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1 Introduction

Spatial point process are often hard to simulate directly with the exception of the Poisson
process. One example of a wide class of spatial point processes is the class of Markov
point processes. These are mainly used to model repulsion between points but attraction is
also possible. Limitations of the use of Markov point processes is that they can not model
to strong regularity or clustering. The Markov point processes, or Gibbs processes, were
first used in statistical physics and later in spatial statistics. In general they have a density
with respect to the Poisson process. One problem is that the density is only specified up to
a normalisation constant which is usually very difficult to compute. We will consider using
MCMC to simulate such processes and in particular a Metropolis–Hastings algorithm. In
Section 2 spatial point processes in general will be discussed and in particular the Markov
point processes. Some properties of uncountable state space Markov chains are shortly
stated in Section 3. In Section 4 we will give the Metropolis–Hastings algorithm and some
of its properties. Virtually all the material in this paper can be found in [1] with exception
of the example at the end of Section 4. A few additions on Markov point processes are
taken from [2].

2 Markov point processes

In this section we will define and give examples of Markov point processes. To make the
notation clear, a brief description of spatial point processes, in particular the Poisson point
process, will proceed the definition of Markov point processes.

A spatial point process is a countable subset of some spaceS, which here is assumed
to be a subset ofRn. Usually we demand that the point process is locally finite, that is
the number of points in bounded sets are finite, and that the points are distinct. A more
formal description can be given as follows. LetNl f be the family of all locally finite point
configurations. Ifx ∈ Nl f andB ⊆ S then letx(B) = x∩B and letn(x) count the number of
points inx. LetNl f be the smallestσ–algebra such that forx ∈ Nl f , all mappings fromx to
x(B) are measurable for all Borel setsB. Then a point processX is a measurable mapping
from a probability space (S,F ,P) to (Nl f ,Nl f ). For technical reasons, we will use

Nf = {x ⊆ S : n(x) < ∞},
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the set of all finite point sequences inS, in place ofNl f when discussing Markov point
processes. A point configuration will typically be denoted by x = {x1, . . . , xn} while points
will be denotedξ or η.

The most important spatial point process is the Poisson process. It is often described
to be “completely random” or as having “no interaction” since the number of points in
disjoint sets are independent. A homogeneous Poisson process is characterised by the fact
that the number of points in a bounded Borel setB is Poisson distributed with expectation
λ|B| for some constantλ > 0, where| · | is the Lebesgue measure. It is possible to show that
X is a stationary Poisson point process onS with intensityλ if and only if for all B ⊆ S
and allF ⊆ Nl f ,

P(X(B) ∈ F) =
∞
∑

n=0

e−λ|B|

n!

∫

B
. . .

∫

B
1[{x1,...,xn}∈F]λ

ndx1 · · · dxn. (2.1)

For an inhomogeneous Poisson process, the number of points in B is instead Poisson
distributed with expectationΛ(B), whereΛ is an intensity measure. Often we think of the
case when it has a density with respect to the Lebesgue measure,

Λ(B) =
∫

B
λ(ξ)dξ,

whereλ(ξ) is the intensity of points atξ. In this way we can get different densities of
points in different areas, but still the number of points in disjoint sets are independent.
There is no interaction or dependence between them at all.

One way to introduce a dependence between the points and not only dependence on the
location is by a Markov point process. Such a process has a certain density with respect
to the Poisson process with some extra conditions added thatgive some sort of spatial
Markov property. For a point processX on S ⊆ Rd with density f with respect to the
standard Poisson process, i.e. the Poisson process with constant intensity 1 onS, we have
for F ⊆ S

P(X ∈ F) =
∞
∑

n=0

e−|S|

n!

∫

S
. . .

∫

S
1[{x1,...,xn}∈F] f ({x1, . . . , xn})dx1 · · · dxn. (2.2)

from (2.1). In general, the densityf may only be specified as proportional to some known
function, that is the normalising constant is unknown.

On the way to the definition of Markov point processes we first define a neighbourhood
of a point ξ ∈ S and then let the only influence on the point be from its neighbours.
Take a reflexive and symmetric relation1, ∼, on S and define the neighbourhood ofξ as
Hξ = {η ∈ S : η ∼ ξ}. A common neighbourhood is the R–close–neighbourhood whichis
specified by a ball with radiusR. We are now ready for the definition of a Markov point
process.

Definition 2.1 Let h : Nf → [0,∞) be a function such that h(x) > 0 ⇒ h(y) > 0 for
y ⊆ x. If for all x ∈ Nf with h(x) > 0 and all ξ ∈ S \ x we have

h(x∪ ξ)
h(x)

1Reflexive meansξ ∼ ξ and symmetric meansξ ∼ η⇒ η ∼ ξ for all ξ, η ∈ S.
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only depending on x through x∩Hξ, then h is called aMarkov functionand a point process
with density h with respect to the Poisson process with intensity 1 is called aMarkov point
process.

We can interpreth(x∪ ξ)/h(x) as a conditional intensity. Observe thath(x∪ ξ)/h(x)dξ is
the conditional probability of seeing a pointξ in an infinitesimal region of size dξ given
that the rest of the process isx. If this conditional intensity only depends on what happens
in the neighbourhood ofξ it resembles the usual Markov property and therefore it is called
the local Markov property.

The following theorem characterises the Markov functions.

Theorem 2.2 A function h: Nf → [0,∞) is a Markov function if and only if there is a
functionφ : Nf → [0,∞), with the property thatφ(x) = 1 whenever there areξ, η ∈ x with
ξ / η, such that

h(x) =
∏

y⊆x

φ(y), x ∈ Nf .

The functionφ is called aninteraction function.

A natural question to ask is whether a Markov function is integrable with respect to
the Poisson process. To answer we make the following definition.

Definition 2.3 Supposeφ∗ : S→ [0,∞) is a function such that c∗ =
∫

S
φ∗(ξ)dξ is finite. A

function h islocally stableif
h(x∪ ξ) ≤ φ∗(ξ)h(x)

for all x ∈ Nf andξ ∈ S \ x.

Local stability implies integrability ofh with respect to the Poisson process with intensity
1 and that

h(x) > 0⇒ h(y) > 0, y ⊆ x.

Many Markov point processes are locally stable and it will bean important property when
it comes to simulations.

The simplest examples of Markov point processes are the pairwise interaction proces-
ses. Their density is proportional to

h(x) =
∏

ξ∈x
φ(ξ)
∏

{ξ,η}⊆x

φ({ξ, η}),

whereφ is an interaction function. Ifφ(ξ) is the intensity function andφ({ξ, η}) = 1 we
get the Poisson point process. It is possible to show thath is repulsive if and only if
φ({ξ, η}) ≤ 1, and then the process is locally stable. The attractive caseφ({ξ, η}) ≥ 1 is not
in general well defined.

Example 2.1. The simplest example of a pairwise interaction process in turn, is the Strauss
process where

φ({ξ, η}) = γ1{‖{ξ,η}‖≤R} , 0 ≤ γ ≤ 1

andφ(ξ) is a constant. The Markov function can be written as

h(x) = βn(x)γSR(x), (2.3)
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with
SR(x) =

∑

{ξ,η}⊆x

1{‖{ξ,η}‖≤R}, (2.4)

the number of R–close neighbours. The condition 0≤ γ ≤ 1 is to ensure local stability. It
also means that points repel each other. ¤

The Markov point processes can be extended to be infinite, or restricted by conditioning
on the number of points inS. Neither of these cases will be covered here.

3 Markov chains on uncountable state space

The Markov chains used in the MCMC algorithm have uncountablestate spaces. The
theory of such Markov chains is similar to that of countable state space Markov chains,
but there are some differences in notation. Some definitions and a central limit theorem
are briefly listed below.

Consider a discrete time Markov chain{Yn}∞0 with uncountable state spaceE. Define
thetransition kernelas

P(x, F) = P(Ym+1 ∈ F|Ym = x).

Them–step transition probabilityis Pm(x, F) = P(Ym ∈ F|Y0 = x). The chain is said to be
reversiblewith respect to a distributionΠ on E if for all F,G ∈ E

P(Ym ∈ F,Ym+1 ∈ G,Ym ,,Ym+1) = P(Ym ∈ G,Ym+1 ∈ F,Ym ,,Ym+1)

whenYm ∼ Π, meaning thatYm andYm+1 have the same distribution ifYm has the stationary
distribution. The chain isirreducibleif it has positive probability of reachingF from x, for
all x ∈ E andF ⊆ E such thatµ(F) > 0 for some measureµ on E. Furthermore the chain
is Harris reccurentif it is irreducible for someµ andP(Ym ∈ F for somem|Y0 = x) = 1
for all x ∈ E andF ⊆ E such thatµ(F) > 0. As usual, if a stationary distributionΠ exists,
irreducibility implies thatΠ is the unique stationary distribution. The chain isergodicif it
is Harris recurrent and aperiodic.

For functionsV : E→ [1,∞) with E[V(Y)] < ∞ if Y ∼ Π, define theV–norm

‖Pm(x, ·) − Π‖V =
1
2

sup
|k|≤V
|E[k(Ym)|Y0 = x] − Π(k)|.

If V = 1 this is the total variation norm. The Markov chain isgeometrically ergodicif it is
Harris reccurent with stationary distributionΠ and there exist a constantr > 1 such that
for all x ∈ E and someV,

∞
∑

m=1

rm‖Pm(x, ·) − Π‖V < ∞.

This means that the chain is ergodic and that its rate of convergence toΠ is geometric. A
special case of geometric ergodicity isV–uniform ergodicitywhich can be expressed as

lim
m→∞

sup
x∈E
‖Pm(x, ·) − Π‖V = 0.

A further special case, whenV = 1, i.e. replace the V–norm with the total variation norm,
is calleduniform ergodicity.
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Let Π be a stationary distribution. Then for a real functionk andY distributed accor-
ding toΠ with E|k(Y)| < ∞, let

Π(k) = E[k(Y)] and k̄n =
1
n

n−1
∑

m=0

k(Ym).

Theorem 3.1 Let Y0,Y1, . . . be a Markov chain with uncountable state space E. Let k be
a function k : S → R such that either the chain is reversible andE|k(X)|2 < ∞ or the
chain is V–uniformly ergodic and k2 ≤ V. With the assumption that Y0 ∼ Π, define

σ̄2 = Var(k(Y0)) + 2
∞
∑

m=1

Cov(k(Y0), k(Ym)).

Then √
n(k̄n − Π(k)) converges in distribution to N(0, σ̄2) as n→ ∞.

4 Simulation, Metropolis–Hastings algorithms

In this section the so calledBirth–death–move Metropolis Hastingsalgorithm will be
described. In each step of the algorithm an attempt is made either to add a point, to delete
a point or to move a point. The setup is as follows. We want to have a realisation of a point
process,X on S with unnormalised densityh with respect to the homogeneous Poisson
process with unit intensity. Instead of sampling directly from the distribution itself we
will use MCMC. We will generate a Markov chainY0, Y1, . . . whose distribution tends
to that of the point processX. First the algorithm to use will be discussed and then what
properties are desirable for guaranteeing convergence.

Let x = {x1, x2, . . . , xn} denote a set of points inS. First, we can make either a move
step or a birth–death step. Specify 0≤ q < 1 as the probability of making a move step.
Also for eachx, with n(x) = n, and eachi ∈ {1, . . . ,n} let qi(x, ·) be a given density onS,
called the proposal density, i.e. a density for the locationof a new point given thatxi is
proposed to be replaced. Define theHastings ratioas

r i(x, ξ) =
h((x \ xi) ∪ ξ)qi((x \ xi) ∪ ξ, xi)

h(x)qi(x, ξ)

If we are to do a replacement a point is selected uniformly at random among the points inx
and a proposal locationξ is chosen according toqi. The move is accepted with probability

αi(x, ξ) = min{1, r i(x, ξ)}.

With probability 1−q an attempt is made either to add a new point or remove a current
point. Letp(x) be a given probability for giving birth to a point ifx is the state of the chain.
The location of a proposed new point is given by the density functionqb(x, ·) on S. With
probability 1− p(x) an attempt will be made to remove a point unlessx = ∅ in which case
nothing is done. The point to remove is given by the discrete densityqd(x, ·) on x. The
acceptance probability for the birth of the pointξ is

αb(x, ξ) = min{1, rb(x, ξ)},
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with Hastings ratio

rb(x, ξ) =
h(x∪ ξ)(1− p(x∪ ξ))qd(x∪ ξ, ξ)

h(x)p(x)qb(x, ξ)
.

The acceptance probability for the death of a pointη is

αd(x, η) = min{1, rd(x, η)},

with Hastings ratio

rd(x, η) =
h(x \ η)(p(x \ η))qb(x \ η, η)

h(x)(1− p(x))qd(x, η)
.

Now to the algorithm in more detail. It generates a Markov chain Y0,Y1, . . ., where
Y0 is assumed to be given. For exampleY0 = ∅ or Y0 could be a realisation of a Poisson
process or chosen so thath(Y0) > 0.

Algorithm 4.1 Let 0 ≤ q < 1 and suppose Ym = x = {x1, . . . , xn} is given. Generate
Rm ∼ U[0,1].

• If Rm ≤ q, make a move step as follows. Take R′
m ∼ U[0,1] and Im ∼ U({1, . . . ,n}).

Generateξm according to qi(x, ·) given Im = i. Then let

Ym+1 =















(x \ xi) ∪ ξm if R′m ≤ r i(x, ξm)

x otherwise

• If R′m > q, make a birth–death step as follows Take R′′
m ∼ U[0,1] and R′′′m ∼ U[0,1].

– If R′′m ≤ p(x) then make a birth step by takingξm according to qb(x, ·). Then let

Ym+1 =















x∪ ξm if R′′′m ≤ rb(x, ξm)

x otherwise.

– If R′′m > p(x), make a death step.

* If x = ∅
Ym+1 = x.

* Otherwise generateηm according to qd(x, ·). Then let

Ym+1 =















x \ ηm if R′′′m ≤ rd(x, ηm)

x otherwise.

The random variables Rm,R′m,R
′′
m,R

′′′
m , Im, ξm and ηm are mutually independent and also

independent of Y0, . . .Ym.

If in the move stepqi(x, ·) only depends onxi and is symmetric we have the Metropolis
algorithm. If on the other handqi(x, ·) depends of everything exceptxi we have the Gibbs
sampler.

Reversibility with respect toΠ and irreducibility ensures that if the chain has a limit
distribution it must beΠ. Furthermore irreducibility is needed to establish convergence.
The only property we show for the Markov chain in the algorithm is the reversibility.
The proof is similar as in the case of a Markov chain with countable state space, but the
notation is a bit messier.
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Proposition 4.2 The Markov chain generated by Algorithm 4.1 is reversible with respect
to h.

Proof. If Pm is the transition kernel for a Markov chain with only move steps andPbd is
the transition kernel of a chain with only birth and death steps, the transition kernel of the
Markov chain in the algorithm can be written as

P(x, F) = qPm(x, F) + (1− q)Pbd(x, F). (4.1)

If the move chain and the birth–death chain are both reversible with respect toh then (4.1)
shows that the birth–death–move chain is reversible. Firstwe show that the birth–death
chain is reversible with respect toh. Suppose thatY0 is such thath(Y0) > 0 and define
En = {x ∈ Nf : h(x) > 0, n(x) = n}2. To prove that the birth–death chain is reversible
we only need to consider eventsF ⊆ En andG ⊆ En+1, since in each step either a point is
added or deleted. We want to show

P(Ym+1 ∈ G,Ym ∈ F) = P(Ym+1 ∈ F,Ym ∈ G) (4.2)

providedYm ∼ h. Let the unknown normalising constant be denotedc. Then

P(Ym+1 ∈ G,Ym ∈ F)

= c
∫

B
. . .

∫

B
1{x∈F}P(Ym+1 ∈ G|Ym ∈ F)h(x)

e−|S|

n!
dx1 . . . dxn

by (2.2). Since the chain makes a birth step with probabilityp(x) if it is sitting in x, the
density for the new born point isqb(x, ξ) and the new point is accepted with probability
αb(x, ξ),

P(Ym+1 ∈ G,Ym ∈ F)

= c
∫

B
. . .

∫

B

∫

B
1{x∈F,x∪ξ∈G}p(x)qb(x, ξ)αb(x, ξ)h(x)

e−|S|

n!
dξdx1 . . . dxn.

Writing outαb(x, ξ) this is

P(Ym+1 ∈ G,Ym ∈ F)

= c
∫

B
. . .

∫

B

∫

B
1{x∈F,x∪ξ∈G}p(x)qb(x, ξ)

min

{

1,
h(x∪ ξ)(1− p(x∪ ξ))qd(x∪ ξ, ξ)

h(x)p(x)qb(x, ξ)

}

h(x)
e−|S|

n!
dξdx1 . . . dxn.

(4.3)

Similarly the right hand side of (4.2) can be expressed as

P(Ym+1 ∈ G,Ym ∈ F)

= c
∫

B
. . .

∫

B

∫

B

n+1
∑

i=1

1{y\yi∈F,y∈G}(1− p(y))qd(y, yi)

= αd(y, yi)h(y)
e−|S|

(n+ 1)!
dy1 . . . dyn+1.

2If Y0 is such thath(Y0) > 0 the state space of the chain isE =
⋃

n En, otherwise the chain might
eventually end up inE. To avoid technicalities it is assumed thath(Y0) > 0.
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If we interchange the order of integration and summation andsee that we only get a sum
of n+ 1 equal terms,

P(Ym+1 ∈ G,Ym ∈ F)

=c
∫

B
. . .

∫

B

∫

B
1{y\y1∈F,y∈G}(1− p(y))qd(y, y1)

αd(y, y1)h(y)
e−|S|

n!
dy1 . . . dyn+1.

Now let x = y \ y1 andξ = y1,

P(Ym+1 ∈ G,Ym ∈ F)

= c
∫

B
. . .

∫

B

∫

B
1{x∈F,x∪ξ∈G}(1− p(x∪ ξ))qd(x∪ ξ, ξ)

αd(x∪ ξ, ξ)h(x∪ ξ)e−|S|

n!
dx1 . . . dxndξ.

But

αd(x∪ ξ, ξ) = min

{

1,
h(x)p(x)qb(x, ξ)

h(x∪ ξ)(1− p(x∪ ξ))qb(x∪ ξ, ξ)

}

which is identical to (4.3) giving (4.2).
For the move chain we can consider two statesx andy differing only at one point, say

xi , yi. It is easy to see that

h(x)
1
n

qi(x, yi)αi(x, yi) = h(y)
1
n

qi(y, xi)αi(y, xi),

showing that the chain is reversible with respect toh.

Proposition 4.3 If Y0 is such that h(Y0) > 0,p(∅) < 1 and for all x with h(x) > 0 and
x , ∅ there existsη ∈ x such that

(1− p(x))qd(x, η) > 0

and
h(x \ η)p(x \ η)qb(x \ η, η) > 0

then the chain generated by Algorithm 4.1 is irreducible andaperiodic.

Proposition 4.4 For anyβ > 1 let V(x) = βn(x). If the Algorithm 4.1 is given by a locally
stable version and , then

(a) the chain is V–uniformly ergodic.

(b) the chain is uniformly ergodic if and only if there existsan n0 such that n(x) ≤
n0 whenever h(x) > 0 and the upper bound on the total variation distance to the
distribution h with normalisation constant c, is given by

‖Pm(x, ·) − h(x)/c‖ = (1− ((1− q) min{1− p, p/c∗})n0)m/n0 .
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The upper bound on the total variation distance is of limiteduse for simulation pur-
poses, moreover it is only hard–core processes, defined as having a minimal interpoint
distance, that are uniformly ergodic among the Markov pointprocesses. Nearly all Mar-
kov point processes used in practise are locally stable however, which means they are
V-uniformly ergodic and then there is the Central Limit Theorem given by Theorem 3.1.

In practise there is a lot of freedom when choosingq, p,qi ,qd andqb. The choices
might affect the convergence rate and the so called mixing propertiesof the chain and
optimal ones are found by trial and error. A Markov chain is well mixing if the depen-
dence betweenYm andYm+ j dies out quickly. Mixing properties are important for sampling
reasons and might be assessed using plots of autocorrelations. Furthermore the initial dis-
tribution should be chosen in some way as discussed before.

When has the chain “converged enough´´ so that it is possible to take samples? The
Central Limit Theorem is not useful when deciding if the chainis in equilibrium, but mo-
re for knowing that Monte Carlo estimates based on the simulations are asymptotically
normal. Trace plots are one way of determining if the chain has converged. Plotg(Ym) for
real functionsg, often given by some sufficient statistic. If trace plots for two different-
ly started chains does not look similar for some iteration number,n, then at least one of
the chains has not reached stationarity. One extreme starting value is the empty set and
another, for locally stable processes, is a simulation of a spatial Poisson process. Anot-
her way is to exploit the fact that if the chain has converged then reversibility means that
n(Ym+1) − n(Ym) is symmetrically distributed around 0, being either -1,0 or 1. These con-
vergence criteria should be used with some caution since theprocess might reach some
states which are stable in some sense and stay there for a longtime although the process
is not yet stationary.

Example 4.2. In Figure 1 there are three realisations of the Strauss process on the unit
square. The parameters areβ = 200,R = 0.1 andγ is either 0, 0.5 or 1. The plots were
taken after 6000 iterations starting in a realisation of a Poisson process with intensity 200.
The parameters in the Metropolis Hastings algorithm were asfollows. Firstq was put to
0 since it did not seem to matter for the convergence rate if move steps were made or not.
Birth steps and death steps were given equal probability sop = 0.5. The distribution of
birth proposals was uniform over the square and a death proposal was chosen among the
points with equal probability. The chain seemed to convergein about 1000 iterations when
γwas 0 or 0.5 but in about 2000 whenγwas 1. Trace plots like those in Figure 2 were used
to decide when the chain had converged. For the Strauss process the sufficient statistics
are the number of points and the number of R–close neighbours.As seen in the plots the
statistics seem to settle at the same level when starting in two extreme start configurations
after less than 1000 iterations forγ = 0.5.

Whenγ = 1 the Strauss process is a Poisson process with intensityβ. Whenγ decre-
ases towards 0, there is more and more repulsion between the points. Atγ = 0, we have
a hard–core process with minimal interpoint distanceR. In Figure 1 the leftmost plot has
quite regularly spaced points going to more irregular spacings as we look to the right.

¤
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Figur 1: Simulation of the Strauss model withβ = 200,R = 0.1 andγ = 0,0.5 and 1 in the unit
square.
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Figur 2: Convergence diagnostics, above starting withY0 = ∅ and below starting with a realisation
of a Poisson process for the Strauss model withβ = 200,R = 0.1 andγ = 0.5 . To the left the
number of points and to the right the number of R–close neighbours.

10



Referenser

[1] Möller, J., Waagepetersen, R.P. (2004),Statistical Inference and Simulation for Spa-
tial Point Processes, Chapman & Hall/CRC

[2] Stoyan, D., Kendall, S.K., Mecke, J. (1995),Stochastic Geometry and its Applica-
tions.2nd edition. Wiley.

11


