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Background

Hidden Markov chains was originally introduced and studied in the late 1960s and early
1970s. During the 1980s the model s became increasingly popular. The reason for thisis two-
folded. Firstly, the hidden Markov models are very rich in mathematical structure and hence
can form the theoretical basis for awide range of applications. Secondly, the models have,
when applied properly, turned out to be highly successful. Some of the notable applications
are speech recognition and bioinformatics in particular protein modelling.

In thiswork, basics for the hidden Markov models are described. Problems, which need to be
solved are outlined, and sketches of the solutions are given. A possible extension of the
models is discussed and some implementation issues are considered. Finaly, three examples
of different applications are discussed.

The vast mgjority of the theoretical resultsin thiswork isasummary of the resultsin Rabiner
(1989). The example in speech recognition is due to Rabiner (1989) , the example of protein
modelling is due to Krogh et a. (1994) and finally an application in fatigue analysisis due to
Johannesson (1999).

What is Hidden Markov Models?

Hidden Markov models (HMM) can be seen as an extension of Markov models to the case
where the observation is a probabilistic function of the state, i.e. the resulting model isa
doubly embedded stochastic process, which is not necessarily observable, but can be observed
through another set of stochastic processes that produce the sequence of observations. To get
a better understanding for this the following example might be useful:

Example

Consider aroom with N urns. Within each urn there are alarge number of coloured balls. We
assume that there isM different coloursin total. Furthermore, assume that an urnisinitially
chosen according to some probability distribution. From thisurn, aball is chosen at random,
and its colour is recorded as the observation. The bal is then replaced in the urn from which it
was selected. A new urn is selected according to a random selection process associated with
the current urn.
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Figure. An N-state urn and ball model, which illustrates the general case of a discrete symbol HMM.
From Rabiner (1989).



The bal selection processis repeated for the new urn, after which the next urn is selected
according to a selection process associated with the second urn, and so forth. The entire
process generates a finite observation sequence of colours, which we would like to model as
the observable output of an HMM. We can now see that we have an underlying Markov
chain, where each state corresponds to the selection of a particular urn. This chain is however
not observable, but can be observed through the sequence of colours which obviously isa
probabilistic function of the embedded Markov chain, since a colour is chosen randomly
depending on the state which we are currently in, i.e. the urn, which we are currently
choosing the ball from.

Description of HMM
Rabiner (1989) suggest that aHMM can be described by the following:

1. N, the number of statesin the model. Although the states are hidden, for many
practical applications thereis often some physical significance attached to the states
or to sets of states of the model. In the example with the balls and urns above, N
corresponds to the number of urns. We denote the individual states as
S={s,,,,....Sy |, andthe state at time n as Z,,.

2. M, the number of distinct observation symbols per state. The observation symbols
correspond to the physical output of the system being modelled. In our example
above M corresponds to the number of colours of the balls. We denote the individual
symbolsasV = {v;,V,,...,Vy } , and the symbol at timenas X, .

3. The state transition probability matrix P = {P, |, where
P =PZu.=5(Z,=s)  1<i,j<N L)

4. The observation symbol probability distributionin state s, B = b, (k)}, where

b,(K)=P(X, =w|Z,=s,) 1<j<N,1<k<M @

5. Theinitia state distribution 7 = {z, } where
7 =P(Zy=5), 1<i<N ©)

It can be seen from the above that a complete specification of an HMM requires specification
of the two model parameters (N and M ), specification of the observation symbols and the
specification of the three probability measures P, B and 7 . For convenience, we use the
compact notation

2=(P,B,7) (4)

It should be noted here that the above discussion has considered only the case when the
observationsis characterised as discrete symbols. In principle, thisis however not necessary.
The symbols or outputs can be either discrete or continuous, and either scalar or vector-
valued. However, in al cases we need to assume that the stochastic process {Z,,} isaMarkov
chain having the property that X, = {X,,..., X, } and Z;, = {Z,.1,Z,.,....; ae conditionally

independent given Z, ={Z,,...,Z, }. Wewill, however, from now on assume that we have the
case with discrete scalar symbols.



Three basic problems for HMMs

In order for the hidden Markov modelsto be useful in rea-world applications Rabiner (1989)
presents three basic problems:

Problem1:  Given the observation sequence X = (X,, X,,..., %; ), and amodel
2 =(P,B,z), how do we efficiently compute P(X|/1), the probability of the
observation sequence, given the model ?
Problem2:  Given the observation sequence X = (X,, X, ..., %; ), and the model
A= (P, B, 7r) , how do we choose a corresponding state sequence
Z =(2y,2,--- 27 ), which is optimal in some meaningful sense?
Problem 3: How do we adjust the model parameters 4 = (P, B, z) to maximise P(X|/1)?

Problem 1 can be seen as one of scoring how well a given model matches a given observation
sequence, i.e. the solution to this problem would give us atool to choose between competing
models. Problem 2 can be seen as the problem of uncovering the hidden part of the model, i.e.
to find the correct state sequence. Problem 3 is the one in which we try to optimise the model
parameters so asto best describe how a given observation sequence comes about. The
observation sequence used to adjust the model parametersis called a training sequence. The
training problem is the most crucial one for most applications of HMMs. We will now move
on to some discussion on the mathematical solutions of each of the three problems above.

Solution to problem 1:

The problem isto calculate the probability of the observation sequence given themodel 4. It
is possible to do thisin astraightforward way, but thisis unfortunately computationally
unfeasible, even for small valuesof N and T . However, there exists a more efficient
procedure called the forward-backward procedure. Consider the forward variable «, (|)

defined as
(i) = P(Xy, X0 X, Z, = §1[2) (5)

i.e., the probability of the partial observation sequence, (Xl, ) S Xn) until time n and state
s, attime n, given themodel 4. We can here use induction for the problem. First for n=0,
we have

ao(i) =70 (X,),1<i < N. (6)
Induction leadsto
N
)= el p o asizaznzT 1 @
i=1
Since
a7 (i) = P(Xy, Xg00 X7, Z7 = 8)2) (8)
it follows that

P(x|2)= Za (i) ©)

Using the forward variable «, (i) we have now solved the first problem above. (Note that this

does not include any backward variable. The backward variable is actually not necessary for
the solution and is therefore excluded here, but it will appear in the solution for problem 3.)



Solution to problem 2:

Unlike, problem 1 where an exact solution can be given, there are several possible ways of

solving problem 2, i.e. finding the optimal state sequence associated with the given
observation sequence. The difficulty comes from the fact that there are several different

optimality criteria. One possible optimality criterion isto choose the states Z,, which are

individually most likely. This optimality criterion maximises the expected number of correct

individual states, but it does not take into consideration whether the sequence of statesis

possible. For instance athough the transition between two statesisimpossiblei.e. P, =0 for

some i and j, they may still be the most likely at the very instants. Thisis due to the fact that
the solution of this problem simply determines the most likely state at every instant, without

considering the probability of occurrence of sequences of states. The most widely used

criterion isinstead to find the single best state sequence, i.e. to maximise P(Z|X : }L) , Whichis

equivalent to maximising P(Z, X|/I). An algorithm for solving this problem has been found

and is called the Viterbi algorithm. This algorithm can simply be seen as the maximum
likelihood estimate. The algorithm can be summarised as follows:

To find the best state sequence, Z = {Z,,Z, ..., Z; |, for the given observation
X ={Xg, Xy, X5 }, We need to define the quantity

Sy(s)= argmax P(Zg,Zy,, Z, =8, Xgs Xy s X, 2)

Z0,Z4+Zn1

i.e. 5,(s ) isthe best score (highest probability) along asingle path, at time n, which
accounts for the first n+1 observations and endsin state s, . By induction we have

§n+l(Sj ): [mlax Sa(s )Ry J b; (Xa)

To actually retrieve the state sequence, we need to keep track of the argument which
maximised the above the above equation, for each n and j . We do thiswith the array

77 (sj ) The procedure for finding the best state sequence now follows as:

1) Initialisation:

2) Recursion:
S,(s; )=|max s, 4(s )P, |'b;(X,), 1<n<T,1<j<N

J <i<N

wals, )=argmax|s, 4(s )P, |, 1<n<T, 1< j<N

J
I<i<N

3) Termination:
P = max[é (s )]

I<i<N
Zr = arg'max[5T (s)]
I<i<N
4) State sequence backtracking:
Z! =yoalzis) n=T-1T-2..10.

(10)

(11)

(12)

(13)

(14)

(15)



The best sequence according to the Viterbi algorithmisthusfound as Z* =(Z,,Z; ..., Z7) . It

should be noted that apart from the backtracking step the Viterbi agortihm is rather similar to
the forward calculation used in problem 1.

Solution to problem 3:

The by far most difficult of the three problemsis to determine a method to adjust the model
parameters A = (P, B,72') to maximise the probability of the observation sequence given the
model. This problemisin fact not possible to solve using afinite observation sequence as

training data, but we can choose 4 = (P, B,;r) such that P(X|/1) islocally maximised using

an iterative procedure such as the Baum-Welch method. (Equivalent results will be found
using the EM method.) We start of with introducing a backward variable £, (|) defined as

ﬂn(i): P(Xn+l’xn+2""’XT|Zn :Slv;t) (16)

i.e. the probability of the partial observation sequence from n+1 to the end, given the state
s atime n and themodel A.Againwe cansolvefor A, (i) inductively, asfollows:

Br(i)=11<i<N (17)
and induction leads to

Bai)= i P.b,(Xp1)Baal(i) n=T-1T-2..10,1<i<N (18)
j=1

In order to describe the procedure for reestimation of HMM parameters, we a so define
fn(i, j), the probability of being in state s attime n and state s; at time n+1, given the

model and the observation sequence, i.e.
£,(0,1)=P(Z, = 5.2, =5|X,2) (19)

From the definition of the forward and backward variables it follows that we can write
(i, j) intheform

O‘n(i)Pij bj (Xn+1)ﬂn+1(j) _ an (I)P” bj (Xn+1)ﬁn+1(j)
PX|2) 33 ()R, (X )

i=1 j=1

&0 j)=

(20)

where the numerator issimply P(Z, =s,,Z,,,, = S X|/1) and the division by P(X|}t) gives
the desired probability measure. We also need to define y,(i) asthe probability of being in
state s at time n, given the observation sequence and the model. It follows that

%®=i;¢n (21)

If wesum y,(i) over thetimeindex up to time T —1 we get aquantity, which can be
interpreted as the expected number of transitions made from state s . Similarly, summation of
&.(i,j) uptotime T —1 can beinterpreted as the expected number of transitions from state

5 todtate s; . We can also sum 7.(i) over thetime index up to time T , which can be



interpreted as the expected number of timesin state s . Using this, we can get amethod for
reestimation of the parametersin an HMM. The reestimation formulas can be found as

7, = expected frequency (number of times) in state's; at time (t =1) = (i) (22)
T-1 -
—  expected number of transitionsfromstate s; to state's; nZ:;t S (' ' J) 2
i = expected number of transitionsfrom state s, - Ti 0
Vn
n=1

b (k) expected number of timesin state's; and observing symbol v,
j =

expected number of timesin states;
T

Zyn(j)' I(Xn:vk)

= et . (24)

i%(j)

The reestimation procedure now runs as follows. We define the current model as

A= (P, B, 7[) , and use that to compute the right-hand side of the above equations, whichis
put equal to the left-hand side. The left-hand sides are the parametersin the model and this
can be used to further improve the model by repesting the procedure until alimiting point is
reached.

An Extension of the standard HMMs

There are naturaly many extensions to the simple scalar, discrete case, which has been
introduced here. One of these interesting extensions of the standard HMMs presented here
would be to model state duration, i.e. that the sequence stays in a state for a non-zero amount
of time. For the standard HMM s, it can be shown that the inherent duration probability
density p;(d) associated with state s , i.e. the probability of d consecutive observationsin

state s; isof the form:
p(d)=P(1-PR), (25)

where P, isthe self-transition coefficient for state s, . For most applications, this exponential
state duration density is inappropriate. Instead, it is preferable to explicitly model duration
density in some analytical form. This means that the HMM would run as follows. First an
initial state s ischosen according to some distribution 7; , and then aduration d, is chosen
according to the state duration density p, (d,) . Observations for the observing times
t=0,....d, arechosen according to thejoint density b, (X, X;,..., Xy ). Finally, the next
state is chosen according to the state transition probabilities P, ,
determine the state duration to be exactly d, . The procedure is then repeated for the second
state and so forth. It should be noted that for the special case where p, (d) = P?*(1-P,), the

situation is equivalent to the standard HMM. The formulation with state duration density
cannot be directly applied to the solution of the three problems described above, but assuming
that entire duration intervals are included in the observation sequenceit is possible to find
similar solutions to the problems.

where B, =0 since we have



It should, however, be noted that there a number of drawbacks with the incorporation of
duration densities. Oneis the increase of computational load. Another noteworthy problemis
that, in general, alarger training data set is required, since fewer state transitions are made
with this model compared to the standard HMM.

Implementation issues for HMMs

There are a number of detailsto pay attention to when implementing the HMMs. Examples of
these are scaling issues, initial parameter estimates, and insufficient training data. The issues
are sketched and some ideas about solutions are given here.

Scaling

In order to see why scaling is of importance when implementing the reestimation procedure,
consider the definition of the forward variable «,, (i) . It can be seen in the definition that

a, (i) consists of the sum of alarge number of terms, each of the form

n-1 n
[1P.z. T TPz (%2,) (26)
s=0 s=0

where Z, = s, . Since each of the factors in the product generally is significantly lessthan 1 it
can be seen that as n startsto get big eachtermin ¢, (i) startsto head exponentially to zero.

This meansthat after a sufficiently long time any computer will run into problems with
precision range. For thisreason a scaling procedure is necessary. The basic procedure, which
isused, isto multiply «, (i) with ascaling coefficient independent of i , with the goal of

keeping the scaled «, (i) within the dynamic range for each value of ni.e. 0<n<T .The
suggested scaling in Rabiner (1989) isto multiply «, (i) with afactor

G ot 27)

” gam)

The scaled coefficients are thus found as
&n(i)zcnan(i) (28)

A similar scaling is done for the backward variables £, (i) using the same scaling factor, i.e.

Bali)=c,,(i) (29)

It can then be shown that when calculating 5”- due to cancellations we get the same results

when using &, (i) and [S’n (i) instead of o, (i) and g, (i) respectively. The only really
important change in the solutions of the problems listed above comes in the calculation of
P(X | 4), since one cannot simply sum up the ¢ (i) termssince they are scaled already.
However, it turns out that it is still possible to calculate logarithm of P(X | 1) . In the Viterbi
algorithm it turns out that no scaling is necessary if one uses logarithms in the four steps of
the algorithm. This means that one will arrive at Iog(P* ) rather than P”, but with less
computing and no numerical errors.



Initial parameter estimations

In principal there are no straightforward answer on how to choose the initial estimates of the
HMM parameters. It appears as the distribution of the initia distribution 7 and the transition
matrix P israther insensitive. (For instance, uniform initial estimates can be used.) However
for the parametersin B, theinitial estimates are crucial, especialy in the continuous case, i.e.
when the observation symbols come from a continuous distribution. There are a number of
suggestions on how to obtain good initia estimates, e.g. manual segmentation of the
observation sequence into states with averaging of observations within states, and maximum
likelihood segmentation of observations with averaging.

Insufficient training data

An obvious problem with the training of HMM parameters, is that the observation sequenceis
finite. This means that there is often insufficient numbers of occurrences of the different
model eventsto give good parameter estimates. A natural way of solving this problemisto
gather more data, but this often impossible in practical situations and therefore it is necessary
to find atechnique, which deals with the data at hand. One possible solution is simply to
reduce the size of the model, e.g. the number of states, number of symbols per state, etc.
However, in many practical situations the nature of the model is given by a physical situation
and thus reduction of the model is not possible. A third possibility isto interpolate one set of
parameter estimates with another set of parameter estimates from a model for which an
adequate amount of training data exists. The ideaisto use the training data to design two
models, one corresponding to the desired one, and one which is smaller, but for which the
training datais sufficient. The smaller model is created by tieing one or more sets of
parameters of theinitial model together. The final result is obtained by interpolation between
the two models. A key issue isto understand how much weight should be put on the initial
model and how much on the reduced model. There are however some results on this topic,
which can provide an optimal weight.

Applications and Examples

Three examples of very different applications will be given here. The first is the perhaps most
classicinthefield i.e. speech recognition. The second comes from the biological area, and
refersto protein modelling. Finally, a more theoretical result useful in fatigue analysis will be
given.

Speech recognition

Arguably, one of the most noteworthy applications of HMMs s speech recognition. The
example given here is due to Rabiner (1989) and deal s with isolated word recognition.
Assumethereareintotal V words, which are to be recognised and that there are K
occurrences of each spoken word. Each occurrence of the word constitutes an observation.
The observations of words are typically represented in terms of spectra and/or time signals. In
order to do the isolated word recognition, there are two tasks that are necessary to perform:

1. Firstitisnecessary to build HMMsfor each word in the vocabulary, i.e. for each word
v, we need to estimate the model parameters 4, = (P B ﬂv), which optimise the

v =y

likelihood of the training set observation vectors for the word.

2. For each unknown word the observation sequence is analysed and cal cul ations of
model likelihoods for al possible models, i.e. al possible words, are performed.
Finally, the model gives the recognised word as the one with the highest model
likelihood.



One of the possible ways to perform the analysis and obtain the observation vector X isto
conduct a spectral analysis. A common technique is then to use linear predictive coding
(LPC) to extract observation vectors.

Protein modelling

The modelling of proteinsis not as unrelated to the case with speech recognition asiit first
appears. A more general speech recognition when a sequence of words or phonemesis
considered can be seen as a pattern recognition task. Thisis also true for the protein

modelling case, where the task is to model a sequence of amino acids, which build up
proteins. In fact the words correspond to the 20 amino acids from which protein molecules are
constructed. The example of a hidden Markov model for proteins considered hereis due to
Krogh et a. (1994).

The structural intuition of a protein can be seen in the following way: @) A sequence of
positions, each with its on distribution over the amino acids; b) the possibility of either
skipping a position or inserting extra amino acids between consecutive positions; and c)
allowing for the possibility that continuing an insertion or deletion is more likely than starting
one. Krogh et a. (1994) construct their hidden Markov model to catch the properties listed
above. The main line of the HMM contains a sequence of M states, which we will call match
states, corresponding to the positionsin a protein or columnsin a multiple alignment. Each of
the M states can generate aletter x from the 20-letter amino acid alphabet according to the
distribution P(X =x|Z=m,), k=1...,M , i.e. each generated |etter correspond to a specific
amino acid. The notation P(X = x|Z =m,) means that each of the match states m, ,

1<k <M , havedistinct distributions. In order to model the possibility of skipping the
position there isa deletion state d, for each state m, , which is smply adummy state.
Finally, in order to model the possibility of inserting extraamino acids there are atotal of

M +1 insert states to either side of the match states, which generate letters from the amino
acid alphabet in exactly the same way as the match state, but use the probability distributions
P(X=x|Z=i.), k=01,...,M . For simplicity purposes adummy state has been added in the
beginning and the end, denoted m, and m,, ,,, which do not produce any amino acids. The
situation can be seen below for the casewhen M =4.
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Figure. The protein model for M = 4. From Krogh et a. (1994).

Notice that the model allows for several extraamino acids since there is a positive self-
transition probability for the insert states. From each state, there are three possible transitions.
Trangitionsinto match states or deletion states always move forward in the model whereas
transitions into insert states do not. The transition probability from a state q to astate r

P(Z =r|Z=q) isheredenoted T(r | g) , which corresponds to the more familiar notation

Pq-



A sequence from the model is generated in the following way: Starting in the dummy state
m, , choose atransitionto m;, d,, or i, randomly according to the transition probabilities
T(m |my),T(d, |my) and T(i, | my) . Whenever we are in an insertion or matching state a
letter x corresponding to an amino acid is generated. For instance if we arein state m, an
amino acid is generated according to the probability distribution P(X =x|Z =m,) . If on the
other hand we are in a deletion state no amino acid is generated. The next state is chosen
according to the possible transitions in the current state. The procedure continues until the
sequence reaches the state m, , which is the dummy end state, where no amino acid is
generated. The generated sequence X, X,,..., X, 1SNow a sequence of |etters corresponding to
the different amino acids, where the sequence has been found following a path of states

Jos Gy Oy » Onsy » Where g, = my and gy, = My, - Since the deletion states does not
create any amino acids we can concludethat N (the number of statesin a path) islarger or
equal to L (thelength of the sequence). If g, isamatch or insertion state, we define I(i) to
be the index in the sequence x,, X,,..., X, Of theamino acid produced in state ¢, . The
probability of the event that the path q,,q;,...,dy ., 1Staken and the sequence X, X, ,..., X,
isgenerated is

N
P(le---vXL’qo’---’QN+1|mOde|):T(mN+1|QN)' T(Qi|qi—1)P(Xl(i)|Qi) (30)
a1

where P(xl(i)|qi )z 1if g; isadeletion state. The probability of any sequence x;, X,,..., X, Of
amino acids can be found as the sum over all possible paths that could produce that sequence

P(xl,...,xL|modeI)= z P(xl,...,xL,qo,...,qN+1|modeI) (31)

pathsdg,....On 1

A way of estimating the parametersisin the model is the following: For a given set of
training sequences s(1),...,s(n) , one can see how well a model fits them by calculating the
probability it generates them. Thisis simply a product of terms of the form given by the sum
above, wherewefor each j=1...,n, let X, X,,..., X, =S(]). Theresult isthelikelihood

function and maximising with respect to the parameters in the model |eads to the best model
according to the maximium likelihood method.

Fatigue analysis

One of the mgjor reasons for structural failure in the automotive industry is fatigue. Over the
years various methods of extracting fatigue relevant data from random load-time histories
have been developed. One way of dealing with this problem isto form equivalent load cycles
and then use damage accumulation methods, such as the Palmgren-Miner rule. The method
that has shown best resultsis the rainflow cycle counting method. It has become the most
commonly used counting method in engineering. The way of constructing the cyclesis based
on counting hysteresis cycles for the load in the stress-strain plane. A definition suitable for
mathematical analysisisthe following, first presented by Rychlik (1987):

Definition:
From the k:th local maximum (value M, ) onelooks at the lowest valuesin
forward and backward directions between M, and the nearest point at which
the load exceeds M, . The larger (less negative) of those two values, denoted

rfc

by m®, isthe rainflow minimum paired with M, , i.e. m{ isthe least drop



before reaching the value M, again on either side. Thusthe k:th rainflow pair

rfc

rfc

|s(mk M )andtheramflow rangeis H”C M, —

This definition is probably best understood from afigure:

Figure. The definition of the rainflow cycle. The rainflow cycleis denoted H EC .

A vehicleisusualy driven in very different environment, for instance it is possible to distinct
between driving in curves, slopes, flat straights or performing manuoevers. These cases will
create very different sort of loads, not the least because of the differencesin speed. One
possible way of modelling these loads is by hidden Markov chains, where the states of the
underlying Markov chain corresponds to the particular driving mode. The observed load at
time n isdenoted X, . For amore complete treatment of this see Johannesson (1999). We

can regard the observed load signal {X N }::0 as arandom process with the state space

{vl,...,v,\,I } , such that a successive value is given by a Markov transition according to one of
r possible transition matrices, corresponding to the different driving modes. Which transition
matrix to choose is determined by the regime process {Z,, |7, with possible values 1,...,r

The regime process is assumed to be a Markov chain with the transition matrix P = (P )N,_l
having the property that z,, = {Xg,... X}, Z;'\y = 1Z1112Z,1, 00} @re conditionally
independent given Z = {Z,,..., Z,,}. In particular the regime transitions take place

Z, .= i,;(;_l)

=P(z, = j|Z,, =i)= P, . The evolution of the process {X , |, is described by the transition
probabilities g = (X =V, ‘X L =VLZo =200 00 2 1) P(X, =V,[X,y =V,,Z, = 2),

independently of the previous X, valuesi.e. P( n

giving the transition matrices Q@ (q,(J )). i z=1...,r . Wenow have a specia case of the

standard HMMs where we know that the observation process {X , } isaMarkov chain
conditioning on the hidden Markov chain {Z,}. In this caseit is common to call the process
{X,} aswitching Markov chain (with Markov regime), and call the process {Z,,} the regime
process. {X, | itself does not satisfy the Markov property, however it can be shown that the

joint process {(X,,Z,., )}, isaMarkov chain, that is

P((X Zn+1) ( n’Sn+ll(xn—1’Z )_(Vn 115 )7 7(X07Z ) (VO,Sl))=
= P((Xn ; Zn+l) = (Vn ; Sn+1l(xn—l7 Zn)= (Vn—l’ Sh )) (32

Thejoint process has state space {(v; , z)};'; ,., containing N -1 states and transition matrix



Q= (Q i )i,\,lj:l’ whereQ;; = (Qij (z W));Wzl and Q; (zw)= qi(jZ) Paw (33

The r xr matrix Q;; describesatransition from i to j for {X,} wherethe regime process
{,,} may switch state. For fixed j we can define the column vector g

4=0n), Gn =0 Amz - Gu) >

N
O = P(Xn >Vj|xn—l :Vm’Zk = Z): qufwl (34)

I=j+1

containing the probabilitiesthat (X, ;,Z,)=(v,,,z) arefollowed by avalue X, >v,.Let n
be the stationary distribution of the joint Markov chain, with transition matrix Q (defined as

above), then w=(m; )", n, = (7, 7, .. z,).Findlylet i=(x, mn, .. = ).Now
define the following submatricesof Q, A =(Q,, ), i<m<j,i<I<jad C=(Q,),
1<m<i-1,i<l<jfori=2..,n-1and j=i,.,n-1. Thematrix C containsthe

probabilities that the process jumps from the interval [li —1] to [i, j] and A that the process
stayswithin theinterval [i, j]. (For j =i -1 wedefine A=0and C=0.)
Furthermore,define the column vectors d = (g, g, .. q.,) ,e= (qi G - G )T :

where d describes adirect transition from 1,...,i —1 to avalue above j and e atransition
fromi,...,j toabove j.With this notation Johannesson (1999) showed the following
theorem:

Theorem:

For fixedvaluesi and j (i=2,...,n, j=i-1..,n-1), therainflow counting intensity for

the sequence {X, } isgiven by

4, §) = E(d ; ZCAkej —w{d+c(-A)te), (35)
k=0
wheretherow vectoris @ =(z, 7, .. z,),thecolumnvectorsd and e areas defined

above as well as the sub-matrices A and C.

The rainflow counting intensity can for instance be used to calcul ate the expected
cumulative fatigue damage caused by aload sequence.

Conclusions

A short summary of the some of the theory behind the hidden Markov models have been
given. For understanding purposes, the intention has been to show relatively simple parts of
the theory. However, the examples of results and very different kinds of applications showed
here still give ahint of the usefulness of the hidden Markov models.
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