Brief lecture notes on Markov random fields

for a graduate course given in the spring of 2014'

Olle Héggstrom

These notes do not convey the full content of the course, but are merely
meant as a complement to [GHM]| and [W].

1 Wednesday, March 19

We’'ll adhere as far as possible to the notation laid down in Section 3.1 of
Winkler [W], but I have some reservations regarding parts of his terminology.
In particular, for a finite index set S, a finite set X, of attainable values at
each s € §, and X = [[,cq X, he defines a random field as a probability
measure II on X satisfying

II(z) > 0 for all z € X. (1)

Spontaneously I'd call II a random field regardless of whether or not (1)
holds. In many cases (1) is a very useful assumption, but to require it for
a probability measure on X to qualify as a random field seems to me un-
natural. I'll sometimes consider examples violating (1), unabashedly calling
them random fields. And whenever (1) is needed I'll emphasize it explicitly,
sometimes calling it Winkler’s positivity condition (a bit sloppily, as Winkler
is far from the first to employ it).

*

Please pay attention to Definitions 3.1.1 (of neighborhood systems and cliques)
and 3.1.2 (of Markov fields). Winkler’s defining property of Markov fields
in Definition 3.2.1 is what I would call the local Markov property. More
generally, one can ask, for any A C S, whether

H(Xa =74 Xo\a =2504) = (X4 =24 Xpa) = Taa)) (2)

holds for all z € X, where 0(A) = Uyeca 9(s) \ A. I propose the following
terminology.

!See also http://www.math.chalmers.se/~olleh/MarkovRandomFieldsVT2014.html



e If (2) holds for all singletons A = {s}, then we say II satisfies the local
Markov property.

e If (2) holds for all finite A C S, then we say II satisfies the regional
Markov property.

e If (2) holds for all A C S, then we say II satisfies the global Markov
property.

At this point, it might seem a bit moronic to distinguish between the re-
gional and global Markov properties, because S is assumed to be finite, so
every A C S is automatically finite, and the regional and global properties
trivially coincide. But have patience, later in the course we will move on to
countably infinite S, and then the distinction will be real.? In any case, we
have, trivially, that the global Markov property implies the regional, and the
regional implies the local. What about the other directions?

We will see in a later lecture that if we assume Winkler’s positivity con-
dition, then the local Markov property does imply the regional Markov prop-
erty, while without the positivity assumption we’ll see a counterexample to
the hoped-for implication. As to the regional Markov property implying
the global, we’ll see in the setting of countably infinite S that there are
counterexamples (even assuming natural extensions of Winkler’s positivity
to that setting).

*

The Ising model (Example 3.1.2) is defined as follows. Fix a finite S and
a neighborhood structure 0, and let Sy = {—1,41} for each s € S, so that
X = {—1,+1}5. (For concreteness, we may, e.g., take S to be a square grid
{0,1,...,n}?, with edges connecting sites at Euclidan distance 1 from each
other.) For fixed § > 0 (the so-called inverse temperature parameter), the
energy H(z) of a configuration = € X is defined as

H(z) = —B) sty (3)
(s.1)

where (s,t) means that we sum over all neighboring pairs of sites in S,
counting each such pair once. We then define a probability measure II on X

2Note, however, that when S is infinite, then X will be uncountable, so that most
x € X will get probability 0, and we need to take some care with conditional probabilities,
e.g., by writing “If IT admits conditional probabilities such that (2) holds...” in place of “If
(2) holds...”.



by setting, for each x € X,

T1(r) =  exp(~ H(x) (4)
where Z =37 x e ") is a normalizing constant making the probabilities
sum to 1.

Probabilities of the form (4) are called Gibbs measure. Other choices
of energy function are possible, but with the present choice, we call I the
Ising model on S and at inverse temperature (.

Thousands of mathematics papers have been written on the Ising model,
and even more physics papers. Yet, it may look odd at first? Why is this
a natural choice of probability measure? There are many reasons, I'll offer
two:

First, it’s a Markov random field. To see this, fix s € S and x € X, and
consider the odds ratio

(X, = +1| X, = 2,,Vr # 5) (X, =+1, X, = ,,Yr # s)
(X5 =-1|X, =x,,Vr #s) (Xs =-1,X, =z,,Yr #5)
~ exp(—H (z with a +1 at s))
~ exp(—H (zwith a —1 at s))

exp | B Zxﬂ“t‘i' Z Tt
(t,7) ted(s)
N t,r#s
exp | 3 Z Tty — Z T
(t,7) ted(s)
t,r#s

= exp QQ(Z xt)>
ted(s)

which only depends on z via its values on J(s).

Second, exp(sum) = product, and product means independence (a fun-
damental building block in almost all probabilistic modelling) so that Gibbs
measures with energy function H(z) = ) exhibit some independence (or,
more precisely, conditional independence) structure. We’ll see in the Hammer-
sley—Clifford Theorem next week, that every Markov random field (in
Winkler’s sense) can be written as a Gibbs measure with H equal to
a sum over cliques. Here are a couple of really simple rewrites into Gibbs
measures, building up towards the Ising model:



Ezxample 0. Let {X;}ses be ii.d. random variables with

{H(Xs:+]-):p
—1-

(X, =-1) p.

For v € X = {—1,+1}%,

(z) = pHFFTSIMOQ—p)#IS D = exp(—H(x))

H(z) = =Y (log(p)1{z,—11} +1og(l — p)liy —_13).
seS

Ezample 1. Let S = {0,1,...,n}, and define X = (Xo, X1,...,X,) as a
(symmetric, two state) Markov chain with initial value X, equal to —1
or +1 with probability 1/2 each, and transition matrix

p l-p|
IL—=p p
Then any given x € X has probability

1 n
M) = 5 [[pMem=d (@ - p)ttnmrd
=1

= M exp <Zzn; log (%) 332'—1332‘>

_ =) _ue

2
with H(z) = —log (, /1%7) S 1 124, so this is the Ising model on

S (and neighborhood system 0 where ¢ and j are neighbors whenever
|i — j| = 1) at inverse temperature 3 = log( 1%}).
This last example reflects a more general fact that (under mild conditions), a
Markov chain is also a Markov random field with a 1-dimensional dependence
structure. If we now want to introduce similar interactions on a grid or a
more general graph structure, we have the Ising model.



2 Wednesday, March 26

As before, we take S finite, X, finite for each s € §, X = [[,c5 X, and II a
strictly positive probability measure on X. If I can be written as

for a given function H : X — R, then II is said to be a Gibbs measure
for energy function H. Every strictly positive II is a Gibbs measure for
some H, and by adding a constant to H we are even free to choose our own
favorite value of the normalizing constant Z. Indeed, defining H by

H(z) = —log(Il(z)) — log(Z)

gives
L v@) _ L1 reg()+log(2)
A A
_ %H(m)Z — Ti(x).

Hence, being a Gibbs measure is in itself not a remarkable property. More
interesting is if II is a neighbor Gibbs measure for a given neighborhood
system 0, meaning that

H(z) =) Ue()
C

where the sum ranges over cliques C' C S for 9, and Ug(x) depends on x € X
only via {zs}scc.
Part of Proposition 3.2.1 in [W]: IfII is a neighbor Gibbs measure for

the neighborhood system 0, then Il satisfies the local Markov property for the
same 0.

To prove this, it suffices to show that for any s € S, x € X and y,, 25 € X,

the odds ratio
(X =ys | Xy = 2, V1 # 5)

(X5 = 25| X = 2, Vr £ 8)
depends on z only via zy(). To do this, proceed as in the proof of the local
Markov property for the Ising model in my first lecture — and enjoy all the

cancellation! (Or see [W], p 55-56.)
A much deeper result (in my view) is the following partial converse:




The Hammersley—Clifford Theorem (Part of Thm 3.3.2 in [W]): If
I1 is a (strictly positive) Markov random field for O, then it is also a neighbor
Gibbs measure for 0.

See |W]| for the proof, which yields an explicit formula for Uc(x). It involves
a series of calculations, and proceeds via two other results — Lemma 3.3.1
(the Mobius Inversion Formula) and Theorem 3.3.1.

3 Friday, March 28

Staying as before in the finite setting (with both S and {bfX} finite), recall
from Lecture 1 my definitions of local versus regional Markov properties. The
regional Markov property trivially implies the local, but how about the other
direction? This lecture will be devoted to proving the following result.

Theorem L3:

(a) Under Winkler’s positivity condition, the local Markov property implies
the regional.

(b) Without Winlker’s positivity, there are conterezamples to show that the
local markov property does not imply the regional.

Part (b) is relatively the easier prat, so let’s begin with that.
Proof of Thm L3 (b): Set S = {s1,s2,53,54,55}, Xs = {0,1} for each
s € S, and defined the neighborhood system 0 in such a way that (s1, s2),
(s1,83), (s2,53), (S3,84), (s3,55) and (s5, sg) are neighbors (draw the graph
- a bowtie!). Define II as the probability measure on X with

11(0,0,0,0,0) = %
11(0,0,1,0,0) = 3
(1, 1,0, 1,1) 2
(1, 1,1,1,1) = 1
II(z) = 0 for all other z € X

The local Markov property is easy to check: II(X; = 0| Xg\5, = Tg\s3) = %
regardless of z € X; while

1 ifx,, =0
H(Xsl = 0|XS\81 f— .’L‘S\Sl) — { 0 lf 1,82 _ 1
2

which only depends on z via z(s,); and similarly for X;,, X5, and Xs;. So
the local Markov property holds.



On the other hand, take A = {s1, s2} so that 9(A) = {s3}, and note that
(X4 = (070)‘X83,S4,55 =(0,0,0)) =1

while 1
II(X4 = (0,0)| X5, =0) = B

so that the regional Markov property fails. o

As to Theorem L3 (a), this can be proved using the methods involving
Mébius Inversion discussed in Lecture 2, and is in fact part of Winkler’s
Theorem 3.3.2. I'll offer a completely different proof, which proceeds via
coupling of Markov chains — a method I find more illuminating and therefore
preferable, although I realize this may be mostly a matter of taste.

Proof of Thm L3 (a): Fix S, X, 0 and a distribution IT on X satisfying
both the local Markov property and Winkler’s positivity. Also fix A C S,
and z,z" € X such that zg(4) = 373(,4)- We need to show that

(X4 = 24| Xg\a = 25\4) = (X4 = 24| Xg\a = 25\ 4) - (5)
A small piece of extra notation will be convenient: let H|$S\ , denote II
conditioned on taking values z on S\ A, and define HW@\A analogously.

We will define two X-valued Markov chains (X, X1, ...) and (X}, X1,...),
designed in such a way that for every k,

X (k) has distribution I, ,
X'(k) has distribution HWS\A

To this end, we pick the initial values X (0) and X'(0) with these respective
distributions, and let the two chains evolve according to transition mech-
anisms that preserve their respective distributions. Namely, at each time
k > 1, select s € A at random (uniformly), and let

Xs(k) = a new value chosen according to IT
conditioned on agreeing with
X(k—1)on S\s

Xi(k)= Xiy(k—1),vteS\s.

The (X, X1, ...) chain will in fact have the same transition kernel, choosing
s € A at random (uniformly) and letting

X!(k) = anew value chosen according to II
conditioned on agreeing with
X'(k—=1)on S\ s

X/(k)= X/(k—1),VteS\s.

7



(This Markov chain transition kernel is a variant of the so-called Gibbs
sampler for II; see Section 5.1 in [W].)

This defines the two chains separately, but we will couple them, i.e., run
them jointly on the same probability space, and then we need to specify their
interdependence. First, pick the initial values X (0) and X’(0) independently.
Second, at each time k, let the two chains pick the same s € A to update.
Third, the new values X,(k) and X (k) are chosen

to be identical if Xy()(k —1) = X,5(5) (k — 1) (this is possible by
the assumed local Markov property of II)
independently  otherwise.
(6)

The great thing about this rule is that

as soon as the two chains coincide on A (and thus on AU 9(A)),
they will do so forever more.

(7)

And they will almost surely do so, eventually. One way to see this by noting
that if on |A| consequtive updates, the choices of s happen to scan through
all of A, and if each time the two chains happen to pick the same value at s,
then they will coincide on A at the end of the scan. The event that such a
succesful turn of events happens during times 1,...,k is easily seen to have

probability at least
52 |A]
(%) - ®)

0= rsréiil;réi)rclﬂ(Xs = 25| Xg\s = Ts\s)

where

which is > 0 since we assumed Winkler’s positivity. The probability in (8)
may be a very small, yet strictly positive, and the point is that if the event
happens to fail during times 1,...,k, then it has another chance at times
k+1,...,2k, and another at times 2k+1,...,3k, and so on. The probability
of seeing such a coalescence by time km is therefore

1-[1- (&
<|A\>
which tends to 1 as m — oo. Hence, in combination with (7), we get

lim P(Xa(k) £ X4 (k) = 0.

8



It follows that for any configuration y, € X 4 we have
Jim [P(X4(k) = ya) = P(X4(k) = ya)| =0,
i.e. for any € > 0, there is a k < oo such that
|P(Xa(k) =ya) — P(X(k) =ya)| <e.
But since the chains are stationary, this means we also have
|P(XA(0) = ya) — P(X4(0) = ya)| <e,

and since € > 0 and y4 € X4 were arbitrary, we get that the distributions
of X4(0) and X;(0) coincide. We thus have (5), as desired. o

*

Exercise: Theorem 3.3.1 (b) in [W] states that if II and II' are strictly
positive probability distributions on X such that for all s € S and all x € X
we have

(X, = $s“XS\s = xS\s) = H/(Xé = xS|Xé\s = xS\s)

then we also have IT = II'. Reprove this result using today’s Markov chain
technique!

4 Friday, April 4

Two of the main motivations for studying Markov random fields come from
(a) image analysis, and (b) statistical mechanics. I'll leave you with Winkler
[W] to learn about (a), and I'll talk here about what I know better, which
is (b), picking up most of that stuff from my paper [GHM| with Hans-Otto
Georgii and Christian Maes. Notation in [GHM] clashes with that in [W],
but I'll try in these lectures to stick with the [W] notation I started out with.

S used to be finite, but now we’ll take it to be a countably infinite set
(typically S = Z?) and define a neighborhood system 9 = {0(s)}ses such
that each O(s) is finite (typically, with S = Z9, J(s) consists of the 2d sites
sitting at Euclidean distance 1 from s). For each s € S, let X, be finite, and
let X = [[eq X (typically, X is the same for all s, in the Ising case with
X, ={-1,+1}).



Definition. The probability measure I1 on X is said to be a Markov ran-
dom field if it satisfies the regional Markov property, i.e., if Il ad-
mits conditionl probabilities such that for any finite A C S and I-almost all
x € X, we have

(XA =24l Xy =24,VEt € S\ A) =1I(X4 = 24| Xy = 24, Vt € O(A)).

(See |GHM], p 10, eq (5).)

Apologies for the inconsistency in defining MRF in terms of the regional
Markov property, rather than the local Markov property is we did following
Winkler in the finite case. I just find the regional Markov property a so
much more natural definition. Perhaps we’d better always be explicit about
which Markov property we have in mind.

We saw in the finite case that under Winkler’s positivity condition, the
two properties are equivalent. The same is true in the present setting of
countably infinite .S, although we have to be careful what we mean by the
condition in this case. We cannot (as in the finite case) ask that every
x € X has positive II-probability, because X is (in nondegenerate cases)
uncountable, so that’s simply impossible. Instead, we have two candidate
positivity conditions that make sense:

(a) For any finite A C S and any x4 € X4, I[I(X4 = z,) > 0.

(b) II admits conditional probabilities such that for any finite AsubsetsS,
any x4 € X4 and any x4, 4 € Xg\ 4 we have

(X4 = 24| Xg\a =2504) > 0.

Condition (a) may seem simpler, but (b) turns out to be even more impor-
tant in statistical mechanics and percolation theory, where it is known as
the finite energy condition. (b) implies (a), obviously, but the following
example shows that the reverse implication fails.

Example: Let S = Z? (or whatever countably infinite set you want) and
Xs ={0,1} for each s € S. Let II be the probability measure corresponding
to first tossing a fair coin, and then, if heads, let Xy = s for all s € S,
while if tails, let all the X values be determined by i.i.d. fair coin tosses.

Clearly property (a) holds, whereas (b) fails, since if we condition on hav-
ing all 1’s outside A (an event with positive probability), then the conditional
probability of seeing any 0 in A is 0.

10



Still, the weaker condition (a) turns out to suffice for the asked-for equiva-
lence between local and regional Markov properties.

*

Now let us define the Ising model on Z? (with the standard neighborhood
structure) at inverse temperature 3 > 0. Recall first that for finite S, we
defined it as the probability measure on {—1, 41} given by

1

II(z) = 7 exp(—H (x)) where H(z) = —f3 Z Ty .
(z,y)

For infinite S this won’t do, because the sum Z@,w xsxy will diverge. In-
stead:

Definition: A probability measure I1 on {—1,—|—1}Zd is said to be a Gibbs
measure for the Ising model on Ze (with the given neighbothood structure 0)

at inverse temperature 3 > 0 if it is a Markov random field such that for all
finite A C Z¢, all zo(a) € {1,413 and all x4 € {~1,+1}* we have

1
HW(Xo = 24| Xo(a) = zo(a)) = Zexp | Yowawe+ 8 Y. | (9)
(5.0 (50

5 s,t
stEA SEALED(A)

where

Z= Y exp|BD ywn+B Y. vy
ya€Xy (s,t) (s,t)
s,teA SEAt€I(A)
1s a normalizing constant.

The first thing to realize at this point is that the conditional distributions
given by (9) coincide with those that we get for the Ising model on a finite
S. Next, the two basic questions are

(a) Given 8 > 0, does such a IT on {—1, +1}2" exist?
(b) If yes, then is it unique?

We'll answer these questions in the next lecture. (SPOILER ALERT: The
answer to (a) is “yes”, and the answer to (b) is “that depends on (7.)

11



5 Wednesday, April 9

In response to the questions (a) and (b) at the end of the previous lec-
ture, let’s construct (fairly explicitly) a particular Gibbs measure IIT on
{-1, —i—l}zd. It arises as a limit as n — oo of probability measures II;} on
{-1, —i—l}zd. Define the box A, = {—n,...,n}¢ and let II} be the distribu-
tion of the {—1, —|—1}Zd—valued random object X that arises by

(i) setting Xy = +1 for all s € Z4\ A,

(ii) picking Xy, according to the conditional distribution given in (9), with
all +1’s on 9(Ay).

IT} is certainly not a Gibbs measure for the Ising model on Z¢ since spins
outside A, are forced to take value +, violating (9). But inside A,, things
behave as they should, and by sending n — oo the misbehaving region will
disappear on us.

But why would the limiting measure exist, and in what sense? The key
to understanding this is coupling and stochastic domination.

Let < denote coordinatewise partial order on {—1,+1}° (with S
finite or countably infinite), i.e., for 2,y € {—1,+1}% wesay 2 < y if x5 <
forall s € S.

Definition GHM 4.5, Stochastic domination: For two probability mea-
sures 11 and II' on {—1,+1}°, we say IT <p II' if

I(f) < 1'(f)

for every increasing (w.r.t. <) and bounded f: {—1,4+1}° — R.

Theorem GHM 4.6, Strassen’s Theorem: II <p II' if and only if there
exists a coupling of two {—1,+1}%-valued random objects X and X' such
that X has distribution 11, X' has distribution II', and P(X < X') =1.

The “if” direction here is obvious. The “only if” direction is deeper, and
proving it would take us too far, so we’ll skip the proof.

Definition GHM 4.5 and Theorem GHM 4.6, as phrased a bit narrowly
here, extend to the case where {—1,+1} is replaced by R. A major tool for
establishing stochastic domination is the following.

Theorem GHM 4.8, Holley’s Theorem: Let S be finite, and R a finite
subset of R. Let II and I’ be strictly positive probability measures on R,

12



and assume that for all s € S, all y, € R and all z,x' € RS\ such that
x <z’ we have

(X5 > ys|Xe = a0, Vt # 5) ST(X > ys| Xf =23, VE #5). (10)

Then II <p IT'.

It is important that you understand the proof of this result (based on cou-
pling of two RS-valued Markov chains known as Gibbs samplers for II and
IT'), but I refer you to [GHM] for the proof.

Holley’s Theorem has the following important consequence for the Ising
model.

Lemma GHM 4.13: Fiz n (and d and 3) and let x,2’ € {—1,+1}9%) pe
boundary conditions satisfying x < x’. Let II and II' be two probability mea-
sures on {—1,+1} " representing the ising model conditional distributions
on A, with respective boundary conditions v and z'. Then II <p IT'.

The proof is just a matter of checking that the single-site conditional proba-
bilities under IT and IT" satisty (10), and invoking Theorem GHM 4.8. Make
sure you know how to do that!

Lemma pre-Prop GHM 4.14: For anyn > 1,

I =p 0, - (11)

Proof: Here’s a coupling of two {—1, —|—1}Zd—valued random objects X, and
X,' 1 establishing (11).
Set X,7 = X, ; =+1on Z%\ \yp1.
Set X =+1on Ap_1\ Ay

Pick the Xf{ 41 configuration on A, 1\ A, according to whatever is its
correct marginal distribution.

Pick the X, and X, | configurations on A, in such a awy that X, = X,' 4
on this box; such a coupling exists by Lemma GHM 4.13 using the
corresponding domination on A,,_1 \ A, ensured by steps 2 and 3.

This gives a coupling such that, a.s., X, = X;Zrl on all of Z%. o

13



So now we have pairwise couplings witnessing II;} =p H: 1 for each n. This

defines, for each mn, a conditional distribution of Xf{ 41 given XF. By ap-
plying these conditional distributions sequentially, we obtain a simultaneous
coupling of all of them, with

X=X =X =

and a limiting configuration X+ € {-1, +1}zd whose distribution we denote
IIT and call the plus measure for the Ising model on Z? (at inverse
temperature ). This probability measure has the following important prop-
erties.

1. II'* is a Gibbs measure for the Ising model on Z¢ with param-
eter 3. To see this, we just need to verify that for any finite A C Z¢,
the conditional distribution of X7 given X;d\ 4 18 Markov with the
prescribed distribution. This holds for I} in place of IIT as soon as n
is large enough so the A, contains A. Taking limits, this property is

inherited by IT*.

2. A similar limiting Gibbs measure II™ can also be obtained, with mi-
nuses instead of pluses outside A,, in the finite sages of the construction.
IT" and II™ look the same except with the roles of pluses and minuses
interchanged.

3. II" =p II for any Gibbs measure with the given parameter. By
the same argument as in Lemma pre-Prop GHM 4.14 we get II} =p II
and the corresponding coupling X, = X. The claim follows by sending
n — oo.

This gives in particular
I~ <p Il <p IIF
so that Gibbsian uniqueness is equivalent to having I~ = II™.

4. II'* is translation invariant. To see this, note that we can build a
similar Gibbs measure Hjhifted with the boxes A, replaced by boxes
centered not at the origin but somewhere else. This gives a shift of
II*, and by the same argument as for IT™ we see that IT], . fteq Stochas-

tically dominates all other Gibbs measures. Hence IIT <p Hjhifted
and H:hifted =<p IIT, and it’s not hard to see that this implies IIT =
H:hi Fred> and translation invariance follows.

14



6 Monday, April 14

The following is perhaps the most famous result for the Ising model.

Theorem: For the Ising model on Z% with d > 2, there ezists a critical value
Be = Be(d) satisfying 0 < B, < 0o such that

B<pB. = It =11, Gibbsian uniqueness
B>pB. = It £1I, Gibbsian nonuniqueness

This excludes the case d = 1, because there there is no phase transition: the
Ising model on Z'! has a unique Gibbs measure regardless of 3 (a fact closely
related to the fact that a finite-state irreducible aperiodic Markov chain has
a unique stationary distribution).

The statement of the theorem can be separated in three parts:

(i) for ¢ sufficiently close to 0 we have uniqueness,
(ii) for ( sufficiently large we have nonuniqueness, and

(iii) for B1, B2 such that £; < (2, nonuniqueness at 3 implies nonuniqueness
at ﬁg.

All three are proved using percolation-theoretic methods in Chapters 5 and
6 of [GHM]. In this course we’ll be less ambitious and restrict to d = 2 and
parts (i) and (ii). (The proof we’ll give for (i) extends in straightforward
manner to d > 3, whereas the same thing for (ii) is highly demanding.)

Proposition small-3: For the Ising model on Z? with 3 < %log(g) we get
It =11.

Proof: Let us define a {—1, +1}2"-valued Markov chain (X*(0), X *(1),...)
as a kind of massively parallel Gibbs sampler for II", as follows. Start
by picking X *(0) according to II". Then use separate transition mechanisms
for even and odd times k, as follows. Let Z2,,, denote the set of vertices in

Z? whose sum of coordinates is even, and define Z?2,, analogously.

For k even, set X (k) = XS (k — 1) for all s € Z2,,, whereas for all
s € Z2,., independently, update its value as in the single-site Gibbs

even
sampler.

For k odd, set X (k) = X (k — 1) for all s € Z2,,,, whereas for all
s € ngd independently, update its value as in the single-site Gibbs
sampler.

15



Clearly, this dynamics preserves I, as well as it would preserve any other
Gibbs measure for the Ising model at parapeter 3 that we’'d care to start
with. So let’s start another Markov chain (X~ (0), X~ (1),...) to run in par-
allel with the first, but started with X~(0) chosen according to II™ (and
independently of X*(0)). We need to specify how the chains are run to-
gether. Here’s how:

Define, for all k = 1,2,... and all s € Z2, i.i.d. uniform [0,1] random
variables U (s, k). When a node s is updated at time k, we set

exp( =B, core Xi (k=1)

co ] —1 i U(s, k) < ( o) ! )

Xs (k') = exp(ﬁ Ztea(s) Xt"'(kfl)) +eXp(7'BZtea(s) Xj'(kfl))
+1 otherwise

and

exp( =B, com Xi (k=1)

o) -1 i U(s, k) < ( Lot ! )

Xs (k') = exp(ﬁztea(s) X;(kfl))Jrexp(fﬁZtea(s) X;(kfl))
+1 otherwise.

Note now that the expression

exp (—5 >_ted(s) $t) 1

exp (ﬁ tea(s) vk — 1)) + exp <—ﬁ 2 ted(s) ﬂft) T 1texp (—25 2_teo(s) ﬂft)

is maximized when } ,c5() 2¢ = 4 and minimized when 3,5y 2t = —4,

T Jé_s Tleg, respectively. Denote by «, the difference
1 1

between these two thresholds: o = THe=S — 118 For reasons that will
soon be clear, we want the a to be less than i. Two lines of secondary-
school algebraic manipulation gives that o < i is equivalent to the condition
B < %log(2) in the lemma.

Consider an update at a site s at time &, and denote by Ay j that at least
one of the vertices ¢ in 9(s) has a discrepancy at time k—1 between X, (k—1)
and X;"(k—1). For a discrepancy to happen at s after the update, necessary
conditions are (a) As, and (b) that U(s, k) takes a value in the length-
o interval [ﬁ, H%] Hence, with D(k) denoting the probability that a
newly updated site s at time k suffers from a discrepancy (X; (k) # X;" (k)),

we get

and

giving values

D(k) = P(X; (k) # X[ (k)
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= P(A;p)P(X (k) # X (k)| As ) + P(~As o) P(X, (k) # X[ (k)| = As k)

= P(As1)P(X; (k) # XS (k) As k)
< 4D(k —1)a.

This recursive relation starts with D(0) < 1 (trivially), so we get
D(k) < (4a)* = 0 as k — co.

For any finite region A C Z?, the expected number of discrepancies in A at
time k is at most |A|(4)*, which again tends to 0, so

lim P(X, (k) =X, (k) =1.
k—o0
Hence I~ and II" agree on A, and since A was arbitrary we have II- = IT™.

o

Proposition large-3: For the Ising model on Z* with 3 > log(2v/3), we
get IIT £ 11—,

Proof: Write 0 for the origin (0,0) € Z2. If IIT = II~, then, by symmetry,
I (Xe = +1) = % Hence, in order to prove the proposition, it is enough to
show that

1
. . + _ -
lﬂgfnn (Xo=-1)< 5 (12)
If, under IT;}, we obtain X = —1, then 0 must sit in a finite connected com-

ponent of minus spins, with what I'll call a finite +/— contour surrounding
it (it’s a hassle to define in words, so instead see Figure 1 in Bonati, C., The
Peierls argument for higher dimensional Ising models, Fur. J. Phys. 2014,
http://iopscience.iop.org/0143-0807/35/3/035002/article), because
under IT} all spins outside A,, are 1, a.s.

Fix a finite contour C inside A, surrounding 0, and a configuration
x € {-1, —|—1}Z2 taking value —1 at 0 and +1 everywhere outside A,,, and for
which C is the outermost +/— contour surrounding 0. Let & € {—1,+1}%
be the configuration obtained from x by flipping all spins inside C' and leav-
ing all spins outside C' unchanged. The energy difference between the two
configurations arise exclusively from the pair interactions across C, and if C
has length m we get

17



Hence

I} (C is a +/— contour for X) = Z 7 (X =)

m€{71,+1}z2
C +/- contour for z

> 5 (X =)
m€{71,+1}z2
C +/— contour for z

> IIH (X =2)
m€{71,+1}z2
C+/— contour for z

= exp(—2pm).

The number of possible lenth-m contours around 0 is at most

IA

m3m—1

where the initical m comes from the contour’s leftmost crossing of the x-
axis, and the 3 comes from the at most 3 choices of where to go next when
traversing the contour clockwise. Hence,

II7(Xo=—1) = IL}(3 some +/— contour around 0)

< > IL}(Cid a contour around 0)

contours C
o

Z Z I} (C id a contour around 0)
m=4length-m contours ¢

o0

Z m3™ ! exp(—28m)

m=4

{now use the crude estimate m < 2"}

IN

1 & o1& 5
< _Z 6m—2m:_ 6_2m
< 3?%2::4 e 32(6 )

m=4

which is < % provided 6e=2°% < %, i.e., when 8 > log(2v/3), which is the

condition in the proposition, so (12) is established and we are done. o

This is the famous contour argument of Rudolph Peierls from 1936!

7 Wednesday, April 16

Recall Holley’s Theorem (Theorem GHM 4.8) from lecture 5. An important
consequence is the following correlation inequality.
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Theorem GHM 4.11, the FKG Inequality: For S finite and R C R
finite, let TI be a strictly positive probability measure on RS such that for all

se S, allye R and all x,2' € RS\® with x < 2’ we have
(X > y| Xy = 24, Vt # 8) < TI(Xg > y| Xy = 2}, VE # 5). (13)

Then, for any two increasing (with respect to <) functions f,g : R°® — R we
have

1I(fg) > II(f)I(g) - (14)

It’s easy to check that (13) holds for the Ising model on a finite S, so the
FKG inequality applies. Hence, for example, the spin values at any two sites
are positively correlated.

Sketch proof of the FKG inequality: Since RS is finite, f and g are
bounded. We may assume without loss og generality that g is strictly pos-
itive, because replacing g by g + ¢ for some contant ¢ means just adding
cII(f) to each side of (14). We can then define the g-weighted modifica-
tion of IT as the probability measure I’ that on R° that to each z € R®
assigns probability II(z)g(z) divided by a normalizing constant Z making IT
a probability measure. But then Z =37 ps II(y)g(y), so

poy o I(x)g(x)
o) = Yyers T(y)g(y)

The key step of the proof now is to establish that

(z) 2p II'(z). (15)

To show this, we need to check that II and II' satisfy condition (10) in
Holley’s Theorem (Theorem GHM 4.8 in Lecture 5) — make sure you know
how to do that (and if nothing else helps, consult the proof in [GHM])!
Holley’s Theorem then kicks in to ensure (15). And once we have (15), the
proof is concluded by noting that

() < i) = ) Wa)f()

rERS
(z)g(z)f(z) _ U(fg)
s Dyers My)gly)  Tl(g)

and multiplying both sides with II(g) gives (14). o
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The rest of this lecture will be spent on the inhomogeneous Ising model
on Z', which will serve mostly as a counterexample-generator. The neigh-
borhood structure 0 well be the obvious choice: z,y € Z are neighbors iff

|z —yl=1.
The finite case first. For finite n and parameters 6_,, B—n+1,-- -, Bn—2, On—1,
define the Ising model on {—n,...,n} with these parameters as the probabil-

ity measure on {—1,+1}{="-"} that to each z € {—1,4+1}{™"} assigns
probability

1 n—1
I, (z) = 7 &P > Biwizis | -
i=—n
For each i, define y; = z;x;+1 (and for the corresponding random variables,
similarly, Y; = X;X;11). For any x such that x;x;11 = +1, define another

configuration

)T up to site ¢
"] —x from site i + 1 onwards.

Then 0, (2)
n(x
= 205;) .
Hn(.{f) eXp( /82)
A configuration x is uniquely determined if we know z_,, and all the flip
values Y_p, Y—n+t1,- .-, Yn—1. S0 if we know X_,, and all flip variables ezcept

Y;, then we know we're in either a given x or in Z, so
el 14 e 20

I(Y; = 1Y} = y,¥j #9)

so the Y;-variables are independent taking values
+1 wp. —
e ? (16)
-1 Ww.p. 1+e——2ﬁ

Now fix the bi-infinite sequence

.. 7&*27&*17&07&17627' .-

and send n — oo in the above construction. Property (16) is preserved in the
limit, and one can check that this gives a Gibbs measure II on {—1,+1}2.

We haven’t specified the §; values so far, but note that if G, — oo as
|n| — oo fast enough so that

00 o268
< 17
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(which is the same as >.°°_e™2% < o0), then the expected number of spin
flips is finite, so there will a.s. be only finitely many spin flips. We want this
property, and choose to set (3; = |i| for each i (this satisfies (17)), so that
with II-probability 1, the limits

X o= lim X;
1——0Q
and
Xioo = lim X;
1—+00
exist (and equal +1 or —1). Since fy = 0, we have that Yy = +1 or —1
with probability % each, independently of all other Y;’s. Note also that
flipping Yy changes whether X_ o, = X or not. This, together with the 41
symmetry of the model, gives (X_oo, X4oo) = (—1,—1), (—1,+1), (+1,-1)
or (+1,+1), each with probability 1.

Next we’ll do something slightly unusual, namelt let II""* be the prob-
ability measure on {—1,41}% that arises by conditioning on the event that
(X o0, X4oo) is either (—=1,41) or (+1,—1). That is a tail event with re-
spect to the X; variables, and conditioning on a tail event doesn’t change
the conditional distributions on finite sets (which are the defining properties
of Gibbs measures), so II" is a Gibbs measure for the inhomogeneous Ising
model on Z with the given parameter. This Gibbs measure will serve as a
conterexample to two properties one might otherwise naively suspect to hold
in general:

FKG. We saw in connection with the FKG inequality that for the Ising
model on finite S, two spin values are always positively correlated. This
fails in general for Ising model Gibbs measures in the infinite setting,
as exemplified by 1™, The + symmetry gives E[x;] = 0 for all i. On
the other hand, since X_, X o = —1 with probability 1, we get that
E[X_;X;] tends to —1 as ¢ — oo, and hence must be strictly negative
for large enough 4. For such i, we thus get E[X_;X;] < E[X_;|E[X;],
which is the desired counterexample.

Global Markov property. Let A = {1,2,3...} and consider the condi-
tional distribution (under II"™%) of X4 given Xz\4- 1% satisfying
the global markov property would imply that this conditional distri-
bution would only depend on Xz\ 4 via Xy(a), i.e., via Xo. It is easy
to see that conditional on Xy, the value of X (which is a function
of X 4) can be either +1 or —1, each with positive probability. But if
we condition further on all of Xgz\ 4, we can read off X_, and then
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the conditional probability that X, = +1 changes to either 0 or 1,
so the global Markov property is violated.

8 Friday, April 25

Let’s say we're interested in the Ising model on (S, d) with parameter (3, and
say S = |1000'000| (not by any means an unusually large system in practice).
Suppose we want to calculate the expectation II(f) of some quantity f such
as

(i) f(X) = X, for a given s € S,
(ii) f(X) = XX, for given s,t € S,
(i) f(z) = L s=2000000}

Somtimes we can find clever arguments to find II(f), such as is the cae with
(i), where the +1 symmetry of the model gives II(f) = 0. Cases (ii) and
(iii) are less obvious, although in principle trivial, because this is a finite
problem, and

(f) =) H(@)f(z). (18)
rzeX
But in practice the obstacle to simply calculating this sum is the prohibitive
number of terms in the sum: |X| = 21000000,
What to do? Assuming we had a machine for simulsting i.i.d. X-

valued random objects with distribution II, then we could take a sample

from that machine, and estimate II(f) with Pi,(f) = LS, f(X;). This
is unbiased, and since in cases (i), (ii) and (iii) above f is bounded between
—1 and +1 we have Var[X (i)] <1, so that

S

Var[fL,(f)] = % 3" Var[X)] <
=1

and Chebyshev’s inequality® yields

P(TL(f) ~T(F)| > ) <

3If the random variable Y has finite second moment, then P(Y —E[Y] > ¢) < Var[Y]/é?
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So to get this probability below a given p, just pick n > %.

Now, we don’t have such a machine, but MCMC provides a kind of
approximate such machine. The idea is to devise an irreducible aperiodic
Markov chain X (1), X(2),... on X whose unique stationary distribution is
II. The convergence theorem for finite-state irreducible aperiodic markov
chains gives us that if we sample at sufficiently long intervals, say m, we
get a sample which is approximately i.i.d. (in a sense that can and will be
specified), so a sensible estimator might be

But if so, then for any j € (0,1,...,m — 1) the estimators

n

%Zf(X(minLj))

=1

seem about equally good. And when we have m such good estimators, it
makes sense to reduce variance further by taking the average of then, which
is tantamount to sampling the X chain at every time point (after an initial
burn-in of length m). This is often done in practice.

But how long do we need to run the chain? Winkler states and proves
the following Markov chain analogue of the above Chebyshev estimate.

Theorem 4.3.2: Let (X(0),X(1),...) be a time-homogeneous, irreducible
and aperiodic Markov chain with finite state space X and invariant distribu-
tion p. Then, for any f : X — R, we have (ergardless of how f is chosen),
that the estimator fu,(f) = L 321 f(X(i)) converges in probability (or in
L? as Winkler says — since f is automatically bounded these modes of con-
vergence are equivalent). Qunatitatively, for any € >0

2
Plin(£) = () > 0 < 1o (19)

where

I£1l=>_ 1F(X)]

zeX

and c(P) is the so-called contraction coefficient of the chain’s transition
kernel P:
¢(P) = max |P(z,B) — P(y, B)|.

z,yeX
BCX
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The contraction coefficint ¢(P) is an important concept, so please pay at-
tention to Winkler’s Section 4.2. Regarding the concept | f||, however, I
stronly advice against using it in the present context. Winkler’s use of || f||
is just plain lazy, and if we instead use max,ex |f(z)| we'll get a variant of
Theorem 4.3.2 which — unlike the present Theorem 4.3.2 — can actually be
useful. Here’s why the present Theorem 4.3.2 is so bad.

Suppose we take € = 0.01 and that what we know (as in cases (i), (ii)
and (iii) above) is that |f(2)] < 1V and that |X| = 21000000 Ty order to
bound the probability in (19) by 0.1, we’ll have to take

13- 22,000,000 130/000 . 22/000/000
> =
"= 011 — ¢(P)]0.012 1—¢(P)

so that even if ¢(P) = 0 (which is best possible), we’ll have to run the chain
for an amount of time that, even on the snazziest computer, makes the age
of the universe seem like hardly even a blink-of-the-eye.

In general, running time bounds that (like this one) grow exponentially
in |S| tend to be useless. And in the frivolous science fiction scenario that
we do have such incredible amounts of time at our disposal, we might as well
use the method of directly calculation the sum in (18), rather than reverting
to MCMC simulation.

*

Next, how to concretely construct the Markov chain. I’ll focus on the Gibbs
sampler. For the related and more flexible Metropolis—Hastings algo-
rithm I’ll refer the reader to Winkler’s chapter on that.

Given the Markov random field distribution II on X, a Gibbs sampler
is a Markov chain (X (0), X(1),...) constructed as follows. At each time k,
select an s € S (according to some rule, deterministic or random), set

Xt(k) = Xt(k? — ].) forallt e S \ S

and pick a fresh value of X (k) according to the II-conditional distribution
of X given a configuration on S\ s agreeing with X¢\,(k —1).

Obviously, if X (k — 1) ~ II, then X (k) ~ II, so II is a stationary distri-
bution for the chain. But is it the only stationery distribution, and do we
have convergence towards it as k — oco?

This depends on the mechanism for chossing which vertex to update. For
instanec, always choosing the same vertex to update is a stupid rule, under
which the answer to both questions are “no”. Two other choices, which are
popular and which under Winkler’s positivity condition gives answer “yes”
to both questions, are to select s
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e at random (i.i.d., and unifromly on S), and

e according to a systematic weep: deterministically go through all of S
in the first |S| updates, and then repeat.

The former is sometimes more convenient to work with, because it is time-
homogeneous, so we can immediately apply the basic convergence theorem
for finite-state Markov chains to deduce uniqueness of the stationary distribu-
tion and convergence to it as k — oo. The latter allows the same conclusion,
but only if we redefine “time” by considering the embedded Markov chain
obtained by looking at the original one only at times that are multiples of
|S|.

Concerning quantitatively the rate of convergence, the contraction coeffi-
cient ¢(P) from Theorem 4.3.2 plays an important role. If we look at a single
step of the Gibbs sampler, we get ¢(P) = 1 (no contraction at all), which is
useless, but by considering the embedded chain by viewing |S| updates as a
single step, we get ¢(P) < 1. It can be very close to 1, however, and this is
one of the reasons why the rate of convergence in Winkler’s Theorem 5.1.4
for the Gibbs sampler is so terribly bad.

The quantitative part of Winkler’s Theorem 5.1.4 is that

where ¢, 0 and A are as follows.

e c is a constant depending on the updating scheme and on the catas-
trophic factor ||f||?. This is enough to render Theorem 5.1.4 useless,
but this part can actually be fixed by replacing Theorem 4.3.2 by a
more sensible variant.

e A = maxcg MAXg yinX:zg, ,=ys\« SAYS roughly (if A is small) that the
conditional distribution at any s given Xg\4 does not deviate much
from uniform distribution. This condition works to get results, but
does not capture the essence of the “fast convergence” problem. What’s
needed is not being close to uniform, but rather not depending too
heavily on Xg\.

e 0 = |5|, and since the ¢ factor sits in the exponent we obtain another
catastrophic factor exp(1’000'000A) rendering Theorem 5.1.4 useless.
This time fixing Theorem 4.3.2 won’t help.
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Nevertheless, not all is lost, and next week I'll offer you sensible replacement
for Theorems 5.1.4 and 4.3.2!
*

The needed irreducibility of the Markov chain follows under Winkler’s posi-
tivity, but there are important examples where we can get away without it,
such as in the hard-core model. Here X = {0,1}*, and a 1 at s is thought
of as a particle, and a 0 at s as the absence of a particle. Particles cannot
be packed too tightly, and a configuration = € {0,1}7 is called legal if there
are no two neighbors s and t with s = x; = 1. The hard-core model with
parameter A > 0 is the probability measure IT on {0, 1} given by
H(z) = %)‘(# I'sin x)l{x is legal}

The parameter A quantify the model’s tendency to have many 1’s, and send-
ing A — oo is tantamount to trying harder and harder to find an “optimal
packing”, i.e., maximizing the number of 1’s without making x illegal.

The Gibbs sampler for this model is irreducible in the sense that for any
two configurations with positive probability (i.e., any two legal configura-
tions) you can reach one from the other, by forst successively removing one
1 after the other, to reach the “all 0’s configuration”, and then adding new
1’s agreeing with target configuration, one after the other.

9 Wednesday, April 30

Today we'll replace Winkler’s useless Theorems 4.3.2 and 5.1.4. Straight to
the point:

Theorem Replace-4.3.2: Let (X (0), X(1),...) be a time-homogeneous, ir-
reducible and aperiodic Markov chain with finite state space X and invariant
distribution p. Then, for any € > 0, any a > 0 and any f : X — R with
maxgex |f(2)| < a, we have, defining

(D) = 237 Fx(0).
=1

that
1642

(1 —c¢(P))ne?’
Here the contraction coefficient is, as before,

P(|ﬂn_u|>6)§

e(P) = max | P(z, B) — P(y, B)|.
z,yeX
ByCEX
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We can also write ¢(P) as

1
o(P) = 5 max [|[P(z,") = Py, )]

where, for any two probability distributions II and v on X, ||II — v|| denotes
the toal variation norm ) x |II(z) — v(z)|. (This total variation distance
ranges between 0 (identical distributions) and 2 (disjoint distributions), and
differs from the total variation distance in [GHM]| by a factor 2. Both defi-
nitions are fine, but it is dangerous of course to mix them up, so be careful
when exploring the literature.)

A central result on coupling (see Proposition 4.4 of [GHM]) is that for
any two distributions II and v we can couple two random objects X ~ II and
Y ~ v in such a way that P(X #Y) = %||[Il — v||; this is called a maximal
coupling, because it cannot be improved. We’'ll use this result, but will not
dig into its proof.

Another result we'll use without digging into its proof (but do have a look
at Winkler’s Lemma 4.2.2 in you want to understand it) is that the n-step
transition kernel P™ of a Markov chain with transition kernel P satisfies

c(P") < (e(P))" .

Proof oh Theorem Replace-4.3.2: Assume for simplicity that pu(f) =0
(we'll fix that at the end). In order to apply Chebyshev, we need to estimate

Var [% zn:f(X(i))] = E [(% En:f(X(i)))?]
=1 =1

= LS B

i=1j=1

Imagine (for the time being) the chain starting in a fixed z € X, and couple
(X(0),X(1),...) with another X-valued Markov chain with the same trna-
sition kernel but starting in stationarity p. For fixed £ > 1, we can couple
X (k) and X'(k) in such a way that
1

- Pz ) = PF(y. -
2£g§\l (x,-) (y, )l

= o(P") < (c(P)".

P(X (k) # X'(k))

IN



= f@)E[f(X(K)) + f(X"(k)) — f(X'(k))]

= f@E[f(X'(F)] + f(@)E[f (X (k) = f(X'(k))]
< fl@) -0+ fx) - 2a(c(P))*

< 2d%(c(P))k.

Dropping the assumption that the chain X starts in a fixed x € X, thus
allowing random X (0), we obtain E[f(X(0))f(X(k))] as a weighted average
of terms that are at most 2a2(c(P))*¥, so the conclusion

E[f(X(0))f(X (k)] < a®(c(P))*
remains valid. And for similar reasons, for any m > 0
E[f(X(m))f(X(m + k))] < a*(¢(P))* .

We get
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=

So Chebyshev gives

PIESS FX) >0 < 52
n = e?n(1 — ¢(P)

(20)

But that was for f such that u(f) = 0. For u(f) # 0, we just apply the
above to g = f — p(f), and |f(z)| < a gives |g(z)| < 2a. So in this more
general case the bound in (20) becomes

4(20)* 16a>
e2n(l—c(P)  e2n(l —c(P)
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which is the bound claimed in the theorem. o

Next, we want to replace Theorem 5.1.4 on convergence of a Gibbs sampler.
With our new replacement of Theorem 4.3.2 there is hope to get something
useful, as long as we can get a reasonable bound on ¢(P™). There is no
hope of getting a very general result, because the single-site Gibbs sampler
for the Ising model on large finite subsets of Z? is exponentially slow in the
phase transition regime 3 > (.. But we should at least be able to obtain a
result that gives fast convergence for some nontrivial Markov random fields
(including the small-g Ising model).

We’ll stick, for definiteness, to a systematic sweep Gibbs sampler, and
exploit the idea of the small-3 IIT = II~ result for the Z? Ising model in
Lecture 6.

There we assumed (§ < %log(%), and if we inspect the proof, we see that
the crucial property that follows from this is that

max max (X, € |So, = o) ~TX, € So =9l < 5. (21)
so that by employing the maximal coupling when we uptate s at time k,
we can make sure that P(X,(k) # X}(k)] < 1. Or more generally we want
P(Xs(k) # XL(k)] < ﬁ where dq; = maxses |0(s)|, so we want the right-
hand side of (21) to be ﬁ. We will make that the central assumption of
our theorem. To arrive there, let’s denote the left-hand side of (21) by «, and
note that after the first weep through S, employing the maximal coupling at
each update guarantees that each site has probability at most § of exhibiting
a discrepancy between its values in the X chain and the X’ chain.
When a site s is chosen at a time k in the second sweep, we get

P(X(k) # X.(k)) = P(some discrepancy in 9(s))
-P(X,(k) # X.(k)| some discrepancy in d(s))

< admaz « '

- 2 2
So after the second sweep, all sites have probability at most Lgm% of ex-
hibiting discrepancy. Applying the same reasoning iteratively, we get after
the n:th sweep that all sites have probability at most & (2%mez)n=1 When
a < ﬁ, this tends to 0 (fast), so we’re in business. Specifically, note that
%(ad%)"_l is an upper bound for the expected number of discrepancies
after the n:th sweep. Take n so large that this bound satisfies

[Sla (%)n_l <1
2 2 =9
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which via a few steps of high school-level algebraic manipulation is seen to

be equivalent to
_ log(alS))

~ log ( ad’?naa: )

Then the probability that the two chains have coalesced (at every site) after
n sweeps is at least % Our theorem, therefore, is as follows.

Theorem Replace-5.1.4: Let II be o Markov random field, and define

+1.

- I(X, € |Sg\, = 2) — II(X, € |Sg\, = )] -
a Igleasg(x?eagc\sﬂ (X5 €[Sq\s = 7) (Xs €Ss\s =)

Ifa < ﬁ, then the Markov chain in which a single step represents at least
log(a|5])
1Og( ﬂdiaz )

o(P) < 3.

+ 1 full sweeps of the Gibbs sampler has a contraction coefficient

This result can then readily be plugged into Theorem Replace-4.3.2 to get
bounds on how long we need to run the chain in order to get good estimates
of whatever expectation II(f) we wish to calculate. The fact that it takes
just of the order log(|S|) sweeps, i.e., |S|log(|S]) single site updates, in order
to reach a useful contraction coefficient (as opposed to in Winkler’s Theorem
5.1.4 where it took exponentially many) means that we're in business with
a sampling algorithm that may actually be useful.

10 Wednesday, May 7

Now is time to discuss statistical estimation of parameters in Markov random
fields. I'll focus on a simple example: estimating 3 in the Ising model (this
will put you in a better position to digest Winkler’s more general treatment
of the topic).

A configuration X € {—1,+1}°, with S finite, is observed. Me may
assume it comes from the Ising model Gibbs measure II for this known S
with known neighborhood 9, but we do not know the inverse temperature
G. How to estimate (37

I'll focus on maximum likelihood (ML) and related techniques. Winkler
mentions two highly desirable properties of estimates B (where n is some
measure of the amount of data):

(i) So-called consistency: (3, should tend to § as n — oo (in whatever
mode of convergence we can get, almost sure convergence, convergence
in probability, in L2, or...)
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(i) B3, should be computationally feasible.

Property (i) is not quite what we want in practice, because at the end of
the day we need to know for some fixed finite n that 3, is likely to be close
to the true value (3, and asymptotic statements like (i) do not answer that.
But it’s a good start.

What do we mean by the amount of data n? Winkler discusses two cases:

(a) n i.i.d. samples X (1),...,X(n) from II on a fixed finite S.

(b) Let S be countably infinite, such as S = Z? with the standard neighbor-
hood structure, and look at the configuration on A,, = {—n,...,n}2.

He says (b) is more relevant in image analysis and focuses mainly on that;
I’'m very happy to go along.

The simplification we get from focusing on estimating 3 in the Ising
model, compared to Winkler’s more general setting, is that of studying just
a single parameter, so that when taking derivatives of the log-likelihood
function L (as we almost always need to do when studying ML estimators)
we don’t need to handle vector-valued gradients VL and Hessian matrices
VL.

Before treating the Ising model, let’s remind ourselves of how ML works
by considering the very simplest situation of possibly biased coin tosses:
let X(1),X(2),... be i.i.d. {0,1} valued random variables taking value 1
with an unknown probability p. The task here is to estimate p based on
X(1),... X (m).

Given X(1),... X (m) such that Y7, X (i) = k, the likelihood becomes

l(p) =p"(1—p)" "
and the log likelihood

L(p) = log(l(p)) = klog(p) + (m — k)log(1 —p).

How do we maximize L(p)? We solve for df;l;p ) = 0 and check whether
% < 0.4 We get

dL(p) k m—k

dp p 1-p

“In addition, we of course need to check what happens on the boundary of the parameter
space. This turns out to make no difference to the present example, and I’ll just skip that.
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which is 0 when p = £, and

d*L —k m—k
a7 a—p <%

dp> — p?  (1—p)?

> =
SO P = % is our ML estimate of p. From the strong law of large numbers,
we know that

A&wﬁ$&52X
almost surely, so the ML estimate is consistent!

Now let’s try to imitate this in the Ising model on Z? context, based on
observing the spins on A,. For reasons that will become clear, I'll assume
we're allowed to peek at the values on 9(A,,) as well. The literal ML estimate
is unavailable, because we do not have an expression for

1(8) = Tg(Xp, = za,)

since, as we saw in Lesture 6, 3 doesn’t even uniquely determine IIg.
The next best thing is to consider the conditional distribution of X}y,
given Xp(s,,, viewing the latter as fixed. That gives a conditional likelihood

1 Z
l(ﬁ) = Z exp E Ly Ly + LyTy
(u,v) (u,v)
u,vEA, uEAL,WED(Ay)

This would be easy to work with, were it not for the hidden fact that Z
depends on . Treating Z by direct summation is obviously impractical (the
sum as 2/4nl terms), but it is possible via various numerical and MCMC
schemes to find an approximation, and that way get an approximate ML
estimate (which can also be shown to be consistent).

That’s very intricate, however, and we’ll choose another way, namely to
condition further on Xy, ,,, where A, ,qq is defined as the set of vertices
in A, whose sum of coordinates is odd. The point of doing so is that by
the Markov random field property, the variables {X,}vea, e DECOmMeE con-
ditionally independent given X ., and Xy(,), rendering the likelihood and
easy-to-handle product structure, translating into a sum in the log-likelihood.
They are not identically distributed, however, because

1
1+exp (—25 2 wed(v) atw)

Hp(Xy = +1|Xa0) = zaw)) =
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which depends on the number of 4+1’s in the neighborhood.

But if we restrict to looking at vertices in the set Ayen, ..., defined as
those vertices in Ay cyen that happen to have all +1 neighbors, then these
become conditionally i.i.d. with

1

Hﬁ(X'U = —I—l\all else) = W s

so we're back in the coin tosses situation with m i.i.d. (p) binary variables,
with p = He%gﬂ and m is the number of vertices in Ay, cpen a+- It is not hard
to show that m — oo a.s. as n — oo, which put us in a setting where we
can reasonably ask for consistency. If we observe k +1’s in Ay, cpen 4+, the
log-likelihood becomes

L(B) = klog (ﬁ) + (m — k) log (ﬁ)

k

which, as we saw for the coin tosses, is maximized when p = -*, and solving

for /8 in p= 1+e+85 giVGS

A 1 m
=——log|(——1
B g 108 < B )
which we take as our ML estimator.® Now, as n — oo, so that m — oo

the strong law of large numbers applied to the conditional distribution of
XA even 8iven Xp ., gives that % tends to He;_gﬁ a.s., so

n,eve

lim 3, = —llog(l +e ¥ _1)=p,
n—00 8
so we have a consistent estimator of (!

But it seems somewhat wasteful to look at only those vertices with all
+1 neighbors. In fact we can construct similar estimates based on vertices
in Ay cven With 7 neighbors taking value +1, not just for r = 4 but also for
r=0,r=1andr = 3. (We can also try » = 2, but that actually doesnt help,
because the log-likelihood turns out to be klog(3) + (m — k)log(3) which
is independent of (3.) This gives four different log-likelihoods Lg, L1, L3, Ly
with

Lo(8) = klog (14 e~ =7 — 1) 4 (m — k) log (1 + =507 — 1)

5Note that this estimator can turn out to be negative! Here we have two choices. Either
we can allow § < 0 in the Ising moedl, leading to the so-called Ising antiferromagnet, or
we can insist on § > 0 which, in accordance with the previous footnote, gives ﬁn =0in
case —é log (% — 1) turns out negative.
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each giving an ML estimator Bnn which tends to 8 as n — oo.
Well, surely we can be more efficient and and add upp the loglikelihoods
to get
Leven(ﬂ) = LO(ﬁ) + Ll(ﬁ) + L3(6) + L4(ﬁ) )
no? (Including Lo(/3) is harmless but pointless.) Since each L,(3) leads to
a consistent ML-estimate, surely the same holds for Leyen?
Yes we can, and yes it does! Here’s why. We calculate

d m€(4r78)ﬁ
%Lr(ﬁ) = (4r —8) (k - m)
and
42 ) €(41”78)5
d—ﬂQLT(ﬂ) = (4r —8) mm) <0

so each L,(f3) is concave in 3.

Fix € > 0, and write §* for the true value of 5. By consistency of each
of the L, () estimators, we can a.s. find some (random) N such that for all
n > N that each Bnn is in the interval 8* + €. Then for r = 0,1, 3,4, we
have

%LT <0 forall 8> p3*+e€.

The same conclusion follows for Leyen (), so it must have its maximum at
some point Beypen,n somewhere in (3% —¢, 5* +¢, and since € > 0 was arbitrary

d . _
(ﬁ){ >0 forall B< B —¢

we have shown that Bepen,n 18 a consistent estimator.

We can of course do the same thing with L,44(3) and get another con-
sistent estimator. And in the same way as when we added the L,(() log-
likelihoods, we can also add Leyen(8) and Lygq(5) and get another “log-
likelihood” Lpseudo(/) which by the same agruments yields another consistent
estimators.

I think it’s fair to use the term conditional log-likelihood for all of
L.(B), Leven(8) and Logq(B). For Lpseudo(B) this term seems less appro-
priate, because here we are in a sense conditioning on everything. Instead,
Lpseudo() is called a pseudolikelihood, the maximization of which is a
standard device in parameter estimation in Markov random fields.

11 Friday, May 9

Up to know, we have given the Ising model the energy

H(z)=-p Z Ty Ty

(u,)
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where 8 > 0 is called the inverse temperature parameter. Today we’ll see
what happens when we generalize the moedl and introduce another param-
eter — the so-called external field h — to get

H(z)=-0 (Z TyZy + h Z wu) . (22)

(u,v) uesS

Setting h = 0 gives back the old model. Setting h # 0, say h > 0 for
concreteness, breaks the +1 symmstry in the model and favors spin con-
figurations with many +1’s and disfavors those with many —1’s. This has
dramatic consequences.

Recall the theorem from Lecture 6 saying that the Ising model on Z¢,d >
2 (without external field) has a critical value 8. € (0,00) such that there is
a unique Gibbs measure if 3 < (. and multiple Gibbs measures if § > f..

In contrast, when h # 0 there is, on Z?, always only one Gibbs measure.
I will not show the full result to this extent, but be content with a reasonably
strong partial result in this direction (Proposition h below).

The Ising model on Z? with external field can be defined analogously to
what i did for the h # 0 case in Lecture 4, in terms of conditional probabilities
on finite sets. Much of the stochastic domination machinery from Lecture 5
goes through with hardly any change in the arguments. Very briefly:

Lemma GHM 4.13 goes through for the h # 0 case, leading to the stochas-
tically decreasing sequence

H’f’h’+ D H?”“* D H?’h’+ =p -

of probability measures Hg’h’Jr on {—1, —i—l}zd corresponding to putting all
+1’s outside A,,, and then picking the spins on A,, according to the condi-
tional distribution corresponding to the energy function in (22) and all +1
boundary. The limiting measure II%"7* is a Gibbs measure for the Ising
model on Z? with the given parameters, it is translation invariant, and it
stochastically dominates all other such Gibbs measures. We can analogously
construct I/~ with similar properties and the result that any further Gibbs
measure 117" with the same parameter values is sandwiched between IT5:"~
and TI%"* in the sense of stochastic domination. Hence, Gibbsian unique-

ness is equivalent to
Hﬂ7h7_ — Hﬁvh,'i' .

What we would now most like to show (and what is in fact true) is the result
that
%"= = 1%"+ whenever h # 0
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but will for reasons of space and time settle for the following weaker result.

Proposition h: For fized 3 > 0, we have
Hﬁ,h,* # ngvthr

for at most countably many values of h.

Depending our mood, we can either view this result as very weak (because
it does not settle the uniqueness issue for any given (,h)) or very strong
(because it proves that uniqueness holds for Lebesgue-almost all (3, h)).

As a preparation for the proof of Proposition h, fix 3, define M5 (h)
as the IT%M+_expectation of the spin value at s € Z¢ (which by trans-
lation invariance is independent of s), and define M?%~(h) as the II%"—-
expectation of the same quantity. (M is for magnetization.) A straight-
forward adaptation of the proof of Lemma GHM 4.13 shows that if A; < ho,
then I3+ <p TI8P2+ 50 that IO+ <p TI702F and

MPF(hy) < MP+(hy).

Similarly we get
MP=(hy) < M7~ (hy)

and, for any h € R,
MP=(h) < MPF(h).

These three inequalities for the magnetization should all be intuitively ob-
vious, because increasing h should favor having more +1’s regardless of
whether we’re in the plus measure or the minus measure, while going from
the minus measure to the plus measure while keeping the parameters con-
stant should have the same effect.

A much less obvious issue is, again for hy < hy, M?%(hi) compares
to MP~(hy). The boundary condition wants the inequality to go one way,
while the external field wants the other. It turns out that the external field
wins:

Lemma h: Whenever h1 < hy, we have
MP*(hy) < MP~(hy).

Intuitively, the reason that this is true is that when we look at the effect
of boundary condition and external field on a box A,, the former acts on
the boundary while the latter acts in the entire box, and since the surface-
to-volume ratio goes to 0 as n — oo the latter wins no matter how small
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ho — hy is. Turning this intuition into a proof is, as we shall see, nontrivial
but doable.
Before proving the lemma, let’s show how it implies Proposition h. Sup-
pose that
o= £ mhht (23)

Then MP~(h) < MP*(h) (because otherwise in the coupling witnessing
their stochastic domination we’d never see any disrepancy, contradicting
(23)). Write § > 0 for the difference between these magnetizations. Lemma
h ensures that for any ¢ > 0 we have

MPH(h—e) < MP—(h) = MPF(h) =6

so that
n{% MPF(h—e) < MPF(h)

and MP+ thus exhibits a discontinuity at h. But an increasing function can

have at most uncountably many discontinuities (because each discontinuity

skips some rational number, and there are only countably many rationals),

so (23) can hold for at most countably many h, and Proposition h follows.
What remains is to prove the lemma:

Proof of Lemma h: We will couple two {—1, —i—l}zd—valued random objects
X ~ I1%M+ and X’ ~ 11772~ in the simplest possible way: independently.
Our first claim is that, with probability 1

lim X, = MPT(hy). (24)
n—o00 |A | sg\:

Existence of the limit follows from translation invariance, and if the limit
were nontrivially random it would have to exceed MP+(h;) with positive
probability. Conditioning on doing so would give again a Gibbs measure
(because conditioning on anything in the tail o-field preserves the defining
conditional distributions on finite sets), and one with a higher magnetization,
contradicting what we already know about II%":F stochastically dominating
all other Gibbs measures with the same parameters. Hence (24). And by
the same argument,

lim | A | > XL =M (hy). (25)
sEN,

Assume now that M%T(hy) # M~ (hy) (otherwise we're done). At this
point, I don’t want to commit to circular reasoning by presupposing which
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of them is bigger, but define

Mypae = max{M?¥(hy), MP~(hy)}
and

Mpin, = min{ M>F (hy), MP~ (hg)}

as well as
A = Mmaw — Mmm > 0.

Now imagine you're at a Game Show, where, for some large n, the host
reveals to you the following information:

(i) Xza\a, = Tza\a,
(i) Xza\a, = TZa\p,

(iii) two configurations Z, and Z,,, but no information on which of
them is X, and which is X} .

Your job is to guess which is which.
First I'll (sort of) tell you how large n will be. Fix ¢ > 0 small, and pick
n large enough so that

( > da, —A—ZxA >A/2)>1— (26)
" seAn s€EA,

Suppose the event in (26) happens. Should you guess that (Xy, = Za,, X} =
Za,,) or vice versa? Well, let’s calculate

P(Xy, =25, X A, (1), (1), (iii))
P(XA, _xAn>XA = &, (1),(1i),(iii))
eXp <E (s,t) xsxt + Z (s,t) i‘sxt + hy er/\n js)
siteAn s€AntEA(An)

1 . . . .
Za exXp <Z (s,t) Lslt + Z (s,t) Tsxt + hl Z$€An st)

S,teAn SEAn,tea(An)

1 v~ ./ .«
Z2eXP | 2 sy TsTt+ Do Esxy + h1 D gen, s
« s,tEA, SEA,,tED(Ay)

exp <Z (s,t) stxt + Z (s,t) *%533; + hl Z$€An is)

s,t€A, SEARLEI(An)

IN

exp (6 (4041 + Z (0 — ], )
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which tends to 0 as n — oo due to the fact that W — 0.

So with probability at least 1 — §, X’ has a.s. the higher total spin in
large enough boxes, and since § > 0 was arbitrary it in fact holds a.s. Hence
the limit in (24) is smaller than the limit in (25), and the lemma is proved.

o

That % — 0 is in fact crucial here, and if Z? is replaced by some lattice
for which no sequence of finite subsets with vanishing surface-to-volume ratio
exists (so-called nonamenable lattices), Proposition h fails, as discussed in

[79].

12 Friday, May 16

No deep deriavtions in today’s final lecture, just brief expositions of two
other Markov random field models we have’t had time to discuss before: the
Potts model, and Markov random fields.

*

The Potts model is a natural extension of the Ising model to larger state
spaces: {—1,+1} is replaced by {1,...,q}. Taking ¢ = 2 just gives back
the Ising model with new symbols, whereas ¢ > 3 gives something genuinely
different.

For finite S and 8> 0, let H : {1,...,¢}° — R be given by

H('T) =-2p Z 1{$s:$t}
(s,t)

and probability measure IT on {1,...,q}* given by, as usual,

M1(z) =  exp(~H(z)).
(Why the 2 in the formula for H(x)? It’s just a matter of definition, of course,
but it’s there to harmonize with the Ising model, where the summands z;z;
vary between two values differing by 2, whereas here the summands vary just
between 0 and 1, differing by 1.)

The extension to Z? works the same way as for the Ising model as far
as definitions go, but some of the arguments for existence and uniqueness
of Gibbs measures become harder, because the ¢ > 3 Potts model does not
enjoy quite the same stochastic domination properties as the Ising moedl.
Still, the main theorem quoted in Lecture 6 concerning phase transition in
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the Z9¢ Ising model goes through in the Potts model: for fixed ¢ > 2 and
d > 2, there is a critical value . € (0,00) such that the g-state Potts model
on Z% has a unique Gibbs measure when 8 < 3, and multiple Gibbs measures
when § > f..

One difference between phase transition behavior the Ising and the ¢ > 3
Potts cases is that, while in both cases the magnetization (suitably defined
and normalized) is 0 for § < 3. and positive for 5 > [, it takes off continu-
ously at 8 = f3. in the Ising case, and has a jump discontinuity in the ¢ > 3
Potts cases; this is of great interest in statistical mechanics.

A major tool for studying the Potts model is the so-called random-
cluster representation, defined as follows.

Fix S finite, and neighborhood system 0, and define the edge set

E = {(s,t) € S : 5,t neighbors} .
Fix gand 3, let p=1— e 2° and do as follows:
1. Let X € {1,...,¢}° be i.i.d. uniform on {1,...,q}.

2. Independently of the first step, let Y € {0,1}* be i.i.d. with each edge
having probability p of taking value 1 (interpreted as “retained”) and
probability 1 — p of taking value 0 (“deleted”).

3. Condition on the event that X; = X, for all s,¢ € S such that (s,t) € E
and Yig 4 = 1.

It turns out that if we do this, then X has distribution II (the Potts model
with parameters ¢ and ). The random edge configuration ¢ gets a distri-
bution v on {0,1}¥ which is known as the random-cluster model with
parameter p and ¢, characterized by

1 _
V(Y =y) = "W T[ 90— p) ¥
ecE

where k(y) is the number of connected components in the edge configuration
.

The distributions of X and Y both have intricate dependencies, but it
turns out that in this coupling (the so-called Edwards—Sokal coupling)
the conditional distribution of X given Y, as well as the conditional dis-
tribution of Y given X are both very simple. The former is that on each
connected component, a spin value is chosen uniformly from {1,...,q} to be
assigned to all vartiecs in the component, and this is done inedpendently for
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different components. The latter is that given X, the edge variables are in-
dependent, with (s,t) having probability p of taking value 1 if X (s) = X (¢),
and probability 0 otherwise.

This beautiful dependence structure can be exploited for at least tow
purposes:

(i) To reduce difficult questions about dependencies in the Potts moedl to
comparatively easier questions about connectivity probabilities in the
random-cluster model; Chapter 6 of [GHM| contanis extensive discus-
sion of this.

(ii) To simulate II by going back and forth between X and Y in Gibbs
sampler style. This is the so-called Swendsen—Wang algorithm, which
turns out in practice to be more efficient (although less flexible) than
the single-site Gibbs sampler discussed in Lecture 6.

*

Next, Gaussian Markov random fields. Let S and E be as before (finite),
and let B = {s1,...,Smn} be asubset of S. Fix by,...,b, C R (the boundary
condition) and o2 > 0 (the variance parameter), and pick X € R as follows.

First let X, = b; for each s; € B. Then pich Xg\ g according to density

7P| 55 Z (x5 — 5¢)% + Z (zs — x¢)?

(s,t) (s,t)
s,teS\B s€S\B,teB

It then turns out

(a) that X is a Markov random field in the obvious analogous sense to
the discrete case: the distribution of X4 given Xg\ 4 depends only on
Xa( A)s and

(b) that Xg\p is Multivariate Gaussian.

The model is na a sense isomorphic, in a way that is both mathematically
beautiful and useful, to random walks and electrical networks. The connec-
tions are outlined in Section 9.4 of [J].

For instance, calculating E[S,] for s € S\ B is equivalent to either of the
following two:
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(i) Run a simple random walk on the network (S, FE) starting at s, and
calculate the expected value of b; at the first site in B encountered by
the random walk.

(ii) Consider the electrical network om (S, F) with o2-ohm resistors on the
edges, and voltages by, ..., b, applied at B, and calculate the resulting
voltage at s.

The relation between Var[X;] and the random walk and electrical network
formulations are even more interersting, and involve effective resistances and
return probabilities. The fact that simple random walk on Z? is recurrent
for d = 1,2 and transient for d > 3 is essentially the same thing as the fol-
lowing fact for Gaussian Markov random fields. If we consider the Gaussian
Markov random field on A, U9(A;) with the usual neighborhood structure,
B = 9(A,,) and b; identically 0, then the variance X at the origin tends to
oo with n for d = 1 and 2, but remains bounded. This means that an im-
portant limiting object known as the discrete Gaussian free field can be
directly defined by this limiting procedure for d > 3, but requires a different
formalism for d = 1 and 2.
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