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1 What is phylogeny?

Phylogeny is the evolutionary development and history of a species or higher taxonomic
grouping  of  organisms.  Much  effort  is  put  into  reconstructing  phylogenies,  since
understanding evolutionary relationships is needed to draw general conclusions about the
mechanisms of evolution.

One must be aware that much of the terminology used in biology is quite vague –
concepts  such  as  'species',  'individual',  'organism',  and  even  'life'  are  arbitrary  terms
whose definitions may vary. Some of the entities studied are not regarded as organisms,
e.g. viruses. Still, the generally accepted conception within the scientific community is
that all these entities have a common ancestor. Ancestry in this case refers to the passing
on of genetic material, DNA and RNA. These substances carry information on how to
build and operate an organism, and they are copied and passed on to offspring. However,
the copies made are often not perfect. Mutations occur, and it is the accumulated weight
of  these  mutations  along  with  natural  selection  that  constitute  the  driving  forces  of
evolution. In other words, 'life' has arisen on earth once only, and from this origin all
other life forms have evolved.

The conception that all life forms have a common origin has  led to the use of
trees (usually binary) for representing the interrelationships among organisms. At the root
is the  most recent ancestor,  and at the tips are the organisms studied. Branch lengths
correspond  to  time,  or  sometimes  to  evolutionary  distance,  meaning  the  mutational
changes that have occurred.

Two trees in which the branch lengths represent evolutionary distance. The only difference
between these two trees is that the one on the left is rooted, whereas the one on the right is
not. In a rooted tree, the root corresponds to the most recent ancestor.



2 Defining the problem

The main task for  phylogenetic  research is  to  reconstruct  evolutionary history.  Some
clues are provided by fossils, but it is often the case that such evidence is absent, and in
these cases conclusions must  be drawn using only the features that are observable in
present-day organisms. The only way to go about in this situation is to use similarities
between the organisms. Similarities are often indications of close relations.

Before the boost of molecular data, phylogenetic analysis was usually performed
on  visible  physical  features.  Nowadays  the  starting  point  of  the  analysis  is  mainly
sequence information – either protein or DNA/RNA sequences. The high availability of
this  reliable  source  of  evidence  does  not,  however,  imply  the  end  of  concerns  for
phylogenetic  research.  There  are  still  computational  aspects  that  constitute  obstacles.
Aligning sequences in order to determine which similarities and differences exist is in
itself difficult, but not within the scope of this essay. Instead it is assumed here that the
sequences have been aligned in a credible manner.

One of the most apparent problems is the vast number of possible tree topologies.
For unrooted trees the number of possible topologies for s organisms is

2s−5!
2s−3s−3!

whereas the corresponding number for rooted trees is
2s−3!

2s−2s−2!
These numbers grow rapidly with increasing values of s, thus making extensive analysis
intractable (Huelsenbeck and Ronquist, 2001).

s Unrooted trees Rooted trees

4 3 15

5 15 105

6 105 945

7 945 10,395

10 2,027,025 34,459,425

20 2.22·1020 8.2·1021

2.1Models of sequence evolution

The statistically more robust methods for reconstructing phylogenies attempt to compute
probabilities of different phylogenetic trees. In order to do so, they must incorporate a
model of sequence evolution. Such a model takes into consideration the facts that not all
mutations are equally probable in a sequence.

Many such models exist,  with varying levels of abstraction and complexity. In
general, the more realistic the model is, the more parameters are included, and as a result
the computational burden will increase. Normally the user of a software for phylogenetic
analysis only has to specify which model to use, and the parameters involved will be
calculated during run-time, in a fashion that maximizes the probabilities sought for, based
on the sequence information that constitutes the input of the analysis.



3 Some approaches

Several approaches have been used to infer phylogeny from data, and some of them will
be briefly outlined here.

3.1 Neighbor joining

The neighbor joining method takes as its input a  distance matrix, in which all pairwise
distances between sequences are listed. A greedy algorithm is then used to pairwise join
the two closest neighbors until the result is a binary tree. No model of sequence evolution
is needed.

3.2 Maximum parsimony

The idea  behind  maximum parsimony is  to  construct  a  tree  in  which  the  sum of  all
mutations along all branches is minimized. No model of sequence evolution is needed.

3.3 Maximum likelihood

Maximum likelihood  is  a very robust approach. It  tries to find the tree for which the
likelihood is maximized, among all possible tree topologies and parameters. A model of
sequence evolution is needed. Unfortunately the number of possible trees is so vast that
extensive search is not feasible even for a modest number of organisms. Therefore the
search is usually done using a hill-climbing algorithm, always looking for changes to the
tree that will increase the likelihood. The search is often started using a tree computed by
a simpler method, such as neighbor joining.

3.4 Establishing confidence using bootstrapping

All of these methods will give as a result a single phylogenetic tree (the best estimate).
Normally you want a measure of confidence too. How confident are we that a certain
group  of organisms belong to the same branch? Within which boundaries can we be 95%
sure that this branch length lies?

In  order  to  establish  such  confidence  limits  bootstrapping is  used.  In
bootstrapping a number of pseudoreplicates are constructed by random resampling, with
replacement, from your aligned sequences. The pseudoreplicates are of the same length as
the original aligned sequences. The same tree-building method as earlier is then used on
these pseudoreplicates,  and from this  set  of trees confidence limits  can be computed.
Obviously this approach will increase the computational burden by a large factor – if 100
bootstrap samples are used, the computation will  take 101 times as long. For the fast
methods  this  is  not  a  big  problem,  but  for  maximum  likelihood,  that  is  already
computationally intense, the extra complexity may well be more than one can afford.



4 Bayesian Inference

In  recent  years  Bayesian  inference has  been  introduced  as  a  powerful  method  to
reconstruct  phylogenies.  Bayesian  inference  is  in  a  way  connected  to  maximum
likelihood, but the basic question one asks is completely different.

In  maximum likelihood  the  question  is  'What  is  the  probability  of  seeing  the
observed data (D) given that a certain model/assumption (T) is true, P(D|T)?', whereas
the question in Bayesian inference is 'What is the probability that this model/assumption
(T) is correct, given the data (D) that we have observed, P(T|D)?' The latter question is
answered by Bayes theorem:

P T |D=
PTP D |T

P D
P(T|D) is the posterior probability.
P(T) is the  prior probability, that is the probability assigned to the theory T before the
data was collected.
P(D|T) is the likelihood.
P(D) is the probability of observing the data D disregarding which theory is correct.
An example:

90 fair and 10 biased dice are put into a box, and a die is then drawn at random from the
box. What is the probability that the die is biased?
P(Biased) = 10/(90+10) = 0.1         This is our prior probability!
Now assume that we roll the die twice, once rolling a     and once rolling a      . What do
we think now about the die?
Using the maximum likelihood approach we get that
P(         | Fair) = 1/6 × 1/6 = 1/36

P(           | Biased) = 4/21 × 6/21 = 24/441

Since P(           | Biased) > P(           | Fair) we draw the conclusion that the die is biased.



Using the Bayesian approach we get

P(Biased |            ) = 
PBiased ×P  |Biased 

P  

This is our prior, 0.1 This is the likelihood, 24/441

This is the unconditional probability of the observed data, which is

P(            | Biased) × 0.1 + P(            | Fair) × 0.9 = 0.03

Computing this gives that the probability that the die is biased is 0.179.
In this case there is nothing that stops us from doing further investigations by rolling the
die again, and we can then use 0.179 as our prior information.

4.1 Regarding priors

It is often the case that no prior information exists or that the researcher is unwilling to
assign an informative prior, in order not to influence the result with personal opinions.
Then an  uninformative (flat) prior can be assigned. It is also possible to assign  vague
priors (Huelsenbeck et al., 2002).

If a flat prior is used the posterior distribution will be proportional to the likelihood.

4.2 How to compute - MCMC

The secret behind the increasing popularity of Bayesian analysis lies in the application of
Markov Chain Monte Carlo to compute the posterior probability density. A Markov chain
is  designed,  that  has  as  its  state  space the  parameters  of  the statistical  model,  and a
stationary distribution  that  is  the  posterior  probability  density  of  the  parameters.  The
chain is then run for a long time (typically millions of steps), and sampled from regularly.

To design the Markov chain properly, it is sufficient to manipulate the transition
matrix. How this is done is seen in the algorithm (Metropolis-Hastings):



•  Start with random tree and parameters
•  In each generation, randomly propose either

•  a new tree topology or
•  a new value for a model parameter

•  If the proposed tree has higher posterior probability,  proposed, than the current tree,
current, the transition is accepted.

•  If the proposed tree has lower posterior probability than the current tree, the transition
is accepted with probability proposed/current.

•  Every k generations, save the current tree.
•  After  n generations,  end  the  Markov  chain,  and  use  the  saved  trees  to  draw

conclusions, using histograms, means, credibility intervals, etc.

These steps ensure that the Markov Chain does indeed have the posterior probability as
its  stationary  distribution.  First  of  all,  the  transition  mechanism  assures  that  the
corresponding graph is connected. Furthermore, all nodes of the graph have the same
(theoretically  infinite)  number  of  neighbors.  Along  the  'borders'  of  the  graph,  this
property can be assured by a technique called 'back-reflection'. Thus all nodes have the
same degree. Local equilibrium is satisfied. Assume i < j :

iPi , j=
i

deg si
×
 j

i

=
Every neighbor of si is suggested with probability
1/deg(si).  The  transition  is  accepted  with
probability j/i.

 j

degsi
=

 j

degs j
=

All nodes have the same degree.

 jP j, i The  transition  from  j to  i is  accepted  with
probability 1.

This  algorithm  can
be  visualized  as  a
robot  walking
around  in  a
multidimensional
landscape.
According  to  its
instructions  it  will
consider  randomly
chosen steps, always
accepting  up-hill
steps and sometimes
accepting  down-hill
steps. The Markov Chain Monte Carlo algorithm illustrated as a robot

walking around in a landscape of posterior probabilities.



4.3Getting stuck on a hill – MCMCMC or MC3

A problem with  the  MCMC 'robot'  is  that  it  has  a
tendency  to  get  stuck  on  a  hill,  once  it  has
encountered it (Larget and Simon, 1999). The above
algorithm  assures  that  the  stationary  distribution  of
the Markov chain is the posterior probability density
for the state space. Therefore the number of visits to a
state,  si,  will  be  proportional  to  to  the  posterior
probability density at this state,  i, as the number of
steps goes towards infinity,  but since we don't  have
infinite amounts of time to spend, it  is necessary to
speed things up a bit.

A  solution  to  the  problem  is  Metropolis  Coupled
MCMC. The idea behind MC3 is simple – instead of
running just one Markov chain, several chains are run

simultaneously, and all but one of them are heated. A heated chain has as its stationary
distribution a 'leveled out' version of the posterior probability landscape, in which the
hilltops are lower.

When several chains are run, the ith chain (the cold chain is number 1) will have a
stationary distribution proportional to P(T|D)β, where

= 1
1i−1H

for some heating factor  H. At every generation
in the Markov chain algorithm, a  swap will be
attempted between two randomly chosen chains.
If  the  swap  is  accepted,  the  two  chains  will
change  status  –  the  colder  will  become  the
heated and vice versa. The heated chains will act
as  scouts,  more  effectively  exploring  the  full

Above is the true probability landscape.
Below is the leveled out version experienced
by a heated chain.

A landscape with several hilltops.
The chain gets stuck on the first
hill it encounters.

The robot analogy in MCMCMC. The
red robot is a heated chain.



breadth of the parameter landscape looking for hilltops. Sampling is done only on the
cold  chain,  since  this  is  the  only  chain  with  the  correct  stationary  distribution
(Huelsenbeck and Ronquist, 2001).

4.4 Drawing conclusions

When the Markov chains have run for long enough, there will be a big set of sampled
trees. Depending on the question being asked, conclusions can be drawn in several ways.
•  If you want to decide the value of a continuous parameter, this can be achieved using

a histogram. The range of the parameter is divided into intervals, and the number of
trees in each interval is recorded. Credibility intervals are also easy to compute.

•  To  determine  which  tree  correctly
describes the phylogeny of the studied
group  of  organisms,  the  common
method  is  to  sort  all  sampled  trees
according  to  their  posterior
probabilities,  and  then  pick  the  most
probable  trees,  until  the  cumulative
probability is 0.95 (Huelsenbeck et al.,
2002).

•  If  the  question  is  whether  a  certain
group of organisms is monophyletic (if
it constitutes a branch in the tree), you

just check how many of the sampled trees claim that it is. If it is monophyletic in 74%
of the trees, the probability that it is monophyletic is 74%. (Lewis, 2001)



4.5 Marginal vs joint estimation

Commonly  the  prior  used  in  Bayesian  analysis  of
phylogeny is flat. The posterior probabilities will then
be  proportional  to  the  likelihood.  Indeed,  the  team
behind  the  MrBayes  software  for  performing  such
analysis claim (Huelsenbeck et al., 2001) that

“This  [Bayesian inference]  is  roughly  equivalent  to
performing  a  maximum  likelihood  analysis  with
bootstrap resampling, but much faster.”

One difference is worth noting, though, and that is the
distinction  between  marginal and  joint estimation.
Many of the model parameters might not be of direct
interest,  but they must be dealt  with, since they are
part of the likelihood equation. Maximum likelihood
aims  to  find  the  tallest  peak  in  the  parameter
landscape  (joint  estimation),  whereas  Bayesian
inference is measuring the volume under a 'posterior
probability  surface'  (marginal  estimation),  and  will
therefore choose a somewhat lower peak if it is wide
enough  to  have  a  larger  volume.  Statistically  this
makes perfect sense. One must bear in mind that the
tree  suggested  by  any method  is  subject  to  several
sources  of  uncertainty,  and  it  will  therefore  be  an
approximation.  The output  should  be  interpreted  as
“This tree,  or some tree similar to it, is likely to be
the true one.” So the likelihood of the suggested tree
is not all that matters, the closely related trees are also
important (Holder and Lewis, 2003).

4.5 Unsolved problems

It  is  still  an open question how to determine when a MCMC algorithm has run long
enough. Also tests on simulated data sets have revealed some discrepancies between the
Maximum likelihood bootstrap estimates and Bayesian posterior probabilities for clades
(organisms belonging to the same branch of a tree).  In these tests  Bayesian posterior
probabilities were significantly higher than corresponding bootstrap frequencies for true
clades,  but  Bayesian  inference  also  drew  erroneous  conclusions  more  often.  The
frequency of type II errors was lower for the Bayesian analysis, whereas the frequency of
type I errors was much higher (Erixon et al., 2003; Huelsenbeck et al., 2002).

H0 true H0 false

H0 rejected Type I error Correct

H0 not rejected Correct Type II error

Two cases where Maximum
likelihood and Bayesian
inference will choose differently.
On the x axis is a continuous
parameter, and on the y axis the
likelihood/posterior probability.
ML will choose the blue trees,
whereas BI will choose the red
ones. (Holder and Lewis, 2003)
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