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Abstract

For biased random walk on the infinite cluster in supercritical i.i.d. percolation
on Z

2, where the bias of the walk is quantified by a parameter β > 1, it has
been conjectured (and partly proved) that there exists a critical value βc > 1
such that the walk has positive speed when β < βc and speed zero when β > βc.
In this paper, biased random walk on the infinite cluster of a certain translation
invariant percolation process on Z

2 is considered. The example is shown to
exhibit the opposite behavior to what is expected for i.i.d. percolation, in the
sense that it has a critical value βc such that, for β < βc, the random walk has
speed zero, while, for β > βc, the speed is positive. Hence the monotonicity
in β that is part of the conjecture for i.i.d. percolation cannot be extended to
general translation invariant percolation processes.
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1 Introduction

This paper is concerned with biased random walk on infinite percolation clusters on
the square lattice, whose vertex set is Z

2 and whose edge set consists of pairs of vertices
at Euclidean distance 1 from each other; with a slight abuse of notation we write Z

2

for this lattice. Let there be two possible states for each edge in e ∈ E: open or closed.
In general, a percolation model is a way of deciding which edges are to be open. In
standard i.i.d. bond percolation with parameter p ∈ [0, 1], each edge is independently
open with probability p. The resulting configuration will almost surely contain an
infinite open cluster if and only if p > 1/2; see Grimmett (1999) for this and other
basics on percolation theory. We can define a random walk, starting at the origin,
as follows: Let Zt = (Xt, Yt) denote the position of the random walk at time t ∈ N

(we apologize to sensitive readers for using the letter t for a discrete time parameter;
however, the integer indices i, j, k, l, m, n, . . . will be needed for other purposes later
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on). Write Λt for the set of neighbors of Zt in the percolation configuration and
define lt = |Λt|. Also, fix β > 1. If (Xt + 1, Yt) ∈ Λt, then Zt+1 = (Xt + 1, Yt)
with probability β(β + lt − 1)−1 and Zt+1 equals any other given vertex in Λt with
probability (β + lt − 1)−1. If (Xt + 1, Yt) 6∈ Λt, then Zt+1 is chosen uniformly from
Λt, that is, Zt+1 equals any given vertex in Λt with probability l−1

t . In case Λn = ∅,
the walk stays put, i.e., Zt+1 = Zt.

This model was introduced by Barma and Dhar (1983) and describes a random
walk with drift towards the right, the strength of the drift being quantified by the
parameter β. (Note that zero drift corresponds to β = 1.) The asymptotic speed,
or simply the speed, is defined as limt→∞ Xt/t (provided the limit exists). In Barma
and Dhar (1983), it is conjectured that there is a critical drift βc = βc(p) > 1 such
that the walk has positive speed for β < βc (provided the origin belongs to the infinite
cluster) and speed zero for β > βc. Intuitively, if the drift is large, the walk will tend
to get stuck in “dead ends” of the percolation cluster, while, if the drift is weaker, it
will be able to quickly backtrack and get out of the dead ends. The conjecture from
Barma and Dhar (1983) was partly confirmed in two simultaneous and independent
papers by Sznitman (2003) and Berger et al. (2004), respectively, where it is proved
that there are βl and βu, with 1 < βl ≤ βu, such that the walk has positive speed
for β < βl and speed zero for β > βu. (Sznitman in fact obtained the same result in
arbitrary dimension d ≥ 2.) What remains here is to show that one can take βl = βc.
Axelson-Fisk and Häggström (2008) demonstrated the same critical phenomenon with
βl = βc for a certain dependent percolation model on the lattice sometimes known
as the infinite ladder. One might ask whether the monotonicity property suggested
by the Barma–Dhar conjecture (namely that zero speed at a given β > 1 implies the
same thing at all larger values of β) should be extended to a wider class of percolation
processes, such as those that are translation invariant. Our main result, Theorem 1.1
below, shows that the answer is no.

More precisely, what we do in the present paper is as follows. We will construct
a translation invariant percolation process on Z

2 for which the above random walk
dynamics give rise to a process which has speed zero when β is small and positive speed
when β is large. For a translation invariant probability measure Ψ on {open, closed}E

defining the percolation process, with the property that the existence of an infinite
cluster has probability 1, write PΨ,β for the joint law of the percolation configuration
conditioned on the origin belonging to an infinite open cluster, and the random walk
{Zt}t≥0. Write {0 ↔ ∞} for the event that the origin belongs to an infinite open
cluster of the percolation configuration. We will prove the following:

Theorem 1.1 For each γ > 1 there exists a translation invariant probability measure
Ψ = Ψ(γ) on {open, closed}E such that, for any β > 1,

lim
t→∞

Xt

t
=

{

0 PΨ,β-a.s. on the event {0 ↔ ∞} if β < βc
β−1
β+1 PΨ,β-a.s. on the event {0 ↔ ∞} if β > βc

with βc = γ.

The rest of the paper is organized as follows. A percolation process with the property
described in Theorem 1.1 is constructed in detail in Section 3. First, however we
illustrate one of the main ideas by describing in Section 2 a simpler (but not translation
invariant) percolation process on which biased random walk behaves as in the theorem;
the key concept here is the “trap” structure in Figure 1 below. These traps appear
also in the main construction in Section 3. Section 4 concerns the main construction

2
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(b) The nth trap = trap of size n.

Figure 1: Schematic picture of configuration with line and traps.

minus the traps, where the asymptotic speed is shown to equal β−1
β+1 for any β > 1.

In Section 5 we show that including the traps as in the main construction makes no
difference to the asymptotic speed as long as β > βc, thus establishing the second half
of Theorem 1.1. Finally, in Section 6, we consider the case β < βc, and show that the
traps slow down the speed to zero, thereby proving the first half of the theorem.

2 A warm-up construction

Consider first a configuration of open edges outlined in Figure 1(a): an infinite open
path starting at the origin and going off straight along the positive x-axis, with so
called traps attached to it. Each trap consists of an entrance and a core, the core
being located one floor above the entrance; see Figure 1(b). The length (meaning the
number of edges) of the entrance and the core of the n’th trap are denoted by en and
cn respectively. We furthermore write dn for the x-coordinate where the entrance of
the n’th trap begins, and define ∆dn = dn − dn−1. For each n, we need to have

en < ∆dn (1)

and
en + cn−1 − en−1 < ∆dn (2)

in order for the traps not to overlap. The vertex (dn, 0) is called the anchor of the
trap.

It is readily checked that a random walk with drift β > 1 along the infinite line
without traps has positive speed equal to β−1

β+1 . In particular, the walk is transient,
and adding traps cannot change this, due to Rayleigh’s monotonicity principle; see,
e.g., Doyle and Snell (1984).

To obtain a configuration on which the walk has speed zero for small β and positive
speed for large β we will choose the sequences {en}, {cn} and {dn} so that, if β is
small, the walk will enter the core of infinitely many traps, which will cause a delay
severe enough to bring the speed down to zero, while, if β is large, the walk will enter
the core of only finitely many traps, causing a delay that is negligible in the limit.
The details are as follows.

Fix α > 0. It will turn out that choosing

dn = n3, en = dα log ne and cn = n (3)
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for all n sufficiently large (where d·e denotes rounding up to the nearest integer) yields
an asymptotic speed which is zero for β < βc and strictly positive for β > βc, with
βc = e1/α. The reason we say “for all n sufficiently large” is that the values of en and
cn may need to be lowered compared to (3) for small n in order to satisfy (1) and (2);
by transience of the random walk, modifying a finite number of traps cannot change
the asymptotic speed.

Proposition 2.1 The infinite path on the positive x-axis, decorated with traps with
parameters satisfying (3) for large n, yields the following almost sure behavior for
random walk:

lim
t→∞

Xt

t
=

{

0 if β < βc
β−1
β+1 if β > βc

with βc = e1/α.

Before proving this result, let us explain why it does not immediately imply our
desired Theorem 1.1. The reason, of course, is that the construction in the present
section is not translation invariant. Now, there is a standard way of turning a non-
translation invariant construction into a translation invariant one, namely via random
translation of the original construction. In this case, the natural thing to do would
be the following.

(a) Make copies of the original configuration shifted k steps vertically, for k =
3, 6, 9, . . ., and for k = −3,−6,−9, . . ..

(b) Shift the configuration resulting from (a) K steps vertically, where K is chosen
according to uniform distribution on {0, 1, 2}, thus making the model invariant
under vertical translation.

(c) Shift the configuration resulting from (b) L steps horisontally to the left, where L
is chosen according to uniform distribution on {1, . . . , l}, and then considering
the limit as l → ∞, thus making the model invariant also under horizontal
translation.

The problem with this approach is that since limn→∞
dn

n = ∞ in (3), the density of
trap entrances goes to zero, and they will disappear on us in step (c). This disappear-
ance can be avoided by a more elaborate fractal-like construction of the percolation
process described in Section 3.

For the proof of Proposition 2.1, we will need three lemmas concerning the behavior
of random walk on traps; these lemmas will become useful also later on when we
analyse random walk on our main construction, in Sections 5 and 6.

For n, i ≥ 1, let Tn,i denote the time spent by the random walk in trap number n
during its i’th visit to the trap, and let

T ∗
n,i =

{

0 if the walk hits the trap’s core during this visit
Tn,i otherwise,

with the convention that if the walk enters the trap exactly k times, then Tn,i =
T ∗

n,i = 0 for all i > k. The first lemma gives the probability, once a trap has been
entered, of reaching its core.

4



Lemma 2.1 Each time the random walk enters the n’th trap, it has probability
β−1

βen+1+β−2 of reaching the core before exiting the trap, so that

P
[

Tn,i > T ∗
n,i |Tn,i > 0

]

=
β − 1

βen+1 + β − 2

for any n and i.

Once the walk enters the core, it has a fair chance of spending a very long time
(exponential in cn) there. The second lemma quantifies this.

Lemma 2.2 For each n and i, we have

P [Tn,i ≥ βcn |Tn,i > 0] ≥
(β − 1)2

2β(βen+1 + β − 2)
. (4)

On the other hand, provided the walk does not hit the core of the trap, its expected
time spent in the trap can be bounded uniformly in n. The third lemma makes this
precise. Let � denote stochastic domination between random variables, i.e., X � X ′

means that E[f(X)] ≤ E[f(X ′)] for any bounded and increasing f .

Lemma 2.3 We may define a positive random variable T ∗ such that

(a) T ∗
n,i � T ∗ for any n and i, and

(b) E[T ∗] = 2β−1
β−1 .

For the proofs of the lemmas (and also later on) it will be useful to consider an
electrical analysis of the random walk à la Doyle and Snell (1984). Each edge e of the
network is assigned a resistance R(e) = β−x(e) where x(e) is the largest x-coordinate
amongst the two vertices incident to e. The rules of the random walk may then be
reformulated as saying that a random walker standing at a vertex chooses among the
incident edges with probabilities inversely proportional to their resistances. For two
vertices v1 and v2, let Reff (v1, v2) denote the effective resistance between v1 and v2

in the electrical representation. Since the percolation network in this case is a tree,
there is always a unique self-avoiding path between v1 and v2, and Reff (v1, v2) is
simply the sum of the edge resistances along the path.

Proof of Lemma 2.1. When the walk enters the trap, it will find itself at the
vertex (dn, 1). From there, it will eventually reach either (dn, 0) or (dn − en, 2). The
probability that it hits the latter before the former equals

Reff ((dn, 1), (dn, 0))

Reff ((dn, 1), (dn, 0)) + Reff ((dn, 1), (dn − en, 2))
=

β−dn

β−dn +
∑dn

i=dn−en
β−i

=
1

1 +
∑en

i=0 βi

=
β − 1

βen+1 + β − 2
. (5)

2

Proof of Lemma 2.2. Once the random walk hits the core, i.e., once it reaches
the vertex (dn − en, 2), its conditional probability of hitting the second-to-last vertex
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(dn − en + cn − 1, 2) of the core before going back to (dn − en, 1) is

Reff ((dn − en, 2), (dn − en, 1))

Reff ((dn − en, 2), (dn − en, 1)) + Reff ((dn − en, 2), (dn − en + cn − 1, 2))

=
1

1 +
∑cn−1

i=1 β−i

≥
1

1 +
∑∞

i=1 β−i
=

β − 1

β
. (6)

Combining this with Lemma 2.1, we thus have that once the random walk enters the
trap, it has probability at least

(β − 1)2

β(βen+1 + β − 2)
(7)

of reaching (dn − en + cn − 1, 2) before exiting. A similar calculation as in (5) and
(6) shows that once the walk has reached (dn − en + cn − 1, 2), it has probability

β−1
βcn+1−1 < β−cn of hitting (dn − en, 1) before (dn − en + cn, 2). Hence, upon reaching

(dn−en+cn−1, 2), the number of visits to (dn−en+cn, 2) before reaching (dn−en, 1) is

geometric with mean at least βcn . Thus, the number of such visits exceeds βcn

2 with
conditional probability at least 1

2 , and multiplying by (7) yields the corresponding
unconditional probability (which is the desired right-hand side of (4)). Every visit to
(dn−en +cn, 2) is immediately followed by one to (dn−en +cn−1, 2), so by counting

also the latter we can replace the count βcn

2 by simply βcn , and (4) follows. 2

Proof of Lemma 2.3. Write (Z ′
1, Z

′
2, . . . , Z

′
Tn,i

) for the sequence of vertices visited

during the i’th visit to trap n. Also, write (Z ′′
1 , Z ′′

2 , . . . , Z ′′
T∗

n,i
) for the thinned sequence

obtained by deleting all visits to the core of the trap, and note that (Z ′′
1 , Z ′′

2 , . . . , Z ′′
T∗

n,i
)

has the same distribution that the original sequence would have had if the trap had
had no core.

Imagine now a trap whose entrance is infinite, i.e., consists of an infinite straight
path going off to the left from the anchor, and generate a sequence (W ′

1, W
′
2, . . . , W

′
T∗)

describing the positions of the random walk during a single visit to this trap. Since the
walk has a drift to the right (β > 1), we get that T ∗ < ∞ with E[T ∗] < ∞; a simple
calculation shows that E[T ∗] = 2β−1

β−1 . Let (W ′′
1 , W ′′

2 , . . . , W ′′
T∗

n
) denote the thinned

sequence obtained by deleting from (W ′
1, W

′
2, . . . , W

′
T∗) all visits to vertices more

than en steps to the left of the anchor, and note, crucially, that (W ′′
1 , W ′′

2 , . . . , W ′′
T∗

n
)

has the same distribution as (Z ′′
1 , Z ′′

2 , . . . , Z ′′
T∗

n,i
). Hence T ∗

n and T ∗
n,i are identically

distributed, and since T ∗
n ≤ T ∗ the proof is complete. 2

Equipped with Lemmas 2.1, 2.2 and 2.3, we are now in a position to prove Proposition
2.1.

Proof of Proposition 2.1. For any vertex (k, 0) on the positive x-axis, the resistance
to infinity is given by

Reff ((k, 0),∞) =

∞
∑

j=k+1

β−j =
β−k

β − 1
.

It is a standard fact from Doyle and Snell (1984) that the escape probability pesc((k, 0))
of the random walk from (k, 0) – that is, the probability that the walk leaves (k, 0)
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and never returns – is given by

pesc((k, 0)) =



Reff ((k, 0),∞)
∑

{e: e∼(k,0)}

R(e)−1





−1

(8)

where e ∼ (k, 0) means that the edge e is incident to the vertex (k, 0). If k = dn for
some n (i.e., there is some trap connecting to the x-axis at (k, 0)), we get

pesc((k, 0)) =

(

β−k

β − 1
(βk+1 + βk + βk)

)−1

=
β − 1

β + 2
.

For such k, the probability that the walk immediately takes a step into the trap is
1

β+2 . Hence, the probability that it ever takes a step into the trap before escaping to
∞ is

1
β+2

1
β+2 + β−1

β+2

= β−1 .

It follows that

the number of visits to the trap is geometrically

distributed with mean (β − 1)−1. (9)

Define Tn,tot as the total time
∑∞

i=1 Tn,i spent in the n’th trap, and analogously
T ∗

n,tot =
∑∞

i=1 T ∗
n,i. Combining (9) with Lemma 2.1 yields

P[Tn,i > T ∗
n,i] = β−i β − 1

βen+1 + β − 2
.

Summing over i gives that the probability P[Tn,tot > T ∗
n,tot] of ever hitting the core

of the n’th trap satisfies

P[Tn,tot > T ∗
n,tot] ≤

∞
∑

i=1

P[Tn,i > T ∗
n,i]

≤
β − 1

βen+1 + β − 2

∞
∑

i=1

β−i

=
1

βen+1 + β − 2
. (10)

Consider first the case β > βc, where we wish to show that the random walk has
the same asymptotic speed β−1

β+1 that we would have seen on a naked x-axis without

the traps. For k ≥ 0 write U(k) for the (random) time at which the random walk first
arrives at the vertex (k, 0). Establishing asymptotic speed β−1

β+1 is clearly the same as

showing that limk→∞
U(k)

k = β+1
β−1 , and for this, it is enough to show that the time

∑

{n: dn<k} Tn,tot spent in traps to the left of (k, 0) satisfies

lim
k→∞

1

k

∑

{n: dn<k}

Tn,tot = 0 a.s. (11)
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By (10) and (3), we have for all n large enough that

P[Tn,tot > T ∗
n,tot] ≤ 2β−en

≤ 2β−α log n

= 2n−α log β .

Since β > βc = e1/α so that α log β > 1, we get

∞
∑

n=1

n−α log β < ∞

whence
∞
∑

n=1

P[Tn,tot > T ∗
n,tot] < ∞ .

By Borel–Cantelli, we get a.s. that Tn,tot > T ∗
n,tot for at most finitely many n, so that

∞
∑

n=1

(Tn,tot − T ∗
n,tot) < ∞ a.s. (12)

The left-hand side in (11) decomposes as

lim
k→∞

1

k

∑

{n: dn<k}

Tn,tot = lim
k→∞

1

k

∑

{n: dn<k}

(Tn,tot − T ∗
n,tot) + T ∗

n,tot

= lim
k→∞

1

k

∑

{n: dn<k}

(Tn,tot − T ∗
n,tot) (13)

+ lim
k→∞

1

k

∑

{n: dn<k}

T ∗
n,tot

where the limit in (13) is 0 a.s. due to (12). Hence, to settle the case β > βc, it suffices
to show that

lim
k→∞

1

k

∑

{n: dn<k}

T ∗
n,tot = 0

or in other words that

lim
n→∞

1

dn

n
∑

i=1

T ∗
i,tot = 0 . (14)

Lemma 2.3 in combination with (9) yields

E[T ∗
i,tot] ≤

2β − 1

(β − 1)2
,

so that

E

[

1

dn

n
∑

i=1

T ∗
i,tot

]

= n−3
n
∑

i=1

E[T ∗
i,tot]

=
2β − 1

n2(β − 1)2
.
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For any ε > 0, Markov’s equality gives

P

[

1

dn

n
∑

i=1

T ∗
i,tot > ε

]

≤
2β − 1

εn2(β − 1)2
,

where we may note that the right-hand side is summable over n, so that, by another
application of Borel–Cantelli, (14) follows, and the proof of the proposition for β > βc

is complete.
It remains to handle the case β < βc. Write An for the event that the first time the

random walk reaches (dn, 0), it immediately enters the trap and spends at least time
βcn = βn in there. Note that A1, A2, . . . are independent, and that, due to Lemma
2.2,

P[An] ≥
(β − 1)2

(β + 2)2β(βen+1 + β − 2)

≥
C

βen

≥
C

2βα log n

=
C

2nα log β

for some C > 0 which may depend on β but not on n.
Next, for i = 1, 2, . . ., define

Wi =

2i
∑

n=2i−1+1

IAn (15)

as the number of events happening amongst A2i−1+1, A2i−1+2, . . . , A2i . We get

E[Wi] =

2i
∑

n=2i−1+1

P[An]

≥ 2i−1 C

2 · 2iα log β

=
C

4
2i(1−α log β)

where we may note that 1 − α log β > 0 (this is where we use β < βc). Note that
for large i, Wi is approximately Poisson, because it counts independent events with
small probabilities. Hence, for i large enough,

P[Wi = 0] ≤ 2 exp

(

−
C

4
2i(1−α log β)

)

(16)

which decays to 0 (faster than) exponentially, so that by Borel–Cantelli we get a.s.
that Wi > 0 for all but at most finitely many i. On the event that Wi > 0, the time
U(23i) of the first arrival of the random walk at the vertex (d2i , 0) = (23i, 0) satisfies

U(23i) ≥ β2i−1

. Hence we get a.s. that

lim
k→∞

U(k)

k
= ∞ (17)
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Figure 2: Branch of order k with abutment pointing downwards.

along the subsequence k = 23, 26, 29, . . .. Since U(k) is increasing, U(k)
k can drop by

at most a factor 7
8 as k increases in the interval [23i, 23(i+1)), so convergence to ∞

along the full sequence in (17) follows. This implies zero asymptotic speed. 2

3 The main construction

In this section we specify the percolation process to be used as a witness for proving
Theorem 1.1. We proceed in three steps. First, in Section 3.1, we specify a (deter-
ministic) fractal-like percolation configuration that will play roughly the same role
as the path along the x-axis did in Section 2. Then, in Section 3.2, we add traps to
the construction. Finally, in Section 3.3, we make the percolation process translation
invariant by means of a more successful application of random translation than in
Section 2.

3.1 Fractal structure

For k = 1, 2, . . ., a branch of order k (see Figure 2) consists of a horizontal path, called
the main part, of length bk−1, linked at its rightmost vertex to a vertical path, called
the abutment, of length 3 · 2k−1, going either upwards or downwards; here (b1, b2, . . .)
is a fairly rapidly growing sequence to be specified more precisely in what follows. The
point where the main part and the abutment meet is called the corner of the branch,
the other endpoint of the main part is called the tip, and the other endpoint of the
abutment is called the root. The root of a branch of order k will always be situated
soemwhere on the main part of a branch of order k + 1; in this way, the random walk
will be able to escape to infinity via branches of higher and higher order.

Define a sequence (q1, q2, . . .) prescribing how many branches of order k should
attach to each branch of order k + 1. Each branch of order k + 1 will be attached to
by 2qk branches of order k, qk of them attaching from above and the other qk from
below. In order for there to be room for all these branches of order k, we will need the
lengths to satisfy bk+1 ≥ qkbk for each k. To give room for inserting traps in Section
3.2, we will need some extra margin, and will take

bk+1 = (qk + 1)bk . (18)

A useful choice of (q1, q2, . . .) turns out to be

qk = 3k − 1
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Figure 3: The self-similar configuration ξ of branches. The orders of the larger
branches are indicated to the left.

so that bootstrapping (18) gives

bk = b1

k−1
∏

i=1

(qi + 1)

= b1

k−1
∏

i=1

3i

= b13
k(k−1)/2 .

Somewhat arbitrarily we set b1 = 4, so that

bk = 4 · 3k(k−1)/2 . (19)

Here is how we arrange the branches. First, y-coordinates satisfying y = 3l with
integer l will be reserved for (the main parts of) branches. (Other y-coordinates will
be used for traps later on.) More specifically,































y-coordinates with y = 3l with l odd are reserved for branches of order 1
y-coordinates with y = 6l with l odd are reserved for branches of order 2

...
y-coordinates with y = 2k−13l with l odd are reserved for branches of order k

...

Now, for each k and each y with y = 2k−13l for l odd, we set up a branch of order k
with its tip at (0, y), its corner at (bk −1, y), and its root at either (bk −1, y +3 ·2k−1)
(i.e., the abutment pointing upwards)) or (bk −1, y−3 ·2k−1) (the abutment pointing
downwards) chosen as follows. Since y = 2k−13l with l odd, we have that exactly one
of the numbers y +3 ·2k−1 and y−3 ·2k−1 equals 2k3j for some j odd, and we choose
to direct the abutment so that the root ends up at such a y-coordinate, thus ensuring
that it sits on (the main part of) a branch of order k + 1.
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In this way, for any k ≥ 2 and any branch of order k having its tip at, say, (x, y)
will have received exactly two branches of order k − 1 attching to it, one from above
and one from below, and both of them with the root at (x + bk−1 − 1, y). For each
such branch of order k, we attach another 2(qk−1 − 1) branches of order k − 1 to it,
two (one from above and one from below) at each of the points (x+2bk−1−1, y), (x+
3bk−1 − 1, y), . . . , (x + qk−1bk−1 − 1, y).

This creates, for any k ≥ 2, further branches of order k to which presently there
are no branches of order k−1 attached. To such a branch of order k with tip at (x, y)
we attach 2qk−1 branches of order k − 1, two (one from above and one from below)
at each of the points (x + bk−1 − 1, y), (x + 2bk−1 − 1, y), . . . , (x + qk−1bk−1 − 1, y).

Repeating this procedure ad infinitum produces a percolation configuration ξ ∈
{open, closed}E , where as before E is the edge set of the square lattice. This is the
fractal structure that forms the foundation of our construction.

3.2 Adding traps

Now we will add traps to the configuration ξ of Section 3.1. Each branch of order
k ≥ 2 will be equipped with exactly one trap. The trap will be situated in the
final region of the main part of the branch. This part contains a stretch of length
(bk−1)−(qk−1bk−1−1) from the last attachment of a lower-order branch to its corner
point. By (18) and (19), this length equals

(bk − 1) − (qk−1bk−1 − 1) = bk−1

= 4 · 3(k−1)(k−2)/2 .

We choose to place the anchor of the trap exactly at the midpoint of this stretch, i.e.,
exactly 2 · 3(k−1)(k−2)/2 steps to the left of the corner point of the order k-branch.
The lengths ek and ck of the trap’s entrance and core, respectively, are preliminarily
chosen as

ek =

⌈

log k

log γ

⌉

(20)

and
ck = 3(k−1)(k−2)/2

respectively. For values of γ very close to 1, it may turn out that the chosen value of
ek in (20) exceeds 2 · 3(k−1)(k−2)/2 so that the trap bumps into the abutment of the
last branch of order k− 1 attaching from above to the branch of order k to which the
trap is attached. This cannot be allowed to happen, and we therefore replace (20) by

ek = min

{⌈

log k

log γ

⌉

, 3(k−1)(k−2)/2

}

, (21)

and note that this coincides with (20) for all k large enough.
Write η ∈ {open, closed}E for the percolation configuration obtained by adding

traps in this manner to the configuration ξ.

3.3 Stationarizing

Let Ψ′′ be the probability measure on {open, closed}E corresponding to picking the
configuration η ∈ {open, closed}E from Section 3.2 deterministically. Ψ′′ is turned into
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a vertically translation invariant measure Ψ′ on {open, closed}E by shifting the con-
figuration η vertically by an amount Sy chosen uniformly from {−m,−m+1, . . . , m},
and taking weak limits as m → ∞, if necessary after passing to a subsequence. It is
readily checked that, for any k ≥ 1,

Ψ′(the origin is the tip of a branch of order k) =
1

3 · 2k
. (22)

To achieve translation invariance also in the horizontal direction, we first choose
a configuration η′ ∈ {open, closed}E according to Ψ′, and then we pick a shift
Sx ∈ {0, . . . , bn − 1} independently of η′, resulting in a probability measure Ψ′

n on
{open, closed}E . We finally take the probability measure Ψ on {open, closed}E as a
weak limit of the Ψ′

n measures as n → ∞, if necessary after passing to a subsequence.1

It is clear that Ψ is both vertically and horizontally translation invariant. We now
need to check that local structures (branches of order k for given k, and traps) do not
disappear upon us in the limit as in the failed attempt at stationarizing in Section 2.
For this, it suffices to show that for any k ≥ 1,

lim
n→∞

Ψ′
n(the origin sits on the main part of a branch of order k) > 0 . (23)

From (22), we get immediately that

Ψ′
n(the origin is at a y-coordinate devoted to branches of order k) =

1

3 · 2k
. (24)

Writing Ak for the event in (24), we get for n > k using a direct count of the bn

different horizontal translations available to Ψ′
n that

Ψ′
n(the origin is on the main part of a branch of order k |Ak)

=
bk

∏n−1
i=k qi

bn
=

bk

∏n−1
i=k qi

bk

∏n−1
i=k (qi + 1)

=

n−1
∏

i=k

qi

qi + 1
=

n−1
∏

i=k

(1 − 3−i) ,

where the second equality derives from the recursive definition (18). Multiplying by
(24) and sending n → ∞ gives

Ψ(the origin is on the main part of a branch of order k)

=
1

3 · 2k

∞
∏

i=k

(1 − 3−i) > 0 ,

so that the local structures do not disappear upon us in the limit.

4 Positive speed without the traps

In this section, we study what happens to the random walk in the modified percolation
process obtained by removing all the traps. To this end, write Ψ∗ for the probability

1In fact, it turns out that the limits exist without passing to a subsequence, both here and in
going from Ψ′′ to Ψ′, but we do not need this.
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measure on {open, closed}E corresponding to picking a percolation configuration ac-
cording to Ψ and then deleting all the traps. Similarly as in Theorem 1.1, we write
PΨ∗,β for the joint law of the percolation configuration chosen according to Ψ∗ and
the random walk {Zt}t≥0 with drift parameter β starting at the origin. Recall that
{0 ↔ ∞} denotes the event that the origin is in the infinite cluster of the percolation
configuration.

Proposition 4.1 For any β > 1 we have

lim
t→∞

Xt

t
=

β − 1

β + 1
PΨ∗,β-a.s. on the event {0 ↔ ∞} .

A first simplification for the proof of Proposition 4.1 is the following reduction, where
we write Bk for the event that the origin is on the main part of a branch of order k.

Lemma 4.1 Suppose for given β > 1 and θ ≥ 0 that

lim
t→∞

Xt

t
= θ PΨ∗,β-a.s. on the event B1 . (25)

Then, in fact,

lim
t→∞

Xt

t
= θ PΨ∗,β-a.s. on the event {0 ↔ ∞}. (26)

The same result holds with PΨ,β in place of PΨ∗,β.

Proof. Fix a probability distribution Q on Z
2 with full support, and pick z̃ = (x̃, ỹ) ∈

Z
2 according to Q. Given the percolation configuration chosen according to Ψ∗, run

two random walks {Zt}t≥0 = {(Xt, Yy)}t≥0 and {Z̃t}t≥0 = {(X̃t, Ỹt)}t≥0 starting at

the origin and at z̃, respectively, coupled as follows. Let {Z̃t}t≥0 run independently of

{Zt}t≥0 except that from the first time T that Z̃t hits the origin (if ever), Z̃t plagiarizes

the trajectory of Zt from then on, meaning that {Z̃T , Z̃T+1, . . .} = {Z0, Z1, . . .}. By
translation invariance of Ψ∗,

{Z̃t − z̃}t≥0 has the same distribution as {Zt}t≥0 . (27)

Define D = D1 ∩ D2 ∩ D3 where

D1 = {0 ↔ ∞} ∩

{

lim
t→∞

Xt

t
6= θ

}

,

D2 = {z̃ is on the main part of an order-1 branch} ,

and D3 = {T < ∞}. Assume for contradiction that (25) holds and that (26) fails.
Then D1 has positive probability, and it is easy too see that in that case, D =
D1 ∩ D2 ∩ D3 has positive probability too. On the event D we get that

lim
t→∞

X̃t − x̃

t
= lim

t→∞

Xt−T − x̃

t
= lim

t→∞

Xt

t
6= θ

which, in view of (27), contradicts (25). This concludes the argument for PΨ∗,β, and
the same argument goes through with PΨ,β in place of PΨ∗,β . 2

For the purpose of proving Proposition 4.1, we may (due to Lemma 4.1) assume that
the origin sits on the main part of a branch of order 1, and go on to analyze random
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walk from there. In this case, there is a unique self-avoiding path P in the percolation
configuration from the origin to infinity. This path goes through (parts of) the main
parts and the abutments of branches of increasing order 1, 2, 3, . . .. Write ak for the
x-coordinate of the abutment of the branch of order k in this path. For k ≥ 2, a crude
lower bound for ak, which follows directly from the construction, is

ak ≥ bk−1 = 4 · 3(k−1)(k−2)/2 . (28)

A couple of further lemmas will be convenient to isolate for the proof of Proposition
4.1.

Lemma 4.2 For any k and any vertex z which sits on the main part of a branch of
order k and which sits at least 3 · 2k−1 steps to the left of the corner point of that
branch, we have that the escape probability for the random walk starting from z is at
least

β − 1

2(3 + β)
.

Proof. We proceed electrically as in Section 2, attaching a resistance R(e) = β−x(e)

to each edge e of the percolation configuration, where x(e) is the largest x-coordinate
amongst the two endpoints of e. We recall from (8) that the escape probability from
a vertex z = (x, y) is given by

pesc(z) =



Reff (z,∞)
∑

{e: e∼z}

R(e)−1





−1

(29)

where the sum is over all edges e that are incident to vertex z. The sum in (29) is
bounded above by the sum

3βx + βx+1 , (30)

corresponding to the case where all four possbile edges incident to z are present in
the percolation configuration. The effective resistance from z to ∞ is simply the sum
of the resistances along the unique self-avoiding path from z to ∞. Counting only the
horizontal edges of this path would give simply the sum

∑∞
i=x+1 β−i. The point of the

choice of the bound 3 · 2k−1 in the lemma is that the set of vertical edges on the path
can be paired with a subset of the set of horizontal edges on the path, in such a way
that a vertical edge is always paired with a horizontal edge with smaller x-coordinate
and therefore larger resistance. Hence the set of vertical edges can contribute at most
as much as the set of horizontal edges to Reff (z,∞), so

Reff (z,∞) ≤ 2

∞
∑

i=x+1

β−i =
2β−x

β − 1
.

Plugging this bound and (30) into (29) gives

pesc(z) ≥

(

(3βx + β(x+1))
2β−x

β − 1

)−1

=
β − 1

2(3 + β)

as desired. 2
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Lemma 4.3 For any β > 1, there exists a constant C ′ = C ′
β independent of k, such

that

(a) a random walk taking a step to the left from a corner point of a branch of order
k has an expected time until return to the corner point which is at most C ′

β , and

(b) a random walk taking a step into a branch of order k from its root has an expected
return time to the root which is at most

3 · 2k + C ′
β .

Proof. Imagine random walk with bias β on a finite connected subgraph G̃ = (Ṽ , Ẽ)
of the square lattice. This can be described as a finite-state Markov chain with a
unique stationary distribution, where it is easily checked that each vertex v ∈ Ṽ
receives a probability π(v) proportional to the sum

∑

e∼v

R(e)−1 (31)

of inverse edge resistances (defined in the same way as in the proof of Lemma 4.2)
among edges incident to v. Define R−1(v) as the sum in (31). Standing at a given
v ∈ Ṽ , the expected return time to v is

π(v)−1 =
1

R−1(v)

∑

w∈Ṽ

R−1(w) . (32)

For a vertex z = (x, y), we have that

R−1(z) ≤ 3βx + βx+1 . (33)

For our percolation process, formula (32) applies when the random walk leaves a
vertex v to enter a finite region of the percolation configuration cut of from v from
the rest of the configuration. Applying this when z = (x, y) is a corner point of a
branch of order k, we have that the entire finite structure G̃ = (Ṽ , Ẽ) cut off by z is
contained in the cone

{z′ = (x′, y′) ∈ Z
2 : x′ ≤ x, y′ ∈ [y − (x − x′), y + (x − x′)]} . (34)

Summing (33) over this cone gives

∑

w∈Ṽ

R−1(w) ≤
∞
∑

i=0

(2i + 1)(3βx−i + βx−i+1) .

Furthermore, the R−1 value of the corner point itself is R−1(z) = 2βx. Plugging these
observations into (32) yields that the expected return time to z is bounded by

1

2βx

∞
∑

i=0

(2i + 1)(3βx−i + βx−i+1) =
3 + β

2

∞
∑

i=0

(2i + 1)β−i < ∞ , (35)

so part (a) of the lemma is established with C ′
β equal to the right-hand side in (35).
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Part (b) follows similarly, the only difference being that in the sum in (32) we have
to take into account the additional 3 · 2k−1 vertices in the abutment, each of which
contributes an amount 2βx to the sum. 2

Proof of Proposition 4.1. To establish that limt→∞
Xt

t = β−1
β+1 , it suffices to show

that

lim
x→∞

U(x)

x
=

β + 1

β − 1
(36)

where, similarly as in the proof of Proposition 2.1, we define U(x) as the time of first
arrival at x-coordinate x:

U(x) = min{t : Xt = x} .

As a means towards estimating U(x) well enough to establish (36), we decompose it
as

U(x) = U ′(x) + U ′′(x)

where U ′(x) is the time spent on the path P to infinity before hitting x-coordinate
x, and U ′′(x) is the time spent outside the path P before first hitting x-coordinate x.
Our plan is to establish

lim
x→∞

U ′(x)

x
=

β + 1

β − 1
a.s. (37)

and

lim
x→∞

U ′′(x)

x
= 0 a.s. (38)

Together, (37) and (38) will of course imply (36).
We begin with (37). Note that for the purpose of studying U ′(x) we may simply

pretend that paths other than P do not exist. Now, if P had no abutments and instead
consisted of a single straight path along the x-axis, (37) would follow immediately
from the strong law of large numbers. Furthermore, it is esay to see that {U ′(x)}x≥1

stochastically dominates the corresponding process in such an ideal scenario. Hence

lim
x→∞

U ′(x)

x
≥

β + 1

β − 1
. (39)

To strengthen this to an equality, we need to show that the delay caused by abutments
is small. More precisely, define S(k) as the time spent on the abutment of order k in
P , plus the time spent on P to the left of this abutment after first having visited its
corner point. The inequality (39) is strengthened to the equality (37) if we can show
that

lim
x→∞

1

x

∑

{k:ak≤x}

S(k) = 0 a.s.

which is equivalent to

lim
k→∞

1

ak

k
∑

j=1

S(j) = 0 a.s. (40)

We go on to estimate E[S(k)]. On the abutment itself, the random walk behaves like
simple random walk, and it is a standard fact that the expected time on it until first
hitting the root point equals its length squared, i.e., (3 ·2k−1)2. During this walk, the
expected number of returns to the corner point is linear in the length 3 · 2k−1, and to
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each such return corresponds a geometric number with mean 1 of excursions to the
left of the corner point, so that the expected total number of such excursions is again
linear in the abutment’s length. Lemma 4.3 (a) ensures that the expected duration
of such an excursion is bounded uniformly in k. Furthermore, Lemma 4.2 ensures
that once the walk has reached the root point, the number of times it goes back
into the abutment again is dominated by a geometric variable with mean ( β−1

2(3+β) )
−1,

and Lemma 4.3 (b) ensures that each such excursion has expected duration at most
3 ·2k +C ′

β . Summing up the contributions to S(k), we get that there exists a constant
C = Cβ independent of k such that

E[S(k)] ≤ Cβ22k .

Taking expectation in the left-hand side of (40) and plugging in (28) gives

E





1

ak

k
∑

j=1

S(j)



 ≤
1

4 · 3(k−1)(k−2)/2

k
∑

j=1

E[S(j)]

≤
Cβ

4 · 3(k−1)(k−2)/2

k
∑

j=1

22j

≤
Cβk22k

4 · 3(k−1)(k−2)/2
.

Markov’s inequality gives, for any ε > 0, that

P





1

ak

k
∑

j=1

S(j) ≥ ε



 ≤
Cβk22k

4 · 3(k−1)(k−2)/2ε

which decays to 0 exponentially fast as k → ∞, so Borel–Cantelli gives (40). Hence,
(37) is established, and it only remains to prove (38).

For k ≥ 2, define Wk as the total time spent in parts of the percolation configura-
tion away from P that attach to P in the part of P that belongs to a branch of order
k. Regions contributing to Wk are of two kinds, namely,

(i) branches of order k − 1 (together with their respective subbranches), and

(ii) the section not contained in P of the branch of order k itself.

There are at most 2qk = 2(3k − 1) branches of order k − 1 contributing to Wk. By
Lemma 4.2, the expected number of times that each such branch is visited is at most
( β−1
2(3+β))

−1, and by Lemma 4.3 (b) the expected duration of each such visit is at most

3 · 2k + C ′
β . Hence, the contribution from (i) to E[Wk] is at most

2(3k − 1)

(

β − 1

2(3 + β)

)−1

(3 · 2k + C ′
β) .

The contribution from (ii) is obtained by multiplying the expected number of visits to
the section in question, by the expected duration of each visit; the former is bounded
by ( β−1

2(3+β))
−1 due to Lemma 4.2, and the latter is bounded by C ′

β by arguing as in

the proof of Lemma 4.3 (a). Summing the contributions from (i) and (ii) gives

E[Wk] ≤

(

β − 1

2(3 + β)

)−1
(

2(3k − 1)(3 · 2k + C ′
β) + C ′

β

)

.
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For k ≥ 3 and with ak as in (28), we get

E

[

W2 + W3 + · · · + Wk

ak−1

]

≤
1

4 · 3(k−2)(k−3)/2

k
∑

j=2

(

β − 1

2(3 + β)

)−1
(

2(3j − 1)(3 · 2j + C ′
β) + C ′

β

)

≤
k − 1

4 · 3(k−2)(k−3)/2

(

β − 1

2(3 + β)

)−1
(

2(3k − 1)(3 · 2k + C ′
β) + C ′

β

)

which tends to 0 exponentially fast in k. Hence, by Markov’s inequality and Borel–
Cantelli, a.s. (W2 + · · ·+ Wk)/ak−1 will exceed any given ε > 0 at most finitely many
times. In other words, we have a.s. that

lim
k→∞

W2 + W3 + · · · + Wk

ak−1
= 0 . (41)

Now, it is easy to see that U ′′(x)
x ≤ W2+W3+···+Wk′

ak′
−1

where k′ is the smallest k such

that ak ≥ x. Hence (41) implies the desired (38), so the proof is complete. 2

5 Main construction: positive speed regime

We are almost ready to switch from considering the modified percolation configuration
gotten from Ψ∗, to the full percolation configuration, including traps, obtained from
Ψ. But before taking the full step we make an intermediate stop at the probability
measure Ψ∗∗ on {open, closed}E corresponding to picking a configuration according
to Ψ and then deleting all traps situated directly on the path P from 0 to ∞, but
leaving all other traps undeleted. We have the following variation of Proposition 4.1.

Proposition 5.1 For any β > 1 we have

lim
t→∞

Xt

t
=

β − 1

β + 1
PΨ∗∗,β-a.s. on the event {0 ↔ ∞} .

Proof. The proof of Proposition 4.1 translates verbatim to this case. The crucial
point to note is that the estimates in Lemma 4.3 for the time spent in branches outside
of P are still valid when traps are added, because any trap added to such a branch
(or any of its subbranches) will be contained in the cone (34). 2

In this section we consider the large drift regime β > βc. In view of Proposition
5.1, all we need to keep track of is the time spent in the traps directly attached to
the path P . The trap attached to the order-k branch part of P will henceforth be
called trap number k. We go on to consider random walk on the full percolation
configuration obtained from Ψ. Define U ′′′(x) as the time spent in traps directly
attached to the path P before first hitting x-coordinate x. By reasoning similarly as
in the decomposition of U(x) at the beginning of the proof of Proposition 4.1, what
we need to show is that a.s.

lim
x→∞

U ′′′(x)

x
= 0 . (42)

Analogously to the notation in Section 2, we write (for k ≥ 2 and i ≥ 1) Tk,i for the
time spent in the trap attached to the order-k branch (trap number k, for short) in
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P during the i’th visit to this trap; if i exceeds the number of visits to the trap, we
set Tk,i = 0. We also define the total time spent in the trap

Tk,tot =

∞
∑

i=1

Tk,i .

Still following Section 2, we define

T ∗
k,i =

{

0 if the walk hits the trap’s core during this visit
Tk,i otherwise,

and T ∗
k,tot =

∑∞
i=1 T ∗

k,i.

Proof of Theorem 1.1, case β > βc. By Lemma 4.1, we may assume that the
origin sits on a branch of order 1. We begin by noting that

U ′′′(x)

x
≤

1

ak′−1

k′

∑

j=2

Tj,tot

where k′ is the smallest k such that ak ≥ x. Hence, to establish the desired (42), it
suffices to show that a.s.

lim
k→∞

1

ak−1

k
∑

j=2

Tj,tot = 0 . (43)

Next, we note that the expected number of times that trap number k is visited is at
most ( β−1

2(3+β) )
−1 due to Lemma 4.2. In combination with Lemma 2.3, this gives

E[T ∗
j,tot] ≤

(

β − 1

2(3 + β)

)−1(
2β − 1

β − 1

)

and, using (28),

E





1

ak−1

k
∑

j=2

T ∗
j,tot



 ≤
k
(

β−1
2(3+β)

)−1 (
2β−1
β−1

)

4 · 3(k−1)(k−2)/2

which decays to 0 (faster than) exponentially as k → ∞. This allows us to exploit
the familiar combination of Markov’s inequality and Borel–Cantelli: for any ε > 0 the
probability that 1

ak−1

∑k
j=2 T ∗

j,tot exceeds ε is summable over k, so that a.s.

lim
k→∞

1

ak−1

k
∑

j=2

T ∗
j,tot = 0 . (44)

This will imply the desired (43) as soon as we can establish that Tj,tot > T ∗
j,tot for at

most finitely many j. For this we proceed as in the proof of Proposition 2.1: Lemma
2.1 tells us that each time the walk enters trap number j, it has probability β−1

βej+1+β−2

of hitting the core. Using again that the expected number of visits to the trap is at
most ( β−1

2(3+β) )
−1, we get that

P[Tj,tot > T ∗
j,tot] ≤

(

β − 1

2(3 + β)

)−1(
β − 1

βej+1 + β − 2

)

. (45)
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The choice (21) of ej gives ej ≥ log j
log βc

, so that the estimate (45) may be further
bounded as

P[Tj,tot > T ∗
j,tot] ≤

(

β − 1

2(3 + β)

)−1(
β − 1

βej+1 + β − 2

)

≤

(

β − 1

2(3 + β)

)−1
(

β − 1

β
log j
log βc

+1 + β − 2

)

=

(

β − 1

2(3 + β)

)−1
(

β − 1

j
log β
log βc

+1 + β − 2

)

.

The assumption β > βc makes the last expression summable over j. Hence

∞
∑

j=2

P[Tj,tot > T ∗
j,tot] < ∞

so that by using Borel–Cantelli yet again we get a.s. that Tj,tot > T ∗
j,tot for at most

finitely many j. This takes us from the already-established (44) to the desired (43),
and we are done. 2

6 Main construction: zero speed regime

Having established, in the previous section, the β > βc part of Theorem 1.1, it only
remains to prove the β < βc part.

Proof of Theorem 1.1, case β < βc. As usual, we assume (without loss of gener-
ality due to Lemma 4.1) that the origin sits on a branch of order 1. We need to show
that for β < βc we have a.s. limt→∞

Xt

t = 0. For this it is enough to show that a.s.

lim
x→∞

U(x)

x
= ∞ (46)

where, as before, U(x) is the time of first arrival to x-coordinate x. To this end, we
proceed as in the last part of the proof of Proposition 2.1, writing Ak for the event
that the first time the random walk reaches the anchor of trap number k, it enters the

trap and spends at least time βck = β3(k−1)(k−2)/2

there. Furthermore, defining Wi

as the number of events happening amongst A2i−1+1, A2i−1+2, . . . , A2i (recall (15)),
we get using the same estimates as those leading up to (16) that P(Wi = 0) decays
exponentially in i. Hence, Borel–Cantelli tells us that a.s.

Wi > 0 for all but at most finitely many i . (47)

Write xi for the (random) x-coordinate at which trap number 2i attaches to the path

P , and note that xi does not exceed b2i = 4 · 32i(2i−1)/2. We have on the event
{Wi > 0} that

U(x) > β32i−1(2i−1
−1)/2

for all x > xi

and consequently that

U(x)

x
≥

1

xi+1
β32i−1(2i−1

−1)/2

≥
β32i−1(2i−1

−1)/2

4 · 32i+1(2i+1−1)/2
(48)
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for all x ∈ [xi, xi+1]. This bound tends to ∞ as i → ∞. Using (47), we thus get (46),
so the proof is complete. 2
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