Mathematics Chalmers & GU
TMA372/MMG800: Partial Differential Equations, 2015—-06—09, 8:30-12:30

Telephone: Anders Martinsson: 0703-088304

Calculators, formula notes and other subject related material are not allowed.

Each problem gives max 6p. Valid bonus poits will be added to the scores.

Breakings: 3: 15-21p, 4: 22-28p och 5: 29p-  For GU studentsG:15-25p, VG: 26p-

For solutions the couse diary in: http://www.math.chalmers.se/Math/Grundutb/CTH/tma372/1415/

1. Counsider the Dirichlet problem (with ¢g < a(z) < ¢1, Vo € Q, where ¢g and ¢; are constants)
—V - (a(x)Vu) = f(z), =€QCR? u =0, for x € 9.
Let U = Zj\;l a;w;(x) be a Galerkin approximation of u in a finite dimensional subspace M of

H(€2). Prove the a priori error estimate below and specify C' as best you can

l[u = Ul|gp ) < 0;21{4 [l = X2 (-

2. Consider the following Neumann boundary value problem (n is the outward unit normal to T")

—Au+u=f, zeQcR? n-Vu=g, on I :=09Q.

(a) Show the stability estimate: ||Vu|\%2(9) + Hu||2L2(Q) < C’(|\f||%2(m + ||9H%2(r))~

(b) Formulate a finite element method for the 1D-case and derive the resulting system of equations
for @ =[0,1], f(z) =1, g(0) =3 and ¢g(1) = 0.

3. Formulate the ¢G(1) Galerkin finite element method for the Dirichlet boundary value problem
—Autu=f x€e u=0, x¢€dN.

Write the matrices for the resulting equation system using the reference triangle-element 7" and

the partition below (see fig.) with the nodes at N;, ¢ = 1,...,5 and a uniform mesh size h.
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4. Consider the boundary value problem
—eu”" +a(z)u +u=f(z), 0<z<l, uw(0) =0, u/'(1) =0,
where € is a positive constant and « is a function satisfying a(x) > 0, o'(z) < 0. Show that
1 1/2
VAl < ol e < Call 7l ella’l] < Call Il whee [l = ([ o? o)
0
5. Consider the boundary value problem for the stationary heat flow (Poisson equation) in 1D:
(BVP) — (a(x)u/(z)) = f(z), O0<z<1, u(0) = u(1) = 0.
Formulate the corresponding variational formulation (VF), and show that: (BVP) < (VF).
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TMA372/MMGS800: Partial Differential Equations, 2015-06—09, 8:30-12:30.
Solutions.

1. Recall the continuous and approximate weak formulations:

(1) (aVu, Vv) = (f,v), Vv € H} (),
and

(2) (aVU,Vv) = (f,v), Yv e M,
respectively, so that

(3) (aV(u—U),Vv) =0, Yv e M.

We may write
u—U=u—x+x—-U,
where x is an arbitrary element of M, it follows that
(aV(u—-U),V(u—-0U)) =(aV(u—-U),V(u—x))
(4) < [1aV(u = O - [Ju = X[m0
< allu = Ullgyoyllv = Xz )

on using (3), Schwarz’s inequality and the boundedness of a. Also, from the boundedness condition
on a, we have that

() (aV(u—U),V(u=U)) 2 collu = Ullip o).
Combining (4) and (5) gives
c
lu = Ul|gz () < %HU = Xz @)
Since x is an arbitrary element of M, we obtain the result.

2. a) Multiplying the equation by u and performing partial integration we get

/Vu-Vu+uuf/n~Vuu:/fu,
Q T Q

ie.,
(6) 1Vl |* + [[ul|* = /QfUJF/FQU < Sl + llglleCa [Vl + [ul])
where || - || = || - [|2,(@) and we have used the inequality |[u|| < Cq(||Vul| + |[u|]). Further using

the inequality ab < a? + b2 /4 we have
1 1 1
IVl + [|ul> < [|£]* + 1||U|\2 +CllglI2 + ZHVUH2 + ZHUHZ

which gives the desired inequality.

b) Counsider the variational formulation

(7) /QVU«Veruv:/vawL/ng,

set U(x) =Y U;vj(z) and v = ¢; in (7) to obtain

N
;Uj/szv%'vwi+¢j¢i:/szf¢i+/rgwi, i=1,...,N.
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This gives AU = b where U = (Uy,...,Unx)T, b= (b;) with the elements
bi=h,i=2,...,N—=1, b(N)=h/2, b(l)=h/2+3,

and A = (a;;) with the elements

—1/h+ h/6, fori=j+1 andi=j—1

a;; =< 2/h+2h/3, fori=j andi=2,...,N—1

0, else.

3. Let V be the linear function space defined by
V:={v:v is continuous in 2, v =0, on IN}.
Multiplying the differential equation by v € V' and integrating over 2 we get that
—(Au,v) + (u,v) = (f,v), Vv e V.

Now using Green’s formula we have that

—(Au, Vv) = (Vu, Vo) —/ (n-Vu)vds = (Vu, Vv), Yo e V.
o0

Thus, since v = 0 on 02, the variational formulation is:
(Vu, Vo) + (u,v) = (f,v), YveV.

Let now V}, be the usual finite element space consisting of continuous piecewise linear functions,
on the given partition (triangulation), satisfying the boundary condition v = 0 on 9:

Vi :={v : v is continuous piecewise linear in 2, v =0, on JN}.
The ¢G(1) method is: Find U € V}, such that
(VU,Vv) + (U,v) = (f,v) Yv eV,

Making the “Ansatz” U(z) = Z?:l &j(x), where @; are the standard basis functions, we obtain
the system of equations

5
ij(/V%'V%de+/%@jdl’):/f@id% i1=1,2,3,4,5
= Q Q Q

or, in matrix form,

(S + M)¢ = P,
where S;; = (V;, V;) is the stiffness matrix, M;; = (¢;, ¢;) is the mass matrix, and F; = (f, ¢;)
is the load vector.

We first compute the mass and stiffness matrix for the reference triangle T. The local basis
functions are

¢1($1,!E2)=1—%—%, V¢1(CE1,CE2)=—% [ } }7
¢2(x1, x2) %7 Voo(z1,x2) :% { é } ;
¢3(x1,22) = %27 Vos(z1,x2) = % [ ? } .

Hence, with |T| = [, dz = h?/2,
1 1—xz2 h2
m11=(¢17¢1):/¢%d1‘=h2/ / (1 — 2y — 22)* dzydrg = —,
T o Jo 12

2
1= (Var, Vo1) = [ Vo do = 7] =1,
T
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Alternatively, we can use the midpoint rule, which is exact for polynomials of degree 2 (precision

3):
mir = (G1.60) = [ ofdo = ‘Zcb R
11 1, P1 1 171 12
where £, are the midpoints of the edges. Slmllarly we can compute the other elements and obtain
o2 1 1 2 -1 -1
1
m= 2—4 1 2 17, s=35 -1 1 0
1 1 2 -1 0 1

We can now assemble the global matrices M and S from the local ones m and s:
2

1
M1 = M3z = Mss = 8mgy =8 X — 5112533255528822:8><§8:4,

12’
h? h?
Mzz—M44—4m11—4><12 3 Sog =S4 =4s11=4x1=4,
1
My = M3z = M3zq = Mys = 2mqo = EhQ, S1o = Sa3 = S34 = Sys = 2510 = —1,

Mg = My = Mys = Moy = Mos = M3ss =0,  S13 = S14 = S15 = Sog4 = So5 = S35 = 0,

The remaining matrix elements are obtained by symmetry M;; = Mj;, S;; = Sj;. Hence,

8100 0 4 -1 0 0 0
|14 1000 1 4 -1 0 0
~ Y1118 10|, S=| 0 -1 4 -1 o0
2009 01 41 0 0 -1 4 —1

000 1 8 0O 0 0 -1 4

4. Multiplication by u gives

1
1 1
SIIU’||2+/O ou'wdz + |[ull* = (f,u) < [ fllllull < SIAP + 5l

Here
1 1 1
1 d 1 1
(8) / av'udr = 7/ a—u?dr = —a(l)u(1)? - 7/ Qu?dr >0,
0 2 0 d.T 2 2 0
and hence
1 1 L .
eI+ Sllull* < SIFIP, which implies Ve[|l < [Ifl,  [lull < [I£]]

Multiply the equation by au’ and integrate over z to obtain
—5/1 u”’ o dr + ||e |2 + /1 av'udzr < leHQ + %Hau’HQ.
Hence from the above Oestimates we get that i
o | < 1171+ | L) do = |11 - za(O0 (0 < / () d

<A1 + e/ llellI* < [I£]]* + Cellu].
This also yields

(9) [loa'[| < CIIfI-
Finally, by the differential equation and the estimates above we get
ellu”ll = IIf = au = ul| < || + [lew|| + [[ul| < ClIf]]-

5. See the Lecture Notes.
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