
Brief le
ture notes on Markov random �eldsfor a graduate 
ourse given in the spring of 20141Olle HäggströmThese notes do not 
onvey the full 
ontent of the 
ourse, but are merelymeant as a 
omplement to [GHM℄ and [W℄.1 Wednesday, Mar
h 19We'll adhere as far as possible to the notation laid down in Se
tion 3.1 ofWinkler [W℄, but I have some reservations regarding parts of his terminology.In parti
ular, for a �nite index set S, a �nite set Xs of attainable values atea
h s ∈ S, and X =
∏

s∈S Xs, he de�nes a random �eld as a probabilitymeasure Π on X satisfying
Π(x) > 0 for all x ∈ X . (1)Spontaneously I'd 
all Π a random �eld regardless of whether or not (1)holds. In many 
ases (1) is a very useful assumption, but to require it fora probability measure on X to qualify as a random �eld seems to me un-natural. I'll sometimes 
onsider examples violating (1), unabashedly 
allingthem random �elds. And whenever (1) is needed I'll emphasize it expli
itly,sometimes 
alling it Winkler's positivity 
ondition (a bit sloppily, as Winkleris far from the �rst to employ it).

∗Please pay attention to De�nitions 3.1.1 (of neighborhood systems and 
liques)and 3.1.2 (of Markov �elds). Winkler's de�ning property of Markov �eldsin De�nition 3.2.1 is what I would 
all the lo
al Markov property. Moregenerally, one 
an ask, for any A ⊂ S, whether
Π(XA = xA |XS\A = xS\A) = Π(XA = xA |X∂(A) = x∂(A)) (2)holds for all x ∈ X, where ∂(A) =

⋃

s∈A ∂(s) \ A. I propose the followingterminology.1See also http://www.math.
halmers.se/�olleh/MarkovRandomFieldsVT2014.html1



• If (2) holds for all singletons A = {s}, then we say Π satis�es the lo
alMarkov property.
• If (2) holds for all �nite A ⊂ S, then we say Π satis�es the regionalMarkov property.
• If (2) holds for all A ⊂ S, then we say Π satis�es the global Markovproperty.At this point, it might seem a bit moroni
 to distinguish between the re-gional and global Markov properties, be
ause S is assumed to be �nite, soevery A ⊂ S is automati
ally �nite, and the regional and global propertiestrivially 
oin
ide. But have patien
e, later in the 
ourse we will move on to
ountably in�nite S, and then the distin
tion will be real.2 In any 
ase, wehave, trivially, that the global Markov property implies the regional, and theregional implies the lo
al. What about the other dire
tions?We will see in a later le
ture that if we assume Winkler's positivity 
on-dition, then the lo
al Markov property does imply the regional Markov prop-erty, while without the positivity assumption we'll see a 
ounterexample tothe hoped-for impli
ation. As to the regional Markov property implyingthe global, we'll see in the setting of 
ountably in�nite S that there are
ounterexamples (even assuming natural extensions of Winkler's positivityto that setting).

∗The Ising model (Example 3.1.2) is de�ned as follows. Fix a �nite S anda neighborhood stru
ture ∂, and let Ss = {−1,+1} for ea
h s ∈ S, so that
X = {−1,+1}S . (For 
on
reteness, we may, e.g., take S to be a square grid
{0, 1, . . . , n}2, with edges 
onne
ting sites at Eu
lidan distan
e 1 from ea
hother.) For �xed β > 0 (the so-
alled inverse temperature parameter), theenergy H(x) of a 
on�guration x ∈ X is de�ned as

H(x) = −β
∑

〈s,t〉

xsxt (3)where 〈s, t〉 means that we sum over all neighboring pairs of sites in S,
ounting ea
h su
h pair on
e. We then de�ne a probability measure Π on X2Note, however, that when S is in�nite, then X will be un
ountable, so that most
x ∈ X will get probability 0, and we need to take some 
are with 
onditional probabilities,e.g., by writing �If Π admits 
onditional probabilities su
h that (2) holds...� in pla
e of �If(2) holds...�. 2



by setting, for ea
h x ∈ X,
Π(x) =

1

Z
exp(−H(x)) (4)where Z =

∑

y∈X e−H(y) is a normalizing 
onstant making the probabilitiessum to 1.Probabilities of the form (4) are 
alled Gibbs measure. Other 
hoi
esof energy fun
tion are possible, but with the present 
hoi
e, we 
all Π theIsing model on S and at inverse temperature β.Thousands of mathemati
s papers have been written on the Ising model,and even more physi
s papers. Yet, it may look odd at �rst? Why is thisa natural 
hoi
e of probability measure? There are many reasons, I'll o�ertwo:First, it's a Markov random �eld. To see this, �x s ∈ S and x ∈ X, and
onsider the odds ratio
Π(Xs = +1 |Xr = xr,∀r 6= s)

Π(Xs = −1 |Xr = xr,∀r 6= s)
=

Π(Xs = +1,Xr = xr,∀r 6= s)

Π(Xs = −1,Xr = xr,∀r 6= s)

=
1
Z exp(−H(x with a +1 at s))
1
Z exp(−H(xwith a −1 at s))
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
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whi
h only depends on x via its values on ∂(s).Se
ond, exp(sum) = produ
t, and produ
t means independen
e (a fun-damental building blo
k in almost all probabilisti
 modelling) so that Gibbsmeasures with energy fun
tion H(x) =
∑ exhibit some independen
e (or,more pre
isely, 
onditional independen
e) stru
ture. We'll see in the Hammer-sley�Cli�ord Theorem next week, that every Markov random �eld (inWinkler's sense) 
an be written as a Gibbs measure with H equal toa sum over 
liques. Here are a 
ouple of really simple rewrites into Gibbsmeasures, building up towards the Ising model:3



Example 0. Let {Xs}s∈S be i.i.d. random variables with
{

Π(Xs = +1) = p
Π(Xs = −1) = 1 − p .For x ∈ X = {−1,+1}S ,

Π(x) = p(#+1's in x)(1 − p)(#−1's in x) = exp(−H(x))where
H(x) = −

∑

s∈S

(log(p)1{xs=+1} + log(1 − p)1{xs=−1}) .Example 1. Let S = {0, 1, . . . , n}, and de�ne X = (X0,X1, . . . ,Xn) as a(symmetri
, two state) Markov 
hain with initial value X0 equal to −1or +1 with probability 1/2 ea
h, and transition matrix
[

p 1 − p
1 − p p

]

.Then any given x ∈ X has probability
Π(x) =

1

2

n
∏

i=1

p{1xi−1=xi
}(1 − p){1xi−1 6=xi

}

= · · ·

=
(p(1 − p))n/2

2
exp

(

n
∑

i=1

log

(√

p

1 − p

)

xi−1xi

)

=
(p(1 − p))n/2

2
e−H(x)with H(x) = − log

(
√

p
1−p

)

∑n
i=1 xi−1xi, so this is the Ising model on

S (and neighborhood system ∂ where i and j are neighbors whenever
|i − j| = 1) at inverse temperature β = log

(
√

p
1−p

).This last example re�e
ts a more general fa
t that (under mild 
onditions), aMarkov 
hain is also a Markov random �eld with a 1-dimensional dependen
estru
ture. If we now want to introdu
e similar intera
tions on a grid or amore general graph stru
ture, we have the Ising model.4



2 Wednesday, Mar
h 26As before, we take S �nite, Xs �nite for ea
h s ∈ S, X =
∏

s∈S Xs, and Π astri
tly positive probability measure on X. If Π 
an be written as
Π(x) =

1

Z
e−H(x)for a given fun
tion H : X → R, then Π is said to be a Gibbs measurefor energy fun
tion H. Every stri
tly positive Π is a Gibbs measure forsome H, and by adding a 
onstant to H we are even free to 
hoose our ownfavorite value of the normalizing 
onstant Z. Indeed, de�ning H by

H(x) = − log(Π(x)) − log(Z)gives
1

Z
e−H(x) =

1

Z
elog(Π(x))+log(Z)

=
1

Z
Π(x)Z = Π(x) .Hen
e, being a Gibbs measure is in itself not a remarkable property. Moreinteresting is if Π is a neighbor Gibbs measure for a given neighborhoodsystem ∂, meaning that

H(x) =
∑

C

Uc(x)where the sum ranges over 
liques C ⊂ S for ∂, and UC(x) depends on x ∈ Xonly via {xs}s∈C .Part of Proposition 3.2.1 in [W℄: If Π is a neighbor Gibbs measure forthe neighborhood system ∂, then Π satis�es the lo
al Markov property for thesame ∂.To prove this, it su�
es to show that for any s ∈ S, x ∈ X and ys, zs ∈ Xs,the odds ratio
Π(Xs = ys |Xr = xr,∀r 6= s)

Π(Xs = zs |Xr = xr,∀r 6= s)depends on x only via x∂(s). To do this, pro
eed as in the proof of the lo
alMarkov property for the Ising model in my �rst le
ture � and enjoy all the
an
ellation! (Or see [W℄, p 55�56.)A mu
h deeper result (in my view) is the following partial 
onverse:5



The Hammersley�Cli�ord Theorem (Part of Thm 3.3.2 in [W℄): If
Π is a (stri
tly positive) Markov random �eld for ∂, then it is also a neighborGibbs measure for ∂.See [W℄ for the proof, whi
h yields an expli
it formula for UC(x). It involvesa series of 
al
ulations, and pro
eeds via two other results � Lemma 3.3.1(the Möbius Inversion Formula) and Theorem 3.3.1.3 Friday, Mar
h 28Staying as before in the �nite setting (with both S and {bfX} �nite), re
allfrom Le
ture 1 my de�nitions of lo
al versus regional Markov properties. Theregional Markov property trivially implies the lo
al, but how about the otherdire
tion? This le
ture will be devoted to proving the following result.Theorem L3:(a) Under Winkler's positivity 
ondition, the lo
al Markov property impliesthe regional.(b) Without Winlker's positivity, there are 
onterexamples to show that thelo
al markov property does not imply the regional.Part (b) is relatively the easier prat, so let's begin with that.Proof of Thm L3 (b): Set S = {s1, s2, s3, s4, s5}, Xs = {0, 1} for ea
h
s ∈ S, and de�ned the neighborhood system ∂ in su
h a way that 〈s1, s2〉,
〈s1, s3〉, 〈s2, s3〉, 〈s3, s4〉, 〈s3, s5〉 and 〈s5, s6〉 are neighbors (draw the graph- a bowtie!). De�ne Π as the probability measure on X with


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Π(0, 0, 0, 0, 0) = 1
4

Π(0, 0, 1, 0, 0) = 1
4

Π(1, 1, 0, 1, 1) = 1
4

Π(1, 1, 1, 1, 1) = 1
4

Π(x) = 0 for all other x ∈ XThe lo
al Markov property is easy to 
he
k: Π(Xs3 = 0|XS\s3
= xS\s3

) = 1
2regardless of x ∈ X; while

Π(Xs1 = 0|XS\s1
= xS\s1

) =

{

1 if xs2 = 0
0 if xs2 = 1whi
h only depends on x via x∂(s1); and similarly for Xs2 , Xs4 and Xs5 . Sothe lo
al Markov property holds. 6



On the other hand, take A = {s1, s2} so that ∂(A) = {s3}, and note that
Π(XA = (0, 0)|Xs3 ,s4,s5 = (0, 0, 0)) = 1while

Π(XA = (0, 0)|Xs3 = 0) =
1

2so that the regional Markov property fails. ⋄As to Theorem L3 (a), this 
an be proved using the methods involvingMöbius Inversion dis
ussed in Le
ture 2, and is in fa
t part of Winkler'sTheorem 3.3.2. I'll o�er a 
ompletely di�erent proof, whi
h pro
eeds via
oupling of Markov 
hains � a method I �nd more illuminating and thereforepreferable, although I realize this may be mostly a matter of taste.Proof of Thm L3 (a): Fix S, X, ∂ and a distribution Π on X satisfyingboth the lo
al Markov property and Winkler's positivity. Also �x A ⊂ S,and x, x′ ∈ X su
h that x∂(A) = x′
∂(A). We need to show that

Π(XA = xA|XS\A = xS\A) = Π(XA = xA|XS\A = x′
S\A) . (5)A small pie
e of extra notation will be 
onvenient: let Π|xS\A

denote Π
onditioned on taking values x on S \ A, and de�ne Π|x′
S\A

analogously.We will de�ne two X-valued Markov 
hains (X0,X1, . . .) and (X ′
0,X

′
1, . . .),designed in su
h a way that for every k,

{

X(k) has distribution Π|xS\A

X ′(k) has distribution Π|x′
S\ATo this end, we pi
k the initial values X(0) and X ′(0) with these respe
tivedistributions, and let the two 
hains evolve a

ording to transition me
h-anisms that preserve their respe
tive distributions. Namely, at ea
h time

k ≥ 1, sele
t s ∈ A at random (uniformly), and let

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
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

Xs(k) = a new value 
hosen a

ording to Π
onditioned on agreeing with
X(k − 1) on S \ s

Xt(k) = Xt(k − 1),∀t ∈ S \ s .The (X ′
0,X

′
1, . . .) 
hain will in fa
t have the same transition kernel, 
hoosing

s ∈ A at random (uniformly) and letting

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
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



X ′
s(k) = a new value 
hosen a

ording to Π
onditioned on agreeing with

X ′(k − 1) on S \ s
X ′

t(k) = X ′
t(k − 1),∀t ∈ S \ s .7



(This Markov 
hain transition kernel is a variant of the so-
alled Gibbssampler for Π; see Se
tion 5.1 in [W℄.)This de�nes the two 
hains separately, but we will 
ouple them, i.e., runthem jointly on the same probability spa
e, and then we need to spe
ify theirinterdependen
e. First, pi
k the initial values X(0) and X ′(0) independently.Se
ond, at ea
h time k, let the two 
hains pi
k the same s ∈ A to update.Third, the new values Xs(k) and X ′
s(k) are 
hosen











to be identi
al if X∂(s)(k − 1) = X,∂(s) (k − 1) (this is possible bythe assumed lo
al Markov property of Π)independently otherwise. (6)The great thing about this rule is thatas soon as the two 
hains 
oin
ide on A (and thus on A ∪ ∂(A)),they will do so forever more. (7)And they will almost surely do so, eventually. One way to see this by notingthat if on |A| 
onsequtive updates, the 
hoi
es of s happen to s
an throughall of A, and if ea
h time the two 
hains happen to pi
k the same value at s,then they will 
oin
ide on A at the end of the s
an. The event that su
h asu

esful turn of events happens during times 1, . . . , k is easily seen to haveprobability at least
(

δ2

|A|

)|A|

, (8)where
δ = min

s∈A
min
x∈X

Π(Xs = xs|XS\s = xS\s)whi
h is > 0 sin
e we assumed Winkler's positivity. The probability in (8)may be a very small, yet stri
tly positive, and the point is that if the eventhappens to fail during times 1, . . . , k, then it has another 
han
e at times
k+1, . . . , 2k, and another at times 2k+1, . . . , 3k, and so on. The probabilityof seeing su
h a 
oales
en
e by time km is therefore

1 −


1 −
(

δ2

|A|

)|A|




mwhi
h tends to 1 as m → ∞. Hen
e, in 
ombination with (7), we get
lim

k→∞
P (XA(k) 6= X ′

A(k)) = 0.8



It follows that for any 
on�guration ya ∈ XA we have
lim

k→∞
|P (XA(k) = yA) − P (X ′

A(k) = yA)| = 0,i.e. for any ε > 0, there is a k < ∞ su
h that
|P (XA(k) = yA) − P (X ′

A(k) = yA)| < ε .But sin
e the 
hains are stationary, this means we also have
|P (XA(0) = yA) − P (X ′

A(0) = yA)| < ε ,and sin
e ε > 0 and yA ∈ XA were arbitrary, we get that the distributionsof XA(0) and X ′
A(0) 
oin
ide. We thus have (5), as desired. ⋄

∗Exer
ise: Theorem 3.3.1 (b) in [W℄ states that if Π and Π′ are stri
tlypositive probability distributions on X su
h that for all s ∈ S and all x ∈ Xwe have
Π(Xs = xs|XS\s = xS\s) = Π′(X ′

s = xs|X ′
S\s = xS\s)then we also have Π = Π′. Reprove this result using today's Markov 
hainte
hnique!4 Friday, April 4Two of the main motivations for studying Markov random �elds 
ome from(a) image analysis, and (b) statisti
al me
hani
s. I'll leave you with Winkler[W℄ to learn about (a), and I'll talk here about what I know better, whi
his (b), pi
king up most of that stu� from my paper [GHM℄ with Hans-OttoGeorgii and Christian Maes. Notation in [GHM℄ 
lashes with that in [W℄,but I'll try in these le
tures to sti
k with the [W℄ notation I started out with.

S used to be �nite, but now we'll take it to be a 
ountably in�nite set(typi
ally S = Z
d) and de�ne a neighborhood system ∂ = {∂(s)}s∈S su
hthat ea
h ∂(s) is �nite (typi
ally, with S = Z

d, ∂(s) 
onsists of the 2d sitessitting at Eu
lidean distan
e 1 from s). For ea
h s ∈ S, let Xs be �nite, andlet X =
∏

s∈S Xs (typi
ally, Xs is the same for all s, in the Ising 
ase with
Xs = {−1,+1}). 9



De�nition. The probability measure Π on X is said to be a Markov ran-dom �eld if it satis�es the regional Markov property, i.e., if Π ad-mits 
onditionl probabilities su
h that for any �nite A ⊂ S and Π-almost all
x ∈ X, we have

Π(XA = xA|Xt = xt,∀t ∈ S \ A) = Π(XA = xA|Xt = xt,∀t ∈ ∂(A)) .(See [GHM℄, p 10, eq (5).)Apologies for the in
onsisten
y in de�ning MRF in terms of the regionalMarkov property, rather than the lo
al Markov property is we did followingWinkler in the �nite 
ase. I just �nd the regional Markov property a somu
h more natural de�nition. Perhaps we'd better always be expli
it aboutwhi
h Markov property we have in mind.We saw in the �nite 
ase that under Winkler's positivity 
ondition, thetwo properties are equivalent. The same is true in the present setting of
ountably in�nite S, although we have to be 
areful what we mean by the
ondition in this 
ase. We 
annot (as in the �nite 
ase) ask that every
x ∈ X has positive Π-probability, be
ause X is (in nondegenerate 
ases)un
ountable, so that's simply impossible. Instead, we have two 
andidatepositivity 
onditions that make sense:(a) For any �nite A ⊂ S and any xA ∈ XA, Π(XA = xa) > 0.(b) Π admits 
onditional probabilities su
h that for any �nite AsubsetS,any xA ∈ XA and any xS\A ∈ XS\A we have

Π(XA = xa|XS\A = xS\A) > 0 .Condition (a) may seem simpler, but (b) turns out to be even more impor-tant in statisti
al me
hani
s and per
olation theory, where it is known asthe �nite energy 
ondition. (b) implies (a), obviously, but the followingexample shows that the reverse impli
ation fails.Example: Let S = Z
2 (or whatever 
ountably in�nite set you want) and

Xs = {0, 1} for ea
h s ∈ S. Let Π be the probability measure 
orrespondingto �rst tossing a fair 
oin, and then, if heads, let Xs = s for all s ∈ S,while if tails, let all the Xs values be determined by i.i.d. fair 
oin tosses.Clearly property (a) holds, whereas (b) fails, sin
e if we 
ondition on hav-ing all 1's outside A (an event with positive probability), then the 
onditionalprobability of seeing any 0 in A is 0.10



Still, the weaker 
ondition (a) turns out to su�
e for the asked-for equiva-len
e between lo
al and regional Markov properties.
∗Now let us de�ne the Ising model on Z

d (with the standard neighborhoodstru
ture) at inverse temperature β ≥ 0. Re
all �rst that for �nite S, wede�ned it as the probability measure on {−1,+1}S given by
Π(x) =

1

Z
exp(−H(x)) where H(x) = −β

∑

〈x,y〉

xsxt .For in�nite S this won't do, be
ause the sum ∑

〈x,y〉 xsxt will diverge. In-stead:De�nition: A probability measure Π on {−1,+1}Zd is said to be a Gibbsmeasure for the Ising model on Z
d (with the given neighbothood stru
ture ∂)at inverse temperature β ≥ 0 if it is a Markov random �eld su
h that for all�nite A ⊂ Z

d, all x∂(A) ∈ {−1,+1}∂(A) and all xA ∈ {−1,+1}A we have
Π(Xa = xA|X∂(A) = x∂(A)) =

1

Z
exp






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

β
∑

〈s,t〉

s,t∈A

xsxt + β
∑
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

(9)where
Z =

∑

yA∈XA

exp
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s,t∈A

ysyt + β
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〈s,t〉

s∈A,t∈∂(A)

ysxt
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
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

is a normalizing 
onstant.The �rst thing to realize at this point is that the 
onditional distributionsgiven by (9) 
oin
ide with those that we get for the Ising model on a �nite
S. Next, the two basi
 questions are(a) Given β ≥ 0, does su
h a Π on {−1,+1}Zd exist?(b) If yes, then is it unique?We'll answer these questions in the next le
ture. (SPOILER ALERT: Theanswer to (a) is �yes�, and the answer to (b) is �that depends on β�.)11



5 Wednesday, April 9In response to the questions (a) and (b) at the end of the previous le
-ture, let's 
onstru
t (fairly expli
itly) a parti
ular Gibbs measure Π+ on
{−1,+1}Zd . It arises as a limit as n → ∞ of probability measures Π+

n on
{−1,+1}Zd . De�ne the box Λn = {−n, . . . , n}d, and let Π+

n be the distribu-tion of the {−1,+1}Zd -valued random obje
t X that arises by(i) setting Xs = +1 for all s ∈ Z
d \ Λn,(ii) pi
king XΛn a

ording to the 
onditional distribution given in (9), withall +1's on ∂(Λn).

Π+
n is 
ertainly not a Gibbs measure for the Ising model on Z

d, sin
e spinsoutside Λn are for
ed to take value +, violating (9). But inside Λn thingsbehave as they should, and by sending n → ∞ the misbehaving region willdisappear on us.But why would the limiting measure exist, and in what sense? The keyto understanding this is 
oupling and sto
hasti
 domination.Let � denote 
oordinatewise partial order on {−1,+1}S (with S�nite or 
ountably in�nite), i.e., for x, y ∈ {−1,+1}S we say x � y if xs ≤ ysfor all s ∈ S.De�nition GHM 4.5, Sto
hasti
 domination: For two probability mea-sures Π and Π′ on {−1,+1}S , we say Π �D Π′ if
Π(f) ≤ Π′(f)for every in
reasing (w.r.t. �) and bounded f : {−1,+1}S → R.Theorem GHM 4.6, Strassen's Theorem: Π �D Π′ if and only if thereexists a 
oupling of two {−1,+1}S-valued random obje
ts X and X ′ su
hthat X has distribution Π, X ′ has distribution Π′, and P (X � X ′) = 1.The �if� dire
tion here is obvious. The �only if� dire
tion is deeper, andproving it would take us too far, so we'll skip the proof.De�nition GHM 4.5 and Theorem GHM 4.6, as phrased a bit narrowlyhere, extend to the 
ase where {−1,+1} is repla
ed by R. A major tool forestablishing sto
hasti
 domination is the following.Theorem GHM 4.8, Holley's Theorem: Let S be �nite, and R a �nitesubset of R. Let Π and Π′ be stri
tly positive probability measures on RS,12



and assume that for all s ∈ S, all ys ∈ R and all x, x′ ∈ RS\s su
h that
x � x′ we have

Π(Xs ≥ ys|Xt = xt,∀t 6= s) ≤ Π(X ′
s ≥ ys|X ′

t = x′
t,∀t 6= s) . (10)Then Π �D Π′.It is important that you understand the proof of this result (based on 
ou-pling of two RS-valued Markov 
hains known as Gibbs samplers for Π and

Π′), but I refer you to [GHM℄ for the proof.Holley's Theorem has the following important 
onsequen
e for the Isingmodel.Lemma GHM 4.13: Fix n (and d and β) and let x, x′ ∈ {−1,+1}∂(λn) beboundary 
onditions satisfying x � x′. Let Π and Π′ be two probability mea-sures on {−1,+1}Λn representing the ising model 
onditional distributionson Λn with respe
tive boundary 
onditions x and x′. Then Π �D Π′.The proof is just a matter of 
he
king that the single-site 
onditional proba-bilities under Π and Π′ satisfy (10), and invoking Theorem GHM 4.8. Makesure you know how to do that!Lemma pre-Prop GHM 4.14: For any n ≥ 1,
Π+

n �D Π+
n+1 . (11)Proof: Here's a 
oupling of two {−1,+1}Zd -valued random obje
ts X+

n and
X+

n+1 establishing (11).Set X+
n = X+

n+1 ≡ +1 on Z
d \ λn+1.Set X ≡ +1 on Λn−1 \ Λn.Pi
k the X+

n+1 
on�guration on Λn−1 \ Λn a

ording to whatever is its
orre
t marginal distribution.Pi
k the X+
n and X+

n+1 
on�gurations on Λn in su
h a awy that X+
n � X+

n+1on this box; su
h a 
oupling exists by Lemma GHM 4.13 using the
orresponding domination on Λn−1 \ Λn ensured by steps 2 and 3.This gives a 
oupling su
h that, a.s., X+
n � X+

n+1 on all of Z
d. ⋄

13



So now we have pairwise 
ouplings witnessing Π+
n �D Π+

n+1 for ea
h n. Thisde�nes, for ea
h n, a 
onditional distribution of X+
n+1 given X+

n . By ap-plying these 
onditional distributions sequentially, we obtain a simultaneous
oupling of all of them, with
X+

1 � X+
2 � X+

3 � · · ·and a limiting 
on�guration X+ ∈ {−1,+1}Zd whose distribution we denote
Π+ and 
all the plus measure for the Ising model on Z

d (at inversetemperature β). This probability measure has the following important prop-erties.1. Π+ is a Gibbs measure for the Ising model on Z
d with param-eter β. To see this, we just need to verify that for any �nite A ⊂ Z

d,the 
onditional distribution of X+
A given X+

Zd\A
is Markov with thepres
ribed distribution. This holds for Π+

n in pla
e of Π+ as soon as nis large enough so the Λn 
ontains A. Taking limits, this property isinherited by Π+.2. A similar limiting Gibbs measure Π− 
an also be obtained, with mi-nuses instead of pluses outside Λn in the �nite sages of the 
onstru
tion.
Π+ and Π− look the same ex
ept with the roles of pluses and minusesinter
hanged.3. Π+ �D Π for any Gibbs measure with the given parameter. Bythe same argument as in Lemma pre-Prop GHM 4.14 we get Π+

n �D Πand the 
orresponding 
oupling X+
n � X. The 
laim follows by sending

n → ∞.This gives in parti
ular
Π− �D Π �D Π+so that Gibbsian uniqueness is equivalent to having Π− = Π+.4. Π+ is translation invariant. To see this, note that we 
an build asimilar Gibbs measure Π+

shifted with the boxes Λn repla
ed by boxes
entered not at the origin but somewhere else. This gives a shift of
Π+, and by the same argument as for Π+ we see that Π+

shifted sto
has-ti
ally dominates all other Gibbs measures. Hen
e Π+ �D Π+
shiftedand Π+

shifted �D Π+, and it's not hard to see that this implies Π+ =

Π+
shifted, and translation invarian
e follows.14



6 Monday, April 14The following is perhaps the most famous result for the Ising model.Theorem: For the Ising model on Z
d with d ≥ 2, there exists a 
riti
al value

βc = βc(d) satisfying 0 < βc < ∞ su
h that
{

β < βc ⇒ Π+ = Π−, Gibbsian uniqueness
β > βc ⇒ Π+ 6= Π−, Gibbsian nonuniquenessThis ex
ludes the 
ase d = 1, be
ause there there is no phase transition: theIsing model on Z

1 has a unique Gibbs measure regardless of β (a fa
t 
loselyrelated to the fa
t that a �nite-state irredu
ible aperiodi
 Markov 
hain hasa unique stationary distribution).The statement of the theorem 
an be separated in three parts:(i) for β su�
iently 
lose to 0 we have uniqueness,(ii) for β su�
iently large we have nonuniqueness, and(iii) for β1, β2 su
h that β1 < β2, nonuniqueness at β1 implies nonuniquenessat β2.All three are proved using per
olation-theoreti
 methods in Chapters 5 and6 of [GHM℄. In this 
ourse we'll be less ambitious and restri
t to d = 2 andparts (i) and (ii). (The proof we'll give for (i) extends in straightforwardmanner to d ≥ 3, whereas the same thing for (ii) is highly demanding.)Proposition small-β: For the Ising model on Z
2 with β < 1

8 log(5
3 ) we get

Π+ = Π−.Proof: Let us de�ne a {−1,+1}Zd -valued Markov 
hain (X+(0),X+(1), . . .)as a kind of massively parallel Gibbs sampler for Π+, as follows. Startby pi
king X+(0) a

ording to Π+. Then use separate transition me
hanismsfor even and odd times k, as follows. Let Z
2
even denote the set of verti
es in

Z
2 whose sum of 
oordinates is even, and de�ne Z

2
odd analogously.For k even, set X+

s (k) = X+
s (k − 1) for all s ∈ Z

2
odd, whereas for all

s ∈ Z
2
even independently, update its value as in the single-site Gibbssampler.For k odd, set X+

s (k) = X+
s (k − 1) for all s ∈ Z

2
even, whereas for all

s ∈ Z
2
odd independently, update its value as in the single-site Gibbssampler. 15



Clearly, this dynami
s preserves Π+, as well as it would preserve any otherGibbs measure for the Ising model at parapeter β that we'd 
are to startwith. So let's start another Markov 
hain (X−(0),X−(1), . . .) to run in par-allel with the �rst, but started with X−(0) 
hosen a

ording to Π− (andindependently of X+(0)). We need to spe
ify how the 
hains are run to-gether. Here's how:De�ne, for all k = 1, 2, . . . and all s ∈ Z
2, i.i.d. uniform [0, 1] randomvariables U(s, k). When a node s is updated at time k, we set

X+
s (k) =















−1 if U(s, k) <
exp

(

−β
∑

t∈∂(s)
X+

t (k−1)

)

exp

(

β
∑

t∈∂(s)
X+

t (k−1)

)

+exp

(

−β
∑

t∈∂(s)
X+

t (k−1)

)

+1 otherwiseand
X−

s (k) =















−1 if U(s, k) <
exp

(

−β
∑

t∈∂(s)
X−

t (k−1)

)

exp

(

β
∑

t∈∂(s)
X−

t (k−1)

)

+exp

(

−β
∑

t∈∂(s)
X−

t (k−1)

)

+1 otherwise.Note now that the expression
exp

(

−β
∑

t∈∂(s) xt

)

exp
(

β
∑

t∈∂(s) xt(k − 1)
)

+ exp
(

−β
∑

t∈∂(s) xt

) =
1

1 + exp
(

−2β
∑

t∈∂(s) xt

)is maximized when ∑t∈∂(s) xt = 4 and minimized when ∑t∈∂(s) xt = −4,giving values 1
1+e−8 and 1

1+e8 , respe
tively. Denote by α, the di�eren
ebetween these two thresholds: α = 1
1+e−8 − 1

1+e8 . For reasons that willsoon be 
lear, we want the α to be less than 1
4 . Two lines of se
ondary-s
hool algebrai
 manipulation gives that α < 1

4 is equivalent to the 
ondition
β < 1

8 log(5
3) in the lemma.Consider an update at a site s at time k, and denote by As,k that at leastone of the verti
es t in ∂(s) has a dis
repan
y at time k−1 between X−

t (k−1)and X+
t (k−1). For a dis
repan
y to happen at s after the update, ne
essary
onditions are (a) As,k, and (b) that U(s, k) takes a value in the length-

α interval [ 1
1+e8 , 1

1+e−8 ]. Hen
e, with D(k) denoting the probability that anewly updated site s at time k su�ers from a dis
repan
y (X−
t (k) 6= X+

t (k)),we get
D(k) = P (X−

s (k) 6= X+
s (k)) 16



= P (As,k)P (X−
s (k) 6= X+

s (k)|As,k) + P (¬As,k)P (X−
s (k) 6= X+

s (k)|¬As,k)

= P (As,k)P (X−
s (k) 6= X+

s (k)|As,k)

< 4D(k − 1)α.This re
ursive relation starts with D(0) ≤ 1 (trivially), so we get
D(k) ≤ (4α)k → 0 as k → ∞ .For any �nite region A ⊂ Z

d, the expe
ted number of dis
repan
ies in A attime k is at most |A|(4α)k , whi
h again tends to 0, so
lim

k→∞
P (X−

A (k) = X+
A (k)) = 1 .Hen
e Π− and Π+ agree on A, and sin
e A was arbitrary we have Π− = Π+.

⋄Proposition large-β: For the Ising model on Z
2 with β > log(2

√
3), weget Π+ 6= Π−.Proof: Write 0 for the origin (0, 0) ∈ Z

2. If Π+ = Π−, then, by symmetry,
Π+(X0 = +1) = 1

2 . Hen
e, in order to prove the proposition, it is enough toshow that
lim inf
n→∞

Π+
n (X0 = −1) <

1

2
. (12)If, under Π+

n , we obtain X0 = −1, then 0 must sit in a �nite 
onne
ted 
om-ponent of minus spins, with what I'll 
all a �nite +/− 
ontour surroundingit (it's a hassle to de�ne in words, so instead see Figure 1 in Bonati, C., ThePeierls argument for higher dimensional Ising models, Eur. J. Phys. 2014,http://iops
ien
e.iop.org/0143-0807/35/3/035002/arti
le), be
auseunder Π+
n all spins outside Λn are 1, a.s.Fix a �nite 
ontour C inside Λn surrounding 0, and a 
on�guration

x ∈ {−1,+1}Z2 taking value −1 at 0 and +1 everywhere outside Λn, and forwhi
h C is the outermost +/− 
ontour surrounding 0. Let x̃ ∈ {−1,+1}Z2be the 
on�guration obtained from x by �ipping all spins inside C and leav-ing all spins outside C un
hanged. The energy di�eren
e between the two
on�gurations arise ex
lusively from the pair intera
tions a
ross C, and if Chas length m we get
Π+

n (X = x)

Π+
n (X = x̃)

= exp(−2βm) .17



Hen
e
Π+

n (C is a +/− 
ontour for X) =
∑

x∈{−1,+1}Z
2

C +/− 
ontour for x

Π+
n (X = x)

≤

∑

x∈{−1,+1}Z
2

C +/− 
ontour for x

Π+
n (X = x)

∑

x∈{−1,+1}Z
2

C +/− 
ontour for x

Π+
n (X = x̃)

= exp(−2βm) .The number of possible lenth-m 
ontours around 0 is at most
m3m−1where the initi
al m 
omes from the 
ontour's leftmost 
rossing of the x-axis, and the 3 
omes from the at most 3 
hoi
es of where to go next whentraversing the 
ontour 
lo
kwise. Hen
e,

Π+
n (X0 = −1) = Π+

n (∃ some +/− 
ontour around 0)

≤
∑
ontours C

Π+
n (C id a 
ontour around 0)

=
∞
∑

m=4

∑length-m 
ontours C

Π+
n (C id a 
ontour around 0)

≤
∞
∑

m=4

m3m−1 exp(−2βm)

{now use the 
rude estimate m ≤ 2m}

≤ 1

3

∞
∑

m=4

6me−2βm =
1

3

∞
∑

m=4

(6e−2β)mwhi
h is < 1
2 provided 6e−2β < 1

2 , i.e., when β > log(2
√

3), whi
h is the
ondition in the proposition, so (12) is established and we are done. ⋄This is the famous 
ontour argument of Rudolph Peierls from 1936!7 Wednesday, April 16Re
all Holley's Theorem (Theorem GHM 4.8) from le
ture 5. An important
onsequen
e is the following 
orrelation inequality.18



Theorem GHM 4.11, the FKG Inequality: For S �nite and R ⊂ R�nite, let Π be a stri
tly positive probability measure on RS su
h that for all
s ∈ S, all y ∈ R and all x, x′ ∈ RS\s with x � x′ we have

Π(Xs ≥ y|Xt = xt,∀t 6= s) ≤ Π(Xs ≥ y|Xt = x′
t,∀t 6= s) . (13)Then, for any two in
reasing (with respe
t to �) fun
tions f, g : RS → R wehave

Π(fg) ≥ Π(f)Π(g) . (14)It's easy to 
he
k that (13) holds for the Ising model on a �nite S, so theFKG inequality applies. Hen
e, for example, the spin values at any two sitesare positively 
orrelated.Sket
h proof of the FKG inequality: Sin
e RS is �nite, f and g arebounded. We may assume without loss og generality that g is stri
tly pos-itive, be
ause repla
ing g by g + c for some 
ontant c means just adding
cΠ(f) to ea
h side of (14). We 
an then de�ne the g-weighted modi�
a-tion of Π as the probability measure Π′ that on RS that to ea
h x ∈ RSassigns probability Π(x)g(x) divided by a normalizing 
onstant Z making Πa probability measure. But then Z =

∑

y∈RS Π(y)g(y), so
Π′(x) =

Π(x)g(x)
∑

y∈RS Π(y)g(y)
.The key step of the proof now is to establish that

Π(x) �D Π′(x) . (15)To show this, we need to 
he
k that Π and Π′ satisfy 
ondition (10) inHolley's Theorem (Theorem GHM 4.8 in Le
ture 5) � make sure you knowhow to do that (and if nothing else helps, 
onsult the proof in [GHM℄)!Holley's Theorem then ki
ks in to ensure (15). And on
e we have (15), theproof is 
on
luded by noting that
Π(f) ≤ Π′(f) =

∑

x∈RS

Π′(x)f(x)

=
∑

x∈RS

Π(x)g(x)f(x)
∑

y∈RS Π(y)g(y)
=

Π(fg)

Π(g)and multiplying both sides with Π(g) gives (14). ⋄19



The rest of this le
ture will be spent on the inhomogeneous Ising modelon Z
1, whi
h will serve mostly as a 
ounterexample-generator. The neigh-borhood stru
ture ∂ well be the obvious 
hoi
e: x, y ∈ Z are neighbors i�

|x − y| = 1.The �nite 
ase �rst. For �nite n and parameters β−n, β−n+1, . . . , βn−2, βn−1,de�ne the Ising model on {−n, . . . , n} with these parameters as the probabil-ity measure on {−1,+1}{−n,...,n} that to ea
h x ∈ {−1,+1}{−n,...,n} assignsprobability
Πn(x) =

1

Z
exp





n−1
∑

i=−n

βixixi+1



 .For ea
h i, de�ne yi = xixi+1 (and for the 
orresponding random variables,similarly, Yi = XiXi+1). For any x su
h that xixi+1 = +1, de�ne another
on�guration
x̃ =

{

x up to site i
−x from site i + 1 onwards.Then

Πn(x)

Πn(x̃)
= exp(2βi) .A 
on�guration x is uniquely determined if we know x−n and all the �ipvalues Y−n, y−n+1, . . . , yn−1. So if we know X−n and all �ip variables ex
ept

Yi, then we know we're in either a given x or in x̃, so
Π(Yi = 1|Yj = yj∀j 6= i) =

e2βi

e2βi + 1
=

1

1 + e−2βiso the Yi-variables are independent taking values
{

+1 w.p. 1
1+e−2β

−1 w.p. e−2β

1+e−2β

(16)Now �x the bi-in�nite sequen
e
. . . , β−2, β−1, β0, β1, β2, . . .and send n → ∞ in the above 
onstru
tion. Property (16) is preserved in thelimit, and one 
an 
he
k that this gives a Gibbs measure Π on {−1,+1}Z.We haven't spe
i�ed the βi values so far, but note that if βn → ∞ as

|n| → ∞ fast enough so that
∞
∑

−∞

e−2β

1 + e−2β
< ∞ (17)20



(whi
h is the same as ∑∞
−∞ e−2β < ∞), then the expe
ted number of spin�ips is �nite, so there will a.s. be only �nitely many spin �ips. We want thisproperty, and 
hoose to set βi = |i| for ea
h i (this satis�es (17)), so thatwith Π-probability 1, the limits

X−∞ = lim
i→−∞

Xiand
X+∞ = lim

i→+∞
Xiexist (and equal +1 or −1). Sin
e β0 = 0, we have that Y0 = +1 or −1with probability 1

2 ea
h, independently of all other Yi's. Note also that�ipping Y0 
hanges whether X−∞ = X+∞ or not. This, together with the ±1symmetry of the model, gives (X−∞,X+∞) = (−1,−1), (−1,+1), (+1,−1)or (+1,+1), ea
h with probability 1
4 .Next we'll do something slightly unusual, namelt let Πmix be the prob-ability measure on {−1,+1}Z that arises by 
onditioning on the event that

(X−∞,X+∞) is either (−1,+1) or (+1,−1). That is a tail event with re-spe
t to the Xi variables, and 
onditioning on a tail event doesn't 
hangethe 
onditional distributions on �nite sets (whi
h are the de�ning propertiesof Gibbs measures), so Πmix is a Gibbs measure for the inhomogeneous Isingmodel on Z with the given parameter. This Gibbs measure will serve as a
onterexample to two properties one might otherwise naively suspe
t to holdin general:FKG. We saw in 
onne
tion with the FKG inequality that for the Isingmodel on �nite S, two spin values are always positively 
orrelated. Thisfails in general for Ising model Gibbs measures in the in�nite setting,as exempli�ed by Πmix. The ± symmetry gives E[xi] = 0 for all i. Onthe other hand, sin
e X−∞X+∞ = −1 with probability 1, we get that
E[X−iXi] tends to −1 as i → ∞, and hen
e must be stri
tly negativefor large enough i. For su
h i, we thus get E[X−iXi] < E[X−i]E[Xi],whi
h is the desired 
ounterexample.Global Markov property. Let A = {1, 2, 3 . . .} and 
onsider the 
ondi-tional distribution (under Πmix) of XA given XZ\A. Πmix satisfyingthe global markov property would imply that this 
onditional distri-bution would only depend on XZ\A via X∂(A), i.e., via X0. It is easyto see that 
onditional on X0, the value of X+∞ (whi
h is a fun
tionof XA) 
an be either +1 or −1, ea
h with positive probability. But ifwe 
ondition further on all of XZ\A, we 
an read o� X−∞, and then21



the 
onditional probability that X+∞ = +1 
hanges to either 0 or 1,so the global Markov property is violated.8 Friday, April 25Let's say we're interested in the Ising model on (S, ∂) with parameter β, andsay S = |1′000′000| (not by any means an unusually large system in pra
ti
e).Suppose we want to 
al
ulate the expe
tation Π(f) of some quantity f su
has(i) f(X) = Xs for a given s ∈ S,(ii) f(X) = XsXt for given s, t ∈ S,(iii) f(x) = 1{
∑

s∈S
≥200′000} .Somtimes we 
an �nd 
lever arguments to �nd Π(f), su
h as is the 
ae with(i), where the ±1 symmetry of the model gives Π(f) = 0. Cases (ii) and(iii) are less obvious, although in prin
iple trivial, be
ause this is a �niteproblem, and

Π(f) =
∑

x∈X

Π(x)f(x) . (18)But in pra
ti
e the obsta
le to simply 
al
ulating this sum is the prohibitivenumber of terms in the sum: |X| = 21′000′000.What to do? Assuming we had a ma
hine for simulsting i.i.d. X-valued random obje
ts with distribution Π, then we 
ould take a sample
X(1), . . . ,X(n)from that ma
hine, and estimate Π(f) with P̂ in(f) = 1

n

∑n
i=1 f(Xi). Thisis unbiased, and sin
e in 
ases (i), (ii) and (iii) above f is bounded between

−1 and +1 we have V ar[X(i)] ≤ 1, so that
V ar[Π̂n(f)] =

1

n2

n
∑

i=1

Var[Xi] ≤
1

nand Chebyshev's inequality3 yields
P (|Π̂n(f) − Π(f)| > ǫ) ≤ 1

nǫ2
.3If the random variable Y has �nite se
ond moment, then P (Y −E[Y ] > ǫ) ≤ V ar[Y ]/ǫ222



So to get this probability below a given p, just pi
k n ≥ ǫ2

p .Now, we don't have su
h a ma
hine, but MCMC provides a kind ofapproximate su
h ma
hine. The idea is to devise an irredu
ible aperiodi
Markov 
hain X(1),X(2), . . . on X whose unique stationary distribution is
Π. The 
onvergen
e theorem for �nite-state irredu
ible aperiodi
 markov
hains gives us that if we sample at su�
iently long intervals, say m, weget a sample whi
h is approximately i.i.d. (in a sense that 
an and will bespe
i�ed), so a sensible estimator might be

1

n

n
∑

i=1

f(X(mi)) .But if so, then for any j ∈ (0, 1, . . . ,m − 1) the estimators
1

n

n
∑

i=1

f(X(mi + j))seem about equally good. And when we have m su
h good estimators, itmakes sense to redu
e varian
e further by taking the average of then, whi
his tantamount to sampling the X 
hain at every time point (after an initialburn-in of length m). This is often done in pra
ti
e.But how long do we need to run the 
hain? Winkler states and provesthe following Markov 
hain analogue of the above Chebyshev estimate.Theorem 4.3.2: Let (X(0),X(1), . . .) be a time-homogeneous, irredu
ibleand aperiodi
 Markov 
hain with �nite state spa
e X and invariant distribu-tion µ. Then, for any f : X → R, we have (ergardless of how f is 
hosen),that the estimator µ̂n(f) = 1
n

∑n
i=1 f(X(i)) 
onverges in probability (or in

L2 as Winkler says � sin
e f is automati
ally bounded these modes of 
on-vergen
e are equivalent). Qunatitatively, for any ǫ > 0

P (|µ̂n(f) − µ(f))| > ǫ) ≤ 13 f‖2

1 − c(P ))nǫ2
(19)where

‖f‖ =
∑

x∈X

|f(X)|and c(P ) is the so-
alled 
ontra
tion 
oe�
ient of the 
hain's transitionkernel P :
c(P ) = max

x,y∈X

B⊂X

|P (x,B) − P (y,B)| .23



The 
ontra
tion 
oe�
int c(P ) is an important 
on
ept, so please pay at-tention to Winkler's Se
tion 4.2. Regarding the 
on
ept ‖f‖, however, Istronly advi
e against using it in the present 
ontext. Winkler's use of ‖f‖is just plain lazy, and if we instead use maxx∈X |f(x)| we'll get a variant ofTheorem 4.3.2 whi
h � unlike the present Theorem 4.3.2 � 
an a
tually beuseful. Here's why the present Theorem 4.3.2 is so bad.Suppose we take ǫ = 0.01 and that what we know (as in 
ases (i), (ii)and (iii) above) is that |f(x)| ≤ 1∀x and that |X| = 21′000′000. In order tobound the probability in (19) by 0.1, we'll have to take
n ≥ 13 · 22′000′000

0.1(1 − c(P )]0.012
=

130′000 · 22′000′000

1 − c(P )so that even if c(P ) = 0 (whi
h is best possible), we'll have to run the 
hainfor an amount of time that, even on the snazziest 
omputer, makes the ageof the universe seem like hardly even a blink-of-the-eye.In general, running time bounds that (like this one) grow exponentiallyin |S| tend to be useless. And in the frivolous s
ien
e �
tion s
enario thatwe do have su
h in
redible amounts of time at our disposal, we might as welluse the method of dire
tly 
al
ulation the sum in (18), rather than revertingto MCMC simulation.
∗Next, how to 
on
retely 
onstru
t the Markov 
hain. I'll fo
us on the Gibbssampler. For the related and more �exible Metropolis�Hastings algo-rithm I'll refer the reader to Winkler's 
hapter on that.Given the Markov random �eld distribution Π on X, a Gibbs sampleris a Markov 
hain (X(0),X(1), . . .) 
onstru
ted as follows. At ea
h time k,sele
t an s ∈ S (a

ording to some rule, deterministi
 or random), set

Xt(k) = Xt(k − 1) for all t ∈ S \ sand pi
k a fresh value of Xs(k) a

ording to the Π-
onditional distributionof Xs given a 
on�guration on S \ s agreeing with XS\s(k − 1).Obviously, if X(k − 1) ∼ Π, then X(k) ∼ Π, so Π is a stationary distri-bution for the 
hain. But is it the only stationery distribution, and do wehave 
onvergen
e towards it as k → ∞?This depends on the me
hanism for 
hossing whi
h vertex to update. Forinstane
, always 
hoosing the same vertex to update is a stupid rule, underwhi
h the answer to both questions are �no�. Two other 
hoi
es, whi
h arepopular and whi
h under Winkler's positivity 
ondition gives answer �yes�to both questions, are to sele
t s 24



• at random (i.i.d., and unifromly on S), and
• a

ording to a systemati
 weep: deterministi
ally go through all of Sin the �rst |S| updates, and then repeat.The former is sometimes more 
onvenient to work with, be
ause it is time-homogeneous, so we 
an immediately apply the basi
 
onvergen
e theoremfor �nite-state Markov 
hains to dedu
e uniqueness of the stationary distribu-tion and 
onvergen
e to it as k → ∞. The latter allows the same 
on
lusion,but only if we rede�ne �time� by 
onsidering the embedded Markov 
hainobtained by looking at the original one only at times that are multiples of

|S|.Con
erning quantitatively the rate of 
onvergen
e, the 
ontra
tion 
oe�-
ient c(P ) from Theorem 4.3.2 plays an important role. If we look at a singlestep of the Gibbs sampler, we get c(P ) = 1 (no 
ontra
tion at all), whi
h isuseless, but by 
onsidering the embedded 
hain by viewing |S| updates as asingle step, we get c(P ) < 1. It 
an be very 
lose to 1, however, and this isone of the reasons why the rate of 
onvergen
e in Winkler's Theorem 5.1.4for the Gibbs sampler is so terribly bad.The quantitative part of Winkler's Theorem 5.1.4 is that
P (| 1

n

n
∑

i=1

f(X(i)) − Π(f)| > ǫ) ≤ c

nǫ2
eσ∆where c, σ and ∆ are as follows.

• c is a 
onstant depending on the updating s
heme and on the 
atas-trophi
 fa
tor ‖f‖2. This is enough to render Theorem 5.1.4 useless,but this part 
an a
tually be �xed by repla
ing Theorem 4.3.2 by amore sensible variant.
• ∆ = maxs∈S maxx,yinX:xS\s=yS\s

says roughly (if ∆ is small) that the
onditional distribution at any s given XS\s does not deviate mu
hfrom uniform distribution. This 
ondition works to get results, butdoes not 
apture the essen
e of the �fast 
onvergen
e� problem. What'sneeded is not being 
lose to uniform, but rather not depending tooheavily on XS\s.
• σ = |S|, and sin
e the σ fa
tor sits in the exponent we obtain another
atastrophi
 fa
tor exp(1′000′000∆) rendering Theorem 5.1.4 useless.This time �xing Theorem 4.3.2 won't help.25



Nevertheless, not all is lost, and next week I'll o�er you sensible repla
ementfor Theorems 5.1.4 and 4.3.2!
∗The needed irredu
ibility of the Markov 
hain follows under Winkler's posi-tivity, but there are important examples where we 
an get away without it,su
h as in the hard-
ore model. Here X = {0, 1}S , and a 1 at s is thoughtof as a parti
le, and a 0 at s as the absen
e of a parti
le. Parti
les 
annotbe pa
ked too tightly, and a 
on�guration x ∈ {0, 1}S is 
alled legal if thereare no two neighbors s and t with xs = xt = 1. The hard-
ore model withparameter λ > 0 is the probability measure Π on {0, 1}S given by

Π(x) =
1

Z
λ(# 1's in x)

1{x is legal}The parameter λ quantify the model's tenden
y to have many 1's, and send-ing λ → ∞ is tantamount to trying harder and harder to �nd an �optimalpa
king�, i.e., maximizing the number of 1's without making x illegal.The Gibbs sampler for this model is irredu
ible in the sense that for anytwo 
on�gurations with positive probability (i.e., any two legal 
on�gura-tions) you 
an rea
h one from the other, by forst su

essively removing one
1 after the other, to rea
h the �all 0's 
on�guration�, and then adding new
1's agreeing with target 
on�guration, one after the other.9 Wednesday, April 30Today we'll repla
e Winkler's useless Theorems 4.3.2 and 5.1.4. Straight tothe point:Theorem Repla
e-4.3.2: Let (X(o),X(1), . . .) be a time-homogeneous, ir-redu
ible and aperiodi
 Markov 
hain with �nite state spa
e X and invariantdistribution µ. Then, for any ǫ > 0, any a > 0 and any f : X → R with
maxx∈X |f(x)| ≤ a, we have, de�ning

µ̂n(f) =
1

n

n
∑

i=1

f(X(i)) ,that
P (|µ̂n − µ| > ǫ) ≤ 16a2

(1 − c(P ))nǫ2
.Here the 
ontra
tion 
oe�
ient is, as before,

c(P ) = max
x,y∈X

B⊂X

|P (x,B) − P (y,B)| .26



We 
an also write c(P ) as
c(P ) =

1

2
max
x,y∈X

‖P (x, ·) − P (y, ·)‖where, for any two probability distributions Π and ν on X, ‖Π− ν‖ denotesthe toal variation norm ∑

x∈X |Π(x) − ν(x)|. (This total variation distan
eranges between 0 (identi
al distributions) and 2 (disjoint distributions), anddi�ers from the total variation distan
e in [GHM℄ by a fa
tor 2. Both de�-nitions are �ne, but it is dangerous of 
ourse to mix them up, so be 
arefulwhen exploring the literature.)A 
entral result on 
oupling (see Proposition 4.4 of [GHM℄) is that forany two distributions Π and ν we 
an 
ouple two random obje
ts X ∼ Π and
Y ∼ ν in su
h a way that P (X 6= Y ) = 1

2‖Π − ν‖; this is 
alled a maximal
oupling, be
ause it 
annot be improved. We'll use this result, but will notdig into its proof.Another result we'll use without digging into its proof (but do have a lookat Winkler's Lemma 4.2.2 in you want to understand it) is that the n-steptransition kernel Pn of a Markov 
hain with transition kernel P satis�es
c(Pn) ≤ (c(P ))n .Proof oh Theorem Repla
e-4.3.2: Assume for simpli
ity that µ(f) = 0(we'll �x that at the end). In order to apply Chebyshev, we need to estimate

V ar

[

1

n

n
∑

i=1

f(X(i))

]

= E

[

(
1

n

n
∑

i=1

f(X(i)))2
]

=
1

n2

n
∑

i=1

n
∑

j=1

E[f(Xi)f(Xj)] .Imagine (for the time being) the 
hain starting in a �xed x ∈ X, and 
ouple
(X(0),X(1), . . .) with another X-valued Markov 
hain with the same trna-sition kernel but starting in stationarity µ. For �xed k ≥ 1, we 
an 
ouple
X(k) and X ′(k) in su
h a way that

P (X(k) 6= X ′(k)) ≤ 1

2
max
x,y∈X

‖P k(x, ·) − P k(y, ·)‖

= c(P k) ≤ (c(P ))k .Then
E[f(X(0))f(X(k))] = f(x)E[f(X(k))]27



= f(x)E[f(X(k)) + f(X ′(k)) − f(X ′(k))]

= f(x)E[f(X ′(k))] + f(x)E[f(X(k)) − f(X ′(k))]

≤ f(x) · 0 + f(x) · 2a(c(P ))k

≤ 2a2(c(P ))k .Dropping the assumption that the 
hain X starts in a �xed x ∈ X, thusallowing random X(0), we obtain E[f(X(0))f(X(k))] as a weighted averageof terms that are at most 2a2(c(P ))k , so the 
on
lusion
E[f(X(0))f(X(k))] ≤ a2(c(P ))kremains valid. And for similar reasons, for any m ≥ 0

E[f(X(m))f(X(m + k))] ≤ a2(c(P ))k .We get
E

[

(
1

n

n
∑

i=1

f(X(i)))2
]

=
1

n2

n
∑

i=1

n
∑

j=1

E[f(Xi)f(Xj)]

≤ 1

n2

n
∑

i=1

n
∑

j=1

2a2(c(P ))|i−j|

≤ 2a2

n2

n
∑

i=1

∞
∑

j=−∞

(c(P ))|i−j|

≤ 4a2

n2

n
∑

i=1

∑

k = 0∞(c(P ))k

=
4a2

n(1 − c(P )
.So Chebyshev gives

P (| 1
n

n
∑

i=1

f(X(i))| > ǫ) ≤ 4a2

ǫ2n(1 − c(P )
. (20)But that was for f su
h that µ(f) = 0. For µ(f) 6= 0, we just apply theabove to g = f − µ(f), and |f(x)| ≤ a gives |g(x)| ≤ 2a. So in this moregeneral 
ase the bound in (20) be
omes

4(2a)2

ǫ2n(1 − c(P )
=

16a2

ǫ2n(1 − c(P )28



whi
h is the bound 
laimed in the theorem. ⋄Next, we want to repla
e Theorem 5.1.4 on 
onvergen
e of a Gibbs sampler.With our new repla
ement of Theorem 4.3.2 there is hope to get somethinguseful, as long as we 
an get a reasonable bound on c(Pn). There is nohope of getting a very general result, be
ause the single-site Gibbs samplerfor the Ising model on large �nite subsets of Z
d is exponentially slow in thephase transition regime β > βc. But we should at least be able to obtain aresult that gives fast 
onvergen
e for some nontrivial Markov random �elds(in
luding the small-β Ising model).We'll sti
k, for de�niteness, to a systemati
 sweep Gibbs sampler, andexploit the idea of the small-β Π+ = Π− result for the Z

2 Ising model inLe
ture 6.There we assumed β < 1
8 log(5

3), and if we inspe
t the proof, we see thatthe 
ru
ial property that follows from this is that
max
s∈S

max
x,y∈S\s

‖Π(Xs ∈ ·|SS\s = x) − Π(Xs ∈ ·|SS\s = y)‖ <
1

2
, (21)so that by employing the maximal 
oupling when we uptate s at time k,we 
an make sure that P (Xs(k) 6= X ′

s(k)] < 1
4 . Or more generally we want

P (Xs(k) 6= X ′
s(k)] < 1

dmax
where dmax = maxs∈S |∂(s)|, so we want the right-hand side of (21) to be 2

dmax
. We will make that the 
entral assumption ofour theorem. To arrive there, let's denote the left-hand side of (21) by α, andnote that after the �rst weep through S, employing the maximal 
oupling atea
h update guarantees that ea
h site has probability at most α

2 of exhibitinga dis
repan
y between its values in the X 
hain and the X ′ 
hain.When a site s is 
hosen at a time k in the se
ond sweep, we get
P (Xs(k) 6= X ′

s(k)) = P (some dis
repan
y in ∂(s))

·P (Xs(k) 6= X ′
s(k)| some dis
repan
y in ∂(s))

≤ αdmax

2

α

2
.So after the se
ond sweep, all sites have probability at most αdmax

2
α
2 of ex-hibiting dis
repan
y. Applying the same reasoning iteratively, we get afterthe n:th sweep that all sites have probability at most α

2 (αdmax

2 )n−1. When
α < 2

dmax
, this tends to 0 (fast), so we're in business. Spe
i�
ally, note that

|S|α
2 (αdmax

2 )n−1 is an upper bound for the expe
ted number of dis
repan
iesafter the n:th sweep. Take n so large that this bound satis�es
|S|α

2

(

αdmax

2

)n−1

≤ 1

229



whi
h via a few steps of high s
hool-level algebrai
 manipulation is seen tobe equivalent to
n ≥ log(α|S|)

log( 2
αdmax

)
+ 1 .Then the probability that the two 
hains have 
oales
ed (at every site) after

n sweeps is at least 1
2 . Our theorem, therefore, is as follows.Theorem Repla
e-5.1.4: Let Π be a Markov random �eld, and de�ne

α = max
s∈S

max
x,y∈S\s

‖Π(Xs ∈ ·|SS\s = x) − Π(Xs ∈ ·|SS\s = y)‖ .If α < 2
dmax

, then the Markov 
hain in whi
h a single step represents at least
log(α|S|)

log( 2
αdmax

)
+ 1 full sweeps of the Gibbs sampler has a 
ontra
tion 
oe�
ient

c(P ) ≤ 1
2 .This result 
an then readily be plugged into Theorem Repla
e-4.3.2 to getbounds on how long we need to run the 
hain in order to get good estimatesof whatever expe
tation Π(f) we wish to 
al
ulate. The fa
t that it takesjust of the order log(|S|) sweeps, i.e., |S| log(|S|) single site updates, in orderto rea
h a useful 
ontra
tion 
oe�
ient (as opposed to in Winkler's Theorem5.1.4 where it took exponentially many) means that we're in business witha sampling algorithm that may a
tually be useful.10 Wednesday, May 7Now is time to dis
uss statisti
al estimation of parameters in Markov random�elds. I'll fo
us on a simple example: estimating β in the Ising model (thiswill put you in a better position to digest Winkler's more general treatmentof the topi
).A 
on�guration X ∈ {−1,+1}S , with S �nite, is observed. Me mayassume it 
omes from the Ising model Gibbs measure Π for this known Swith known neighborhood ∂, but we do not know the inverse temperature

β. How to estimate β?I'll fo
us on maximum likelihood (ML) and related te
hniques. Winklermentions two highly desirable properties of estimates β̂n (where n is somemeasure of the amount of data):(i) So-
alled 
onsisten
y: β̂n should tend to β as n → ∞ (in whatevermode of 
onvergen
e we 
an get, almost sure 
onvergen
e, 
onvergen
ein probability, in L2, or...) 30



(ii) β̂n should be 
omputationally feasible.Property (i) is not quite what we want in pra
ti
e, be
ause at the end ofthe day we need to know for some �xed �nite n that β̂n is likely to be 
loseto the true value β, and asymptoti
 statements like (i) do not answer that.But it's a good start.What do we mean by the amount of data n? Winkler dis
usses two 
ases:(a) n i.i.d. samples X(1), . . . ,X(n) from Π on a �xed �nite S.(b) Let S be 
ountably in�nite, su
h as S = Z
2 with the standard neighbor-hood stru
ture, and look at the 
on�guration on Λn = {−n, . . . , n}2.He says (b) is more relevant in image analysis and fo
uses mainly on that;I'm very happy to go along.The simpli�
ation we get from fo
using on estimating β in the Isingmodel, 
ompared to Winkler's more general setting, is that of studying justa single parameter, so that when taking derivatives of the log-likelihoodfun
tion L (as we almost always need to do when studying ML estimators)we don't need to handle ve
tor-valued gradients ∇L and Hessian matri
es

∇2L.Before treating the Ising model, let's remind ourselves of how ML worksby 
onsidering the very simplest situation of possibly biased 
oin tosses:let X(1),X(2), . . . be i.i.d. {0, 1} valued random variables taking value 1with an unknown probability p. The task here is to estimate p based on
X(1), . . . X(m).Given X(1), . . . X(m) su
h that ∑m

i=1 X(i) = k, the likelihood be
omes
l(p) = pk(1 − p)m−kand the log likelihood

L(p) = log(l(p)) = k log(p) + (m − k) log(1 − p) .How do we maximize L(p)? We solve for dL(p)
dp = 0 and 
he
k whether

d2L
dp2 < 0.4 We get

dL(p)

dp
=

k

p
− m − k

1 − p4In addition, we of 
ourse need to 
he
k what happens on the boundary of the parameterspa
e. This turns out to make no di�eren
e to the present example, and I'll just skip that.31



whi
h is 0 when p = k
m , and

d2L

dp2
=

−k

p2
− m − k

(1 − p)2
< 0 ,so p̂m = k

m is our ML estimate of p. From the strong law of large numbers,we know that
lim

m→∞
p̂m = lim

m→∞

1

m

m
∑

i=1

X(i) = palmost surely, so the ML estimate is 
onsistent!Now let's try to imitate this in the Ising model on Z
2 
ontext, based onobserving the spins on Λn. For reasons that will be
ome 
lear, I'll assumewe're allowed to peek at the values on ∂(Λn) as well. The literal ML estimateis unavailable, be
ause we do not have an expression for

l(β) = Πβ(XΛn = xΛn)sin
e, as we saw in Lesture 6, β doesn't even uniquely determine Πβ.The next best thing is to 
onsider the 
onditional distribution of XΛngiven X∂(Λn
, viewing the latter as �xed.That gives a 
onditional likelihood
l(β) =

1

Z
exp











∑

〈u,v〉

u,v∈Λn

xuxv +
∑

〈u,v〉

u∈Λn,v∈∂(Λn)

xuxv











.This would be easy to work with, were it not for the hidden fa
t that Zdepends on β. Treating Z by dire
t summation is obviously impra
ti
al (thesum as 2|Λn| terms), but it is possible via various numeri
al and MCMCs
hemes to �nd an approximation, and that way get an approximate MLestimate (whi
h 
an also be shown to be 
onsistent).That's very intri
ate, however, and we'll 
hoose another way, namely to
ondition further on XΛn,odd
, where Λn,odd is de�ned as the set of verti
esin Λn whose sum of 
oordinates is odd. The point of doing so is that bythe Markov random �eld property, the variables {Xv}v∈Λn,even be
ome 
on-ditionally independent given Xλn,odd

and X∂(n), rendering the likelihood andeasy-to-handle produ
t stru
ture, translating into a sum in the log-likelihood.They are not identi
ally distributed, however, be
ause
Πβ(Xv = +1|X∂(v) = x∂(v)) =

1

1 + exp
(

−2β
∑

w∈∂(v) xw

)32



whi
h depends on the number of +1's in the neighborhood.But if we restri
t to looking at verti
es in the set Λv∈Λn,even,4+ de�ned asthose verti
es in Λn,even that happen to have all +1 neighbors, then thesebe
ome 
onditionally i.i.d. with
Πβ(Xv = +1|all else) =

1

1 + e−8β
,so we're ba
k in the 
oin tosses situation with m i.i.d. (p) binary variables,with p = 1

1+e−8β and m is the number of verti
es in Λn,even,4+. It is not hardto show that m → ∞ a.s. as n → ∞, whi
h put us in a setting where we
an reasonably ask for 
onsisten
y. If we observe k +1's in Λn,even,4+, thelog-likelihood be
omes
L(β) = k log

(

1

1 + e−8β

)

+ (m − k) log

(

1

1 + e8β

)whi
h, as we saw for the 
oin tosses, is maximized when p = k
m , and solvingfor β in p = 1

1+e−8β gives
β̂n = −1

8
log

(

m

k
− 1

)whi
h we take as our ML estimator.5 Now, as n → ∞, so that m → ∞the strong law of large numbers applied to the 
onditional distribution of
XΛn,even given XΛn,odd

gives that k
m tends to 1

1+e−8β a.s., so
lim

n→∞
β̂n = −1

8
log(1 + e−8β − 1) = β ,so we have a 
onsistent estimator of β!But it seems somewhat wasteful to look at only those verti
es with all

+1 neighbors. In fa
t we 
an 
onstru
t similar estimates based on verti
esin Λn,even with r neighbors taking value +1, not just for r = 4 but also for
r = 0, r = 1 and r = 3. (We 
an also try r = 2, but that a
tually doesnt help,be
ause the log-likelihood turns out to be k log(1

2) + (m − k) log(1
2) whi
his independent of β.) This gives four di�erent log-likelihoods L0, L1, L3, L4with

Lr(β) = k log
(

1 + e−(4r−8))β − 1
)

+ (m − k) log
(

1 + e(4r−8))β − 1
)5Note that this estimator 
an turn out to be negative! Here we have two 
hoi
es. Eitherwe 
an allow β < 0 in the Ising moedl, leading to the so-
alled Ising antiferromagnet, orwe 
an insist on β ≥ 0 whi
h, in a

ordan
e with the previous footnote, gives β̂n = 0 in
ase − 1

8
log
(

m
k
− 1
) turns out negative. 33



ea
h giving an ML estimator β̂r,n whi
h tends to β as n → ∞.Well, surely we 
an be more e�
ient and and add upp the loglikelihoodsto get
Leven(β) = L0(β) + L1(β) + L3(β) + L4(β) ,no? (In
luding L2(β) is harmless but pointless.) Sin
e ea
h Lr(β) leads toa 
onsistent ML-estimate, surely the same holds for Leven?Yes we 
an, and yes it does! Here's why. We 
al
ulate

d

dβ
Lr(β) = (4r − 8)

(

k − me(4r−8)β

1 + e(4r−8)β

)and
d2

dβ2
Lr(β) = (4r − 8)2m

e(4r−8)β

(1 + e(4r−8)β)2
) < 0so ea
h Lr(β) is 
on
ave in β.Fix ǫ > 0, and write β∗ for the true value of β. By 
onsisten
y of ea
hof the Lr(β) estimators, we 
an a.s. �nd some (random) N su
h that for all

n ≥ N that ea
h β̂r,n is in the interval β∗ ± ǫ. Then for r = 0, 1, 3, 4, wehave
d

dβ
Lr(β)

{

> 0 for all β < β∗ − ǫ
< 0 for all β > β∗ + ǫ .The same 
on
lusion follows for Leven(β), so it must have its maximum atsome point β̂even,n somewhere in (β∗−ǫ, β∗+ǫ, and sin
e ǫ > 0 was arbitrarywe have shown that β̂even,n is a 
onsistent estimator.We 
an of 
ourse do the same thing with Lodd(β) and get another 
on-sistent estimator. And in the same way as when we added the Lr(β) log-likelihoods, we 
an also add Leven(β) and Lodd(β) and get another �log-likelihood� Lpseudo(β) whi
h by the same agruments yields another 
onsistentestimators.I think it's fair to use the term 
onditional log-likelihood for all of

Lr(β), Leven(β) and Lodd(β). For Lpseudo(β) this term seems less appro-priate, be
ause here we are in a sense 
onditioning on everything. Instead,
Lpseudo(β) is 
alled a pseudolikelihood, the maximization of whi
h is astandard devi
e in parameter estimation in Markov random �elds.11 Friday, May 9Up to know, we have given the Ising model the energy

H(x) = −β
∑

〈u,v〉

xuxv34



where β ≥ 0 is 
alled the inverse temperature parameter. Today we'll seewhat happens when we generalize the moedl and introdu
e another param-eter � the so-
alled external �eld h � to get
H(x) = −β





∑

〈u,v〉

xuxv + h
∑

u∈S

xu



 . (22)Setting h = 0 gives ba
k the old model. Setting h 6= 0, say h > 0 for
on
reteness, breaks the ±1 symmstry in the model and favors spin 
on-�gurations with many +1's and disfavors those with many −1's. This hasdramati
 
onsequen
es.Re
all the theorem from Le
ture 6 saying that the Ising model on Z
d, d ≥

2 (without external �eld) has a 
riti
al value βc ∈ (0,∞) su
h that there isa unique Gibbs measure if β < βc and multiple Gibbs measures if β > βc.In 
ontrast, when h 6= 0 there is, on Z
d, always only one Gibbs measure.I will not show the full result to this extent, but be 
ontent with a reasonablystrong partial result in this dire
tion (Proposition h below).The Ising model on Z

d with external �eld 
an be de�ned analogously towhat i did for the h 6= 0 
ase in Le
ture 4, in terms of 
onditional probabilitieson �nite sets. Mu
h of the sto
hasti
 domination ma
hinery from Le
ture 5goes through with hardly any 
hange in the arguments. Very brie�y:Lemma GHM 4.13 goes through for the h 6= 0 
ase, leading to the sto
has-ti
ally de
reasing sequen
e
Πβ,h,+

1 �D Πβ,h,+
2 �D Πβ,h,+

3 �D · · ·of probability measures Πβ,h,+
n on {−1,+1}Zd 
orresponding to putting all

+1's outside Λn, and then pi
king the spins on Λn a

ording to the 
ondi-tional distribution 
orresponding to the energy fun
tion in (22) and all +1boundary. The limiting measure Πβ,h,+ is a Gibbs measure for the Isingmodel on Z
d with the given parameters, it is translation invariant, and itsto
hasti
ally dominates all other su
h Gibbs measures. We 
an analogously
onstru
t Πβ,h,− with similar properties and the result that any further Gibbsmeasure Πβ,h with the same parameter values is sandwi
hed between Πβ,h,−and Πβ,h,+ in the sense of sto
hasti
 domination. Hen
e, Gibbsian unique-ness is equivalent to

Πβ,h,− = Πβ,h,+ .What we would now most like to show (and what is in fa
t true) is the resultthat
Πβ,h,− = Πβ,h,+ whenever h 6= 035



but will for reasons of spa
e and time settle for the following weaker result.Proposition h: For �xed β ≥ 0, we have
Πβ,h,− 6= Πβ,h,+for at most 
ountably many values of h.Depending our mood, we 
an either view this result as very weak (be
auseit does not settle the uniqueness issue for any given (β, h)) or very strong(be
ause it proves that uniqueness holds for Lebesgue-almost all (β, h)).As a preparation for the proof of Proposition h, �x β, de�ne Mβ,+(h)as the Πβ,h,+-expe
tation of the spin value at s ∈ Z

d (whi
h by trans-lation invarian
e is independent of s), and de�ne Mβ,−(h) as the Πβ,h,−-expe
tation of the same quantity. (M is for magnetization.) A straight-forward adaptation of the proof of Lemma GHM 4.13 shows that if h1 ≤ h2,then Πβ,h1,+
n �D Πβ,h2,+

n , so that Πβ,h1,+ �D Πβ,h2,+ and
Mβ,+(h1) ≤ Mβ,+(h2) .Similarly we get
Mβ,−(h1) ≤ Mβ,−(h2)and, for any h ∈ R,
Mβ,−(h) ≤ Mβ,+(h) .These three inequalities for the magnetization should all be intuitively ob-vious, be
ause in
reasing h should favor having more +1's regardless ofwhether we're in the plus measure or the minus measure, while going fromthe minus measure to the plus measure while keeping the parameters 
on-stant should have the same e�e
t.A mu
h less obvious issue is, again for h1 ≤ h2, Mβ,+(h1) 
omparesto Mβ,−(h2). The boundary 
ondition wants the inequality to go one way,while the external �eld wants the other. It turns out that the external �eldwins:Lemma h: Whenever h1 < h2, we have

Mβ,+(h1) ≤ Mβ,−(h2) .Intuitively, the reason that this is true is that when we look at the e�e
tof boundary 
ondition and external �eld on a box Λn, the former a
ts onthe boundary while the latter a
ts in the entire box, and sin
e the surfa
e-to-volume ratio goes to 0 as n → ∞ the latter wins no matter how small36



h2 − h1 is. Turning this intuition into a proof is, as we shall see, nontrivialbut doable.Before proving the lemma, let's show how it implies Proposition h. Sup-pose that
Πβ,h,− 6= Πβ,h,+ . (23)Then Mβ,−(h) < Mβ,+(h) (be
ause otherwise in the 
oupling witnessingtheir sto
hasti
 domination we'd never see any disrepan
y, 
ontradi
ting(23)). Write δ > 0 for the di�eren
e between these magnetizations. Lemmah ensures that for any ǫ > 0 we have

Mβ,+(h − ǫ) ≤ Mβ,−(h) = Mβ,+(h) − δso that
lim
ǫց0

Mβ,+(h − ǫ) < Mβ,+(h)and Mβ,+ thus exhibits a dis
ontinuity at h. But an in
reasing fun
tion 
anhave at most un
ountably many dis
ontinuities (be
ause ea
h dis
ontinuityskips some rational number, and there are only 
ountably many rationals),so (23) 
an hold for at most 
ountably many h, and Proposition h follows.What remains is to prove the lemma:Proof of Lemma h: We will 
ouple two {−1,+1}Zd -valued random obje
ts
X ∼ Πβ,h1,+ and X ′ ∼ Πβ,h2,− in the simplest possible way: independently.Our �rst 
laim is that, with probability 1,

lim
n→∞

1

|Λn|
∑

s∈Λn

Xs = Mβ,+(h1) . (24)Existen
e of the limit follows from translation invarian
e, and if the limitwere nontrivially random it would have to ex
eed Mβ,+(h1) with positiveprobability. Conditioning on doing so would give again a Gibbs measure(be
ause 
onditioning on anything in the tail σ-�eld preserves the de�ning
onditional distributions on �nite sets), and one with a higher magnetization,
ontradi
ting what we already know about Πβ,h1,+ sto
hasti
ally dominatingall other Gibbs measures with the same parameters. Hen
e (24). And bythe same argument,
lim

n→∞

1

|Λn|
∑

s∈Λn

X ′
s = Mβ,−(h2) . (25)Assume now that Mβ,+(h1) 6= Mβ,−(h2) (otherwise we're done). At thispoint, I don't want to 
ommit to 
ir
ular reasoning by presupposing whi
h37



of them is bigger, but de�ne
Mmax = max{Mβ,+(h1),M

β,−(h2)}and
Mmin = min{Mβ,+(h1),M

β,−(h2)}as well as
∆ = Mmax − Mmin > 0.Now imagine you're at a Game Show, where, for some large n, the hostreveals to you the following information:(i) XZd\Λn

= xZd\Λn(ii) X ′
Zd\Λn

= x′
Zd\Λn(iii) two 
on�gurations x̂Λn and x̌Λn , but no information on whi
h ofthem is XΛn and whi
h is X ′

Λn
.Your job is to guess whi
h is whi
h.First I'll (sort of) tell you how large n will be. Fix δ > 0 small, and pi
k

n large enough so that
P





1

Λn

∑

s∈Λn

x̂Λn − 1

Λn

∑

s∈Λn

x̌Λn ≥ ∆/2



 ≥ 1 − δ . (26)Suppose the event in (26) happens. Should you guess that (XΛn = x̂Λn ,X ′
Λn

=
x̌Λn) or vi
e versa? Well, let's 
al
ulate

P (XΛn = x̂Λn ,X ′
Λn

= x̌Λn |(i),(ii),(iii))
P (XΛn = x̌Λn ,X ′

Λn
= x̂Λn |(i),(ii),(iii))

=

1
Zx

exp

(

∑

〈s,t〉

s,t∈Λn

x̂sx̂t +
∑

〈s,t〉

s∈Λn,t∈∂(Λn)

x̂sxt + h1
∑

x∈Λn
x̂s

)

1
Zx

exp

(

∑

〈s,t〉

s,t∈Λn

x̌sx̌t +
∑

〈s,t〉

s∈Λn,t∈∂(Λn)

x̌sxt + h1
∑

x∈Λn
x̌s

)

×

1
Zx

exp

(

∑

〈s,t〉

s,t∈Λn

x̌sx̌t +
∑

〈s,t〉

s∈Λn,t∈∂(Λn)

x̌sx
′
t + h1

∑

x∈Λn
x̌s

)

1
Zx

exp

(

∑

〈s,t〉

s,t∈Λn

x̂sx̂t +
∑

〈s,t〉

s∈Λn,t∈∂(Λn)

x̂sx′
t + h1

∑

x∈Λn
x̂s

)

≤ exp

(

β

(

4|∂(Λn)| + ∆

2
(h1 − h2)|Λn|

))38



whi
h tends to 0 as n → ∞ due to the fa
t that |∂(Λn)|
|Λn|

→ 0.So with probability at least 1 − δ, X ′ has a.s. the higher total spin inlarge enough boxes, and sin
e δ > 0 was arbitrary it in fa
t holds a.s. Hen
ethe limit in (24) is smaller than the limit in (25), and the lemma is proved.
⋄That |∂(Λn)|

|Λn|
→ 0 is in fa
t 
ru
ial here, and if Z

d is repla
ed by some latti
efor whi
h no sequen
e of �nite subsets with vanishing surfa
e-to-volume ratioexists (so-
alled nonamenable latti
es), Proposition h fails, as dis
ussed in[JS℄.12 Friday, May 16No deep deriavtions in today's �nal le
ture, just brief expositions of twoother Markov random �eld models we have't had time to dis
uss before: thePotts model, and Markov random �elds.
∗The Potts model is a natural extension of the Ising model to larger statespa
es: {−1,+1} is repla
ed by {1, . . . , q}. Taking q = 2 just gives ba
kthe Ising model with new symbols, whereas q ≥ 3 gives something genuinelydi�erent.For �nite S and β ≥ 0, let H : {1, . . . , q}S → R be given by

H(x) = −2β
∑

〈s,t〉

1{xs=xt}and probability measure Π on {1, . . . , q}S given by, as usual,
Π(x) =

1

Z
exp(−H(x)) .(Why the 2 in the formula for H(x)? It's just a matter of de�nition, of 
ourse,but it's there to harmonize with the Ising model, where the summands xsxtvary between two values di�ering by 2, whereas here the summands vary justbetween 0 and 1, di�ering by 1.)The extension to Z

d works the same way as for the Ising model as faras de�nitions go, but some of the arguments for existen
e and uniquenessof Gibbs measures be
ome harder, be
ause the q ≥ 3 Potts model does notenjoy quite the same sto
hasti
 domination properties as the Ising moedl.Still, the main theorem quoted in Le
ture 6 
on
erning phase transition in39



the Z
d Ising model goes through in the Potts model: for �xed q ≥ 2 and

d ≥ 2, there is a 
riti
al value βc ∈ (0,∞) su
h that the q-state Potts modelon Z
d has a unique Gibbs measure when β < βc and multiple Gibbs measureswhen β > βc.One di�eren
e between phase transition behavior the Ising and the q ≥ 3Potts 
ases is that, while in both 
ases the magnetization (suitably de�nedand normalized) is 0 for β < βc and positive for β > βc, it takes o� 
ontinu-ously at β = βc in the Ising 
ase, and has a jump dis
ontinuity in the q ≥ 3Potts 
ases; this is of great interest in statisti
al me
hani
s.A major tool for studying the Potts model is the so-
alled random-
luster representation, de�ned as follows.Fix S �nite, and neighborhood system ∂, and de�ne the edge set

E = {〈s, t〉 ∈ S2 : s, t neighbors} .Fix q and β , let p = 1 − e−2β, and do as follows:1. Let X ∈ {1, . . . , q}S be i.i.d. uniform on {1, . . . , q}.2. Independently of the �rst step, let Y ∈ {0, 1}E be i.i.d. with ea
h edgehaving probability p of taking value 1 (interpreted as �retained�) andprobability 1 − p of taking value 0 (�deleted�).3. Condition on the event that Xs = Xt for all s, t ∈ S su
h that 〈s, t〉 ∈ Eand Y〈s,t〉 = 1.It turns out that if we do this, then X has distribution Π (the Potts modelwith parameters q and β). The random edge 
on�guration q gets a distri-bution ν on {0, 1}E whi
h is known as the random-
luster model withparameter p and q, 
hara
terized by
ν(Y = y) =

1

Z
qk(y)

∏

e∈E

py(e)(1 − p)1−y(e)where k(y) is the number of 
onne
ted 
omponents in the edge 
on�guration
y. The distributions of X and Y both have intri
ate dependen
ies, but itturns out that in this 
oupling (the so-
alled Edwards�Sokal 
oupling)the 
onditional distribution of X given Y , as well as the 
onditional dis-tribution of Y given X are both very simple. The former is that on ea
h
onne
ted 
omponent, a spin value is 
hosen uniformly from {1, . . . , q} to beassigned to all vartie
s in the 
omponent, and this is done inedpendently for40



di�erent 
omponents. The latter is that given X, the edge variables are in-dependent, with 〈s, t〉 having probability p of taking value 1 if X(s) = X(t),and probability 0 otherwise.This beautiful dependen
e stru
ture 
an be exploited for at least towpurposes:(i) To redu
e di�
ult questions about dependen
ies in the Potts moedl to
omparatively easier questions about 
onne
tivity probabilities in therandom-
luster model; Chapter 6 of [GHM℄ 
ontanis extensive dis
us-sion of this.(ii) To simulate Π by going ba
k and forth between X and Y in Gibbssampler style. This is the so-
alled Swendsen�Wang algorithm, whi
hturns out in pra
ti
e to be more e�
ient (although less �exible) thanthe single-site Gibbs sampler dis
ussed in Le
ture 6.
∗Next,Gaussian Markov random �elds. Let S and E be as before (�nite),and let B = {s1, . . . , sm} be a subset of S. Fix b1, . . . , bm ⊂ R (the boundary
ondition) and σ2 > 0 (the varian
e parameter), and pi
k X ∈ R

S as follows.First let Xsi
= bi for ea
h si ∈ B. Then pi
h XS\B a

ording to density

1

Z
exp











− 1

2σ2











∑

〈s,t〉

s,t∈S\B

(xs − st)
2 +

∑

〈s,t〉

s∈S\B,t∈B

(xs − xt)
2





















.It then turns out(a) that X is a Markov random �eld in the obvious analogous sense tothe dis
rete 
ase: the distribution of XA given XS\A depends only on
X∂(A), and(b) that XS\B is Multivariate Gaussian.The model is na a sense isomorphi
, in a way that is both mathemati
allybeautiful and useful, to random walks and ele
tri
al networks. The 
onne
-tions are outlined in Se
tion 9.4 of [J℄.For instan
e, 
al
ulating E[Ss] for s ∈ S \B is equivalent to either of thefollowing two: 41



(i) Run a simple random walk on the network (S,E) starting at s, and
al
ulate the expe
ted value of bi at the �rst site in B en
ountered bythe random walk.(ii) Consider the ele
tri
al network om (S,E) with σ2-ohm resistors on theedges, and voltages b1, . . . , bm applied at B, and 
al
ulate the resultingvoltage at s.The relation between V ar[Xs] and the random walk and ele
tri
al networkformulations are even more interersting, and involve e�e
tive resistan
es andreturn probabilities. The fa
t that simple random walk on Z
d is re
urrentfor d = 1, 2 and transient for d ≥ 3 is essentially the same thing as the fol-lowing fa
t for Gaussian Markov random �elds. If we 
onsider the GaussianMarkov random �eld on Λn ∪ ∂(Λn) with the usual neighborhood stru
ture,

B = ∂(Λn) and bi identi
ally 0, then the varian
e X0 at the origin tends to
∞ with n for d = 1 and 2, but remains bounded. This means that an im-portant limiting obje
t known as the dis
rete Gaussian free �eld 
an bedire
tly de�ned by this limiting pro
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