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Background 
Hidden Markov chains was originally introduced and studied in the late 1960s and early 
1970s. During the 1980s the models became increasingly popular. The reason for this is two-
folded. Firstly, the hidden Markov models are very rich in mathematical structure and hence 
can form the theoretical basis for a wide range of applications. Secondly, the models have, 
when applied properly, turned out to be highly successful. Some of the notable applications 
are speech recognition and bioinformatics in particular protein modelling.    
 
In this work, basics for the hidden Markov models are described. Problems, which need to be 
solved are outlined, and sketches of the solutions are given. A possible extension of the 
models is discussed and some implementation issues are considered. Finally, three examples 
of different applications are discussed.  
 
The vast majority of the theoretical results in this work is a summary of the results in Rabiner 
(1989). The example in speech recognition is due to Rabiner (1989) , the example of protein 
modelling is due to Krogh et al. (1994) and finally an application in fatigue analysis is due to 
Johannesson (1999). 

What is Hidden Markov Models? 
Hidden Markov models (HMM) can be seen as an extension of Markov models to the case 
where the observation is a probabilistic function of the state, i.e. the resulting model is a 
doubly embedded stochastic process, which is not necessarily observable, but can be observed 
through another set of stochastic processes that produce the sequence of observations. To get 
a better understanding for this the following example might be useful: 

Example  
Consider a room with N urns. Within each urn there are a large number of coloured balls. We 
assume that there is M different colours in total. Furthermore, assume that an urn is initially 
chosen according to some probability distribution. From this urn, a ball is chosen at random, 
and its colour is recorded as the observation. The ball is then replaced in the urn from which it 
was selected. A new urn is selected according to a random selection process associated with 
the current urn.  

 
Figure. An N-state urn and ball model, which illustrates the general case of a discrete symbol HMM. 
From Rabiner (1989). 
 



The ball selection process is repeated for the new urn, after which the next urn is selected 
according to a selection process associated with the second urn, and so forth. The entire 
process generates a finite observation sequence of colours, which we would like to model as 
the observable output of an HMM. We can now see that we have an underlying Markov 
chain, where each state corresponds to the selection of a particular urn. This chain is however 
not observable, but can be observed through the sequence of colours which obviously is a 
probabilistic function of the embedded Markov chain, since a colour is chosen randomly 
depending on the state which we are currently in, i.e. the urn, which we are currently 
choosing the ball from. 

Description of HMM 
Rabiner (1989) suggest that a HMM can be described by the following: 
 

1. N , the number of states in the model. Although the states are hidden, for many 
practical applications there is often some physical significance attached to the states 
or to sets of states of the model. In the example with the balls and urns above, N  
corresponds to the number of urns. We denote the individual states as 

{ }NsssS ,...,, 21= , and the state at time n  as nZ . 
2. M , the number of distinct observation symbols per state. The observation symbols 

correspond to the physical output of the system being modelled. In our example 
above M  corresponds to the number of colours of the balls. We denote the individual 
symbols as { }MvvvV ,...,, 21= , and the symbol at time n as nX . 

3. The state transition probability matrix { }ijPP = , where 

 
( )injnij sZsZPP === +1 , Nji ≤≤ ,1    (1) 

 
4. The observation symbol probability distribution in state js , ( ){ }kbB j= , where 

 

( ) ( )jnknj sZvXPkb ===  Nj ≤≤1 , Mk ≤≤1   (2) 

 
5. The initial state distribution { }iππ =  where 
 

( ),0 ii sZP ==π  Ni ≤≤1    (3) 
 
It can be seen from the above that a complete specification of an HMM requires specification 
of the two model parameters ( N  and M ), specification of the observation symbols and the 
specification of the three probability measures P , B  and π . For convenience, we use the 
compact notation 
   
    ( )πλ ,, BP=       (4) 
 
It should be noted here that the above discussion has considered only the case when the 
observations is characterised as discrete symbols. In principle, this is however not necessary. 
The symbols or outputs can be either discrete or continuous, and either scalar or vector-
valued. However, in all cases we need to assume that the stochastic process { }nZ  is a Markov 

chain having the property that { }kk XXX ,...,0=−  and { },..., 211 ++
+
+ = kkk ZZZ  are conditionally 

independent given { }.,...,0 kk ZZZ =−  We will, however, from now on assume that we have the 
case with discrete scalar symbols. 



Three basic problems for HMMs 
In order for the hidden Markov models to be useful in real-world applications Rabiner (1989) 
presents three basic problems: 
 
Problem 1: Given the observation sequence ( )TxxxX ,...,, 10= , and a model 

( )πλ ,, BP= , how do we efficiently compute ( )λXP , the probability of the 

observation sequence, given the model? 
Problem 2: Given the observation sequence ( )TxxxX ,...,, 10= , and the model 

( )πλ ,, BP= , how do we choose a corresponding state sequence 

( )TzzzZ ,...,, 10= , which is optimal in some meaningful sense? 

Problem 3: How do we adjust the model parameters ( )πλ ,, BP=  to maximise ( )λXP ? 

 
Problem 1 can be seen as one of scoring how well a given model matches a given observation 
sequence, i.e. the solution to this problem would give us a tool to choose between competing 
models. Problem 2 can be seen as the problem of uncovering the hidden part of the model, i.e. 
to find the correct state sequence. Problem 3 is the one in which we try to optimise the model 
parameters so as to best describe how a given observation sequence comes about. The 
observation sequence used to adjust the model parameters is called a training sequence. The 
training problem is the most crucial one for most applications of HMMs. We will now move 
on to some discussion on the mathematical solutions of each of the three problems above. 

Solution to problem 1: 
The problem is to calculate the probability of the observation sequence given the model λ . It 
is possible to do this in a straightforward way, but this is unfortunately computationally 
unfeasible, even for small values of N  and T . However, there exists a more efficient 
procedure called the forward-backward procedure. Consider the forward variable ( )inα  
defined as 
 
   ( ) ( )λα innn sZXXXPi == ,,...,, 21     (5) 

 
i.e., the probability of the partial observation sequence, ( )nXXX ,...,, 21  until time n  and state 

is  at time n , given the model λ . We can here use induction for the problem. First for 0=n , 
we have  
 

( ) ( )00 Xbi iiπα = , Ni ≤≤1 .      (6) 
 
Induction leads to  

( ) ( ),)( 1
1

1 +
=

+ 







= ∑ nj

N

i
ijnn XbPij αα 11,1 −≤≤≤≤ TnNi   (7) 

Since  
   ( ) ( )λα iTTT sZXXXPi == ,,...,, 21     (8) 

it follows that 

   ( ) ( )∑
=

=
N

i
T iXP

1

αλ       (9) 

Using the forward variable ( )inα  we have now solved the first problem above. (Note that this 
does not include any backward variable. The backward variable is actually not necessary for 
the solution and is therefore excluded here, but it will appear in the solution for problem 3.) 



Solution to problem 2: 
Unlike, problem 1 where an exact solution can be given, there are several possible ways of 
solving problem 2, i.e. finding the optimal state sequence associated with the given 
observation sequence. The difficulty comes from the fact that there are several different 
optimality criteria. One possible optimality criterion is to choose the states nZ , which are 
individually most likely. This optimality criterion maximises the expected number of correct 
individual states, but it does not take into consideration whether the sequence of states is 
possible. For instance although the transition between two states is impossible i.e. 0=ijP  for 

some i  and j , they may still be the most likely at the very instants. This is due to the fact that 
the solution of this problem simply determines the most likely state at every instant, without 
considering the probability of occurrence of sequences of states. The most widely used 
criterion is instead to find the single best state sequence, i.e. to maximise ( )λ,XZP , which is 

equivalent to maximising ( )λXZP , . An algorithm for solving this problem has been found 

and is called the Viterbi algorithm. This algorithm can simply be seen as the maximum 
likelihood estimate. The algorithm can be summarised as follows: 
To find the best state sequence, { }TZZZZ ,...,, 10= , for the given observation 

{ }TXXXX ,...,, 10= , we need to define the quantity 
 

( ) ( )λδ nin
ZZZ

in XXXsZZZPs
n

,...,,,,...,,maxarg 1010
,...,, 110

==
−

   (10) 

 
i.e. ( )in sδ  is the best score (highest probability) along a single path, at time n , which 

accounts for the first 1+n  observations and ends in state is . By induction we have  
 

( ) ( )[ ] ( )11 max ++ ⋅= njijin
i

jn XbPss δδ     (11) 

 
To actually retrieve the state sequence, we need to keep track of the argument which 
maximised the above the above equation, for each n  and j . We do this with the array 

( )jn sψ . The procedure for finding the best state sequence now follows as: 

 
1) Initialisation: 

( ) ( )00 Xbs iii πδ = , Ni ≤≤1  

( ) 00 =isψ       (12) 
 
2) Recursion: 

( ) ( )[ ] ( )njijin
Ni

jn XbPss ⋅= −
≤≤

1
1
maxδδ , Tn ≤≤1 , Nj ≤≤1     

( ) ( )[ ]ijin
Ni

jn Pss 1
1

maxarg −
≤≤

= δψ , Tn ≤≤1 , Nj ≤≤1    (13) 

 
3) Termination: 

( )[ ]iT
Ni

sP δ
≤≤

=
1

* max  

( )[ ]iT
Ni

T sZ δ
≤≤

=
1

* maxarg      (14) 

 
4) State sequence backtracking: 

( )*
11

*
++= nnn ZZ ψ , .0,1,...,2,1 −−= TTn     (15) 

 



The best sequence according to the Viterbi algorithm is thus found as ),...,,( **
1

*
0

*
TZZZZ = . It 

should be noted that apart from the backtracking step the Viterbi algortihm is rather similar to 
the forward calculation used in problem 1. 

Solution to problem 3: 
The by far most difficult of the three problems is to determine a method to adjust the model 
parameters ( )πλ ,, BP=  to maximise the probability of the observation sequence given the 
model. This problem is in fact not possible to solve using a finite observation sequence as 
training data, but we can choose ( )πλ ,, BP=  such that ( )λXP  is locally maximised using 

an iterative procedure such as the Baum-Welch method. (Equivalent results will be found 
using the EM method.) We start of with introducing a backward variable ( )inβ  defined as 
 
   ( ) ( )λβ ,,...,, 21 inTnnn sZXXXPi == ++     (16) 

 
i.e. the probability of the partial observation sequence from 1+n  to the end, given the state 

is  at time n  and the model λ . Again we can solve for ( )inβ  inductively, as follows: 
 
    ( ) ,1=iTβ Ni ≤≤1      (17) 
and induction leads to 

  ( ) ( ) ( )∑
=

++=
N

j
nnjijn jXbPi

1
11 ββ  0,1,...,2,1 −−= TTn , Ni ≤≤1   (18) 

 
In order to describe the procedure for reestimation of HMM parameters, we also define 

( )jin ,ξ , the probability of being in state is  at time n  and state js  at time 1+n , given the 

model and the observation sequence, i.e. 
 

( ) ( )λξ ,,, 1 XsZsZPji jninn === +     (19) 

 
From the definition of the forward and backward variables it follows that we can write 

( )jin ,ξ  in the form 
 

( ) ( ) ( ) ( )
( )λ

βα
ξ

XP

jXbPi
ji

nnjijn
n

11, ++=
( ) ( ) ( )

( ) ( ) ( )∑∑
= =

++

++=
N

i

N

j
nnjijn

nnjijn

jXbPi

jXbPi

1 1
11

11

βα

βα
  (20) 

 
where the numerator is simply ( )λXsZsZP jnin ,, 1 == +  and the division by ( )λXP  gives 

the desired probability measure. We also need to define ( )inγ  as the probability of being in 

state is  at time n , given the observation sequence and the model. It follows that  
 

( ) ( )∑
=

=
N

j
nn jii

1

,ξγ      (21) 

 
If we sum ( )inγ  over the time index up to time 1−T  we get a quantity, which can be 

interpreted as the expected number of transitions made from state is . Similarly, summation of 

( )jin ,ξ  up to time 1−T  can be interpreted as the expected number of transitions from state 

is  to state js . We can also sum ( )inγ  over the time index up to time T , which can be 



interpreted as the expected number of times in state is . Using this, we can get a method for 
reestimation of the parameters in an HMM. The reestimation formulas can be found as 
 

( )its nii γπ ===  )1( at time  statein   times)of(number frequency  expected  (22) 
 

( )
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∑
−

=

−

===
1
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T
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i

ji
ij

i
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s
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P

γ
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  (23) 

 

( )kb j  ==
j
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s

vs
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( )∑
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=
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=
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vXn

j

Ij
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1

γ

γ
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The reestimation procedure now runs as follows. We define the current model as 

( )πλ ,, BP= , and use that to compute the right-hand side of the above equations, which is 
put equal to the left-hand side. The left-hand sides are the parameters in the model and this 
can be used to further improve the model by repeating the procedure until a limiting point is 
reached. 

An Extension of the standard HMMs 
There are naturally many extensions to the simple scalar, discrete case, which has been 
introduced here. One of these interesting extensions of the standard HMMs presented here 
would be to model state duration, i.e. that the sequence stays in a state for a non-zero amount 
of time. For the standard HMMs, it can be shown that the inherent duration probability 
density )(dpi  associated with state is , i.e. the probability of d  consecutive observations in 

state is  is of the form:  
 

)1()( 1
ii

d
iii PPdp −= − ,     (25) 

 
where iiP  is the self-transition coefficient for state is . For most applications, this exponential 
state duration density is inappropriate. Instead, it is preferable to explicitly model duration 
density in some analytical form. This means that the HMM would run as follows. First an 
initial state is  is chosen according to some distribution iπ , and then a duration 0d  is chosen 

according to the state duration density )( 0dpi . Observations for the observing times 

0,...,0 dt =  are chosen according to the joint density ( )
00

,...,, 10 dZ XXXb . Finally, the next 

state is chosen according to the state transition probabilities ijP , where 0=iiP  since we have 

determine the state duration to be exactly 0d . The procedure is then repeated for the second 

state and so forth. It should be noted that for the special case where )1()( 1
ii

d
iii PPdp −= − , the 

situation is equivalent to the standard HMM. The formulation with state duration density 
cannot be directly applied to the solution of the three problems described above, but assuming 
that entire duration intervals are included in the observation sequence it is possible to find 
similar solutions to the problems.  
 



It should, however, be noted that there a number of drawbacks with the incorporation of 
duration densities. One is the increase of computational load. Another noteworthy problem is 
that, in general, a larger training data set is required, since fewer state transitions are made 
with this model compared to the standard HMM.  

Implementation issues for HMMs 
There are a number of details to pay attention to when implementing the HMMs. Examples of 
these are scaling issues, initial parameter estimates, and insufficient training data. The issues 
are sketched and some ideas about solutions are given here.  

Scaling 
In order to see why scaling is of importance when implementing the reestimation procedure, 
consider the definition of the forward variable )(inα . It can be seen in the definition that 

)(inα  consists of the sum of a large number of terms, each of the form 
 

( )∏∏
=

−

=
+

n

s
ZZ

n

s
ZZ ssss

XbP
0

1

0
1

     (26) 

 
where in sZ = . Since each of the factors in the product generally is significantly less than 1 it 

can be seen that as n  starts to get big each term in )(inα  starts to head exponentially to zero. 
This means that after a sufficiently long time any computer will run into problems with 
precision range.  For this reason a scaling procedure is necessary. The basic procedure, which 
is used, is to multiply )(inα  with a scaling coefficient independent of i , with the goal of 

keeping the scaled )(inα  within the dynamic range for each value of n  i.e. Tn ≤≤0 .The 

suggested scaling in Rabiner (1989) is to multiply )(inα  with a factor  
 

( )∑
=

=
N

i
n

n

i

c

1

1

α
     (27) 

 
The scaled coefficients are thus found as  
 

( ) ( )ici nnn αα =ˆ      (28) 
 
A similar scaling is done for the backward variables )(inβ  using the same scaling factor, i.e. 
 

( ) ( )ici nnn ββ =ˆ      (29) 
 
It can then be shown that when calculating ijP  due to cancellations we get the same results 

when using )(ˆ inα  and )(ˆ inβ  instead of )(inα  and )(inβ respectively. The only really 
important change in the solutions of the problems listed above comes in the calculation of 

)|( λXP , since one cannot simply sum up the )(ˆ iTα  terms since they are scaled already. 
However, it turns out that it is still possible to calculate logarithm of )|( λXP . In the Viterbi 
algorithm it turns out that no scaling is necessary if one uses logarithms in the four steps of 

the algorithm. This means that one will arrive at ( )*log P  rather than *P , but with less 
computing and no numerical errors.  



Initial parameter estimations 
In principal there are no straightforward answer on how to choose the initial estimates of the 
HMM parameters. It appears as the distribution of the initial distribution π  and the transition 
matrix P  is rather insensitive. (For instance, uniform initial estimates can be used.) However 
for the parameters in B , the initial estimates are crucial, especially in the continuous case, i.e. 
when the observation symbols come from a continuous distribution. There are a number of 
suggestions on how to obtain good initial estimates, e.g. manual segmentation of the 
observation sequence into states with averaging of observations within states, and maximum 
likelihood segmentation of observations with averaging. 

Insufficient training data 
An obvious problem with the training of HMM parameters, is that the observation sequence is 
finite. This means that there is often insufficient numbers of occurrences of the different 
model events to give good parameter estimates. A natural way of solving this problem is to 
gather more data, but this often impossible in practical situations and therefore it is necessary 
to find a technique, which deals with the data at hand. One possible solution is simply to 
reduce the size of the model, e.g. the number of states, number of symbols per state, etc. 
However, in many practical situations the nature of the model is given by a physical situation 
and thus reduction of the model is not possible. A third possibility is to interpolate one set of 
parameter estimates with another set of parameter estimates from a model for which an 
adequate amount of training data exists. The idea is to use the training data to design two 
models, one corresponding to the desired one, and one which is smaller, but for which the 
training data is sufficient. The smaller model is created by tieing one or more sets of 
parameters of the initial model together. The final result is obtained by interpolation between 
the two models. A key issue is to understand how much weight should be put on the initial 
model and how much on the reduced model. There are however some results on this topic, 
which can provide an optimal weight.  

Applications and Examples 
Three examples of very different applications will be given here. The first is the perhaps most 
classic in the field i.e. speech recognition. The second comes from the biological area, and 
refers to protein modelling. Finally, a more theoretical result useful in fatigue analysis will be 
given. 

Speech recognition 
Arguably, one of the most noteworthy applications of HMMs is speech recognition. The 
example given here is due to Rabiner (1989) and deals with isolated word recognition. 
Assume there are in total V  words, which are to be recognised and that there are K   
occurrences of each spoken word. Each occurrence of the word constitutes an observation. 
The observations of words are typically represented in terms of spectra and/or time signals. In 
order to do the isolated word recognition, there are two tasks that are necessary to perform:  
 

1.  First it is necessary to build HMMs for each word in the vocabulary, i.e. for each word 
v, we need to estimate the model parameters ( )vvvv BP πλ ,,= , which optimise the 
likelihood of the training set observation vectors for the word. 

 
2.  For each unknown word the observation sequence is analysed and calculations of 

model likelihoods for all possible models, i.e. all possible words, are performed. 
Finally, the model gives the recognised word as the one with the highest model 
likelihood. 

 



One of the possible ways to perform the analysis and obtain the observation vector X  is to 
conduct a spectral analysis. A common technique is then to use linear predictive coding 
(LPC) to extract observation vectors.  

Protein modelling 
The modelling of proteins is not as unrelated to the case with speech recognition as it first 
appears. A more general speech recognition when a sequence of words or phonemes is 
considered can be seen as a pattern recognition task. This is also true for the protein 
modelling case, where the task is to model a sequence of amino acids, which build up 
proteins. In fact the words correspond to the 20 amino acids from which protein molecules are 
constructed. The example of a hidden Markov model for proteins considered here is due to 
Krogh et al. (1994).  
 
The structural intuition of a protein can be seen in the following way: a) A sequence of 
positions, each with its on distribution over the amino acids; b) the possibility of either 
skipping a position or inserting extra amino acids between consecutive positions; and c) 
allowing for the possibility that continuing an insertion or deletion is more likely than starting 
one. Krogh et al. (1994) construct their hidden Markov model to catch the properties listed 
above. The main line of the HMM contains a sequence of M  states, which we will call match 
states, corresponding to the positions in a protein or columns in a multiple alignment. Each of 
the M  states can generate a letter x  from the 20-letter amino acid alphabet according to the 
distribution )|( kmZxXP == , Mk ,...,1= , i.e. each generated letter correspond to a specific 

amino acid. The notation )|( kmZxXP ==  means that each of the match states km , 
Mk ≤≤1 , have distinct distributions. In order to model the possibility of skipping the 

position there is a deletion state kd  for each state km , which is simply a dummy state. 
Finally, in order to model the possibility of inserting extra amino acids there are a total of 

1+M  insert states to either side of the match states, which generate letters from the amino 
acid alphabet in exactly the same way as the match state, but use the probability distributions 

)|( kiZxXP == , Mk ,...,1,0= . For simplicity purposes a dummy state has been added in the 

beginning and the end, denoted 0m  and 1+Mm , which do not produce any amino acids. The 
situation can be seen below for the case when 4=M . 

 
 
Figure. The protein model for 4=M . From Krogh et al. (1994).  
 
Notice that the model allows for several extra amino acids since there is a positive self-
transition probability for the insert states. From each state, there are three possible transitions. 
Transitions into match states or deletion states always move forward in the model whereas 
transitions into insert states do not. The transition probability from a state q  to a state r  

)|( qZrZP ==  is here denoted )|( qrT , which corresponds to the more familiar notation 

rqP .  

 



A sequence from the model is generated in the following way: Starting in the dummy state 

0m , choose a transition to 1m , 1d , or 0i  randomly according to the transition probabilities 

)|( 01 mmT , )|( 01 mdT  and )|( 00 miT . Whenever we are in an insertion or matching state a 

letter x  corresponding to an amino acid is generated. For instance if we are in state km  an 

amino acid is generated according to the probability distribution )|( kmZxXP == . If on the 
other hand we are in a deletion state no amino acid is generated. The next state is chosen 
according to the possible transitions in the current state. The procedure continues until the 
sequence reaches the state km , which is the dummy end state, where no amino acid is 

generated. The generated sequence Lxxx ,...,, 21  is now a sequence of letters corresponding to 
the different amino acids, where the sequence has been found following a path of states 

110 ,,...,, +NN qqqq  , where 00 mq =  and 11 ++ = MN mq . Since the deletion states does not 
create any amino acids we can conclude that N  (the number of states in a path) is larger or 
equal to L  (the length of the sequence). If iq  is a match or insertion state, we define )(il  to 

be the index in the sequence Lxxx ,...,, 21  of the amino acid produced in state iq . The 

probability of the event that the path 110 ,,...,, +NN qqqq  is taken and the sequence Lxxx ,...,, 21  
is generated is  
 

( ) ( ) ( ) ( )( )∏
=

−++ ⋅=
N

i
iiliiNNNL qxPqqTqmTqqxxP

1
11101 model,...,,,...,   (30) 

 
where ( )( ) 1=iil qxP  if iq  is a deletion state. The probability of any sequence Lxxx ,...,, 21  of 

amino acids can be found as the sum over all possible paths that could produce that sequence 
 

( ) ( )∑
+

+=
10 paths

1011 model,...,,,...,model,...,
N,...,qq

NLL qqxxPxxP   (31) 

 
A way of estimating the parameters is in the model is the following: For a given set of 
training sequences )(),...,1( nss , one can see how well a model fits them by calculating the 
probability it generates them. This is simply a product of terms of the form given by the sum 
above, where we for each nj ,...,1= , let )(,...,, 21 jsxxx L = . The result is the likelihood 
function and maximising with respect to the parameters in the model leads to the best model 
according to the maximium likelihood method. 

Fatigue analysis 
One of the major reasons for structural failure in the automotive industry is fatigue. Over the 
years various methods of extracting fatigue relevant data from random load-time histories 
have been developed. One way of dealing with this problem is to form equivalent load cycles 
and then use damage accumulation methods, such as the Palmgren-Miner rule. The method 
that has shown best results is the rainflow cycle counting method. It has become the most 
commonly used counting method in engineering. The way of constructing the cycles is based 
on counting hysteresis cycles for the load in the stress-strain plane. A definition suitable for 
mathematical analysis is the following, first presented by Rychlik (1987):  
 
Definition: 

From the k:th local maximum (value kM ) one looks at the lowest values in 

forward and backward directions between kM  and the nearest point at which 

the load exceeds kM . The larger (less negative) of those two values, denoted 

by rfc
km , is the rainflow minimum paired with kM , i.e. rfc

km  is the least drop 



before reaching the value kM  again on either side. Thus the k:th rainflow pair 

is ( )k
rfc
k Mm ,  and the rainflow range is rfc

kk
rfc
k mMH −= .  

 
This definition is probably best understood from a figure: 
 

 rfc
kH

−
kt

kt
+
kt

rfc
kk mm =−

+
km

kM

 

Figure.  The definition of the rainflow cycle. The rainflow cycle is denoted rfc
kH .  

 
A vehicle is usually driven in very different environment, for instance it is possible to distinct 
between driving in curves, slopes, flat straights or performing manuoevers. These cases will 
create very different sort of loads, not the least because of the differences in speed. One 
possible way of modelling these loads is by hidden Markov chains, where the states of the 
underlying Markov chain corresponds to the particular driving mode. The observed load at 
time n  is denoted nX . For a more complete treatment of this see Johannesson (1999). We 

can regard the observed load signal  { }∞=0nnX  as a random process with the state space 

{ }Mvv ,...,1 , such that a successive value is given by a Markov transition according to one of 
r  possible transition matrices, corresponding to the different driving modes. Which transition 

matrix to choose is determined by the regime process { }∞=0nnZ  with possible values r,...,1 . 

The regime process is assumed to be a Markov chain with the transition matrix ( )N
jiijP

1, =
=P  

having the property that { }nn XX ,...0=−χ , { },..., 211 ++
+
+ = nnn ZZZ  are conditionally 

independent given Z { }nn ZZ ,...,0=− . In particular the regime transitions take place 

independently of the previous nX values i.e. ( )−
−− == 11 , nnn iZjZ χP  

( ) ijnn PiZjZ ==== −1P . The evolution of the process { }∞=0nnX  is described by the transition 

probabilities ( )===== −
−

−
−− 121

)( ,,, nnninjn
z

ij ZzZvXvXPq χ ( )zZvXvX ninjn === − ,1P , 

giving the transition matrices ( ) ( )( )N
ji

z
ij

z q
1, =

=Q , rz ,...,1= . We now have a special case of the 

standard HMMs where we know that the observation process { }nX  is a Markov chain 

conditioning on the hidden Markov chain { }nZ . In this case it is common to call the process 

{ }nX  a switching Markov chain (with Markov regime), and call the process { }nZ  the regime 

process. { }nX  itself does not satisfy the Markov property, however it can be shown that the 

joint process ( ){ }∞=+ 01, nnn ZX  is a Markov chain, that is 

 
( ) ( )( ) ( ) ( ) ( )( ) ==== −−++ 10101111 ,,,...,,,,, svZXsvZXsvZX nnnnnnnnP  

          ( ) ( )( ) ( )( )nnnnnnnn svZXsvZX ,,,, 1111 −−++ === P           (32) 

 

The joint process has state space ( ){ } rN
zii zv ,

1,1, ==  containing rN ⋅  states and transition matrix  



 
( )N

jiij 1, =
= QQ , where ( )( )r

wzijij wzQ
1,

,
=

=Q  and ( ) ( )
zw

z
ijij pqwzQ =,           (33) 

 
The rr ×  matrix ijQ  describes a transition from i  to j  for { }nX  where the regime process 

{ }nZ  may switch state. For fixed j  we can define the column vector q  
 

( )mqq = , ( )Tmrmmm qqq ...21=q , 

    ( ) ∑
+=

− ===>=
N

jl

z
mlkmnjnmz qzZvXvXq

1
1 ,P           (34) 

 
containing the probabilities that ( ) ( )zvZX mnn ,,1 =−  are followed by a value jn vX > . Let π  

be the stationary distribution of the joint Markov chain, with transition matrix Q  (defined as 

above), then ( )N
ii 1== ππ , ( )iriii πππ ...21=π . Finally let ( )iππππ ...~

21= . Now 

define the following submatrices of Q , ( ),mlQ=A  jmi ≤≤ , jli ≤≤ and ( )mlQ=C , 
11 −≤≤ im , jli ≤≤  for 1,...,2 −= ni  and 1,..., −= nij . The matrix C  contains the 

probabilities that the process jumps from the interval [ ]1,1 −i  to [ ]ji,  and A  that the process 

stays within the interval [ ]ji, . (For 1−= ij  we define 0=A  and 0=C .) 

Furthermore,define the column vectors ( )Tiqqq 121 ... −=d , ( )Tjii qqq ...1.+=e , 

where d  describes a direct transition from 1,...,1 −i  to a value above j  and e  a transition 
from ji,...,  to above j . With this notation Johannesson (1999) showed the following 
theorem: 
 
Theorem: 
For fixed values i  and j  ( ni ,...,2= , 1,...,1 −−= nij ), the rainflow counting intensity for 

the sequence { }kX  is given by 
 

( ) ( )( )eAICdπeCAdπ 1

0

~~, −
∞

=

−+=







+= ∑

k

krfc jiµ ,            (35) 

 
where the row vector is  ( )121 ...~

−= iππππ , the column vectors d  and e  are as defined 
above as well as the sub-matrices A  and C .  
 
The rainflow counting intensity can for instance be used to calculate the expected 
cumulative fatigue damage caused by a load sequence. 

Conclusions 
A short summary of the some of the theory behind the hidden Markov models have been 
given. For understanding purposes, the intention has been to show relatively simple parts of 
the theory. However, the examples of results and very different kinds of applications showed 
here still give a hint of the usefulness of the hidden Markov models.   
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