stability estimate

$$
\|u\|_{H^{1}(\Omega)} \leq \frac{\Lambda}{\alpha}
$$

with $\Lambda=\|f\|_{L_{2}(\Omega)}$ and $\alpha=C \varepsilon$ defined above.
5. See the Book and/or Lecture Notes.

MA

