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1 Introduction

Spatial point process are often hard to simulate directti tiie exception of the Poisson
process. One example of a wide class of spatial point presasshe class of Markov
point processes. These are mainly used to model repulstar@be points but attraction is
also possible. Limitations of the use of Markov point pr@essis that they can not model
to strong regularity or clustering. The Markov point prases or Gibbs processes, were
first used in statistical physics and later in spatial diaisin general they have a density
with respect to the Poisson process. One problem is thaethgtyg is only specified up to
a normalisation constant which is usually verffidult to compute. We will consider using
MCMC to simulate such processes and in particular a MetrepbBliastings algorithm. In
Section 2 spatial point processes in general will be disgmiasd in particular the Markov
point processes. Some properties of uncountable state $ppakov chains are shortly
stated in Section 3. In Section 4 we will give the Metropdisstings algorithm and some
of its properties. Virtually all the material in this papemcbe found in [1] with exception
of the example at the end of Section 4. A few additions on Maikoint processes are
taken from [2].

2 Markov point processes

In this section we will define and give examples of Markov p@rocesses. To make the
notation clear, a brief description of spatial point pr@ess in particular the Poisson point
process, will proceed the definition of Markov point proesss

A spatial point process is a countable subset of some spaeskich here is assumed
to be a subset ak". Usually we demand that the point process is locally finiat is
the number of points in bounded sets are finite, and that thespare distinct. A more
formal description can be given as follows. It be the family of all locally finite point
configurations. Ik € Ny andB C S then letx(B) = xn B and letn(x) count the number of
points inx. Let AVj; be the smallest—algebra such that fore Ni¢, all mappings fronx to
x(B) are measurable for all Borel sd8sThen a point process is a measurable mapping
from a probability spaceS, 7, P) to (Nis, V¢ ). For technical reasons, we will use

Ni = {XC S: n(x) < oo},



the set of all finite point sequences$, in place ofN;; when discussing Markov point
processes. A point configuration will typically be denotgdkl= {x4, ..., X,} while points
will be denotedt or 7.

The most important spatial point process is the Poissonegrodt is often described
to be “completely random” or as having “no interaction” @nbe number of points in
disjoint sets are independent. A homogeneous Poissongzaceharacterised by the fact
that the number of points in a bounded BorelBé&t Poisson distributed with expectation
A|B| for some constant > 0, wherg-| is the Lebesgue measure. It is possible to show that
X is a stationary Poisson point process®with intensity A if and only if forallB € S
and allF € N,
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For an inhomogeneous Poisson process, the number of poiBtsiinstead Poisson
distributed with expectation(B), whereA is an intensity measure. Often we think of the
case when it has a density with respect to the Lebesgue negeasur

A(B) = f A&,

where A(¢) is the intensity of points af. In this way we can get fierent densities of
points in diferent areas, but still the number of points in disjoint se¢siadependent.
There is no interaction or dependence between them at all.

One way to introduce a dependence between the points andigatependence on the
location is by a Markov point process. Such a process hagstairceiensity with respect
to the Poisson process with some extra conditions addedyivetsome sort of spatial
Markov property. For a point processon S ¢ RY with density f with respect to the
standard Poisson process, i.e. the Poisson process witaobimtensity 1 o1, we have
forFcS
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from (2.1). In general, the densifymay only be specified as proportional to some known
function, that is the normalising constant is unknown.

On the way to the definition of Markov point processes we fiesire a neighbourhood
of a pointé € S and then let the only influence on the point be from its neigigo
Take a reflexive and symmetric relatipr-, on S and define the neighbourhood &fs
H: = {n € S:n~ &. Acommon neighbourhood is the R—close—neighbourhood which
specified by a ball with radiuR. We are now ready for the definition of a Markov point
process.

Definition 2.1 Let h: Ny — [0, o) be a function such that(k) > 0 = h(y) > 0 for
y C x. If for all x € Nf with h(x) > 0Oand all¢ € S\ x we have

h(xU &)
h(X)

!Reflexive means ~ £ and symmetric means~n = n ~ £forall£,n € S.
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only depending on x throughnt,, then h is called @arkov functionand a point process
with density h with respect to the Poisson process with inteas# called aviarkov point
process

We can interpreh(x U £)/h(x) as a conditional intensity. Observe tligk U £)/h(X)d¢ is
the conditional probability of seeing a poifitn an infinitesimal region of size&given
that the rest of the processxslf this conditional intensity only depends on what happens
in the neighbourhood afit resembles the usual Markov property and therefore itlieda
thelocal Markov property

The following theorem characterises the Markov functions.

Theorem 2.2 A function h: Ny — [0, ) is a Markov function if and only if there is a
functiong : Nt — [0, o), with the property tha$(x) = 1 whenever there ar& n € x with
& + n, such that

ho) = [ [o), xeN:.

yox

The functionp is called aninteraction function

A natural question to ask is whether a Markov function isgnéble with respect to
the Poisson process. To answer we make the following deimiti

Definition 2.3 Suppos@* : S — [0, o) is a function such that‘c= L, ¢*(&)d¢ is finite. A
function h islocally stableif

h(xu &) < ¢"(£)h(X)

forall x e Ny andé € S\ x.

Local stability implies integrability oh with respect to the Poisson process with intensity
1 and that
h(x) >0=h(y) >0, ycCx

Many Markov point processes are locally stable and it wilahemportant property when
it comes to simulations.

The simplest examples of Markov point processes are the/gaiinteraction proces-
ses. Their density is proportional to

h) = [ [e@)] [t n.

gex {&miex

whereg is an interaction function. 1§(¢) is the intensity function and({£,n}) = 1 we
get the Poisson point process. It is possible to show hhiatrepulsive if and only if
#({£,1m}) < 1, and then the process is locally stable. The attractive®@s, }) > 1 is not
in general well defined.

Example 2.1. The simplest example of a pairwise interaction processim tsithe Strauss
process where

o1&, n)) = »ylﬂ\(f,rz)llsR)’ 0O<y<1
andg¢(¢) is a constant. The Markov function can be written as

h(x) — ﬁn(x)ySR(x) , (2 3)
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with

SR = D Lyemisni (2.4)
{&mex
the number of R—close neighbours. The condition ¥ < 1 is to ensure local stability. It
also means that points repel each other. O

The Markov point processes can be extended to be infinitesstricted by conditioning
on the number of points i8. Neither of these cases will be covered here.

3 Markov chains on uncountable state space

The Markov chains used in the MCMC algorithm have uncountsldée spaces. The
theory of such Markov chains is similar to that of countaligesspace Markov chains,
but there are some fiierences in notation. Some definitions and a central limibria
are briefly listed below.
Consider a discrete time Markov chdiv,}g with uncountable state spa&e Define
thetransition kernelas
P(X,F) = P(Ym1 € FIYm = X).

Them-step transition probabilitis P"(x, F) = P(Y, € F|Yy = X). The chain is said to be
reversiblewith respect to a distributioll onE if forall F,G € E

P(Ym €F, Y1 €G, Yn#, Ym+1) = P(Ym €G,Ym1 € F, Yy #, Ym+1)

whenYy, ~ I1, meaning that,, andY,,,; have the same distribution¥f, has the stationary
distribution. The chain isreducibleif it has positive probability of reachinig from x, for
all x e E andF C E such thau(F) > 0 for some measuneon E. Furthermore the chain
is Harris reccurentif it is irreducible for someu andP(Y,, € F for somemY, = X) = 1
for all x e E andF C E such thaj(F) > 0. As usual, if a stationary distributidm exists,
irreducibility implies thafll is the unique stationary distribution. The chairrgodicif it
Is Harris recurrent and aperiodic.

For functionsV : E — [1, oo) with E[V(Y)] < o if Y ~ II, define the/—norm

P70~y = 3 SUpIEIK(Yn) Yo = ] - T10.

If V = 1 thisis the total variation norm. The Markov chairgesometrically ergodidf it is
Harris reccurent with stationary distributidhand there exist a constant- 1 such that
for all x e E and someV/,

D rMIPT(x, ) = Ty < .
m=1

This means that the chain is ergodic and that its rate of egewee tdl is geometric. A
special case of geometric ergodicityMsuniform ergodicityvhich can be expressed as

lim sup||P"(x,-) — Ily = 0.
M—oo ycE

A further special case, when= 1, i.e. replace the V—norm with the total variation norm,
is calleduniform ergodicity



Let IT be a stationary distribution. Then for a real functloandY distributed accor-
ding toIT with Ek(Y)| < oo, let

n-1

T1(K) = E[K(Y)] andk, = %Z K(Yp).

m=0

Theorem 3.1 Let Yp, Y3, ... be a Markov chain with uncountable state space E. Let k be
a function k: S — R such that either the chain is reversible aBk(X)|> < oo or the
chain is V—uniformly ergodic and’k V. With the assumption that X I1, define

o2 = Var(k(Yo)) + 2 i CovKk(Yo), K(Ym)).
m=1

Then
vn(k, — T1(K)) converges in distribution to (0, %) as n— co.

4  Simulation, Metropolis—Hastings algorithms

In this section the so calleBirth—death—move Metropolis Hastingdgorithm will be
described. In each step of the algorithm an attempt is makered add a point, to delete
a point or to move a point. The setup is as follows. We want te lzerealisation of a point
process X on S with unnormalised densitl with respect to the homogeneous Poisson
process with unit intensity. Instead of sampling directignh the distribution itself we
will use MCMC. We will generate a Markov chaivy, Yi, ... whose distribution tends
to that of the point process. First the algorithm to use will be discussed and then what
properties are desirable for guaranteeing convergence.

Let X = {X3, X2, ..., Xy} denote a set of points i8. First, we can make either a move
step or a birth—death step. Specify<Og < 1 as the probability of making a move step.
Also for eachx, with n(x) = n, and each € {1,...,n} let gi(x, -) be a given density 08,
called the proposal density, i.e. a density for the locatiba new point given thak; is
proposed to be replaced. Define thiastings ratioas

h((x\ ) U &)ai((x\ x) U&, x)
h(X)ai(x, £)

If we are to do a replacement a point is selected uniformlgiralom among the points in
and a proposal locatiahis chosen according . The move is accepted with probability

ri(x’ ‘f) =

@i(X, &) = min{1,ri(x &)}

With probability 1- g an attempt is made either to add a new point or remove a current
point. Letp(x) be a given probability for giving birth to a pointxfis the state of the chain.
The location of a proposed new point is given by the densitgtiongy(X, -) on S. With
probability 1- p(x) an attempt will be made to remove a point unlgss in which case
nothing is done. The point to remove is given by the discretesdy qq4(X, -) on x. The
acceptance probability for the birth of the podiis

ap(X, €) = min{1, ry(x, £)},
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with Hastings ratio

h(xU £)(1 - p(xU £))au(x U £, £)
h(X) p(X)ab(x. &) '

The acceptance probability for the death of a pgirg

rb(x’ f) =

Cld(X, 77) = min{l’ rd(X, 77)}’

with Hastings ratio
h(x\ 7)(P(X \ 7))Ab(X \ 7,7)

h()(1 - p())da(%7)

Now to the algorithm in more detail. It generates a Markovitch4, Y1, ..., where
Yo is assumed to be given. For example= 0 or Y, could be a realisation of a Poisson
process or chosen so thgl,) > 0.

r‘d(x’ T’) =

Algorithm 4.1 Let0 < g < 1 and suppose Y = X = {X,..., X} IS given. Generate
Rn ~ U[0, 1].

¢ If Ry < g, make a move step as follows. Take-RU[0,1] and I, ~ U({1,...,n}).
Generatet, according to ¢(x, -) given |, = i. Then let

Yo = {(X\ X)Uém IfR < ri(X &m)
m+l — .
X otherwise

¢ If R, > g, make a birth—death step as follows Take-RU[O, 1] and R ~ U[O, 1].
— If R < p(X) then make a birth step by takigg according to g(x, -). Then let

XU fm if R;rl{ < rb(xa fm)
Ym+1 = .
X otherwise

— If RY > p(x), make a death step.

* fx=0
Ym+1:X.

* Otherwise generatg,, according to g(x, -). Then let

Vo — {X\ mm IR < ra(X, 17m)
m+l — .
X otherwise

The random variables RR,, R, R, Im, &m and iy, are mutually independent and also
independent of Y. .. Yy,

If in the move stepmji(X, -) only depends o and is symmetric we have the Metropolis
algorithm. If on the other hang|(x, -) depends of everything exceptwe have the Gibbs
sampler.

Reversibility with respect tdl and irreducibility ensures that if the chain has a limit
distribution it must bdl. Furthermore irreducibility is needed to establish cogeece.
The only property we show for the Markov chain in the algaritis the reversibility.
The proof is similar as in the case of a Markov chain with cabfé state space, but the
notation is a bit messier.



Proposition 4.2 The Markov chain generated by Algorithm 4.1 is reversibléwespect
to h.

Proof. If Py, is the transition kernel for a Markov chain with only movepst@ndPy, is
the transition kernel of a chain with only birth and deatlpstehe transition kernel of the
Markov chain in the algorithm can be written as

P(X,F) = gPn(X, F) + (1 — q)Ppg(X, F). 4.1)

If the move chain and the birth—death chain are both reversilth respect td then (4.1)
shows that the birth—death—move chain is reversible. Riesshow that the birth—death
chain is reversible with respect to Suppose thaY; is such thah(Yy,) > 0 and define
E,={xe€ Nf:h(x) >0, n(x)=n}% To prove that the birth—death chain is reversible
we only need to consider everitsc E, andG C E, .4, since in each step either a point is
added or deleted. We want to show

providedYy, ~ h. Let the unknown normalising constant be denatetihen

P(Ym1 € G, Yme F)
elsl
= Cf. . 'fl{XEF}P(le € GlYm € F)h(X)—Xm d
B B

by (2.2). Since the chain makes a birth step with probabty) if it is sitting in x, the
density for the new born point ig,(x, £) and the new point is accepted with probability

Clb(X, f)’
P(Ymi1 € G, Yme F)

—ISI
—¢ f f f s eI (% () -l

Writing out ap(X, £) this is

:cf...ffl{xep,xugee}p(x)%(xaf) (4.3)

[ h(xUL- pxUG(XUE &S
m'”{l hG) PO &) }h(x) ..

Similarly the right hand side of (4.2) can be expressed as

n+1

¢ f f f gly\y,epyee,(l p)) (Y, Vi)

IS

= oY WO g g - W

2If Yy is such thath(Yy) > O the state space of the chainEs= | J, E,, otherwise the chain might
eventually end up iiE. To avoid technicalities it is assumed ttéYy) > O.
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If we interchange the order of integration and summationse®lthat we only get a sum
of n+ 1 equal terms,

—c f f f yseryea (L = PO))Aa(y, Y1)

aq(y, yl)h(y)—dyl . Ayns1.

Now letx = y\ y; andé =y,

—¢ f f f Lyeruee) (L — PIXU E)Ga(X U £,€)

e ISl

ag(XU &, f)h(XUf)—dxl - dXqde.

But

o h(x) P(X)ab(X, £)
ag(XU £,£) = min {l’ h(xU €)(1 - p(XxU €))a(X U ¢, f)}

which is identical to (4.3) giving (4.2).
For the move chain we can consider two statasdy differing only at one point, say
X # Y. Itis easy to see that
1 1
h(X)HQi(X,Yi)CYi(X,Yi) = h(Y)ﬁQi(ya X)ai(y, %),

showing that the chain is reversible with respedt.to |

Proposition 4.3 If Yy is such that (Yy) > 0,p(@) < 1 and for all x with {x) > 0 and
X # ( there existg; € x such that

(1 - p(x))qa(x.7) > 0

and
h(x\ 7)p(x\ 7)ab(X\ 7,17) > 0

then the chain generated by Algorithm 4.1 is irreducible apédriodic.

Proposition 4.4 For anys > 1 let V(x) = g"®. If the Algorithm 4.1 is given by a locally
stable version and , then

(a) the chain is V—uniformly ergodic.

(b) the chain is uniformly ergodic if and only if there existis ny such that (x) <
no whenever (x) > 0 and the upper bound on the total variation distance to the
distribution h with normalisation constant c, is given by

IP™(x,) = h(x)/cll = (1= ((1 - g) min{1 - p, p/c*})™)™™.



The upper bound on the total variation distance is of limited for simulation pur-
poses, moreover it is only hard—core processes, definedvasghea minimal interpoint
distance, that are uniformly ergodic among the Markov ppmtesses. Nearly all Mar-
kov point processes used in practise are locally stable Vewevhich means they are
V-uniformly ergodic and then there is the Central Limit Thexorgiven by Theorem 3.1.

In practise there is a lot of freedom when choosip@, gi, gg andg,. The choices
might dfect the convergence rate and the so called mixing propestidse chain and
optimal ones are found by trial and error. A Markov chain idlwexing if the depen-
dence betweel, andY,,; dies out quickly. Mixing properties are important for samg|
reasons and might be assessed using plots of autocornslaiorthermore the initial dis-
tribution should be chosen in some way as discussed before.

When has the chain “converged enough™ so that it is possittigke samples? The
Central Limit Theorem is not useful when deciding if the chiaim equilibrium, but mo-
re for knowing that Monte Carlo estimates based on the simulstare asymptotically
normal. Trace plots are one way of determining if the chamdunverged. Plai(Y,,) for
real functionsg, often given by some sticient statistic. If trace plots for two filerent-
ly started chains does not look similar for some iteratiomhar,n, then at least one of
the chains has not reached stationarity. One extremergfaréilue is the empty set and
another, for locally stable processes, is a simulation giaial Poisson process. Anot-
her way is to exploit the fact that if the chain has converdpathtreversibility means that
N(Ym:1) — N(Ym) is symmetrically distributed around 0, being either -1,d.oThese con-
vergence criteria should be used with some caution sincerthieess might reach some
states which are stable in some sense and stay there for &inmmglthough the process
IS not yet stationary.

Example 4.2. In Figure 1 there are three realisations of the Strauss psoge the unit
square. The parameters gre= 200,R = 0.1 andy is either 0, 0.5 or 1. The plots were
taken after 6000 iterations starting in a realisation of $tm process with intensity 200.
The parameters in the Metropolis Hastings algorithm wer®lksvs. Firstq was put to

0 since it did not seem to matter for the convergence rate viensteps were made or not.
Birth steps and death steps were given equal probability s00.5. The distribution of
birth proposals was uniform over the square and a death pabp@s chosen among the
points with equal probability. The chain seemed to convergéout 1000 iterations when
vywas 0 or 0.5 but in about 2000 whenvas 1. Trace plots like those in Figure 2 were used
to decide when the chain had converged. For the Straussgsrtioe sfficient statistics
are the number of points and the number of R—close neighbAsarseen in the plots the
statistics seem to settle at the same level when startivgoextreme start configurations
after less than 1000 iterations fpr= 0.5.

Wheny = 1 the Strauss process is a Poisson process with intghaittheny decre-
ases towards 0, there is more and more repulsion betweemithts.pAty = 0, we have
a hard—core process with minimal interpoint distaRcén Figure 1 the leftmost plot has
quite regularly spaced points going to more irregular spggas we look to the right.
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Simulation of the Strauss model wigh= 200,R = 0.1 andy = 0,0.5 and 1 in the unit
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Figur 2: Convergence diagnostics, above starting Witk @ and below starting with a realisation
of a Poisson process for the Strauss model Wwita 200,R = 0.1 andy = 0.5 . To the left the
number of points and to the right the number of R—close neighbours.
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