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Preface

This paper is a report for the graduate course in Markov chains held at
Chalmers University of Technology during the autumn of 2004 by professor
Olle Häggström. The idea of this report is for the student (i.e. the author)
to take a peak at the field of Markov Chain Monte Carlo (MCMC) and sum-
marise some concepts. The reader is assumed to have basic knowledge about
Markov chain theory in general, even though some concepts are summarised
in the introduction.

During the phase of literature research for the report, some ideas of ex-
tension of the standard use of MCMC arose. Curiosity made the author (i.e.
me) pursue the ideas a little further and include it in the report. Since the
available time for writing the report was limited, too little litterature research
has been performed which makes it highly possible that this extension is well
known or even standard. However, looking at the problem on my own proved
to get some brain exercise and deepened my understanding of the foundation
of MCMC, which I guess course work is for...

The background material for this paper is limited to [Gilks] and [Häggström]
and the report is therefore heavily influenced by those pieces of work.

1 Brief introduction to Markov Chains

In this paper, the kind of Markov Chains focused on can be described by:
a sequence of random variables (indexed by time) with the property that
the future of the sequence depends only on the current state (=value) of the
sequence. The duration of each visit of a state must be strictly positive.
Such a Markov chain can be described by it’s state space, a transition kernel
on the state space and a (possibly state dependent) jump frequency. When
the state space is discrete, the transition kernel becomes a transition matrix,
where for each pair of current and candidate next state the probability is
given of jumping to the candidate next state given the current state.

An important result for the use of Markov chains in Monte Carlo simu-
lations is that: for a Markov chain, {Xt}, with certain technical properties1,
the distribution of the taken value at time t given the state at time 0, πXt|X0 ,
converges to an unique distribution solely determined by the Markov chain

1for example all finite state space Markov chains that are irreducible and aperiodic
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itself and not depending on the starting value of the chain:

lim
t→∞

πXt|X0 → πX .

This distribution, πX , is then known as the stationary distribution of the
Markov chain.

2 Markov Chain Monte Carlo foundations

In the original type of Monte Carlo simulations, a distribution π is approxi-
mated by the empirical distribution π̂ of a sample of independent observations
, X1, . . . , Xn, from π, i.e.:

π̂(A) =
1

n

n∑
i=1

IA(xi) .

Perhaps the most common application is estimation of the expected value
of π:

E(π) =

∫
xdπ(x)=̂

∫
xdπ̂(x) =

1

n

n∑
i=1

xi = x̄ ,

where =̂ denotes ”estimated by”.
The application of Markov chains to Monte Carlo estimation comes when

a random sample from π is hard to create directly. One of the most signifi-
cant applications of Markov chain Monte Carlo (MCMC) is in the estimation
of the posterior distribution of the parameters in a Bayesian model, i.e. the
distribution of the parameters, Θ, conditional on the observed data, D. Ac-
cording to Bayes formula we have:

πΘ|D =
πD|ΘπΘ

πD

=
πD|ΘπΘ∫

πD|Θ(d|θ)πΘ(θ)dθ
.

However, the integral
∫

πD|Θ(d|θ)πΘ(θ)dθ might be inconvenient to compute,
even numerically. Nevertheless, for any two values, θ1 and θ2, for the param-
eters we can calculate the ratio:

πΘ|D(θ1|d)

πΘ|D(θ2|d)
=

πD|Θ(d|θ1)πΘ(θ1)

πD|Θ(d|θ2)πΘ(θ2)
.

Intuitively, one would think that walking around in the parameter space
taking these probability ratios into account, it could be possible to get a
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stationary distribution that equals πΘ|D(·|d). This is in fact possible, as will
be shown in the next section.

So, as suggested above, in some situations where we want to estimate (a
function of) a distribution, π, but are unable to sample from π to Monte
Carlo estimate it, we are in fact able to construct a Markov chain with its
unique stationary distribution being π. As noted previously, if we start the
chain in an arbitrary state it will eventually end up2 having distribution π.
At that point we can observe the state of the chain and get an observation
distributed according to π. Two main problems are left to deal with though:
convergence and independence.

2.1 Convergence to stationary distribution

Even though one is promised that the distribution of the Markov chain will
converge to π eventually, no bound is set on how long one does have to wait
until the chain has converged well enough to π.

For smaller (discrete) examples this problem is possible to solve through
calculating how the probability mass spreads from the state at X0 to the other
states as time passes, getting a clear indication of when equilibrium has been
achieved. However, this demands keeping the entire state space in memory
and making calculations for all the states at each time point. Therefore
the problems at hand have to be very small. Also, this way of using the
probability mass results in an estimate of π directly, making sampling the
chain unnecessary.

Another path is to start several independent realisations of the chain
at different starting states. Then when the estimates of π stemming from
the different realisations converge (in some sense), one can hope that this
is because they have all converged to π. However, there is no guarantee
that this is the case. For example, the way of choosing starting states for
the different chains might be biased so that some areas of the state space
are never explored. Intuitively, if two parts of the state space have a border
with small crossing probability and the starting point distribution is strongly
biased toward one of the parts, the multiple chains could well converge to the
conditional distribution of the favoured part of the state space. This example
points our the important role that the Markov chain has in not only having
the correct stationary distribution, but also in ”allowing easy access” to all

2given that the technical conditions are met
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relevant parts of the state space.
The time before convergence has been established is referred to as the

burn-in time. Since the chain prior to that point in time is not distributed
according to π, that part of the data is most often discarded and not used
when estimating π.

A third path which avoids the need for determining the burn-in time is
the Propp-Wilson algorithm. Here the idea is to trace one realisation of a
Markov chain backward in time to find a negative timepoint, t, where no
matter which state is selected, the same state s0 will be reached at time 0.
This would imply that if the chain was started infinitely far ago, no matter
which state it would pass at time t, s0 would be reached at time 0. Since s0

would then be the result after an infinite run of the chain, s0 is an observation
from the stationary distribution π. However, the algorithm demands that the
realisation from all states are traced forward, typically for a long while back
in time. This typically makes the approach infeasible for large state spaces.

A trick that solves the state complexity of the Propp-Wilson algorithm for
certain cases is the idea of ”Sandwiching”. In these cases, opposite extreme
states exist in the sense that if they meet at time 0, one can conclude all other
states will also meet then. The problems are of course that most problems
don’t have as extreme cases as demanded above and even if they do, one
would have to trace back for a very long period of time before a point is
found where the opposite extremes will eventually meet.

2.2 Independence in the sample

Consider a Markov chain {Xt} produced with the goal of sampling indepen-
dently from the stationary distribution π. Assume that we have reached a
time, t, where the chain has close enough distribution to π. Xt then clearly
has distribution close to π. However, to estimate π well enough for realistic
situations, we must draw a large sample from π. A problem arising when
{Xt} stems from a Markov chain rather than being independently drawn
from π is that {Xt} are typically dependent. As we will see later, for some
ways of constructing {Xt}3, Xt and Xt+1 only differ in at most one dimen-
sion. In reality, the severeness of this problem depends heavily on the usage
of the estimate π̂ of π. The expectation estimate of common functions of
the state space seems to be regarded as rather robust against this problem.

3the Gibbs sampler
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However, one could want to estimate a property of π that is more reliant on
the independence in the sample.

One way of getting a much less dependent sequence of variables is to
perform thinning. This means that after observing X at one timepoint t,
one waits a while before observing X again. If we wait infinitely long before
observing X again, we know that its distribution will converge to π. However,
for reasonable ways of constructing the chain and for reasonable demands on
the independence of the thinned sequence, not that long waiting times should
be needed.

In [Implementing MCMC, pp 115, Gilks] a binary function f of the state
space of {Xt} is of interest. It is used to create a family of sequences
Zk

t = f(Xtk) where k is a thinning parameter. To determine a k giving
an independent sample, an information content approach is taken. For dif-
ferent values of k, the likelihood ratio test is performed between the first and
second order Markov chains adapted to Zk

t . When k is small, the second
order chain provides much better likelihoods, while for k large enough for
Xtk and X(t+1)k to be independent, they should provide an equal amount of
information. When the Markov chain is adapted to the same data that is
subsequently used to produce a likelihood, overfitting makes the second order
chain always having higher likelihood than the first order one. Therefore, a
Bayesian information criterion (BIC) is used to determine if for a fixed k the
increase in likelihood when going from a first to a second order chain is due
to overfitting or if there really is a dependence in the sequence that is cap-
tured by the second order chain. The lowest k for which the first order chain
is selected in favor of the second order one is then selected as the thinning
parameter to use. In order to estimate k, a pilot run is used.

Additional to the direct goal of decreasing dependence, thinning can be
used to save space. For a fixed amount of available space, in effect deter-
mining the length of the analysed sequence, a more independent sequence
contains more information than a more dependent one.

3 Markov Chain Monte Carlo algorithms

In the previous section it was implied that it might be possible to construct a
Markov chain with a stationary distribution, π, which is infeasible to sample
from directly. In this section we will show examples of this.
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3.1 The Metropolis-Hastings algorithm

In this algorithm which was generalised by Hastings in 1970 to extend the
results of Metropolis (1953), one starts out with a proposal transition kernel
q(·|Xt). This kernel would form a Markov chain in its own, possibly with a
stationary distribution. However, q does not in general directly generate the
stationary distribution π. Instead, q is modified in a clever yet simple way
to generate a Markov chain with the sought stationary distribution. This is
performed through modifying the probability of staying in the current state
at any jumping moment. Loosely speaking, the chain tends to jump easily
from states that would be overrepresented by q alone, while it tends to stay
longer at underrepresented states. The algorithm is as follows:

1. Given the current state at time t, Xt = xt, generate a proposal for time
t + 1: X ′

t+1 ∼ q(·|Xt).

2. Now X ′
t+1 is accepted with probability min(1,

π(X′
t+1)q(X|X′

t+1)

π(X)q(X′
t+1|X)

). If it is

accepted, Xt+1 = X ′
t+1, otherwise X does not change, i.e. Xt+1 = Xt.

Now, it is easy to show that the distribution π would make the chain
reversible, i.e.: q(Xt+1|Xt)π(Xt) = q(Xt|Xt+1)π(Xt+1). Since a distribution
that is reversible for a Markov chain is a stationary distribution for it, the
chain above will have π as stationary distribution. However, q must be
irreversible or else isolated parts of the state space exist that could be never
reached, i.e. the stationary distribution will not be unique and the chain will
in general not converge to π. For the same reason, q must be able to reach
all parts of the state space having non-zero probability mass under π.

Since in the previous section it was noted that care should be taken on
how to construct the Markov chain in addition to the demand of having π
as unique stationary distribution, care must now be taken on the choice of q.
The best way of choosing q depends heavily on the nature of π, for example
what relation exists among the dimensions of π. Some examples of different
methods are described below.

3.2 Gibbs sampling

In situations where mutual and possibly complex dependencies exist among
the dimensions of π, Gibbs sampling provides a way of getting a good proposal
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kernel q. Here, the proposal by q is always accepted and the transition kernel
is therefore given directly below.

Gibbs sampling begins with choosing one dimension to update, either by
random (random sweep Gibbs sampling) or in turn (systematic sweep Gibbs
sampling). This dimension, vt, is then sampled according to the conditional
distribution of π given that the other dimensions remain the same:

X
(vt)
t+1 ∼ πX(vt)|X(−vt)(·|X(−vt)

t ) X
(−vt)
t+1 = X

(−vt)
t .

Worth noting is that for π with independent dimensions, one sweep
through all dimensions is enough to get independence between the random
variables in the Markov chain.

4 The hard-core model

In this section, an example is walked through showing a situation where a
Gibbs sampler is natural to use. The major part of this section is borrowed
directly from [Häggström]. This section primarily serves as an introduction
to the next section where some problems are stated and solved in a straight
forward way and to the section after that, where an alternative route is taken
to solve those problems.

The hard core model was originally used to model physical conditions
where two particles with non-zero width cannot exist arbitrarily close to each
other. To form the state space, a graph G = (V, E) is used. The vertexes
describe where the centre of particles may be located and an edge between two
vertexes describe that those vertexes cannot simultaneously contain particle
centres. The state space for the Markov chain is then {0, 1}V . Each member
of the state space is called a configuration. The probabilistic model is that
all configurations that are feasible, i.e. that do not contain 1:s at both ends
of any edge in the graph, are equally probable. Hence each configuration ξ
has probability 1

ZG
if it is feasible and 0 if it is not, where ZG is the number

of feasible configurations for the graph G.
Suppose now that we want to compute the estimated number of ones in

the configurations: E(n(ξ)). Even for moderately sized graphs, such as a 10
by 10 two-dimensional grid, the number of feasible configurations is daunting
and the feasible configurations are hard to enumerate. Consequently, exact
computation of the expected value is not a viable options. Direct Monte
Carlo simulation through sampling from πξ is not readily performed either,
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since the feasible configurations are hard to sample uniformly from. One
solution is instead to perform MCMC using random sweep Gibbs sampling:

1. X0 is chosen in some fashion among the feasible states (=configura-
tions).

2. Since all feasible configurations are equally likely, the conditional dis-
tribution of one dimension (=vertex) given the others is (1

2
, 1

2
) if a 1 at

that vertex is feasible given the configuration of the other vertexes and
(1, 0) otherwise.

So for vt randomly selected in V , if a change in vertex vt (from 0 to 1) of
Xt would yield it infeasible, then Xt+1 is set to Xt. If the change is feasible

on the other hand, X
(vt)
t+1 is selected uniformly in {0, 1}, while X

(−vt)
t+1 remains

X
(−vt)
t .

Through running a Markov chain as described above, discarding a burn-
in sequence and possibly thinning the chain (as described in section 2), we
can achieve an estimate of πξ. Using this, we can estimate the sought entity:

E(n(ξ)) =

∫
n(ξ)dπξ(ξ)=̂

∫
n(ξ)dπ̂ξ(ξ) =

m∑
i=1

n(Xi) ·
1

m

A generalised hard core model which allows for different ”packing inten-
sities” is introduced in problem 7.4 in [Häggström]. Here a parameter λ is
introduced and the relative probability of two feasible states ξ1 and ξ2 is:

πλ
ξ (ξ1)

πλ
ξ (ξ2)

=
λn(ξ1)

λn(ξ2)
= λn(ξ1)−n(ξ2) .

From this we can see that the corresponding random sweep Gibbs sampler
would be based on the following: The conditional distribution of one dimen-
sion (=vertex) given the others is ( 1

1+λ
, λ

1+λ
) if a 1 at that vertex is feasible

given the configuration of the other vertexes and (1, 0) otherwise.
Comparing to the standard hard-core model, the tendency of the chain

to jump to denser states is increased if λ > 1 and decreased if λ < 1.

5 Some problems on the hard-core model

In this section, a few problems on the hard-core model are introduced and
solutions are outlined. In the next section a more refined approach to the
solutions is introduced.
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Suppose that we are able to make physical measurements of particle
counts in a situation that can be modelled by the hard-core model with
a given graph G = (V, E). We first want to test whether λ = 1, i.e. if
the standard hard-core model is suitable. If that hypothesis is rejected, i.e.
λ 6= 1, we want to maximum likelihood estimate λ in the general hard-core
model.

5.1 Testing the hypothesis λ = 1 using one measure-
ment

We want to test the hypothesis λ = 1 through getting a p-value for one
measurement, Y, of the particle count. This is arguably a weak way of
testing, since only one measurement is used, but it will do to provide the
idea.

For the sake of brevity let us assume that the alternative hypothesis is
that λ is lower than 1, making it a one way test:

H0 : λ = 1 HA : λ < 1 .

We want to perform the test through examining:

p = P(Y ≤ y|λ = 1) = πG,1
n ([0, y]) ,

where πG,λ
n is the distribution of the number of 1:s in the hard-core model

with parameter λ.
But, we can estimate πG,λ

n by using the Gibbs sampler MCMC algorithm
introduced in the last section. Suppose that {Xi} is the MCMC sequence
with the burn-in sequence discarded and thinning performed in a proper way
to make the Xi:s nearly independent. Further, let Zi = n(Xi) denote the
particle counts in the MCMC sequence. πG,λ

n can then be estimated by:

π̂G,λ
n (A) =

1

n

n∑
i=1

IA(n(xi)) =
1

n

n∑
i=1

IA(zi) .

This would yield the following estimate of p:

p̂ = π̂G,λ
n ([0, y]) =

1

m

m∑
i=1

I[0,y](zi) ,
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that is the proportion of observed counts in the sequence that are at least
as low as y. For independent {Zi}, p̂ is distributed according to a scaled
binomial distribution:

p̂ ∼ 1

m
Bin(m, p)

One potential problem is that if p is very low, only a small proportion
of {Zi} will fall in [o, y] and a large length, m, of the sequence is necessary
to get a precise estimate of p. One way of reporting the uncertainty of the
p value, is for example to say that it is less than 0.05 with (1 − α) · 100%
certainty, where the latter uncertainty comes from the MCMC estimation of
the null-distribution.

5.2 Maximum likelihood estimation of λ

Suppose now that λ = 1 was rejected above and that the general hard-core
model will be used instead. In order to use the general model, λ must be given
a value4. To perform this, a series of independent physical measurements,
D = {di}, are produced. One way of estimating λ is then through maximising
the likelihood function:

λ̂ = argmaxλl(λ|X = D)

= argmaxλ P(X = d|λ = λ)

= argmaxλ

m∏
i=1

πG,λ
n (di) ,

where π is estimated by MCMC as in the previous section.
Since no analytical form of the likelihood function is available, one has

to resort to numerical search for the maximum value. Since each new value
of λ requires a completely new run of the MCMC algorithm with different
jumping probabilities, this will demand substantial computing energy5 even
to get a rough estimate of λ.

6 An indirect estimation approach

In section 5 above, in some sense brute force was applied to solve both
problems. In the first problem of estimating the p-value, the (thinned) chain

4not taking in account the Bayesian approach of giving it an a priori distribution
5i.e. computing power integrated over time
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had to be very long to get a precise estimate in the case of a very small
p-value. In the second problem, a series of MCMC runs had to be performed
to get estimates of the distributions of the number of 1:s, each run with a
different value of the parameter λ.

Below, a different methodology is suggested to estimate the distributions
πG,λ

n indirectly, giving the user the freedom to (1) increase the precision when
estimating the p-value and (2) to estimate the likelihood functions from a
common run of the Markov chain, allowing for many more λ:s to be searched
through much more rapidly by the numerical optimisation procedure.

In both examples the results of the following section is used.

6.1 The basic idea

If a distribution π on a space S is to be estimated, an alternative distribution
π′ is estimated through a Markov chain (X1, . . . , Xn). Now, for each Xi a
ratio rXi

is recorded, accounting for the bias at that state:

rxi
=

π(xi)

π′(xi)
.

Let us expand that notation. Assume the ratio π
π′

to be ”piecewise con-
stant”, meaning that for any subset of the state space, A ⊆ S there exist a
finite partitioning

A = A1 ∪ . . . ∪ Am Ai 6= Aj for i 6= j ,

such that:

∀i ∈ (1, . . . ,m) : ∀A′
1, A

′
2 ⊆ Ai :

π(A′
1)

π′(A′
1)

=
π(A′

2)

π′(A′
2)

.

Denote the ratio rB = π(B)
π′(B)

, where the ratio has to be constant over B for it
to be defined. For brevity, r{x} is often denoted rx for x ∈ S.
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Now, the estimation of π(A) for any A ⊆ S can be performed through :

π(A) = π(
m⋃

i=1

Ai) =
m∑

i=1

π(Ai) =
m∑

i=1

π(Ai)

π′(Ai)
π′(Ai)

=̂
m∑

i=1

rAi
π̂′(Ai) =

m∑
i=1

rAi

1

n

n∑
j=1

IAi
(xj)

=
1

n

m∑
i=1

n∑
j=1

rAi
IAi

(xj) =
1

n

m∑
i=1

n∑
j=1

rxj
IAi

(xj)

=
1

n

n∑
j=1

rxj

m∑
i=1

IAi
(xj) =

1

n

n∑
j=1

rxj
IA(xj) .

A problem with this approach is that π̂ is not bound to [0, 1]. For example,
for n = 1, π̂(S) = r1 which for all underrepresented states is greater than

1. This problem stems from the fact that π(Ai)
π′(Ai)

is known while π′(Ai) is
estimated.

In the previous part of the report, the distribution has been estimated by
the proportion of elements in the chain falling in the argument, i.e. π̂(A) =
1
n

∑n
i=1 IA(xi). A direct approach to indirectly estimate π through a sequence

(X1, . . . , Xn) from π′ would analogously be:

π̂(A) =
1∑n

i=1 rxi

n∑
i=1

rxi
IA(xi) ,

i.e. a weighted proportion. This estimate is bounded by [0, 1]. Additionally,
it is sufficient to know scaled ratios r′xi

= C · rxi
to perform the estimation.

The two methods above do converge when n →∞. First:

E [rX ] =

∫
rxπ

′(x)dx =

∫
π(x)

π′(x)
π′(x)dx =

∫
π(x)dx = 1 ,

then, the law of large numbers proves that the ratio of the estimates converges
to 1 almost surely.

In some situations the ratios rxj
=

π(xj)

π′(xj)
are not known directly. Instead

for any pair (x′, x′′) of members of the sequence, the relative ratio

Rx′,x′′ :=
rx′

rx′′
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is available. When using the weighted proportion method above, we can be
satisfied with learning proportional ratios r′xj

= C · rxj
, since the constant C

is cancelled out in the ratio. In that case, knowing the R:s is in fact sufficient.
Choosing C = 1

rx1
,

r′xj
=

1

rx1

rxj
= Rxj ,x1 .

6.2 Testing the hypothesis λ = 1 using one measure-
ment (using indirect estimation)

A problem with the estimation procedure in section 5.1 is that the only a
small proportion of the elements in the Markov chain have a count of 1:s
below the observed count y. Therefore the chain has to be run for a long
time to get good precision in the estimate of the sought p-value:

p = P(Y ≤ y|λ = 1) = πG,1
n ([0, y])=̂π̂G,1

n ([0, y]) =
1

n

n∑
i=1

I[0,y](zi) ,

where Zi is the number of 1:s in the element Xi of the Markov chain.
Using the indirect estimation outlined above (section 6.1), an alternative

chain could be run creating modified amounts of 1:s below and above y.
Assuming independence in the thinned chain of length n, the variance of the
original estimate would be6 :

Var(p̂) = Var(
1

n
Bin(n, p)) =

1

n2
· np(1− p) =

p(1− p)

n
.

If an alternative distribution, π′n, would be used with a different chance of
getting no more than y 1:s, p′ = π̂′n([0, y]), with a known ratio:

r = r{ξ:n(ξ)∈[0,y]} =
p

p′
,

the estimate of p would be:

p = rp′ = rπ′n([0, y]) ⇒ p̂a = rπ̂′n([0, y]) = r
1

n

n∑
i=1

I[0,y](z
′
i) ∼

r

n
Bin(n,

p

r
) ,

6The dependence decreases as the amount of thinning increases (cf section 2.2). The
approximation is good if Var(P

Ui)

nVar(Ui)
≈ 1, i.e.

∑
i 6=j Cov(Ui, Uj) � n Var(U), where Ui are

the 0− 1 random variables Ui = I[0,y](n(Xi)).
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where Z ′
i is the number of 1:s in the state X ′

i in the alternative Markov chain
having stationary distribution π′n and where p̂a is the estimate of p stemming
from the alternatively distributed chain. Now the variance of the alternative
estimate p̂a is:

Var(p̂a) = Var
( r

n
Bin(n,

p

r
)
)

=
r2

n2
· np

r
(1− p

r
) =

rp(1− p
r
)

n
. (1)

In what cases will the alternative estimation result in a lower variance of the
estimate?

Var(p̂a) ≤ Var(p̂) ⇔
rp(1− p

r
)

n
≤ p(1− p)

n
⇔ r(1− p

r
) ≤ 1− p

⇔ r ≤ 1 ⇔ p ≤ p′ ,

i.e. the bigger inflation of the p-value in the alternative distribution the
better.

Now, it is difficult to create an alternative distribution with a given ratio

r = p
p′

= πG,1
n ([0,y])
π′n([0,y])

. Instead we can define a distribution, π′n, to be estimated
by selecting a ratio of ratios:

R =
π′n([0, y])

π′n((y,∞))
/

πG,1
n ([0, y])

πG,1
n ((y,∞))

,

then use Gibbs sampling to create a sequence {Xi} with π′n as stationary
distribution and finally use the weighted proportion method from section 6.1
to estimate the p-value:

p̂a = π̂G,1
n ([0, y]) =

1∑n
i=1 rxi

n∑
i=1

rxi
I[0,y](xi) = {N :=

n∑
i=1

I[0,y](xi)}

=
N

N + (n−N) ·R
,

(2)

where N ∼ Bin(n, p′).
Since the formula for the variance of p̂a in equation 2 is not as simple

as of the scaled binomial one in equation 1 and since p′ is only determined
implicitly through R (R = 1/p′−1

1/p−1
), an optimal R would need prior information

on p. However, if one is most interested if p exceeds a certain threshold, p0,
such as 0.01, R could be chosen to give minimal variance for p = p0 since
for p much greater or less the accuracy is not as important. An optimal R is
not shown here even for p being known, but it should be possible to obtain
by simulation if not directly. However, it is not included in this report due
to time constraints.
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6.3 Maximum likelihood estimation of λ (using indi-
rect estimation)

In section 5.2, λ was estimated through maximising the likelihood function:

λ̂ = argmaxλl(λ|X = x)

= argmaxλ P(X = x|λ = λ)

= argmaxλ

m∏
i=1

πG,λ
n (xi) ,

where πG,λ
n was estimated with one MCMC run for each examined value of

λ. One obvious problem in this setting is that it might only be possible to
examine a few values of λ, since estimating πG,λ

n can be time consuming.
Taking the indirect estimation approach, πG,1

n (λ = 1) can be treated as
the alternative distribution that has been estimated. Using the notation of
section 6.1:

rs :=
πG,λ

n (s)

πG,1
n (s)

r′s :=
rs

rs0

,

where sn is defined as an arbitrary state with n 1:s, r′s can be shown to be:

r′s = λn(s) ,

for an arbitrary state s.
This can be shown by induction:

• Base case (s0):

r′s0 =
rs0

rs0

= 1 = λ0

• Induction step (assume for si, show for si+1):

r′si+1 =
rsi+1

rs0

=
rsi+1

rsi

/
rsi

rs0

= λλi = λi+1 ,

since:

rsi+1

rsi

=
πG,λ

n (si+1)/πG,1
n (si+1)

πG,λ
n (si)/πG,1

n (si)

=
πG,λ

n (si+1)

πG,λ
n (si)

/
πG,1

n (si+1)

πG,1
n (si)

=1 λ/1

= λ ,

where =1 follows by the definition of πG,λ
n .
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Now, since r′xi
are known, the weighted proportion method from sec-

tion 6.1 can be used to estimate πG,λ
n from the estimate of πG,1

n . Therefore,
the numerical maximisation of the likelihood function do not need to per-
form a novel MCMC run for each examined value of λ. Therefore, more
steps of the maximisation procedure can be performed in less time, hopefully
producing a λ with higher likelihood.

One issue with this approach is that most of the ”emphasis” of the original
Markov chain will be on states that are typical in the distribution for λ = 1.
In an extreme example, where λ � 1, the observed number of particles, D,
might typically be very low, while the Markov chain typically has a very small
proportion of elements with such a low count of 1:s. Therefore, estimates such
as πG,1

n (s0) underlying πG,λ
n (s0) will be uncertain. These circumstances should

be watched out for and if needed, a novel alternative MCMC run should be
performed with a λ = λ0 closer to the preliminary estimate produced from
πG,1

n . r′s = (λ/λ0)
n(s) would then be the correcting factor to use.
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