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1 Introduction

A Markov random field is a name given to a natural generalization of the
well known concept of a Markov chain. It arrises by looking at the chain itself
as a very simple graph, and ignoring the directionality implied by “time”.
A Markov chain can then be seen as a chain graph of stochastic variables,
where each variable has the property that it is independent of all the others
(the future and past) given its two neighbors.

With this view of a Markov chain in mind, a Markov random field is the same
thing, only that rather than a chain graph, we allow any graph structure to
define the relationship between the variables. So we define a set of stochastic
variables, such that each is independent of all the others given its neighbors
in a graph.

Markov random fields can be defined both for discrete and more complicated
valued random variables. They can also be defined for continuous index sets,
in which case more complicated neighboring relationships take the place of
the graph. In what follows, however, we will look only at the most appro-
achable cases with discrete index sets, and random variables with finite state
spaces (for the most part, the state space will simply be {0, 1}). For a more
general treatment see for instance [Rozanov].

2 Definitions

2.1 Markov Random Fields

Let X1, ...Xn be random variables taking values in some finite set S, and let
G = (N, E) be a finite graph such that N = {1, ..., n}, whose elements will
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sometime be called sites. For a set A ⊂ N let ∂A define its neighbor (or
boundary) set: all elements in N\A that have a neighbor in A. For i ∈ N let
∂i = ∂{i}.
The random variables are said to define a Markov random field if, for any
vector x ∈ SN :

Pr(Xi = xi |Xj = xj, j ∈ N\i) = Pr(Xi = xi |Xj = xj, j ∈ ∂i) (1)

2.2 Potentials

A potential is a function indexed by subsets of N on the space SN . We will
write potentials as VA(ω) for A ⊂ N , ω ∈ SN .

Given a full set of potentials, the energy of a configuration ω will be defined
as:

U(ω) = −
∑
A⊂N

VA(ω).

(Somewhat confusingly, this is called a potential in some texts (eg [Preston]),
in which case VA is called an “interaction potential”. I will not use those terms
here.)

Using the energy, we can define a probability measure, P , from a set of
potentials by:

P (ω) =
exp(−U(ω))

Z

Where Z is the normalizer given by:

Z =
∑

ω∈SN

exp(−U(ω)).

P is called a Gibbs measure (or Gibbs state).

The parallel between these random fields defined by potentials and Markov
random fields, comes when one limits the type of potential to what is called
a nearest neighbor potential. The parallel to the condition of (1) above that
defines this property is that:

VA(ω) = 0 (2)

whenever A is not a clique in the graph G. That is to say, VA is identically
zero when the subgraph induced by the A is not complete. As we shall see
below, there is an equivalence between probability measures defined by such
potentials and the laws of Markov random fields.
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The concept of a canonical potential is important in this respect. Because of
the normalization, there is not a unique energy or set of potentials associated
with a probability measure, but by defining things correctly, we can define
special potentials that are uniquely associated with a particular measure.
Given some preferred element in S, denoted by here by 0, we define the
canonical energy of a probability measure P as:

Ũ(ω) = −( log P (ω)− log(P (0̄)) )

where 0̄ is the zero vector over N . The canonical potential of the measure is
then defined by:

ṼA(ω) =
∑
B⊂A

−1|A−B|Ũ(ωB) (3)

where ωB is the configuration which takes the same values as ω on B, but
sets all values to 0 elsewhere. We will show that the set of potentials defined
by (3) really do correspond the probability measure P , and that they are
nearest neighbor potentials.

3 Theory

Lemma 3.1 If VA for A ⊂ N are nearest neighbors potentials, then:

P (ω) =
exp(−U(ω))

Z

with U and Z as above, defines the law of a Markov random field.

Proof: By definition it follows that:

P (ω(i) |ω(j), j ∈ N\{i}) =
P (ω)∑

η(j)=ω(j),j 6=i P (η)

=
exp

(∑
A∈N VA(ω)

)
∑

η(j)=ω(j),j 6=i exp
(∑

A∈N VA(η)
)

Now because VA is a nearest neighbor potential, it is zero except when A is
a clique. Any clique that does not contain i can be factored out identically
in the nominator and divisor, and thus the last expression depends only the
value of ω at i and its neighbors.
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It follows that P (ω(i)|ω(j), j ∈ N\{i}) = P (η(i)|η(j), j ∈ N\{i}) if ω and
η agree on i and ∂i. It follows from a straightforward computation of basic
probability that:

P (ω(i)|ω(j), j ∈ N\{i}) = P (ω(i)|ω(j), j ∈ ∂i)

and so P is the law of a Markov Random Field.

2

If we instead start from a with the random field and its law P , we can find
a potential:

Lemma 3.2 For every measure P that is the law of a Markov random field
on SN there is a canonical potential that has P as its Gibbs measure.

Proof: To prove this, all we need to do is to show that the canonical potential
defined by (3) actually is a potential for P . That is to prove:

Ũ(ω) =
∑
A⊂N

ṼA(ω)

=
∑
A⊂N

∑
B⊂A

−1|A−B|Ũ(ωB).

But reversing the order of summation gives that the latter expression is:

=
∑
B⊂N

ŨB(ω)
∑
A⊃B

(−1)|A−B|

=
∑
B⊂N

ŨB(ω)

|N−B]∑
j=0

(|N −B|
j

)
(−1)j

= Ũ(ωN) = Ũ(ω)

where last line follows since the inner sum on the line before is 0 whenever
|N −B| > 0. This shows that:

P (ω) =
exp

(∑
A∈N ṼA(ω)

)

Z

as expected.
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So given any probability measure P , then we have a corresponding set of
potentials. To set up the full correspondence between Markov random fields
and potentials, we need then only prove that:

Lemma 3.3 If P is the law of a Markov Random Field (Xi)i∈N , then cor-
responding canonical potential ṼA is a nearest neighbor potential.

Proof: We need to show that for any A ⊂ N such that A is not a clique in
the graph, ṼA(ω) = 0 for all ω.

Consider such a subset A, and take i, j ∈ N as two sites that are not neighbors
(ie x /∈ ∂y). For brevity set B = A\{i, j}. Then:

VA(ω) =
∑
C⊂A

(−1)|A−C|Ũ(ωC)

=
∑
D⊂B

(
(−1)|A−D|+2Ũ(ωD∪{i,j}) + (−1)|A−D|+1Ũ(ωD∪{i})

+(−1)|A−D|+1Ũ(ωD∪{j}) + (−1)|A−D|Ũ(ωD)
)

=
∑
D⊂B

(−1)|A−D|
(
Ũ(ωD∪{i,j})− Ũ(ωD∪{i})− Ũ(ωD∪{j}) + Ũ(ωD)

)
.

So the lemma holds if we can show that:
(
Ũ(ωD∪{i,j})− Ũ(ωD∪{i})− Ũ(ωD∪{j}) + Ũ(ωD)

)
= 0

for all D. This is equivalent to:

P (ωD∪{i,j})
P (ωD∪{i})

=
P (ωD∪{j})

P (ωD)

which in turn is equivalent to:

P (ωD∪{i,j})
P (ωD∪{i,j}) + P (ωD∪{i})

=
P (ωD∪{j})

P (ωD∪{j}) + P (ωD)
.

But this is conditional probability statement regarding the probability of site
j being set to 0 or ω(j) conditioned on the configuration elsewhere. Since
only the value at site i differs between the two sides, and i and j were not
neighbors, it must be true if P is the law of a Markov Random Field.
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Figur 1: The structure of a Markov chain seen as a graph. Only pairs define
cliques.

Figur 2: A more complicated graph on which a Markov random field could
be defined. Two larger cliques are boxed.

So putting the above lemma’s together yields the following theorem, origi-
nally due to J. M. Hammersley and P. Clifford. The proof presented above
mostly follows that of [Preston] which also contains a discussion of its deve-
lopment.

Theorem 3.4 For a probability measure P defined on a space SN for finite
sets S and N , where there is a graph defined as G = (N,E). Then the
following are equivalent:

• P is the law of a Markov Random Field.

• P is associated with a unique canonical potential ṼA(ω), which is a
nearest neighbor potential.

4 Example

The simplest example of a Markov random field is to return to where we
started, and look at a Markov chain in the above vocabulary. If we choose
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the simplest possible situation, that of a two state discrete time Markov
chain on {0, 1}. We will look at the chain (Xi)i=1...n, with an even initial
distribution, and the transition matrix:

(
p (1− p)

(1− p) p

)

For an outcome x1, ..., xn of X1, ..., Xn of, set nt to the number of 0-1 or 1-0
transitions, and nr the number of times the process remains in its current
state. We then have:

Pr(X1 = x1, ..., Xn = xn) =
1

2
pnt(1− p)nr

=
1

2
pn−1−nr(1− p)nr

=
1

Z
exp(

n∑
i=1

cδxi
(xi + 1))

where Z and c are constants, and δy(x) = 1 exactly when y = x. Since the
pairs i, i + 1 are the only cliques in the graph (see Figure 1), this shows that
the law of Markov chain can be written as a Gibbs measure.

The potential defined by the delta functions above is, however, not the cano-
nical potential. That can, however, be calculated directly from (3), over the
different types of cliques:

Vi,i+1(x1, xn) =
∑

B∈{2,3}
log Pr(xi = 1, i ∈ B, xj = 0, j /∈ B)

= log Pr(0̄)− log Pr(xi = 1, xj = 0, j 6= i)

− log Pr(xi+1 = 1, xj = 0, j 6= i + 1)

+ Pr(xi = 1, xi+1 = 1, xj = 0, j 6= i, i + 1)

= 2 log

(
1− p

p

)

where the last line follows by direct computation. This assumes the value 1
at both sites, otherwise the value can easily be seen to be zero: it is in fact a
(defining) property of the canonical potential it is zero whenever any site on
the index set is 0. Through similar calculations one can see that:

Vi(x1, ..., xn) = −2 log

(
1− p

p

)

for i = 2, ..., n − 1 when the site takes the value one, and V0(x1, ..., xn) =
V1(x1, ..., xn) = − log((1 − p)/p). Adding up these potentials leads to the
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Figur 3: The grid can define the graph of a Markov Random Field. Again
the only cliques are pairs of elements. In the case of S = {−1, +1} this the
famous Ising model for magnetic spins.

energy and the Gibbs measure in the standard fashion. This can be seen to
be same measure as above through calculation and noting that the potentials
for two site cliques count the number of times we remain in state 1, and the
potentials for one site clique count the number of times we are in state 1,
whence their difference counts the number of transitions.
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