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Abstract

The order estimation of multiple steps Markov chains is an open area of research.
Different order estimators exhibit different properties. By simulation the new order es-
timator, the Generalized Maximal Fluctuation Criteria, introduced by Peres and Shields
clearly out perform the other estimators in accuracy i.e. for 27 sampled from a k-Markov
chain, P(kgmrc(z}) = k) is generally larger than P(k(z?) = k)) for all other suggested
order estimators.

1 Introduction

Multiple step Markov chains are a widely used tool in the analysis of sequenced data. This
essay will focus on the problem ”how much knowledge from the past enhances your ability
to predict the next outcome?”. This is called the order estimation problem and is a frequent
topic of research.

The historically most common estimators in the literature are the AIC [Akaike, 1974] and
BIC [Schwartz, 1978] but just recently Peres and Shields suggested a new order estimators,
the Maximal fluctuation estimator, [Peres and Shields, 2006]. I will also include, what I
suppose is, the most basic idea of estimating the order namely home made criteria based on
the generalized likelihood ratio tests.

2 Multiple steps Markov chains

A k-Markov chain on a finite state space, S, is a discrete stochastic process on S that is
only dependent on the previous k steps. Let X, be a k-Markov chain on S then this is in
mathematical notation:

P(Xn = 3n|ank71 = Sp—_k—1, ---,Xn—l = Sn—l) = P(Xn = Sn|Fn_1) Vn > k.

Where s; € S and F,, denotes the filtration of {Xj : £ > 1} up till n.

To abbreviate and ease the comprehension let us define the following notation: let a7,
denote the sequence ap,, @mi1, ..., an of {a; : m < i < n}. Let the state space, S, be called
the alphabet, elements, s, in S be called letters and compositions of letters v = s} be called
words (of length [). Let also for some word, v € S, N(v|z}) = |{i € [1,n — 1] : zi! = v}|
denote the number occurrences of v in z7.

Actually the class of k-Markov chains is no generalization of the ordinary Markov chains
it is rather a subclass of Markov chains. To see this let {Y;, : n > 1} be a stochastic process



on S* such that Y,, = X 1 _1- Then

P(Y, =580 (Va1 =5"", |)=P(X, =s,| X"} |

-1
1 Sp_k-1) =
P(X, = sp|Fu_1) = P(Y,

Sp—k|Fn-1)

and {Y,, : n > 1} is a Markov Chain on the state space S.

Let now Mj be the vector space of all k-Markov processes with finite state space S,
My denote the space of i.i.d. processes (on S) and Py, (z7) be the kth order maximum
likelihood i.e. the largest probability given to the outcome x7 by a process in Mj.

Now we can start talk about the order of a process. The order of a process, {X, : n >
1} € U2 My, is the least k such that for some [ > 0 then {X,, : n > I} € M.

3 Order estimators

A order estimator is a function of the type M, : S™ — N for n > 1 that in theory should
give M} (z") = k for all realizations z7 of {X; : 7 € [1,n]} € M. from now and in the sequel
z (lower-case) denotes a sampled version of the stochastic variable X (upper-case). However
this convergence result is hardly achievable for any estimator and has to be lightened to have
a practical use. No well defined requirement for the estimators exist for finite data sets.
Instead, a great effort of the research community has been invested in the area of limits of
large data sets. An order estimator M} is called consistent if
Jim M (z7) =k a.s.

or equivalent lim,_,., P(M}(27) = k) = 1. That an order estimator is consistent does not
however give any information about the convergence rate and for practical use one would be
more interested in a measure of the accuracy of the estimator on finite data sets. That is
what one really wants is P(M; (z7) = k) as a function of n for each estimator M’ and order
k (and possibly size of alphabet |S|, transition probabilities P(X, = z,|X""}_,) etc.), but
general ideas of how to find that lies in the future development of the order estimators. So
the question of which order estimator is the best is still open and different purposes demands
different estimators.

3.1 Akaike Information Criterion (AIC)

The first still standing order estimator is the AIC order estimator introduced by Akaike
[Akaike, 1974]. AIC is based on the maximum likelihood estimator compensated with the
number of independently adjusted parameters within the model. Actually the criteria is
general and is highly applicable to other areas where the number of parameters is to be
chosen. In the case of multiple steps Markov chains this becomes for sampled data set z7:

karc(a?) = arg mkin—log Py (27) + ISk

The idea of AIC is to correct for the bias of the estimation of the entropy.
Let X, be kg-Markov with the alphabet S then n‘lPML(k) (1) is an estimate of the
entropy,
E[log(X; for optimal |S|* parameters)],



but
E|[ E[log(X; for optimal | §|¥ parameters)] — n~* log Py (2))] ] =~ —|81F/n

s0 karc is an unbiased minimal entropy estimate w.r.t. to the order of the process.
The AIC estimator is not consistent. To prove this let =7 be a sample set of X,, € My,
(ko > 0) and choose a kyqp > ko then for all & < kpyqz,

. n
nlggo Py (k) (z7) =0

SO
nll)Igo kaic (56711) € {0} U (kmawa OO]

and can not be a consistent estimate of the order of X,,.

3.2 Bayesian Information Criterion (BIC)

Schwartz introduced the BIC order estimator [Schwartz, 1978] but not until recently was the
consistency established under general conditions [Csiszar and Shields, 2000].
The BIC estimator for multiple steps Markov chains of data set z7 is

. ) - 1SIE(IS] - 1
kpic(zl) = arg min — log Py (27) + % log(n).

The complete proof of consistency for the general case is quite long but I will give you a
proof of that for a irreducible aperiodic process X, € M,

kprc(z?) ¢ [0,k) eventually a.s..

That is I show that eventually a.s. no underestimation of the order will occur. I leave the part
of long dependence structure and to complete the proof, like is done in [Csiszar and Shields, 2000]
, one should also include a part proving that kpc(z?) & (ko,n] eventually a.s..
Let X,, € My, be an irreducible aperiodic process and let () be a stationary probability
measure of X,,. Then the ergodic theorem gives that for k < kg
N(ai*|zf)

lim —1 17 — > Q(pre*"1 gk +1])  as., (1)

n—00 n—=k
b’;O_k_lesko—k—l

where the sum is taken to be Q(a’f“) if K +1 = ko. I abbreviate the sum on the right hand
side of (1) to Q*(a¥™).
Notice that
kpic ¢ [0,ky) eventually a.s.,

is equivalent to the statement: for all £ < k¢ there is a positive constant, C, such that
—log Pyrx)(27) > —log Pyr(k,)(27) + Cn, eventually a.s. (2)

Remember that Py, x)(z7) is the maximal likelihood of 2 sampled from a process of My

i.e.
n

log Py, (1) = log P(XT = of) [[ P(Xi = =| X[ =2l 7).
k1



Set P(X¥ = z¥) = 1 then

log Pyr(x) (z7) ZIOgP X = x| X!~ —m; ,19)
k+1
> N(@h T a7) log(P(Xks1 = ap| XF = af)) =
k+1€x1
Nla k+1
Z N(a +1|w1 log( (k |$1))‘
N(atla7 )

Here the third equality comes from that the sum over the logarithmed transition probabilities
are maximized when fil
N(a7™ |z7)
P(Xp41 = app1|XF = af) = ——F——42
(Xkt1 = ap41| X7 = a7) N(@ 0 )

The ergodic theorem (see [Norris, 1997]) gives

kt1 Q*(af™)
lim ——IOgPML(k)(iUl) - Z Q*(a +)108

a.s.
Q k 7
" afttesk+t (at)

and hence the limit is the conditional entropy, Hy, of X,, € M}, given X¥. It is well known
that Hj is strictly greater than Hy, if k& < ko (see [Shields, 1996]). So there exist a C > 0
such that

lim ——IOgPML(k)(371) > hm __IOgPML(ko)(xl) +C as

n—oo

and multiplying by n on both sides gives what was asked for.

3.3 Maximal Fluctuation Criterion (MFC) and Generalized Maximal Fluc-
tuation Criterion (GMFC)

In contrast to the other here described order estimators the Maximal Fluctuation Criterion is
designed for multiple steps Markov chains. Introduce the notation 7, (v) = v}_,,, for some
m € [1,1] to be the m-suffix of the word v € S. Then the Peres-Shields Fluctuation function
of sampled data set z7 is defined as

N (7 (v)alzT)
N (7, (v)]aT)

If the true order is k or less, one expects this fluctuation to be small, otherwise large. The
Maximal Fluctuation estimator is defined as

A(v) = max| N (vala?) - N (v]a?)].

fevrc(z7) = min{k > 0 : max Ag(v) < n3/*}
k<|v|<loglog(n)

(see [Peres and Shields, 2006]).

Actually the upper threshold on the length of the word, loglog(n), can be relaxed to a
function that grows slower to infinity than log(n).

I will give you a proof of that for a process X,, in My,

kprc(z?) ¢ [0,ko) eventually a.s..



Let
N (g (al")|27)

5m:Nmn_Nm—1n—1 ,
k(al") (aT"|z7) (a7" [T )N(Tk(a{n—lﬂm?—l)

and note that Ag = maxycm<iogiog(n) MaXyk ¢ gk Sk(a¥) of data set z7. Suppose X, € My,
and for k < kg choose a € S and v € S*0 such that

P(Xigs1 = al X80 = 0) > P(Xgg1 = alr(XF) = 72(v)).
By the ergodic theorem (see again [Norris, 1997]) there exist € > 0 such that,

N(valz) _ N(mi(va)lz?)
N(vz7™")  N(mp(v)|z7~")

N(|z? ') > en and > ¢ eventually a.s.

This implies that 6;(va) > €2n eventually a.s. and since definitely the inequality Ay > 0;(va)
holds the conclusion that I%BIC > ko eventually a.s. is evident.

Although consistency of kure is well established it is harder to use this method in appli-
cations. The threshold n3/* is not sharp in practical use and although under estimation of
the order eventually a.s. never happens it will ”almost always” happen for finite applications.
Where ”almost always” is defined as all the applications I have so far come across. The max-
imal fluctuation method can however be modified to be highly functional for applications.
Dalvei et al. suggested the (closely related) estimator

> Maxg_1<jy|< f(n) Dk-1(v)
kGMFC z?) = arg max
(=1) ko maXgc iy <f(n) Dk (V)

(see [Dalevi et al., 2006]), where f(n) is a function growing to infinity slower than log(n).

3.4 Generalized Likelihood Ratio Criterion (GLRC)

The likelihood ratio test (LRT) is a statistical test of the goodness-of-fit between two models
[Rice, 1995]. A relatively simpler model is compared to a more complex model to see if the
data set fits the complex model significantly better. The test is based on the likelihood
ratio or rather the log likelihood difference between the two models. To formulate a criterion
founded by the LRT we let the estimated order of a process be the largest k£ such that the
improvement is significant.

Let & = log PML(k—I—I)(w?) — log PML(k) (.’I}rf) and if k£ < kg

D
28k = Xap(k)2-

Where df (k) = |S|*(|S| — 1) is the number of additional parameters. Now I define the
Generalized Likelihood Ratio Criterion of data set z7 as:

kqrre(z?) = m]?,x{2§l > ng(l)_l(l —a),Vl < k}.

Clearly, since there always is a probability, a > 0, for each [ < k for the estimator to
stop short, the kgLrc can not be consistent.



4 Applications

To get some information of how good the order estimators perform in applications, I simulated
a process in M, and estimated to what extent the order estimators replicated the true order
k. That is I simulated XT" € M}, with alphabet S = {0,1} m times and for each simulation
I estimated the order of the process with the four depict estimators. Then I estimated the
accuracy, P(M;(z7) = k) of estimator M, by

POM (a0 = k) = L REEE) = koi = 1m}]

m

The transition probabilities for X]* € M}, are the maximum likelihood estimated parame-
ters from a data set consisting of precipitation data (X; = 1 precipitation on day 7 and X; = 0
no precipitation on day ).

This, the process described in the first paragraph, was repeated for different n and k:s
to gain, at least some, information of which estimator that was most efficient i.e. ”which
estimator that demands least number of data points to achieve the highest accuracy of correct
order estimation”. Though the simulations were quite computer heavy I only used m = 100.
The variability may been very high and is to be analyzed in the conclusions.

Estimated accuracy | k = 2 k=3 k=4
P(karc = k) 0.68 0.88 0.99
P(kgic = k) 0.85 0.89 0.92
P(kavrc = k) 0.89 0.92 0.94
P(kgLrc = k) 0.80 0.88 0.89

Table 1: Estimated accuracy of order estimators for data set £3°°° simulated from X7 € Mj.

Estimated accuracy | n = 1000 n = 5000 n = 10000
P(karc = 3) 0.93 0.93 0.93
P(kpic = 3) 0.89 0.92 0.94
P(kamrc = 3) 0.94 0.96 0.92
P(karrc = 3) 0.86 0.88 0.89

Table 2: Estimated accuracy of order estimators for data set 27 simulated from X,, € Mj3.

5 Summary

Clearly, the Generalized Maximal Fluctuation Criterion perform best. It scores the best
accuracy for moderate (n = 1000, n = 5000) sizes of data sets when considering a 3-Markov
process and also for moderate (k = 2, kK = 3) length of the Markov chain.

My home made order estimator is a poor straggler and achieves the lowest accuracy for
all cases but n = 1000, m = 2 where the AIC estimator only has a accuracy of %:s and hardly
is applicable.

Columns 2 of both tables should represent same accuracies but clearly they do not. This
is due to only using m = 100 realizations of XT* to estimate the accuracy. By an application



of the Central Limit Theorem (CLT) this variations can be explained. Let & = ll%(w’f(i)):k

and é = % v, &, then & is 1.i.d. and £ is (obviously) a sum of i.i.d. variables. Expected
value,

Bl = Blljup)_i] = Pk(a}) = B),

and second moment,

BIER) = El(Lun)—r)”) = Elliar ] = PR () = B)

gives
VAR(&) = E§]] - Bl&]” = P(k(a7(i)) = k)(1 = P(k(a7(5)) = k)).
By using CLT
£ - Bl¢]
VVAR()/m

With the assumption (from tables) that P(k(z?) = k) ~ 0.9 a 90% confidence interval on
the accuracy, P(k(z?) = k), is found by

Qo

N(0,1)

£+ Zogy\/ VAR(E) /m ~ € +0.05,

which explains the different results displayed in column 2 of the tables.
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