
Brief leture notes on Markov random �eldsfor a graduate ourse given in the spring of 20141Olle HäggströmThese notes do not onvey the full ontent of the ourse, but are merelymeant as a omplement to [GHM℄ and [W℄.1 Wednesday, Marh 19We'll adhere as far as possible to the notation laid down in Setion 3.1 ofWinkler [W℄, but I have some reservations regarding parts of his terminology.In partiular, for a �nite index set S, a �nite set Xs of attainable values ateah s ∈ S, and X =
∏

s∈S Xs, he de�nes a random �eld as a probabilitymeasure Π on X satisfying
Π(x) > 0 for all x ∈ X . (1)Spontaneously I'd all Π a random �eld regardless of whether or not (1)holds. In many ases (1) is a very useful assumption, but to require it fora probability measure on X to qualify as a random �eld seems to me un-natural. I'll sometimes onsider examples violating (1), unabashedly allingthem random �elds. And whenever (1) is needed I'll emphasize it expliitly,sometimes alling it Winkler's positivity ondition (a bit sloppily, as Winkleris far from the �rst to employ it).

∗Please pay attention to De�nitions 3.1.1 (of neighborhood systems and liques)and 3.1.2 (of Markov �elds). Winkler's de�ning property of Markov �eldsin De�nition 3.2.1 is what I would all the loal Markov property. Moregenerally, one an ask, for any A ⊂ S, whether
Π(XA = xA |XS\A = xS\A) = Π(XA = xA |X∂(A) = x∂(A)) (2)holds for all x ∈ X, where ∂(A) =

⋃

s∈A ∂(s) \ A. I propose the followingterminology.1See also http://www.math.halmers.se/�olleh/MarkovRandomFieldsVT2014.html1



• If (2) holds for all singletons A = {s}, then we say Π satis�es the loalMarkov property.
• If (2) holds for all �nite A ⊂ S, then we say Π satis�es the regionalMarkov property.
• If (2) holds for all A ⊂ S, then we say Π satis�es the global Markovproperty.At this point, it might seem a bit moroni to distinguish between the re-gional and global Markov properties, beause S is assumed to be �nite, soevery A ⊂ S is automatially �nite, and the regional and global propertiestrivially oinide. But have patiene, later in the ourse we will move on toountably in�nite S, and then the distintion will be real.2 In any ase, wehave, trivially, that the global Markov property implies the regional, and theregional implies the loal. What about the other diretions?We will see in a later leture that if we assume Winkler's positivity on-dition, then the loal Markov property does imply the regional Markov prop-erty, while without the positivity assumption we'll see a ounterexample tothe hoped-for impliation. As to the regional Markov property implyingthe global, we'll see in the setting of ountably in�nite S that there areounterexamples (even assuming natural extensions of Winkler's positivityto that setting).

∗The Ising model (Example 3.1.2) is de�ned as follows. Fix a �nite S anda neighborhood struture ∂, and let Ss = {−1,+1} for eah s ∈ S, so that
X = {−1,+1}S . (For onreteness, we may, e.g., take S to be a square grid
{0, 1, . . . , n}2, with edges onneting sites at Eulidan distane 1 from eahother.) For �xed β > 0 (the so-alled inverse temperature parameter), theenergy H(x) of a on�guration x ∈ X is de�ned as

H(x) = −β
∑

〈s,t〉

xsxt (3)where 〈s, t〉 means that we sum over all neighboring pairs of sites in S,ounting eah suh pair one. We then de�ne a probability measure Π on X2Note, however, that when S is in�nite, then X will be unountable, so that most
x ∈ X will get probability 0, and we need to take some are with onditional probabilities,e.g., by writing �If Π admits onditional probabilities suh that (2) holds...� in plae of �If(2) holds...�. 2



by setting, for eah x ∈ X,
Π(x) =

1

Z
exp(−H(x)) (4)where Z =

∑

y∈X e−H(y) is a normalizing onstant making the probabilitiessum to 1.Probabilities of the form (4) are alled Gibbs measure. Other hoiesof energy funtion are possible, but with the present hoie, we all Π theIsing model on S and at inverse temperature β.Thousands of mathematis papers have been written on the Ising model,and even more physis papers. Yet, it may look odd at �rst? Why is thisa natural hoie of probability measure? There are many reasons, I'll o�ertwo:First, it's a Markov random �eld. To see this, �x s ∈ S and x ∈ X, andonsider the odds ratio
Π(Xs = +1 |Xr = xr,∀r 6= s)

Π(Xs = −1 |Xr = xr,∀r 6= s)
=

Π(Xs = +1,Xr = xr,∀r 6= s)

Π(Xs = −1,Xr = xr,∀r 6= s)

=
1
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whih only depends on x via its values on ∂(s).Seond, exp(sum) = produt, and produt means independene (a fun-damental building blok in almost all probabilisti modelling) so that Gibbsmeasures with energy funtion H(x) =
∑ exhibit some independene (or,more preisely, onditional independene) struture. We'll see in the Hammer-sley�Cli�ord Theorem next week, that every Markov random �eld (inWinkler's sense) an be written as a Gibbs measure with H equal toa sum over liques. Here are a ouple of really simple rewrites into Gibbsmeasures, building up towards the Ising model:3



Example 0. Let {Xs}s∈S be i.i.d. random variables with
{

Π(Xs = +1) = p
Π(Xs = −1) = 1 − p .For x ∈ X = {−1,+1}S ,

Π(x) = p(#+1's in x)(1 − p)(#−1's in x) = exp(−H(x))where
H(x) = −

∑

s∈S

(log(p)1{xs=+1} + log(1 − p)1{xs=−1}) .Example 1. Let S = {0, 1, . . . , n}, and de�ne X = (X0,X1, . . . ,Xn) as a(symmetri, two state) Markov hain with initial value X0 equal to −1or +1 with probability 1/2 eah, and transition matrix
[

p 1 − p
1 − p p

]

.Then any given x ∈ X has probability
Π(x) =

1

2

n
∏

i=1

p{1xi−1=xi
}(1 − p){1xi−1 6=xi

}

= · · ·

=
(p(1 − p))n/2

2
exp

(

n
∑

i=1

log

(√

p

1 − p

)

xi−1xi

)

=
(p(1 − p))n/2

2
e−H(x)with H(x) = − log

(
√

p
1−p

)

∑n
i=1 xi−1xi, so this is the Ising model on

S (and neighborhood system ∂ where i and j are neighbors whenever
|i − j| = 1) at inverse temperature β = log

(
√

p
1−p

).This last example re�ets a more general fat that (under mild onditions), aMarkov hain is also a Markov random �eld with a 1-dimensional dependenestruture. If we now want to introdue similar interations on a grid or amore general graph struture, we have the Ising model.4



2 Wednesday, Marh 26As before, we take S �nite, Xs �nite for eah s ∈ S, X =
∏

s∈S Xs, and Π astritly positive probability measure on X. If Π an be written as
Π(x) =

1

Z
e−H(x)for a given funtion H : X → R, then Π is said to be a Gibbs measurefor energy funtion H. Every stritly positive Π is a Gibbs measure forsome H, and by adding a onstant to H we are even free to hoose our ownfavorite value of the normalizing onstant Z. Indeed, de�ning H by

H(x) = − log(Π(x)) − log(Z)gives
1

Z
e−H(x) =

1

Z
elog(Π(x))+log(Z)

=
1

Z
Π(x)Z = Π(x) .Hene, being a Gibbs measure is in itself not a remarkable property. Moreinteresting is if Π is a neighbor Gibbs measure for a given neighborhoodsystem ∂, meaning that

H(x) =
∑

C

Uc(x)where the sum ranges over liques C ⊂ S for ∂, and UC(x) depends on x ∈ Xonly via {xs}s∈C .Part of Proposition 3.2.1 in [W℄: If Π is a neighbor Gibbs measure forthe neighborhood system ∂, then Π satis�es the loal Markov property for thesame ∂.To prove this, it su�es to show that for any s ∈ S, x ∈ X and ys, zs ∈ Xs,the odds ratio
Π(Xs = ys |Xr = xr,∀r 6= s)

Π(Xs = zs |Xr = xr,∀r 6= s)depends on x only via x∂(s). To do this, proeed as in the proof of the loalMarkov property for the Ising model in my �rst leture � and enjoy all theanellation! (Or see [W℄, p 55�56.)A muh deeper result (in my view) is the following partial onverse:5



The Hammersley�Cli�ord Theorem (Part of Thm 3.3.2 in [W℄): If
Π is a (stritly positive) Markov random �eld for ∂, then it is also a neighborGibbs measure for ∂.See [W℄ for the proof, whih yields an expliit formula for UC(x). It involvesa series of alulations, and proeeds via two other results � Lemma 3.3.1(the Möbius Inversion Formula) and Theorem 3.3.1.3 Friday, Marh 28Staying as before in the �nite setting (with both S and {bfX} �nite), reallfrom Leture 1 my de�nitions of loal versus regional Markov properties. Theregional Markov property trivially implies the loal, but how about the otherdiretion? This leture will be devoted to proving the following result.Theorem L3:(a) Under Winkler's positivity ondition, the loal Markov property impliesthe regional.(b) Without Winlker's positivity, there are onterexamples to show that theloal markov property does not imply the regional.Part (b) is relatively the easier prat, so let's begin with that.Proof of Thm L3 (b): Set S = {s1, s2, s3, s4, s5}, Xs = {0, 1} for eah
s ∈ S, and de�ned the neighborhood system ∂ in suh a way that 〈s1, s2〉,
〈s1, s3〉, 〈s2, s3〉, 〈s3, s4〉, 〈s3, s5〉 and 〈s5, s6〉 are neighbors (draw the graph- a bowtie!). De�ne Π as the probability measure on X with



























Π(0, 0, 0, 0, 0) = 1
4

Π(0, 0, 1, 0, 0) = 1
4

Π(1, 1, 0, 1, 1) = 1
4

Π(1, 1, 1, 1, 1) = 1
4

Π(x) = 0 for all other x ∈ XThe loal Markov property is easy to hek: Π(Xs3 = 0|XS\s3
= xS\s3

) = 1
2regardless of x ∈ X; while

Π(Xs1 = 0|XS\s1
= xS\s1

) =

{

1 if xs2 = 0
0 if xs2 = 1whih only depends on x via x∂(s1); and similarly for Xs2 , Xs4 and Xs5 . Sothe loal Markov property holds. 6



On the other hand, take A = {s1, s2} so that ∂(A) = {s3}, and note that
Π(XA = (0, 0)|Xs3 ,s4,s5 = (0, 0, 0)) = 1while

Π(XA = (0, 0)|Xs3 = 0) =
1

2so that the regional Markov property fails. ⋄As to Theorem L3 (a), this an be proved using the methods involvingMöbius Inversion disussed in Leture 2, and is in fat part of Winkler'sTheorem 3.3.2. I'll o�er a ompletely di�erent proof, whih proeeds viaoupling of Markov hains � a method I �nd more illuminating and thereforepreferable, although I realize this may be mostly a matter of taste.Proof of Thm L3 (a): Fix S, X, ∂ and a distribution Π on X satisfyingboth the loal Markov property and Winkler's positivity. Also �x A ⊂ S,and x, x′ ∈ X suh that x∂(A) = x′
∂(A). We need to show that

Π(XA = xA|XS\A = xS\A) = Π(XA = xA|XS\A = x′
S\A) . (5)A small piee of extra notation will be onvenient: let Π|xS\A

denote Πonditioned on taking values x on S \ A, and de�ne Π|x′
S\A

analogously.We will de�ne two X-valued Markov hains (X0,X1, . . .) and (X ′
0,X

′
1, . . .),designed in suh a way that for every k,

{

X(k) has distribution Π|xS\A

X ′(k) has distribution Π|x′
S\ATo this end, we pik the initial values X(0) and X ′(0) with these respetivedistributions, and let the two hains evolve aording to transition meh-anisms that preserve their respetive distributions. Namely, at eah time

k ≥ 1, selet s ∈ A at random (uniformly), and let


















Xs(k) = a new value hosen aording to Πonditioned on agreeing with
X(k − 1) on S \ s

Xt(k) = Xt(k − 1),∀t ∈ S \ s .The (X ′
0,X

′
1, . . .) hain will in fat have the same transition kernel, hoosing

s ∈ A at random (uniformly) and letting


















X ′
s(k) = a new value hosen aording to Πonditioned on agreeing with

X ′(k − 1) on S \ s
X ′

t(k) = X ′
t(k − 1),∀t ∈ S \ s .7



(This Markov hain transition kernel is a variant of the so-alled Gibbssampler for Π; see Setion 5.1 in [W℄.)This de�nes the two hains separately, but we will ouple them, i.e., runthem jointly on the same probability spae, and then we need to speify theirinterdependene. First, pik the initial values X(0) and X ′(0) independently.Seond, at eah time k, let the two hains pik the same s ∈ A to update.Third, the new values Xs(k) and X ′
s(k) are hosen











to be idential if X∂(s)(k − 1) = X,∂(s) (k − 1) (this is possible bythe assumed loal Markov property of Π)independently otherwise. (6)The great thing about this rule is thatas soon as the two hains oinide on A (and thus on A ∪ ∂(A)),they will do so forever more. (7)And they will almost surely do so, eventually. One way to see this by notingthat if on |A| onsequtive updates, the hoies of s happen to san throughall of A, and if eah time the two hains happen to pik the same value at s,then they will oinide on A at the end of the san. The event that suh asuesful turn of events happens during times 1, . . . , k is easily seen to haveprobability at least
(

δ2

|A|

)|A|

, (8)where
δ = min

s∈A
min
x∈X

Π(Xs = xs|XS\s = xS\s)whih is > 0 sine we assumed Winkler's positivity. The probability in (8)may be a very small, yet stritly positive, and the point is that if the eventhappens to fail during times 1, . . . , k, then it has another hane at times
k+1, . . . , 2k, and another at times 2k+1, . . . , 3k, and so on. The probabilityof seeing suh a oalesene by time km is therefore

1 −


1 −
(

δ2

|A|

)|A|




mwhih tends to 1 as m → ∞. Hene, in ombination with (7), we get
lim

k→∞
P (XA(k) 6= X ′

A(k)) = 0.8



It follows that for any on�guration ya ∈ XA we have
lim

k→∞
|P (XA(k) = yA) − P (X ′

A(k) = yA)| = 0,i.e. for any ε > 0, there is a k < ∞ suh that
|P (XA(k) = yA) − P (X ′

A(k) = yA)| < ε .But sine the hains are stationary, this means we also have
|P (XA(0) = yA) − P (X ′

A(0) = yA)| < ε ,and sine ε > 0 and yA ∈ XA were arbitrary, we get that the distributionsof XA(0) and X ′
A(0) oinide. We thus have (5), as desired. ⋄

∗Exerise: Theorem 3.3.1 (b) in [W℄ states that if Π and Π′ are stritlypositive probability distributions on X suh that for all s ∈ S and all x ∈ Xwe have
Π(Xs = xs|XS\s = xS\s) = Π′(X ′

s = xs|X ′
S\s = xS\s)then we also have Π = Π′. Reprove this result using today's Markov haintehnique!4 Friday, April 4Two of the main motivations for studying Markov random �elds ome from(a) image analysis, and (b) statistial mehanis. I'll leave you with Winkler[W℄ to learn about (a), and I'll talk here about what I know better, whihis (b), piking up most of that stu� from my paper [GHM℄ with Hans-OttoGeorgii and Christian Maes. Notation in [GHM℄ lashes with that in [W℄,but I'll try in these letures to stik with the [W℄ notation I started out with.

S used to be �nite, but now we'll take it to be a ountably in�nite set(typially S = Z
d) and de�ne a neighborhood system ∂ = {∂(s)}s∈S suhthat eah ∂(s) is �nite (typially, with S = Z

d, ∂(s) onsists of the 2d sitessitting at Eulidean distane 1 from s). For eah s ∈ S, let Xs be �nite, andlet X =
∏

s∈S Xs (typially, Xs is the same for all s, in the Ising ase with
Xs = {−1,+1}). 9



De�nition. The probability measure Π on X is said to be a Markov ran-dom �eld if it satis�es the regional Markov property, i.e., if Π ad-mits onditionl probabilities suh that for any �nite A ⊂ S and Π-almost all
x ∈ X, we have

Π(XA = xA|Xt = xt,∀t ∈ S \ A) = Π(XA = xA|Xt = xt,∀t ∈ ∂(A)) .(See [GHM℄, p 10, eq (5).)Apologies for the inonsisteny in de�ning MRF in terms of the regionalMarkov property, rather than the loal Markov property is we did followingWinkler in the �nite ase. I just �nd the regional Markov property a somuh more natural de�nition. Perhaps we'd better always be expliit aboutwhih Markov property we have in mind.We saw in the �nite ase that under Winkler's positivity ondition, thetwo properties are equivalent. The same is true in the present setting ofountably in�nite S, although we have to be areful what we mean by theondition in this ase. We annot (as in the �nite ase) ask that every
x ∈ X has positive Π-probability, beause X is (in nondegenerate ases)unountable, so that's simply impossible. Instead, we have two andidatepositivity onditions that make sense:(a) For any �nite A ⊂ S and any xA ∈ XA, Π(XA = xa) > 0.(b) Π admits onditional probabilities suh that for any �nite AsubsetS,any xA ∈ XA and any xS\A ∈ XS\A we have

Π(XA = xa|XS\A = xS\A) > 0 .Condition (a) may seem simpler, but (b) turns out to be even more impor-tant in statistial mehanis and perolation theory, where it is known asthe �nite energy ondition. (b) implies (a), obviously, but the followingexample shows that the reverse impliation fails.Example: Let S = Z
2 (or whatever ountably in�nite set you want) and

Xs = {0, 1} for eah s ∈ S. Let Π be the probability measure orrespondingto �rst tossing a fair oin, and then, if heads, let Xs = s for all s ∈ S,while if tails, let all the Xs values be determined by i.i.d. fair oin tosses.Clearly property (a) holds, whereas (b) fails, sine if we ondition on hav-ing all 1's outside A (an event with positive probability), then the onditionalprobability of seeing any 0 in A is 0.10



Still, the weaker ondition (a) turns out to su�e for the asked-for equiva-lene between loal and regional Markov properties.
∗Now let us de�ne the Ising model on Z

d (with the standard neighborhoodstruture) at inverse temperature β ≥ 0. Reall �rst that for �nite S, wede�ned it as the probability measure on {−1,+1}S given by
Π(x) =

1

Z
exp(−H(x)) where H(x) = −β

∑

〈x,y〉

xsxt .For in�nite S this won't do, beause the sum ∑

〈x,y〉 xsxt will diverge. In-stead:De�nition: A probability measure Π on {−1,+1}Zd is said to be a Gibbsmeasure for the Ising model on Z
d (with the given neighbothood struture ∂)at inverse temperature β ≥ 0 if it is a Markov random �eld suh that for all�nite A ⊂ Z

d, all x∂(A) ∈ {−1,+1}∂(A) and all xA ∈ {−1,+1}A we have
Π(Xa = xA|X∂(A) = x∂(A)) =

1

Z
exp











β
∑
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s,t∈A

xsxt + β
∑
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(9)where
Z =

∑

yA∈XA

exp
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〈s,t〉
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ysyt + β
∑

〈s,t〉

s∈A,t∈∂(A)

ysxt









is a normalizing onstant.The �rst thing to realize at this point is that the onditional distributionsgiven by (9) oinide with those that we get for the Ising model on a �nite
S. Next, the two basi questions are(a) Given β ≥ 0, does suh a Π on {−1,+1}Zd exist?(b) If yes, then is it unique?We'll answer these questions in the next leture. (SPOILER ALERT: Theanswer to (a) is �yes�, and the answer to (b) is �that depends on β�.)11



5 Wednesday, April 9In response to the questions (a) and (b) at the end of the previous le-ture, let's onstrut (fairly expliitly) a partiular Gibbs measure Π+ on
{−1,+1}Zd . It arises as a limit as n → ∞ of probability measures Π+

n on
{−1,+1}Zd . De�ne the box Λn = {−n, . . . , n}d, and let Π+

n be the distribu-tion of the {−1,+1}Zd -valued random objet X that arises by(i) setting Xs = +1 for all s ∈ Z
d \ Λn,(ii) piking XΛn aording to the onditional distribution given in (9), withall +1's on ∂(Λn).

Π+
n is ertainly not a Gibbs measure for the Ising model on Z

d, sine spinsoutside Λn are fored to take value +, violating (9). But inside Λn thingsbehave as they should, and by sending n → ∞ the misbehaving region willdisappear on us.But why would the limiting measure exist, and in what sense? The keyto understanding this is oupling and stohasti domination.Let � denote oordinatewise partial order on {−1,+1}S (with S�nite or ountably in�nite), i.e., for x, y ∈ {−1,+1}S we say x � y if xs ≤ ysfor all s ∈ S.De�nition GHM 4.5, Stohasti domination: For two probability mea-sures Π and Π′ on {−1,+1}S , we say Π �D Π′ if
Π(f) ≤ Π′(f)for every inreasing (w.r.t. �) and bounded f : {−1,+1}S → R.Theorem GHM 4.6, Strassen's Theorem: Π �D Π′ if and only if thereexists a oupling of two {−1,+1}S-valued random objets X and X ′ suhthat X has distribution Π, X ′ has distribution Π′, and P (X � X ′) = 1.The �if� diretion here is obvious. The �only if� diretion is deeper, andproving it would take us too far, so we'll skip the proof.De�nition GHM 4.5 and Theorem GHM 4.6, as phrased a bit narrowlyhere, extend to the ase where {−1,+1} is replaed by R. A major tool forestablishing stohasti domination is the following.Theorem GHM 4.8, Holley's Theorem: Let S be �nite, and R a �nitesubset of R. Let Π and Π′ be stritly positive probability measures on RS,12



and assume that for all s ∈ S, all ys ∈ R and all x, x′ ∈ RS\s suh that
x � x′ we have

Π(Xs ≥ ys|Xt = xt,∀t 6= s) ≤ Π(X ′
s ≥ ys|X ′

t = x′
t,∀t 6= s) . (10)Then Π �D Π′.It is important that you understand the proof of this result (based on ou-pling of two RS-valued Markov hains known as Gibbs samplers for Π and

Π′), but I refer you to [GHM℄ for the proof.Holley's Theorem has the following important onsequene for the Isingmodel.Lemma GHM 4.13: Fix n (and d and β) and let x, x′ ∈ {−1,+1}∂(λn) beboundary onditions satisfying x � x′. Let Π and Π′ be two probability mea-sures on {−1,+1}Λn representing the ising model onditional distributionson Λn with respetive boundary onditions x and x′. Then Π �D Π′.The proof is just a matter of heking that the single-site onditional proba-bilities under Π and Π′ satisfy (10), and invoking Theorem GHM 4.8. Makesure you know how to do that!Lemma pre-Prop GHM 4.14: For any n ≥ 1,
Π+

n �D Π+
n+1 . (11)Proof: Here's a oupling of two {−1,+1}Zd -valued random objets X+

n and
X+

n+1 establishing (11).Set X+
n = X+

n+1 ≡ +1 on Z
d \ λn+1.Set X ≡ +1 on Λn−1 \ Λn.Pik the X+

n+1 on�guration on Λn−1 \ Λn aording to whatever is itsorret marginal distribution.Pik the X+
n and X+

n+1 on�gurations on Λn in suh a awy that X+
n � X+

n+1on this box; suh a oupling exists by Lemma GHM 4.13 using theorresponding domination on Λn−1 \ Λn ensured by steps 2 and 3.This gives a oupling suh that, a.s., X+
n � X+

n+1 on all of Z
d. ⋄

13



So now we have pairwise ouplings witnessing Π+
n �D Π+

n+1 for eah n. Thisde�nes, for eah n, a onditional distribution of X+
n+1 given X+

n . By ap-plying these onditional distributions sequentially, we obtain a simultaneousoupling of all of them, with
X+

1 � X+
2 � X+

3 � · · ·and a limiting on�guration X+ ∈ {−1,+1}Zd whose distribution we denote
Π+ and all the plus measure for the Ising model on Z

d (at inversetemperature β). This probability measure has the following important prop-erties.1. Π+ is a Gibbs measure for the Ising model on Z
d with param-eter β. To see this, we just need to verify that for any �nite A ⊂ Z

d,the onditional distribution of X+
A given X+

Zd\A
is Markov with thepresribed distribution. This holds for Π+

n in plae of Π+ as soon as nis large enough so the Λn ontains A. Taking limits, this property isinherited by Π+.2. A similar limiting Gibbs measure Π− an also be obtained, with mi-nuses instead of pluses outside Λn in the �nite sages of the onstrution.
Π+ and Π− look the same exept with the roles of pluses and minusesinterhanged.3. Π+ �D Π for any Gibbs measure with the given parameter. Bythe same argument as in Lemma pre-Prop GHM 4.14 we get Π+

n �D Πand the orresponding oupling X+
n � X. The laim follows by sending

n → ∞.This gives in partiular
Π− �D Π �D Π+so that Gibbsian uniqueness is equivalent to having Π− = Π+.4. Π+ is translation invariant. To see this, note that we an build asimilar Gibbs measure Π+

shifted with the boxes Λn replaed by boxesentered not at the origin but somewhere else. This gives a shift of
Π+, and by the same argument as for Π+ we see that Π+

shifted stohas-tially dominates all other Gibbs measures. Hene Π+ �D Π+
shiftedand Π+

shifted �D Π+, and it's not hard to see that this implies Π+ =

Π+
shifted, and translation invariane follows.14



6 Monday, April 14The following is perhaps the most famous result for the Ising model.Theorem: For the Ising model on Z
d with d ≥ 2, there exists a ritial value

βc = βc(d) satisfying 0 < βc < ∞ suh that
{

β < βc ⇒ Π+ = Π−, Gibbsian uniqueness
β > βc ⇒ Π+ 6= Π−, Gibbsian nonuniquenessThis exludes the ase d = 1, beause there there is no phase transition: theIsing model on Z

1 has a unique Gibbs measure regardless of β (a fat loselyrelated to the fat that a �nite-state irreduible aperiodi Markov hain hasa unique stationary distribution).The statement of the theorem an be separated in three parts:(i) for β su�iently lose to 0 we have uniqueness,(ii) for β su�iently large we have nonuniqueness, and(iii) for β1, β2 suh that β1 < β2, nonuniqueness at β1 implies nonuniquenessat β2.All three are proved using perolation-theoreti methods in Chapters 5 and6 of [GHM℄. In this ourse we'll be less ambitious and restrit to d = 2 andparts (i) and (ii). (The proof we'll give for (i) extends in straightforwardmanner to d ≥ 3, whereas the same thing for (ii) is highly demanding.)Proposition small-β: For the Ising model on Z
2 with β < 1

8 log(5
3 ) we get

Π+ = Π−.Proof: Let us de�ne a {−1,+1}Zd -valued Markov hain (X+(0),X+(1), . . .)as a kind of massively parallel Gibbs sampler for Π+, as follows. Startby piking X+(0) aording to Π+. Then use separate transition mehanismsfor even and odd times k, as follows. Let Z
2
even denote the set of verties in

Z
2 whose sum of oordinates is even, and de�ne Z

2
odd analogously.For k even, set X+

s (k) = X+
s (k − 1) for all s ∈ Z

2
odd, whereas for all

s ∈ Z
2
even independently, update its value as in the single-site Gibbssampler.For k odd, set X+

s (k) = X+
s (k − 1) for all s ∈ Z

2
even, whereas for all

s ∈ Z
2
odd independently, update its value as in the single-site Gibbssampler. 15



Clearly, this dynamis preserves Π+, as well as it would preserve any otherGibbs measure for the Ising model at parapeter β that we'd are to startwith. So let's start another Markov hain (X−(0),X−(1), . . .) to run in par-allel with the �rst, but started with X−(0) hosen aording to Π− (andindependently of X+(0)). We need to speify how the hains are run to-gether. Here's how:De�ne, for all k = 1, 2, . . . and all s ∈ Z
2, i.i.d. uniform [0, 1] randomvariables U(s, k). When a node s is updated at time k, we set

X+
s (k) =















−1 if U(s, k) <
exp

(

−β
∑

t∈∂(s)
X+

t (k−1)

)

exp

(

β
∑

t∈∂(s)
X+

t (k−1)

)

+exp

(

−β
∑

t∈∂(s)
X+

t (k−1)

)

+1 otherwiseand
X−

s (k) =















−1 if U(s, k) <
exp

(

−β
∑

t∈∂(s)
X−

t (k−1)

)

exp

(

β
∑

t∈∂(s)
X−

t (k−1)

)

+exp

(

−β
∑

t∈∂(s)
X−

t (k−1)

)

+1 otherwise.Note now that the expression
exp

(

−β
∑

t∈∂(s) xt

)

exp
(

β
∑

t∈∂(s) xt(k − 1)
)

+ exp
(

−β
∑

t∈∂(s) xt

) =
1

1 + exp
(

−2β
∑

t∈∂(s) xt

)is maximized when ∑t∈∂(s) xt = 4 and minimized when ∑t∈∂(s) xt = −4,giving values 1
1+e−8 and 1

1+e8 , respetively. Denote by α, the di�erenebetween these two thresholds: α = 1
1+e−8 − 1

1+e8 . For reasons that willsoon be lear, we want the α to be less than 1
4 . Two lines of seondary-shool algebrai manipulation gives that α < 1

4 is equivalent to the ondition
β < 1

8 log(5
3) in the lemma.Consider an update at a site s at time k, and denote by As,k that at leastone of the verties t in ∂(s) has a disrepany at time k−1 between X−

t (k−1)and X+
t (k−1). For a disrepany to happen at s after the update, neessaryonditions are (a) As,k, and (b) that U(s, k) takes a value in the length-

α interval [ 1
1+e8 , 1

1+e−8 ]. Hene, with D(k) denoting the probability that anewly updated site s at time k su�ers from a disrepany (X−
t (k) 6= X+

t (k)),we get
D(k) = P (X−

s (k) 6= X+
s (k)) 16



= P (As,k)P (X−
s (k) 6= X+

s (k)|As,k) + P (¬As,k)P (X−
s (k) 6= X+

s (k)|¬As,k)

= P (As,k)P (X−
s (k) 6= X+

s (k)|As,k)

< 4D(k − 1)α.This reursive relation starts with D(0) ≤ 1 (trivially), so we get
D(k) ≤ (4α)k → 0 as k → ∞ .For any �nite region A ⊂ Z

d, the expeted number of disrepanies in A attime k is at most |A|(4α)k , whih again tends to 0, so
lim

k→∞
P (X−

A (k) = X+
A (k)) = 1 .Hene Π− and Π+ agree on A, and sine A was arbitrary we have Π− = Π+.

⋄Proposition large-β: For the Ising model on Z
2 with β > log(2

√
3), weget Π+ 6= Π−.Proof: Write 0 for the origin (0, 0) ∈ Z

2. If Π+ = Π−, then, by symmetry,
Π+(X0 = +1) = 1

2 . Hene, in order to prove the proposition, it is enough toshow that
lim inf
n→∞

Π+
n (X0 = −1) <

1

2
. (12)If, under Π+

n , we obtain X0 = −1, then 0 must sit in a �nite onneted om-ponent of minus spins, with what I'll all a �nite +/− ontour surroundingit (it's a hassle to de�ne in words, so instead see Figure 1 in Bonati, C., ThePeierls argument for higher dimensional Ising models, Eur. J. Phys. 2014,http://iopsiene.iop.org/0143-0807/35/3/035002/artile), beauseunder Π+
n all spins outside Λn are 1, a.s.Fix a �nite ontour C inside Λn surrounding 0, and a on�guration

x ∈ {−1,+1}Z2 taking value −1 at 0 and +1 everywhere outside Λn, and forwhih C is the outermost +/− ontour surrounding 0. Let x̃ ∈ {−1,+1}Z2be the on�guration obtained from x by �ipping all spins inside C and leav-ing all spins outside C unhanged. The energy di�erene between the twoon�gurations arise exlusively from the pair interations aross C, and if Chas length m we get
Π+

n (X = x)

Π+
n (X = x̃)

= exp(−2βm) .17



Hene
Π+

n (C is a +/− ontour for X) =
∑

x∈{−1,+1}Z
2

C +/− ontour for x

Π+
n (X = x)

≤

∑

x∈{−1,+1}Z
2

C +/− ontour for x

Π+
n (X = x)

∑

x∈{−1,+1}Z
2

C +/− ontour for x

Π+
n (X = x̃)

= exp(−2βm) .The number of possible lenth-m ontours around 0 is at most
m3m−1where the initial m omes from the ontour's leftmost rossing of the x-axis, and the 3 omes from the at most 3 hoies of where to go next whentraversing the ontour lokwise. Hene,

Π+
n (X0 = −1) = Π+

n (∃ some +/− ontour around 0)

≤
∑ontours C

Π+
n (C id a ontour around 0)

=
∞
∑

m=4

∑length-m ontours C

Π+
n (C id a ontour around 0)

≤
∞
∑

m=4

m3m−1 exp(−2βm)

{now use the rude estimate m ≤ 2m}

≤ 1

3

∞
∑

m=4

6me−2βm =
1

3

∞
∑

m=4

(6e−2β)mwhih is < 1
2 provided 6e−2β < 1

2 , i.e., when β > log(2
√

3), whih is theondition in the proposition, so (12) is established and we are done. ⋄This is the famous ontour argument of Rudolph Peierls from 1936!7 Wednesday, April 16Reall Holley's Theorem (Theorem GHM 4.8) from leture 5. An importantonsequene is the following orrelation inequality.18



Theorem GHM 4.11, the FKG Inequality: For S �nite and R ⊂ R�nite, let Π be a stritly positive probability measure on RS suh that for all
s ∈ S, all y ∈ R and all x, x′ ∈ RS\s with x � x′ we have

Π(Xs ≥ y|Xt = xt,∀t 6= s) ≤ Π(Xs ≥ y|Xt = x′
t,∀t 6= s) . (13)Then, for any two inreasing (with respet to �) funtions f, g : RS → R wehave

Π(fg) ≥ Π(f)Π(g) . (14)It's easy to hek that (13) holds for the Ising model on a �nite S, so theFKG inequality applies. Hene, for example, the spin values at any two sitesare positively orrelated.Sketh proof of the FKG inequality: Sine RS is �nite, f and g arebounded. We may assume without loss og generality that g is stritly pos-itive, beause replaing g by g + c for some ontant c means just adding
cΠ(f) to eah side of (14). We an then de�ne the g-weighted modi�a-tion of Π as the probability measure Π′ that on RS that to eah x ∈ RSassigns probability Π(x)g(x) divided by a normalizing onstant Z making Πa probability measure. But then Z =

∑

y∈RS Π(y)g(y), so
Π′(x) =

Π(x)g(x)
∑

y∈RS Π(y)g(y)
.The key step of the proof now is to establish that

Π(x) �D Π′(x) . (15)To show this, we need to hek that Π and Π′ satisfy ondition (10) inHolley's Theorem (Theorem GHM 4.8 in Leture 5) � make sure you knowhow to do that (and if nothing else helps, onsult the proof in [GHM℄)!Holley's Theorem then kiks in to ensure (15). And one we have (15), theproof is onluded by noting that
Π(f) ≤ Π′(f) =

∑

x∈RS

Π′(x)f(x)

=
∑

x∈RS

Π(x)g(x)f(x)
∑

y∈RS Π(y)g(y)
=

Π(fg)

Π(g)and multiplying both sides with Π(g) gives (14). ⋄19



The rest of this leture will be spent on the inhomogeneous Ising modelon Z
1, whih will serve mostly as a ounterexample-generator. The neigh-borhood struture ∂ well be the obvious hoie: x, y ∈ Z are neighbors i�

|x − y| = 1.The �nite ase �rst. For �nite n and parameters β−n, β−n+1, . . . , βn−2, βn−1,de�ne the Ising model on {−n, . . . , n} with these parameters as the probabil-ity measure on {−1,+1}{−n,...,n} that to eah x ∈ {−1,+1}{−n,...,n} assignsprobability
Πn(x) =

1

Z
exp





n−1
∑

i=−n

βixixi+1



 .For eah i, de�ne yi = xixi+1 (and for the orresponding random variables,similarly, Yi = XiXi+1). For any x suh that xixi+1 = +1, de�ne anotheron�guration
x̃ =

{

x up to site i
−x from site i + 1 onwards.Then

Πn(x)

Πn(x̃)
= exp(2βi) .A on�guration x is uniquely determined if we know x−n and all the �ipvalues Y−n, y−n+1, . . . , yn−1. So if we know X−n and all �ip variables exept

Yi, then we know we're in either a given x or in x̃, so
Π(Yi = 1|Yj = yj∀j 6= i) =

e2βi

e2βi + 1
=

1

1 + e−2βiso the Yi-variables are independent taking values
{

+1 w.p. 1
1+e−2β

−1 w.p. e−2β

1+e−2β

(16)Now �x the bi-in�nite sequene
. . . , β−2, β−1, β0, β1, β2, . . .and send n → ∞ in the above onstrution. Property (16) is preserved in thelimit, and one an hek that this gives a Gibbs measure Π on {−1,+1}Z.We haven't spei�ed the βi values so far, but note that if βn → ∞ as

|n| → ∞ fast enough so that
∞
∑

−∞

e−2β

1 + e−2β
< ∞ (17)20



(whih is the same as ∑∞
−∞ e−2β < ∞), then the expeted number of spin�ips is �nite, so there will a.s. be only �nitely many spin �ips. We want thisproperty, and hoose to set βi = |i| for eah i (this satis�es (17)), so thatwith Π-probability 1, the limits

X−∞ = lim
i→−∞

Xiand
X+∞ = lim

i→+∞
Xiexist (and equal +1 or −1). Sine β0 = 0, we have that Y0 = +1 or −1with probability 1

2 eah, independently of all other Yi's. Note also that�ipping Y0 hanges whether X−∞ = X+∞ or not. This, together with the ±1symmetry of the model, gives (X−∞,X+∞) = (−1,−1), (−1,+1), (+1,−1)or (+1,+1), eah with probability 1
4 .Next we'll do something slightly unusual, namelt let Πmix be the prob-ability measure on {−1,+1}Z that arises by onditioning on the event that

(X−∞,X+∞) is either (−1,+1) or (+1,−1). That is a tail event with re-spet to the Xi variables, and onditioning on a tail event doesn't hangethe onditional distributions on �nite sets (whih are the de�ning propertiesof Gibbs measures), so Πmix is a Gibbs measure for the inhomogeneous Isingmodel on Z with the given parameter. This Gibbs measure will serve as aonterexample to two properties one might otherwise naively suspet to holdin general:FKG. We saw in onnetion with the FKG inequality that for the Isingmodel on �nite S, two spin values are always positively orrelated. Thisfails in general for Ising model Gibbs measures in the in�nite setting,as exempli�ed by Πmix. The ± symmetry gives E[xi] = 0 for all i. Onthe other hand, sine X−∞X+∞ = −1 with probability 1, we get that
E[X−iXi] tends to −1 as i → ∞, and hene must be stritly negativefor large enough i. For suh i, we thus get E[X−iXi] < E[X−i]E[Xi],whih is the desired ounterexample.Global Markov property. Let A = {1, 2, 3 . . .} and onsider the ondi-tional distribution (under Πmix) of XA given XZ\A. Πmix satisfyingthe global markov property would imply that this onditional distri-bution would only depend on XZ\A via X∂(A), i.e., via X0. It is easyto see that onditional on X0, the value of X+∞ (whih is a funtionof XA) an be either +1 or −1, eah with positive probability. But ifwe ondition further on all of XZ\A, we an read o� X−∞, and then21



the onditional probability that X+∞ = +1 hanges to either 0 or 1,so the global Markov property is violated.8 Friday, April 25Let's say we're interested in the Ising model on (S, ∂) with parameter β, andsay S = |1′000′000| (not by any means an unusually large system in pratie).Suppose we want to alulate the expetation Π(f) of some quantity f suhas(i) f(X) = Xs for a given s ∈ S,(ii) f(X) = XsXt for given s, t ∈ S,(iii) f(x) = 1{
∑

s∈S
≥200′000} .Somtimes we an �nd lever arguments to �nd Π(f), suh as is the ae with(i), where the ±1 symmetry of the model gives Π(f) = 0. Cases (ii) and(iii) are less obvious, although in priniple trivial, beause this is a �niteproblem, and

Π(f) =
∑

x∈X

Π(x)f(x) . (18)But in pratie the obstale to simply alulating this sum is the prohibitivenumber of terms in the sum: |X| = 21′000′000.What to do? Assuming we had a mahine for simulsting i.i.d. X-valued random objets with distribution Π, then we ould take a sample
X(1), . . . ,X(n)from that mahine, and estimate Π(f) with P̂ in(f) = 1

n

∑n
i=1 f(Xi). Thisis unbiased, and sine in ases (i), (ii) and (iii) above f is bounded between

−1 and +1 we have V ar[X(i)] ≤ 1, so that
V ar[Π̂n(f)] =

1

n2

n
∑

i=1

Var[Xi] ≤
1

nand Chebyshev's inequality3 yields
P (|Π̂n(f) − Π(f)| > ǫ) ≤ 1

nǫ2
.3If the random variable Y has �nite seond moment, then P (Y −E[Y ] > ǫ) ≤ V ar[Y ]/ǫ222



So to get this probability below a given p, just pik n ≥ ǫ2

p .Now, we don't have suh a mahine, but MCMC provides a kind ofapproximate suh mahine. The idea is to devise an irreduible aperiodiMarkov hain X(1),X(2), . . . on X whose unique stationary distribution is
Π. The onvergene theorem for �nite-state irreduible aperiodi markovhains gives us that if we sample at su�iently long intervals, say m, weget a sample whih is approximately i.i.d. (in a sense that an and will bespei�ed), so a sensible estimator might be

1

n

n
∑

i=1

f(X(mi)) .But if so, then for any j ∈ (0, 1, . . . ,m − 1) the estimators
1

n

n
∑

i=1

f(X(mi + j))seem about equally good. And when we have m suh good estimators, itmakes sense to redue variane further by taking the average of then, whihis tantamount to sampling the X hain at every time point (after an initialburn-in of length m). This is often done in pratie.But how long do we need to run the hain? Winkler states and provesthe following Markov hain analogue of the above Chebyshev estimate.Theorem 4.3.2: Let (X(0),X(1), . . .) be a time-homogeneous, irreduibleand aperiodi Markov hain with �nite state spae X and invariant distribu-tion µ. Then, for any f : X → R, we have (ergardless of how f is hosen),that the estimator µ̂n(f) = 1
n

∑n
i=1 f(X(i)) onverges in probability (or in

L2 as Winkler says � sine f is automatially bounded these modes of on-vergene are equivalent). Qunatitatively, for any ǫ > 0

P (|µ̂n(f) − µ(f))| > ǫ) ≤ 13 f‖2

1 − c(P ))nǫ2
(19)where

‖f‖ =
∑

x∈X

|f(X)|and c(P ) is the so-alled ontration oe�ient of the hain's transitionkernel P :
c(P ) = max

x,y∈X

B⊂X

|P (x,B) − P (y,B)| .23



The ontration oe�int c(P ) is an important onept, so please pay at-tention to Winkler's Setion 4.2. Regarding the onept ‖f‖, however, Istronly advie against using it in the present ontext. Winkler's use of ‖f‖is just plain lazy, and if we instead use maxx∈X |f(x)| we'll get a variant ofTheorem 4.3.2 whih � unlike the present Theorem 4.3.2 � an atually beuseful. Here's why the present Theorem 4.3.2 is so bad.Suppose we take ǫ = 0.01 and that what we know (as in ases (i), (ii)and (iii) above) is that |f(x)| ≤ 1∀x and that |X| = 21′000′000. In order tobound the probability in (19) by 0.1, we'll have to take
n ≥ 13 · 22′000′000

0.1(1 − c(P )]0.012
=

130′000 · 22′000′000

1 − c(P )so that even if c(P ) = 0 (whih is best possible), we'll have to run the hainfor an amount of time that, even on the snazziest omputer, makes the ageof the universe seem like hardly even a blink-of-the-eye.In general, running time bounds that (like this one) grow exponentiallyin |S| tend to be useless. And in the frivolous siene �tion senario thatwe do have suh inredible amounts of time at our disposal, we might as welluse the method of diretly alulation the sum in (18), rather than revertingto MCMC simulation.
∗Next, how to onretely onstrut the Markov hain. I'll fous on the Gibbssampler. For the related and more �exible Metropolis�Hastings algo-rithm I'll refer the reader to Winkler's hapter on that.Given the Markov random �eld distribution Π on X, a Gibbs sampleris a Markov hain (X(0),X(1), . . .) onstruted as follows. At eah time k,selet an s ∈ S (aording to some rule, deterministi or random), set

Xt(k) = Xt(k − 1) for all t ∈ S \ sand pik a fresh value of Xs(k) aording to the Π-onditional distributionof Xs given a on�guration on S \ s agreeing with XS\s(k − 1).Obviously, if X(k − 1) ∼ Π, then X(k) ∼ Π, so Π is a stationary distri-bution for the hain. But is it the only stationery distribution, and do wehave onvergene towards it as k → ∞?This depends on the mehanism for hossing whih vertex to update. Forinstane, always hoosing the same vertex to update is a stupid rule, underwhih the answer to both questions are �no�. Two other hoies, whih arepopular and whih under Winkler's positivity ondition gives answer �yes�to both questions, are to selet s 24



• at random (i.i.d., and unifromly on S), and
• aording to a systemati weep: deterministially go through all of Sin the �rst |S| updates, and then repeat.The former is sometimes more onvenient to work with, beause it is time-homogeneous, so we an immediately apply the basi onvergene theoremfor �nite-state Markov hains to dedue uniqueness of the stationary distribu-tion and onvergene to it as k → ∞. The latter allows the same onlusion,but only if we rede�ne �time� by onsidering the embedded Markov hainobtained by looking at the original one only at times that are multiples of

|S|.Conerning quantitatively the rate of onvergene, the ontration oe�-ient c(P ) from Theorem 4.3.2 plays an important role. If we look at a singlestep of the Gibbs sampler, we get c(P ) = 1 (no ontration at all), whih isuseless, but by onsidering the embedded hain by viewing |S| updates as asingle step, we get c(P ) < 1. It an be very lose to 1, however, and this isone of the reasons why the rate of onvergene in Winkler's Theorem 5.1.4for the Gibbs sampler is so terribly bad.The quantitative part of Winkler's Theorem 5.1.4 is that
P (| 1

n

n
∑

i=1

f(X(i)) − Π(f)| > ǫ) ≤ c

nǫ2
eσ∆where c, σ and ∆ are as follows.

• c is a onstant depending on the updating sheme and on the atas-trophi fator ‖f‖2. This is enough to render Theorem 5.1.4 useless,but this part an atually be �xed by replaing Theorem 4.3.2 by amore sensible variant.
• ∆ = maxs∈S maxx,yinX:xS\s=yS\s

says roughly (if ∆ is small) that theonditional distribution at any s given XS\s does not deviate muhfrom uniform distribution. This ondition works to get results, butdoes not apture the essene of the �fast onvergene� problem. What'sneeded is not being lose to uniform, but rather not depending tooheavily on XS\s.
• σ = |S|, and sine the σ fator sits in the exponent we obtain anotheratastrophi fator exp(1′000′000∆) rendering Theorem 5.1.4 useless.This time �xing Theorem 4.3.2 won't help.25



Nevertheless, not all is lost, and next week I'll o�er you sensible replaementfor Theorems 5.1.4 and 4.3.2!
∗The needed irreduibility of the Markov hain follows under Winkler's posi-tivity, but there are important examples where we an get away without it,suh as in the hard-ore model. Here X = {0, 1}S , and a 1 at s is thoughtof as a partile, and a 0 at s as the absene of a partile. Partiles annotbe paked too tightly, and a on�guration x ∈ {0, 1}S is alled legal if thereare no two neighbors s and t with xs = xt = 1. The hard-ore model withparameter λ > 0 is the probability measure Π on {0, 1}S given by

Π(x) =
1

Z
λ(# 1's in x)

1{x is legal}The parameter λ quantify the model's tendeny to have many 1's, and send-ing λ → ∞ is tantamount to trying harder and harder to �nd an �optimalpaking�, i.e., maximizing the number of 1's without making x illegal.The Gibbs sampler for this model is irreduible in the sense that for anytwo on�gurations with positive probability (i.e., any two legal on�gura-tions) you an reah one from the other, by forst suessively removing one
1 after the other, to reah the �all 0's on�guration�, and then adding new
1's agreeing with target on�guration, one after the other.9 Wednesday, April 30Today we'll replae Winkler's useless Theorems 4.3.2 and 5.1.4. Straight tothe point:Theorem Replae-4.3.2: Let (X(o),X(1), . . .) be a time-homogeneous, ir-reduible and aperiodi Markov hain with �nite state spae X and invariantdistribution µ. Then, for any ǫ > 0, any a > 0 and any f : X → R with
maxx∈X |f(x)| ≤ a, we have, de�ning

µ̂n(f) =
1

n

n
∑

i=1

f(X(i)) ,that
P (|µ̂n − µ| > ǫ) ≤ 16a2

(1 − c(P ))nǫ2
.Here the ontration oe�ient is, as before,

c(P ) = max
x,y∈X

B⊂X

|P (x,B) − P (y,B)| .26



We an also write c(P ) as
c(P ) =

1

2
max
x,y∈X

‖P (x, ·) − P (y, ·)‖where, for any two probability distributions Π and ν on X, ‖Π− ν‖ denotesthe toal variation norm ∑

x∈X |Π(x) − ν(x)|. (This total variation distaneranges between 0 (idential distributions) and 2 (disjoint distributions), anddi�ers from the total variation distane in [GHM℄ by a fator 2. Both de�-nitions are �ne, but it is dangerous of ourse to mix them up, so be arefulwhen exploring the literature.)A entral result on oupling (see Proposition 4.4 of [GHM℄) is that forany two distributions Π and ν we an ouple two random objets X ∼ Π and
Y ∼ ν in suh a way that P (X 6= Y ) = 1

2‖Π − ν‖; this is alled a maximaloupling, beause it annot be improved. We'll use this result, but will notdig into its proof.Another result we'll use without digging into its proof (but do have a lookat Winkler's Lemma 4.2.2 in you want to understand it) is that the n-steptransition kernel Pn of a Markov hain with transition kernel P satis�es
c(Pn) ≤ (c(P ))n .Proof oh Theorem Replae-4.3.2: Assume for simpliity that µ(f) = 0(we'll �x that at the end). In order to apply Chebyshev, we need to estimate

V ar

[

1

n

n
∑

i=1

f(X(i))

]

= E

[

(
1

n

n
∑

i=1

f(X(i)))2
]

=
1

n2

n
∑

i=1

n
∑

j=1

E[f(Xi)f(Xj)] .Imagine (for the time being) the hain starting in a �xed x ∈ X, and ouple
(X(0),X(1), . . .) with another X-valued Markov hain with the same trna-sition kernel but starting in stationarity µ. For �xed k ≥ 1, we an ouple
X(k) and X ′(k) in suh a way that

P (X(k) 6= X ′(k)) ≤ 1

2
max
x,y∈X

‖P k(x, ·) − P k(y, ·)‖

= c(P k) ≤ (c(P ))k .Then
E[f(X(0))f(X(k))] = f(x)E[f(X(k))]27



= f(x)E[f(X(k)) + f(X ′(k)) − f(X ′(k))]

= f(x)E[f(X ′(k))] + f(x)E[f(X(k)) − f(X ′(k))]

≤ f(x) · 0 + f(x) · 2a(c(P ))k

≤ 2a2(c(P ))k .Dropping the assumption that the hain X starts in a �xed x ∈ X, thusallowing random X(0), we obtain E[f(X(0))f(X(k))] as a weighted averageof terms that are at most 2a2(c(P ))k , so the onlusion
E[f(X(0))f(X(k))] ≤ a2(c(P ))kremains valid. And for similar reasons, for any m ≥ 0

E[f(X(m))f(X(m + k))] ≤ a2(c(P ))k .We get
E

[

(
1

n

n
∑

i=1

f(X(i)))2
]

=
1

n2

n
∑

i=1

n
∑

j=1

E[f(Xi)f(Xj)]

≤ 1

n2

n
∑

i=1

n
∑

j=1

2a2(c(P ))|i−j|

≤ 2a2

n2

n
∑

i=1

∞
∑

j=−∞

(c(P ))|i−j|

≤ 4a2

n2

n
∑

i=1

∑

k = 0∞(c(P ))k

=
4a2

n(1 − c(P )
.So Chebyshev gives

P (| 1
n

n
∑

i=1

f(X(i))| > ǫ) ≤ 4a2

ǫ2n(1 − c(P )
. (20)But that was for f suh that µ(f) = 0. For µ(f) 6= 0, we just apply theabove to g = f − µ(f), and |f(x)| ≤ a gives |g(x)| ≤ 2a. So in this moregeneral ase the bound in (20) beomes

4(2a)2

ǫ2n(1 − c(P )
=

16a2

ǫ2n(1 − c(P )28



whih is the bound laimed in the theorem. ⋄Next, we want to replae Theorem 5.1.4 on onvergene of a Gibbs sampler.With our new replaement of Theorem 4.3.2 there is hope to get somethinguseful, as long as we an get a reasonable bound on c(Pn). There is nohope of getting a very general result, beause the single-site Gibbs samplerfor the Ising model on large �nite subsets of Z
d is exponentially slow in thephase transition regime β > βc. But we should at least be able to obtain aresult that gives fast onvergene for some nontrivial Markov random �elds(inluding the small-β Ising model).We'll stik, for de�niteness, to a systemati sweep Gibbs sampler, andexploit the idea of the small-β Π+ = Π− result for the Z

2 Ising model inLeture 6.There we assumed β < 1
8 log(5

3), and if we inspet the proof, we see thatthe ruial property that follows from this is that
max
s∈S

max
x,y∈S\s

‖Π(Xs ∈ ·|SS\s = x) − Π(Xs ∈ ·|SS\s = y)‖ <
1

2
, (21)so that by employing the maximal oupling when we uptate s at time k,we an make sure that P (Xs(k) 6= X ′

s(k)] < 1
4 . Or more generally we want

P (Xs(k) 6= X ′
s(k)] < 1

dmax
where dmax = maxs∈S |∂(s)|, so we want the right-hand side of (21) to be 2

dmax
. We will make that the entral assumption ofour theorem. To arrive there, let's denote the left-hand side of (21) by α, andnote that after the �rst weep through S, employing the maximal oupling ateah update guarantees that eah site has probability at most α

2 of exhibitinga disrepany between its values in the X hain and the X ′ hain.When a site s is hosen at a time k in the seond sweep, we get
P (Xs(k) 6= X ′

s(k)) = P (some disrepany in ∂(s))

·P (Xs(k) 6= X ′
s(k)| some disrepany in ∂(s))

≤ αdmax

2

α

2
.So after the seond sweep, all sites have probability at most αdmax

2
α
2 of ex-hibiting disrepany. Applying the same reasoning iteratively, we get afterthe n:th sweep that all sites have probability at most α

2 (αdmax

2 )n−1. When
α < 2

dmax
, this tends to 0 (fast), so we're in business. Spei�ally, note that

|S|α
2 (αdmax

2 )n−1 is an upper bound for the expeted number of disrepaniesafter the n:th sweep. Take n so large that this bound satis�es
|S|α

2

(

αdmax

2

)n−1

≤ 1

229



whih via a few steps of high shool-level algebrai manipulation is seen tobe equivalent to
n ≥ log(α|S|)

log( 2
αdmax

)
+ 1 .Then the probability that the two hains have oalesed (at every site) after

n sweeps is at least 1
2 . Our theorem, therefore, is as follows.Theorem Replae-5.1.4: Let Π be a Markov random �eld, and de�ne

α = max
s∈S

max
x,y∈S\s

‖Π(Xs ∈ ·|SS\s = x) − Π(Xs ∈ ·|SS\s = y)‖ .If α < 2
dmax

, then the Markov hain in whih a single step represents at least
log(α|S|)

log( 2
αdmax

)
+ 1 full sweeps of the Gibbs sampler has a ontration oe�ient

c(P ) ≤ 1
2 .This result an then readily be plugged into Theorem Replae-4.3.2 to getbounds on how long we need to run the hain in order to get good estimatesof whatever expetation Π(f) we wish to alulate. The fat that it takesjust of the order log(|S|) sweeps, i.e., |S| log(|S|) single site updates, in orderto reah a useful ontration oe�ient (as opposed to in Winkler's Theorem5.1.4 where it took exponentially many) means that we're in business witha sampling algorithm that may atually be useful.10 Wednesday, May 7Now is time to disuss statistial estimation of parameters in Markov random�elds. I'll fous on a simple example: estimating β in the Ising model (thiswill put you in a better position to digest Winkler's more general treatmentof the topi).A on�guration X ∈ {−1,+1}S , with S �nite, is observed. Me mayassume it omes from the Ising model Gibbs measure Π for this known Swith known neighborhood ∂, but we do not know the inverse temperature

β. How to estimate β?I'll fous on maximum likelihood (ML) and related tehniques. Winklermentions two highly desirable properties of estimates β̂n (where n is somemeasure of the amount of data):(i) So-alled onsisteny: β̂n should tend to β as n → ∞ (in whatevermode of onvergene we an get, almost sure onvergene, onvergenein probability, in L2, or...) 30



(ii) β̂n should be omputationally feasible.Property (i) is not quite what we want in pratie, beause at the end ofthe day we need to know for some �xed �nite n that β̂n is likely to be loseto the true value β, and asymptoti statements like (i) do not answer that.But it's a good start.What do we mean by the amount of data n? Winkler disusses two ases:(a) n i.i.d. samples X(1), . . . ,X(n) from Π on a �xed �nite S.(b) Let S be ountably in�nite, suh as S = Z
2 with the standard neighbor-hood struture, and look at the on�guration on Λn = {−n, . . . , n}2.He says (b) is more relevant in image analysis and fouses mainly on that;I'm very happy to go along.The simpli�ation we get from fousing on estimating β in the Isingmodel, ompared to Winkler's more general setting, is that of studying justa single parameter, so that when taking derivatives of the log-likelihoodfuntion L (as we almost always need to do when studying ML estimators)we don't need to handle vetor-valued gradients ∇L and Hessian matries

∇2L.Before treating the Ising model, let's remind ourselves of how ML worksby onsidering the very simplest situation of possibly biased oin tosses:let X(1),X(2), . . . be i.i.d. {0, 1} valued random variables taking value 1with an unknown probability p. The task here is to estimate p based on
X(1), . . . X(m).Given X(1), . . . X(m) suh that ∑m

i=1 X(i) = k, the likelihood beomes
l(p) = pk(1 − p)m−kand the log likelihood

L(p) = log(l(p)) = k log(p) + (m − k) log(1 − p) .How do we maximize L(p)? We solve for dL(p)
dp = 0 and hek whether

d2L
dp2 < 0.4 We get

dL(p)

dp
=

k

p
− m − k

1 − p4In addition, we of ourse need to hek what happens on the boundary of the parameterspae. This turns out to make no di�erene to the present example, and I'll just skip that.31



whih is 0 when p = k
m , and

d2L

dp2
=

−k

p2
− m − k

(1 − p)2
< 0 ,so p̂m = k

m is our ML estimate of p. From the strong law of large numbers,we know that
lim

m→∞
p̂m = lim

m→∞

1

m

m
∑

i=1

X(i) = palmost surely, so the ML estimate is onsistent!Now let's try to imitate this in the Ising model on Z
2 ontext, based onobserving the spins on Λn. For reasons that will beome lear, I'll assumewe're allowed to peek at the values on ∂(Λn) as well. The literal ML estimateis unavailable, beause we do not have an expression for

l(β) = Πβ(XΛn = xΛn)sine, as we saw in Lesture 6, β doesn't even uniquely determine Πβ.The next best thing is to onsider the onditional distribution of XΛngiven X∂(Λn
, viewing the latter as �xed.That gives a onditional likelihood
l(β) =

1

Z
exp











∑

〈u,v〉

u,v∈Λn

xuxv +
∑

〈u,v〉

u∈Λn,v∈∂(Λn)

xuxv











.This would be easy to work with, were it not for the hidden fat that Zdepends on β. Treating Z by diret summation is obviously impratial (thesum as 2|Λn| terms), but it is possible via various numerial and MCMCshemes to �nd an approximation, and that way get an approximate MLestimate (whih an also be shown to be onsistent).That's very intriate, however, and we'll hoose another way, namely toondition further on XΛn,odd
, where Λn,odd is de�ned as the set of vertiesin Λn whose sum of oordinates is odd. The point of doing so is that bythe Markov random �eld property, the variables {Xv}v∈Λn,even beome on-ditionally independent given Xλn,odd

and X∂(n), rendering the likelihood andeasy-to-handle produt struture, translating into a sum in the log-likelihood.They are not identially distributed, however, beause
Πβ(Xv = +1|X∂(v) = x∂(v)) =

1

1 + exp
(

−2β
∑

w∈∂(v) xw

)32



whih depends on the number of +1's in the neighborhood.But if we restrit to looking at verties in the set Λv∈Λn,even,4+ de�ned asthose verties in Λn,even that happen to have all +1 neighbors, then thesebeome onditionally i.i.d. with
Πβ(Xv = +1|all else) =

1

1 + e−8β
,so we're bak in the oin tosses situation with m i.i.d. (p) binary variables,with p = 1

1+e−8β and m is the number of verties in Λn,even,4+. It is not hardto show that m → ∞ a.s. as n → ∞, whih put us in a setting where wean reasonably ask for onsisteny. If we observe k +1's in Λn,even,4+, thelog-likelihood beomes
L(β) = k log

(

1

1 + e−8β

)

+ (m − k) log

(

1

1 + e8β

)whih, as we saw for the oin tosses, is maximized when p = k
m , and solvingfor β in p = 1

1+e−8β gives
β̂n = −1

8
log

(

m

k
− 1

)whih we take as our ML estimator.5 Now, as n → ∞, so that m → ∞the strong law of large numbers applied to the onditional distribution of
XΛn,even given XΛn,odd

gives that k
m tends to 1

1+e−8β a.s., so
lim

n→∞
β̂n = −1

8
log(1 + e−8β − 1) = β ,so we have a onsistent estimator of β!But it seems somewhat wasteful to look at only those verties with all

+1 neighbors. In fat we an onstrut similar estimates based on vertiesin Λn,even with r neighbors taking value +1, not just for r = 4 but also for
r = 0, r = 1 and r = 3. (We an also try r = 2, but that atually doesnt help,beause the log-likelihood turns out to be k log(1

2) + (m − k) log(1
2) whihis independent of β.) This gives four di�erent log-likelihoods L0, L1, L3, L4with

Lr(β) = k log
(

1 + e−(4r−8))β − 1
)

+ (m − k) log
(

1 + e(4r−8))β − 1
)5Note that this estimator an turn out to be negative! Here we have two hoies. Eitherwe an allow β < 0 in the Ising moedl, leading to the so-alled Ising antiferromagnet, orwe an insist on β ≥ 0 whih, in aordane with the previous footnote, gives β̂n = 0 inase − 1

8
log
(

m
k
− 1
) turns out negative. 33



eah giving an ML estimator β̂r,n whih tends to β as n → ∞.Well, surely we an be more e�ient and and add upp the loglikelihoodsto get
Leven(β) = L0(β) + L1(β) + L3(β) + L4(β) ,no? (Inluding L2(β) is harmless but pointless.) Sine eah Lr(β) leads toa onsistent ML-estimate, surely the same holds for Leven?Yes we an, and yes it does! Here's why. We alulate

d

dβ
Lr(β) = (4r − 8)

(

k − me(4r−8)β

1 + e(4r−8)β

)and
d2

dβ2
Lr(β) = (4r − 8)2m

e(4r−8)β

(1 + e(4r−8)β)2
) < 0so eah Lr(β) is onave in β.Fix ǫ > 0, and write β∗ for the true value of β. By onsisteny of eahof the Lr(β) estimators, we an a.s. �nd some (random) N suh that for all

n ≥ N that eah β̂r,n is in the interval β∗ ± ǫ. Then for r = 0, 1, 3, 4, wehave
d

dβ
Lr(β)

{

> 0 for all β < β∗ − ǫ
< 0 for all β > β∗ + ǫ .The same onlusion follows for Leven(β), so it must have its maximum atsome point β̂even,n somewhere in (β∗−ǫ, β∗+ǫ, and sine ǫ > 0 was arbitrarywe have shown that β̂even,n is a onsistent estimator.We an of ourse do the same thing with Lodd(β) and get another on-sistent estimator. And in the same way as when we added the Lr(β) log-likelihoods, we an also add Leven(β) and Lodd(β) and get another �log-likelihood� Lpseudo(β) whih by the same agruments yields another onsistentestimators.I think it's fair to use the term onditional log-likelihood for all of

Lr(β), Leven(β) and Lodd(β). For Lpseudo(β) this term seems less appro-priate, beause here we are in a sense onditioning on everything. Instead,
Lpseudo(β) is alled a pseudolikelihood, the maximization of whih is astandard devie in parameter estimation in Markov random �elds.11 Friday, May 9Up to know, we have given the Ising model the energy

H(x) = −β
∑

〈u,v〉

xuxv34



where β ≥ 0 is alled the inverse temperature parameter. Today we'll seewhat happens when we generalize the moedl and introdue another param-eter � the so-alled external �eld h � to get
H(x) = −β





∑

〈u,v〉

xuxv + h
∑

u∈S

xu



 . (22)Setting h = 0 gives bak the old model. Setting h 6= 0, say h > 0 foronreteness, breaks the ±1 symmstry in the model and favors spin on-�gurations with many +1's and disfavors those with many −1's. This hasdramati onsequenes.Reall the theorem from Leture 6 saying that the Ising model on Z
d, d ≥

2 (without external �eld) has a ritial value βc ∈ (0,∞) suh that there isa unique Gibbs measure if β < βc and multiple Gibbs measures if β > βc.In ontrast, when h 6= 0 there is, on Z
d, always only one Gibbs measure.I will not show the full result to this extent, but be ontent with a reasonablystrong partial result in this diretion (Proposition h below).The Ising model on Z

d with external �eld an be de�ned analogously towhat i did for the h 6= 0 ase in Leture 4, in terms of onditional probabilitieson �nite sets. Muh of the stohasti domination mahinery from Leture 5goes through with hardly any hange in the arguments. Very brie�y:Lemma GHM 4.13 goes through for the h 6= 0 ase, leading to the stohas-tially dereasing sequene
Πβ,h,+

1 �D Πβ,h,+
2 �D Πβ,h,+

3 �D · · ·of probability measures Πβ,h,+
n on {−1,+1}Zd orresponding to putting all

+1's outside Λn, and then piking the spins on Λn aording to the ondi-tional distribution orresponding to the energy funtion in (22) and all +1boundary. The limiting measure Πβ,h,+ is a Gibbs measure for the Isingmodel on Z
d with the given parameters, it is translation invariant, and itstohastially dominates all other suh Gibbs measures. We an analogouslyonstrut Πβ,h,− with similar properties and the result that any further Gibbsmeasure Πβ,h with the same parameter values is sandwihed between Πβ,h,−and Πβ,h,+ in the sense of stohasti domination. Hene, Gibbsian unique-ness is equivalent to

Πβ,h,− = Πβ,h,+ .What we would now most like to show (and what is in fat true) is the resultthat
Πβ,h,− = Πβ,h,+ whenever h 6= 035



but will for reasons of spae and time settle for the following weaker result.Proposition h: For �xed β ≥ 0, we have
Πβ,h,− 6= Πβ,h,+for at most ountably many values of h.Depending our mood, we an either view this result as very weak (beauseit does not settle the uniqueness issue for any given (β, h)) or very strong(beause it proves that uniqueness holds for Lebesgue-almost all (β, h)).As a preparation for the proof of Proposition h, �x β, de�ne Mβ,+(h)as the Πβ,h,+-expetation of the spin value at s ∈ Z

d (whih by trans-lation invariane is independent of s), and de�ne Mβ,−(h) as the Πβ,h,−-expetation of the same quantity. (M is for magnetization.) A straight-forward adaptation of the proof of Lemma GHM 4.13 shows that if h1 ≤ h2,then Πβ,h1,+
n �D Πβ,h2,+

n , so that Πβ,h1,+ �D Πβ,h2,+ and
Mβ,+(h1) ≤ Mβ,+(h2) .Similarly we get
Mβ,−(h1) ≤ Mβ,−(h2)and, for any h ∈ R,
Mβ,−(h) ≤ Mβ,+(h) .These three inequalities for the magnetization should all be intuitively ob-vious, beause inreasing h should favor having more +1's regardless ofwhether we're in the plus measure or the minus measure, while going fromthe minus measure to the plus measure while keeping the parameters on-stant should have the same e�et.A muh less obvious issue is, again for h1 ≤ h2, Mβ,+(h1) omparesto Mβ,−(h2). The boundary ondition wants the inequality to go one way,while the external �eld wants the other. It turns out that the external �eldwins:Lemma h: Whenever h1 < h2, we have

Mβ,+(h1) ≤ Mβ,−(h2) .Intuitively, the reason that this is true is that when we look at the e�etof boundary ondition and external �eld on a box Λn, the former ats onthe boundary while the latter ats in the entire box, and sine the surfae-to-volume ratio goes to 0 as n → ∞ the latter wins no matter how small36



h2 − h1 is. Turning this intuition into a proof is, as we shall see, nontrivialbut doable.Before proving the lemma, let's show how it implies Proposition h. Sup-pose that
Πβ,h,− 6= Πβ,h,+ . (23)Then Mβ,−(h) < Mβ,+(h) (beause otherwise in the oupling witnessingtheir stohasti domination we'd never see any disrepany, ontraditing(23)). Write δ > 0 for the di�erene between these magnetizations. Lemmah ensures that for any ǫ > 0 we have

Mβ,+(h − ǫ) ≤ Mβ,−(h) = Mβ,+(h) − δso that
lim
ǫց0

Mβ,+(h − ǫ) < Mβ,+(h)and Mβ,+ thus exhibits a disontinuity at h. But an inreasing funtion anhave at most unountably many disontinuities (beause eah disontinuityskips some rational number, and there are only ountably many rationals),so (23) an hold for at most ountably many h, and Proposition h follows.What remains is to prove the lemma:Proof of Lemma h: We will ouple two {−1,+1}Zd -valued random objets
X ∼ Πβ,h1,+ and X ′ ∼ Πβ,h2,− in the simplest possible way: independently.Our �rst laim is that, with probability 1,

lim
n→∞

1

|Λn|
∑

s∈Λn

Xs = Mβ,+(h1) . (24)Existene of the limit follows from translation invariane, and if the limitwere nontrivially random it would have to exeed Mβ,+(h1) with positiveprobability. Conditioning on doing so would give again a Gibbs measure(beause onditioning on anything in the tail σ-�eld preserves the de�ningonditional distributions on �nite sets), and one with a higher magnetization,ontraditing what we already know about Πβ,h1,+ stohastially dominatingall other Gibbs measures with the same parameters. Hene (24). And bythe same argument,
lim

n→∞

1

|Λn|
∑

s∈Λn

X ′
s = Mβ,−(h2) . (25)Assume now that Mβ,+(h1) 6= Mβ,−(h2) (otherwise we're done). At thispoint, I don't want to ommit to irular reasoning by presupposing whih37



of them is bigger, but de�ne
Mmax = max{Mβ,+(h1),M

β,−(h2)}and
Mmin = min{Mβ,+(h1),M

β,−(h2)}as well as
∆ = Mmax − Mmin > 0.Now imagine you're at a Game Show, where, for some large n, the hostreveals to you the following information:(i) XZd\Λn

= xZd\Λn(ii) X ′
Zd\Λn

= x′
Zd\Λn(iii) two on�gurations x̂Λn and x̌Λn , but no information on whih ofthem is XΛn and whih is X ′

Λn
.Your job is to guess whih is whih.First I'll (sort of) tell you how large n will be. Fix δ > 0 small, and pik

n large enough so that
P





1

Λn

∑

s∈Λn

x̂Λn − 1

Λn

∑

s∈Λn

x̌Λn ≥ ∆/2



 ≥ 1 − δ . (26)Suppose the event in (26) happens. Should you guess that (XΛn = x̂Λn ,X ′
Λn

=
x̌Λn) or vie versa? Well, let's alulate

P (XΛn = x̂Λn ,X ′
Λn

= x̌Λn |(i),(ii),(iii))
P (XΛn = x̌Λn ,X ′

Λn
= x̂Λn |(i),(ii),(iii))

=

1
Zx

exp

(

∑

〈s,t〉

s,t∈Λn

x̂sx̂t +
∑

〈s,t〉

s∈Λn,t∈∂(Λn)

x̂sxt + h1
∑

x∈Λn
x̂s

)

1
Zx

exp

(

∑

〈s,t〉

s,t∈Λn

x̌sx̌t +
∑

〈s,t〉

s∈Λn,t∈∂(Λn)

x̌sxt + h1
∑

x∈Λn
x̌s

)

×

1
Zx

exp

(

∑

〈s,t〉

s,t∈Λn

x̌sx̌t +
∑

〈s,t〉

s∈Λn,t∈∂(Λn)

x̌sx
′
t + h1

∑

x∈Λn
x̌s

)

1
Zx

exp

(

∑

〈s,t〉

s,t∈Λn

x̂sx̂t +
∑

〈s,t〉

s∈Λn,t∈∂(Λn)

x̂sx′
t + h1

∑

x∈Λn
x̂s

)

≤ exp

(

β

(

4|∂(Λn)| + ∆

2
(h1 − h2)|Λn|

))38



whih tends to 0 as n → ∞ due to the fat that |∂(Λn)|
|Λn|

→ 0.So with probability at least 1 − δ, X ′ has a.s. the higher total spin inlarge enough boxes, and sine δ > 0 was arbitrary it in fat holds a.s. Henethe limit in (24) is smaller than the limit in (25), and the lemma is proved.
⋄That |∂(Λn)|

|Λn|
→ 0 is in fat ruial here, and if Z

d is replaed by some lattiefor whih no sequene of �nite subsets with vanishing surfae-to-volume ratioexists (so-alled nonamenable latties), Proposition h fails, as disussed in[JS℄.12 Friday, May 16No deep deriavtions in today's �nal leture, just brief expositions of twoother Markov random �eld models we have't had time to disuss before: thePotts model, and Markov random �elds.
∗The Potts model is a natural extension of the Ising model to larger statespaes: {−1,+1} is replaed by {1, . . . , q}. Taking q = 2 just gives bakthe Ising model with new symbols, whereas q ≥ 3 gives something genuinelydi�erent.For �nite S and β ≥ 0, let H : {1, . . . , q}S → R be given by

H(x) = −2β
∑

〈s,t〉

1{xs=xt}and probability measure Π on {1, . . . , q}S given by, as usual,
Π(x) =

1

Z
exp(−H(x)) .(Why the 2 in the formula for H(x)? It's just a matter of de�nition, of ourse,but it's there to harmonize with the Ising model, where the summands xsxtvary between two values di�ering by 2, whereas here the summands vary justbetween 0 and 1, di�ering by 1.)The extension to Z

d works the same way as for the Ising model as faras de�nitions go, but some of the arguments for existene and uniquenessof Gibbs measures beome harder, beause the q ≥ 3 Potts model does notenjoy quite the same stohasti domination properties as the Ising moedl.Still, the main theorem quoted in Leture 6 onerning phase transition in39



the Z
d Ising model goes through in the Potts model: for �xed q ≥ 2 and

d ≥ 2, there is a ritial value βc ∈ (0,∞) suh that the q-state Potts modelon Z
d has a unique Gibbs measure when β < βc and multiple Gibbs measureswhen β > βc.One di�erene between phase transition behavior the Ising and the q ≥ 3Potts ases is that, while in both ases the magnetization (suitably de�nedand normalized) is 0 for β < βc and positive for β > βc, it takes o� ontinu-ously at β = βc in the Ising ase, and has a jump disontinuity in the q ≥ 3Potts ases; this is of great interest in statistial mehanis.A major tool for studying the Potts model is the so-alled random-luster representation, de�ned as follows.Fix S �nite, and neighborhood system ∂, and de�ne the edge set

E = {〈s, t〉 ∈ S2 : s, t neighbors} .Fix q and β , let p = 1 − e−2β, and do as follows:1. Let X ∈ {1, . . . , q}S be i.i.d. uniform on {1, . . . , q}.2. Independently of the �rst step, let Y ∈ {0, 1}E be i.i.d. with eah edgehaving probability p of taking value 1 (interpreted as �retained�) andprobability 1 − p of taking value 0 (�deleted�).3. Condition on the event that Xs = Xt for all s, t ∈ S suh that 〈s, t〉 ∈ Eand Y〈s,t〉 = 1.It turns out that if we do this, then X has distribution Π (the Potts modelwith parameters q and β). The random edge on�guration q gets a distri-bution ν on {0, 1}E whih is known as the random-luster model withparameter p and q, haraterized by
ν(Y = y) =

1

Z
qk(y)

∏

e∈E

py(e)(1 − p)1−y(e)where k(y) is the number of onneted omponents in the edge on�guration
y. The distributions of X and Y both have intriate dependenies, but itturns out that in this oupling (the so-alled Edwards�Sokal oupling)the onditional distribution of X given Y , as well as the onditional dis-tribution of Y given X are both very simple. The former is that on eahonneted omponent, a spin value is hosen uniformly from {1, . . . , q} to beassigned to all varties in the omponent, and this is done inedpendently for40



di�erent omponents. The latter is that given X, the edge variables are in-dependent, with 〈s, t〉 having probability p of taking value 1 if X(s) = X(t),and probability 0 otherwise.This beautiful dependene struture an be exploited for at least towpurposes:(i) To redue di�ult questions about dependenies in the Potts moedl toomparatively easier questions about onnetivity probabilities in therandom-luster model; Chapter 6 of [GHM℄ ontanis extensive disus-sion of this.(ii) To simulate Π by going bak and forth between X and Y in Gibbssampler style. This is the so-alled Swendsen�Wang algorithm, whihturns out in pratie to be more e�ient (although less �exible) thanthe single-site Gibbs sampler disussed in Leture 6.
∗Next,Gaussian Markov random �elds. Let S and E be as before (�nite),and let B = {s1, . . . , sm} be a subset of S. Fix b1, . . . , bm ⊂ R (the boundaryondition) and σ2 > 0 (the variane parameter), and pik X ∈ R

S as follows.First let Xsi
= bi for eah si ∈ B. Then pih XS\B aording to density

1

Z
exp











− 1

2σ2











∑

〈s,t〉

s,t∈S\B

(xs − st)
2 +

∑

〈s,t〉

s∈S\B,t∈B

(xs − xt)
2





















.It then turns out(a) that X is a Markov random �eld in the obvious analogous sense tothe disrete ase: the distribution of XA given XS\A depends only on
X∂(A), and(b) that XS\B is Multivariate Gaussian.The model is na a sense isomorphi, in a way that is both mathematiallybeautiful and useful, to random walks and eletrial networks. The onne-tions are outlined in Setion 9.4 of [J℄.For instane, alulating E[Ss] for s ∈ S \B is equivalent to either of thefollowing two: 41



(i) Run a simple random walk on the network (S,E) starting at s, andalulate the expeted value of bi at the �rst site in B enountered bythe random walk.(ii) Consider the eletrial network om (S,E) with σ2-ohm resistors on theedges, and voltages b1, . . . , bm applied at B, and alulate the resultingvoltage at s.The relation between V ar[Xs] and the random walk and eletrial networkformulations are even more interersting, and involve e�etive resistanes andreturn probabilities. The fat that simple random walk on Z
d is reurrentfor d = 1, 2 and transient for d ≥ 3 is essentially the same thing as the fol-lowing fat for Gaussian Markov random �elds. If we onsider the GaussianMarkov random �eld on Λn ∪ ∂(Λn) with the usual neighborhood struture,

B = ∂(Λn) and bi identially 0, then the variane X0 at the origin tends to
∞ with n for d = 1 and 2, but remains bounded. This means that an im-portant limiting objet known as the disrete Gaussian free �eld an bediretly de�ned by this limiting proedure for d ≥ 3, but requires a di�erentformalism for d = 1 and 2.Bibliography[GHM℄ Georgii, H.-O., Häggström, O. and Maes, C. (2001) The random geometryof equilibrium phases, Phase Transitions and Critial Phenomena, Volume 18 (C.Domb and J.L. Lebowitz, eds), pp 1-142, Aademi Press, London.[J℄ Janson, S. (1997) Gaussian Hilbert Spaes, Cambridge University Press.[JS℄ Jonasson, J. and Steif, J. (1998) Amenability and phase transition in the Isingmodel, J. Theor. Probab 12, 549�559.[W℄ Winkler, G. (1995) Image Analysis, Random Fields and Markov Chain MonteCarlo Methods: A Mathematial Introdution, Springer, Berlin.
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