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Abstract 

Null hypothesis significance testing (NHST) provides an important statistical toolbox, but there are a number of ways in 

which it is often abused and misinterpreted, with bad consequences for the reliability and progress of science. Parts of 

contemporary NHST debate, especially in the psychological sciences, is reviewed, and a suggestion is made that a new 

distinction between strongly, weakly and very weakly anti-NHST positions is likely to bring added clarity to the debate.    

 

1. Introduction 

While the human cognitive machinery is impressive in many ways, it has limitations and biases that hamper our 

ability to spontaneously do good science. Examples of such biases are (a) our tendency in many situations 

towards overconfidence in our beliefs, and (b) an overly trigger-happy pattern detection mechanism that tends 

to see patterns in what is actually just noise; see, e.g., Häggström (2013). This necessitates the use of rigorous 

statistical methods to circumvent these biases. The most widely used of these, from the 20th century and 

onwards, is so-called frequentist statistics, of which null hypothesis significance testing (NHST) forms a central 

part; see Salsburg (2001) for a reasonably balanced history. NHST has, however, come under some fire in 

recent years from critics who claim that its practice suffers from major problems. And indeed, there are 

problems, but that does not make all criticisms correct. In this paper, I will try to add some much needed 

nuance to the discussion, to distinguish various strands of the anti-NHST view, and to evaluate their merits. The 

main focus will be on the practice of NHST in psychology and related sciences. My eventual verdict will be that, 

on one hand, we cannot do without NHST in our statistical toolbox – a position that implies that the fiercest 

critics of NHST who want to abolish the practice altogether go too far – while, on the other hand, there are 

features of contemporary NHST practice that need to change.  

This paper is organized as follows. At the end of this introductory section I will recall basic NHST terminology. 

Section 2 is a quick tour through some of the main malpractices that haunts present-day NHST practice. In 

Section 3, I comment on the positions of a few of the most influential contributors to contemporary NHST 

debate. The reader will come out of that section with the (correct) impression that the debate is multifaceted 

and somewhat chaotic. In Section 4 I offer an attempt at providing a least a bit of structure to the debate 

through a distinction between different strands of anti-NHST position; I believe that if everyone who identifies 

themselves as anti-NHST would make an effort to clarify their own stance with respect to my classification, 

then the clarity of the debate as a whole would improve nontrivially. The reason for this is explained in Section 

5, where I also offer some further conclusions regarding what ought to be done in order to improve statistical 

practice and science as a whole.  

There is no need here for a mathematically fully precise treatment of NHST, but we do need the basic 

terminology. Statistical hypothesis testing is always relative to some null hypothesis, which typically states that 

some effect or some parameter is zero. Given the data, the p-value can loosely be defined as what the 

probability would be of getting at least as extreme data as those we actually got, if the null hypothesis were 

true. The looseness of this definition comes from the fuzziness of the term ``extreme´´, which actually needs to 

be carefully defined before analyzing the data. The standard so-called Fisherian definition gives much flexibility 

about defining ``extreme´´, whereas the other classical approach – that of Neyman and Pearson – requires the 

specification of an alternative hypothesis, and defining ``extreme´´ so as to maximize power (see below) with 

respect to that alternative hypothesis. See, e.g., Lehmann and Romano (2008) for a more careful discussion. 

If the p-value ends up below a given threshold – which is called the significance level and which (mostly for 

historical reasons) is most commonly taken to be 0.05 – then statistical significance is declared, which is 

typically considered to provide (at least some) reason for suspecting that the null hypothesis is false. For a 



given significance level, the power of a testing procedure is a function of the effect size (or, more generally, of 

the precise choice of alternative hypothesis), and it is defined as the probability of obtaining statistical 

significance under that effect size. 

A (Fisherian) 95% confidence interval -- or, more generally, confidence set – for a parameter ρ is the set of all r 

such that, with the given data, testing the null hypothesis ρ=r would not yield statistical significance at level 1-

0.95=0.05. This guarantees, regardless of the true value of ρ (but provided all other model assumptions are 

true), that the probability of getting data that yields a confidence interval that includes the true ρ is at least 

0.95. The concept generalizes in the obvious way to confidence intervals with confidence levels other than 

95%.  

2. Not all is well 

It is hard to imagine how 20th and early 21st century science could have done without the NHST machinery, and 

I will argue later in this paper that we still need it. It must, however, be admitted that current NHST practice 

suffers from a number of endemic problems. The following are amongst the most detrimental. 

(a) Any Statistics 101 class teaches that obtaining statistical significance does not constitute disproof of the null 

hypothesis, and likewise that failure to obtain statistical significance does not constitute proof of the null 

hypothesis. Nevertheless misconceptions to the contrary are often implicit, and sometimes even quite explicit, 

in statements made by highly qualified researchers, including Harvard professors such as Mitchell (2014) who 

believes that p<0.05 does the same thing to his null hypothesis that an observation of a black swan does to the 

all-swans-are-white hypothesis; see also Häggström (2014b).   

(b) The fallacy of the transposed conditional. Despite wide-spread claims to the contrary, a p-value cannot be 

interpreted as the probability that the null hypothesis is true. To do so is an example of mistaking a statement 

about the probability of certain kinds of data given the null hypothesis for a statement about the probability of 

the null hypothesis given the data, which in turn is an example of the fallacy of the transposed conditional: 

confusing P(A|B) with P(B|A), which can lead to arbitrarily misleading conclusions.   

Likewise, in a situation where a 95% confidence interval has been calculated, it may be tempting to conclude 

that the true parameter value sits in that interval with probability 0.95, but again this would be to commit the 

fallacy of the transposed conditional; see Morey et al. (2015) for extensive discussion of this instance of the 

fallacy. 

There is a much-employed but highly unfortunate terminological convention in the use of the word ``likely´´, 

which I believe contributes to the confusion. Consider the case of statistician Yudi Pawitan’s influential book In 

All Likelihood. Discussing an experiment where a coin with unknown heads-probability 𝜃 is tossed 10 times, 

resulting in 8 heads, he writes that we are in a position to conclude that 𝜃 ``is very unlikely to be very small´´, 

and that in contrast ``𝜃=0.6 or 𝜃=0.7 is likely´´ (Pawitan, 2001, p 21). Since, in ordinary English, ``likely’’ is 

synonymous to ``having high probability´´, this very much looks like a case of the fallacy of the transposed 

conditional. Pawitan, however, is much too sophisticated a statistical thinker to make that mistake; what he 

does is that he implicitly defines the statement ``𝜃=0.7 is likely´´ to mean that the likelihood function L(𝜃) – 

defined as the probability of the obtained data provided the parameter value is 𝜃 – takes a large value for 

𝜃=0.7. For another example, we may note that the same language appears in a recent column by the president 

of the Association for Psychological Science: 

The information that the binomial likelihood function conveys is extremely intuitive. It says that 

given that we have observed 7 successes in 10 tries, the probability parameter of the binomial 

distribution from which we are drawing […] is very unlikely to be 0.1; it is much more likely to 

be 0.7, but a value of 0.5 is by no means unlikely. (Gallistel, 2015) 

It is difficult or impossible for the reader, confronted with a passage like this one, to judge whether the author 

is under the spell of the fallacy of the transposed conditional, or if he is merely adhering to the same 

unfortunate terminological convention as Pawitan. In any case, the chosen language invites confusion and 

almost begs statistically unsophisticated readers to commit the fallacy of the transposed conditional. 



(c) If a study shows a statistically significant effect of, say, a medical treatment compared to placebo, on one 

group such as men, but no statistically significant effect on another group such as women, then it may be 

tempting to conclude that the data exhibits a statistically significant difference between the treatment’s effects 

on the two groups. However, such a conclusion is unwarranted; a separate test of the difference is needed. A 

study by Nieuwenhuis et al. (2011), scrutinizing the statistical analyses in neurobiology papers in a range of top 

journals, found that in 79 of the papers, precisely this mistake was made – while in 78 of them the correct 

procedure was carried out. 

(d) Sizeless science. Consider a clinical trial comparing a new treatment to placebo, and suppose that the true 

fact of the matter is that the treatment does have a positive effect compared to placebo, but that the effect is 

too small to be of any practical relevance to patients’ health or well-being. If the sample size of the study is 

sufficiently large, it is nevertheless likely that statistical significance will be obtained. This illustrates the need 

for considering not only statistical significance, but also what we might call subject-matter significance, 

meaning that the observed effect is large enough to be of subject-matter interest. Ziliak and McCloskey (2008) 

scrutinized 369 papers involving regression analysis in the prestigious journal American Economic Review, and 

found that 276 of them committed sizeless science – that is, nearly three quarters of the papers. 

(e) Failure to account for multiple testing. Consider the case of Bygren et al. (2014) who reported that (quoting 

the title of their paper) ``change in paternal grandmothers’ early food supply influenced cardiovascular 

mortality of the female grandchildren´´, which sounds like a rather sensational result in epigenetics. The 

reported p-value is 0 .016, but a closer look at the paper reveals that the authors tested a total of 24 

combinations of food supply pattern, maternal vs paternal grandmothers and grandparents, and sex of 

grandchildren. Under the null hypothesis of no influence or correlation of the kind looked for, this would on 

average (i.e., in the long run, with repeated experiments) produce 24*0.05=1.2 statistically significant 

outcomes at level 0.05, and 24*0.016=0.384 outcomes with p-value at most 0.016. Getting one such p-value is 

not much of a surprise under the null hypothesis, and thus cannot count as much evidence against the null 

hypothesis. What the authors of the study failed to do was to account for the multiple testing using some of 

the standard statistical procedure for that purpose (see, e.g., Bretz, Hothorn and Westfall, 2011). The simplest 

method (so called Bonferroni correction) is just to multiply the smallest p-value by the number of tests, giving a 

corrected p-value of 0.384 – nothing to write home about, and none of the fancier procedures will change that. 

There is nothing unique or uncommon about the Bygren et al. (2014) failure to account for multiple testing, but 

it is bad practice nevertheless, and a case which, due to the naïve press coverage it received, happened to 

attract my attention (Häggström, 2014a). 

A very common special case of failure to account for multiple testing arises when both positive and negative 

values of a parameter ρ are possible, and the null hypothesis is that ρ=0. Unless there is good reason to expect 

a nonzero parameter to be in a certain direction (positive or negative) one should normally carry out a so-called 

two-sided test, which takes the possibilities of both ρ<0 and ρ>0 equally into account. If there is good reason to 

expect ρ<0 rather than ρ>0, a one-sided test can be decided on beforehand, but the cheap trick to first look at 

the data and then decide on the direction of the one-sided test to get the best p-value is incorrect; in effect, 

such a procedure is two-sided but produces a better (half as large) p-value than the correct two-sided 

procedure. Ruthless (or naïve) researchers can do this and then produce an ad hoc explanation for why the 

chosen direction was to be expected before the data was collected and analyzed. Doing so can be seen as a 

special case of the next malpractice.  

(f) Publication bias. A variant of the multiple testing malpractice (e) is the phenomenon that statistically 

significant outcomes are more likely to be published than those that are not. This produces a bias in the 

literature in favor of statistically significant results. Evidence suggest that the effect is substantial; see, e.g., 

Decullier et al. (2005) and Fanelli (2010, 2012). This is arguably an even worse phenomenon than (e), where the 

tests that are unaccounted for in the final statistical analysis are at least reported, making it possible for other 

researchers to do a more careful analysis. This is not so readily done when the statistically non-significant 

results do not even appear in the literature, and this causes severe difficulties in, e.g., doing meta-studies to 

evaluate the totality of evidence on some scientific problem.  



(g) Replication crisis. As a consequence of many or perhaps all of the above misconceptions and malpractices 

(a)-(f), much of science seems to be in a situation which has been described as a replication crisis: a large 

proportion of published statistically significant findings resist replication. Ioannidis (2005) gave an influential 

study of this phenomenon, and the problem has also received attention in popular press (Lehrer, 2010). 

Recently, the severity of the phenomenon in the psychology literature was demonstrated in an ambitious 

collaborative effort emphasizing effect sizes: in 100 replicated studies, the mean effect size in the replications 

was just under half of that in the original studies, and only 39% of the replications gave confidence intervals 

containing the estimated effect size of the original study (Open Science Collaboration, 2015). 

3. Some highlights from the debate 

During large parts of the 20th century, intense debate took place within the statistics community between on 

one hand defenders of NHST and other methods in frequentist statistics, and on the other hand advocates of 

Bayesian statistics. I shall refrain from discussing this history (but see Salsburg, 2001) and instead focus on how 

researchers in a wide range of applied fields have increasingly begun to highlight their dissatisfaction with 

NHST practice. Researchers in psychology and related sciences have been especially active in this discourse. 

Carver (1978) and Cohen (1994) are two relatively early examples, both of them pointing out several of the 

misconceptions and malpractices discussed in Section 2, plus a few others.  

3.1. Cumming. Particularly influential in the NHST debate among psychologists today is Geoff Cumming, who 

advocates, in papers, op-eds, instructional videos and a textbook, that reporting p-values and statistical 

significance should be abolished in favor of reporting confidence intervals, which he argues to be much more 

informative; see, e.g., Cumming (2009, 2012a, 2012b, 2014). For concreteness, let me zoom in on his 2009 

YouTube video which is a bit of a pedagogical masterpiece, using a simple computer simulation experiment to 

demonstrate beautifully the superiority, in a particular setting, of representing the results in terms of 

confidence intervals as opposed to p-values. The chosen setting is a comparison of a single trait between two 

groups, with sample size 32 in each group. Within each group, the trait is normally distributed with the same 

variance but possibly different means, and the task is to say something interesting and informative about the 

difference. Cumming demonstrates that if the true difference between the means is exactly half of the within-

group standard deviation (i.e., the standardized effect size known as Cohen’s d equals 0.5), then p-values give 

very little interesting information about this true difference, while confidence intervals perform better in this 

respect. I am reasonably convinced that this is so in the chosen setting, but I believe the generalizability to 

other settings is rather less than the video might lead one to think, in at least three ways. 

First, in his example, Cumming chose to pick a combination of sample size and effect size in such a way as to 

make the power, with respect to significance level 0.05, close to one half (0.52). This maximizes, in a sense, the 

noise level of the sequence of statistical significances and non-significances in repeated replications of 

experiments (in more precise mathematical language, it maximizes the entropy of the distribution of the 

indicator function of statistical significance). With either a much smaller (or zero) effect size, or a much larger 

one, ``replicability´´ (in Cumming’s somewhat inept terminology) of statistical significance becomes much 

better. It is mathematically obvious that an effect size can be chosen that produces a borderline case as to 

whether the experiment tends to produce statistical significance or non-significance. With this in mind, the 

take-home message from Cumming’s video is not so much that p-values and statistical significance are useless 

concepts, but more that power 0.52 at the effect sizes one is looking for (i.e., effect sizes large enough to be of 

subject-matter interest, yet small enough that one can plausibly hope that they exist) is a way too modest level 

of power, so a larger sample size ought to be used. Of course I realize that there are costs to increasing sample 

size, and Cumming describes his chosen combination of sample size and effect size to be typical of 

experimental studies in psychology, but if this is the case, then it is probably a good idea that researchers in 

psychology reconsider their priorities and aim for fewer studies but with larger sample size.  

Second, Cumming argues that the confidence intervals in his simulation are intuitively self-explanatory in the 

sense of having the property that the width of the intervals provide a good indication of how much their 

location is likely to vary from one replication to another. This is true, but it is an artefact of choosing the 

confidence level equal or close to 1-0.05=0.95. With a higher confidence level, the same heuristic will 



overestimate the variation in location, while with a lower confidence level it yields an underestimate; this is 

because the centers of the intervals (and hence the amount of variation in their location) are independent of 

the confidence level, whereas the interval width increases with increasing confidence level. So for Cumming’s 

argument here to serve as a guide to statistical practice, it will have to involve a continued or increased focus 

on the particular confidence level 0.95, which is tantamount to significance level 0.05. In Section 5 I will argue 

that the widespread obsession today with significance level 0.05 is a bad thing.   

Third, in the simple situation described by Cumming, calculating confidence intervals is just about as 

straightforward as obtaining p-values, but in general this is not the case. Computing a confidence interval, or 

more generally a confidence set, implicitly involves calculating p-values all of the (typically infinitely many) 

possible null hypotheses corresponding to different effect sizes. Sometimes, as in Cumming’s situation, this is 

doable in a single sweep, but in more complicated situations it can be intractable. And even in cases where it is 

computationally doable, the confidence set may turn out more complicated and less easy to interpret (or even 

to represent graphically) than just an interval, especially if we are dealing with not just a single effect 

parameter, but with multiple parameters. So even if Cumming’s recommendation to abandon p-values in favor 

of confidence intervals can be followed in a range of more-or-less standard situations, it seems infeasible to 

implement it across all statistical analyses in all sciences. 

3.2 The BASP declaration. Perhaps the most dramatic event so far in the NHST debate is the recent declaration 

by David Trafimov and Michael Marks, in an editorial in their journal Basic and Applied Social Psychology 

(BASP), that NHST methods, including confidence intervals, are ``invalid´´ and therefore banned from the 

journal (Trafimov and Marks, 2015). As an explanation for the judgement ``invalid´´, they offer this: 

Confidence intervals suffer from an inverse inference problem that is not very different from 
that suffered by the NHSTP [i.e., NHST procedure]. In the NHSTP, the problem is in traversing 
the distance from the probability of the finding, given the null hypothesis, to the probability of 
the null hypothesis, given the finding. Regarding confidence intervals, the problem is that, for 
example, a 95% confidence interval does not indicate that the parameter of interest has a 95% 
probability of being within the interval. Rather, it means merely that if an infinite number of 
samples were taken and confidence intervals computed, 95% of the confidence intervals would 
capture the population parameter. Analogous to how the NHSTP fails to provide the probability 
of the null hypothesis, which is needed to provide a strong case for rejecting it, confidence 
intervals do not provide a strong case for concluding that the population parameter of interest 
is likely to be within the stated interval. 

 
In short, they mean to say that use of NHST is tantamount to committing the fallacy of the transposed 
conditional (item (b) in Section 2 above). But, as all statistics professors teaching frequentist methods take 
great pains to explain, in lectures and in textbooks, the logic behind NHST is not the (faulty) logic of the fallacy 
of the transposed conditional, but instead the following, where I quote one of the pioneers of 20th century 
statistics, in a context where he has obtained, in an applied problem, a fairly low p-value of about 0.00003:  
 

The probability [...] is amply low enough to exclude at a high level of significance any theory 

involving [the null hypothesis]. The force with which such a conclusion is supported is logically 

that of the simple disjunction: Either an exceptionally rare chance has occurred, or [the null 

hypothesis] is not true. (Fisher 1956, p 39) 

In other words, the lower the obtained p-value is, the greater a coincidence we need to accept in order to 

explain away the data and hold on to the null hypothesis; eventually, as the evidence accumulates, doing so 

becomes untenable. In my view, this captures well the process of how science marches forward, and the logic 

is sound. Trafimow’s and Marks’ verdict, declaring NHST methods to be ``invalid´´, is based on a straw man 

argument, pretending that its logic is based on committing the fallacy of the transposed conditional. I will try to 

dig deeper into the Trafimow—Marks position in Section 4.  

3.3. Ziliak and McCloskey. As to contributions to the NHST debate from empirical sciences other than 

psychology and related fields, I think one of the most important is the book The Cult of Statistical Significance 

by economists Stephen Ziliak and Deirdre McCloskey (2008). With particular emphasis on sizeless science (item 



(d) in Section 2), they paint an ambitious and alarming image of the quality of statistical practice, mainly in their 

own discipline economics, while not entirely neglecting other disciplines such as psychology and medicine. The 

book is very strong on describing the problem, i.e. the prevalence of statistical malpractice, but it is distinctly 

weaker on suggesting a solution, and as I say in my review of the book in the Notices of the American 

Mathematical Society (Häggström, 2010): 

Sometimes the authors push their position a bit far, such as when they ask themselves: ``If null-

hypothesis significance testing is as idiotic as we and its other critics have so long believed, how 

on earth has it survived?´´ (p. 240). Granted, the single-minded focus on statistical significance 

that they label sizeless science is bad practice. Still, to throw out the use of significance tests 

would be a mistake, considering how often it is a crucial tool for concluding with confidence 

that what we see really is a pattern, as opposed to just noise. For a data set to provide 

reasonable evidence of an important deviation from the null hypothesis, we typically need both 

statistical and subject-matter significance. 

It is somewhat odd, but actually quite illustrative of the overly broad strokes that are characteristic not only of 

Ziliak’s and McCloskey’s writings but of much of the NHST debate more generally, that in a later contribution 

(Ziliak and McCloskey, 2010), they point specifically to my review as an example in support of their claim that 

``in several dozen journal reviews and in comments we have received, [no one] has tried to defend null 

hypothesis significance testing´´ – a  statement that is obviously falsified by the above passage from the review. 

4. A taxonomy of anti-NHST positions 

I wish that participants of the NHST debate expressing anti-NHST sentiments (including those cited in Section 3) 

would clearly state whether they wish to rule out as unscientific all arguments involving or building on 

calculation of p-values, or whether they merely want to ban explicit reference to such calculation in scientific 

papers. In other words, they ought to declare whether their position is strongly or weakly anti-NHST, in the 

terminology that I hereby propose. 

The strongly anti-NHST position: To calculate a p-value (i.e., the probability of getting data at least as extreme 

as those we actually got, under some well-specified statistical model) is a conceptual error and can never form 

part of a valid scientific argument. 

The weakly anti-NHST position: To calculate a p-value can sometimes form part of a valid scientific argument, 

but when that is the case it should be done in secrecy: scientific papers should never make explicit reference to 

p-values or to the derived notion of statistical significance. 

Of course, it is conceivable that someone who identifies herself as anti-NHST might find that neither strongly, 

nor weakly anti-NHST accurately captures her position, but in such cases, it is likely to be illuminating if she 

went on to explain wherein the mismatch lies.  

Cumming (2009, 2012a, 2012b, 2014) advocates the use of confidence intervals, as do (albeit to a lesser extent) 

Ziliak and McCloskey (2008), and since confidence intervals are derived from p-value calculations, these 

authors’ views do not match the strongly anti-NHST position. So their respective positions are at most weakly 

anti-NHST, but it remains to be heard whether they find the weakly anti-NHST position to be an accurate 

description of their respective views.  

The case of Trafimow and Marks (2014) is more difficult to interpret. While some of their rhetoric suggests the 

strongly anti-NHST position, the following passage is more suggestive of the weakly anti-NHST position: 

Will manuscripts with p-values be desk rejected automatically? […] No. If manuscripts pass the 

preliminary inspection, they will be sent out for review. But prior to publication, authors will 

have to remove all vestiges of the NHSTP (p-values, t-values, F-values, statements about 

``significant´´ differences or lack thereof, and so on). 

It may also be noted that as one of their preferred alternatives to NHST, they ``encourage the use of larger 

sample sizes than is typical in much psychology research, because as the sample size increases, descriptive 



statistics become increasingly stable and sampling error is less of a problem´´. This is noteworthy, because 

while their statement about the advantage of larger sample sizes is correct, calculation of hypothetical p-values 

is necessary in order to derive this monotonicity property and to work out how large a sample size will be 

needed to attain a desired level of precision. 

In my opinion, this last observation demonstrates the untenability of the strongly anti-NHST position. 

Apparently even Trafimow and Marks recognize that instability of statistical estimates and sampling error are a 

problem, but to embrace the strongly anti-NHST position would be to deprive ourselves of the ability to 

calculate how much of a problem it is, and how large a sample size we would need to bring the problem down 

to an acceptable level. (One of the referees suggested that one might be able to judge the sample size needed 

while remaining strongly anti-NHST by calculating standard deviations rather than p-values. But this overlooks 

the underlying reason why standard deviations are relevant for this. To go from a small standard deviation to a 

small probability of a highly misleading statistical estimate one needs to apply Chebyshev’s inequality. That 

step, which is so standard that it is usually left implicit, is precisely the bounding of a p-value.) 

On the other hand, the weakly anti-NHST position strikes me as unacceptable for other reasons. To accept a 

scientific methodology, but to require that it is kept secret, banning any mention of it in scientific publications, 

flies straight in the face of the transparency that is a cornerstone of good scientific method. 

To summarize, it seems that neither the strongly, nor the weakly anti-NHST position is acceptable. Well then, 

might there be some third strand of anti-NHST that makes better sense – perhaps one that accepts the need to 

calculate p-values as well as the principle of openness about the scientific arguments that are used, at the same 

time as it recognizes the need to act in ways to keep in check the various misuses and misinterpretations of 

NHST discussed in Section 2? Let me propose the following. 

The very weakly anti-NHST position: Giving only p-values and declarations of statistical significance, without 

further elaboration and explanation, is not an acceptable way to present the results of a scientific study. 

This is in fact a strand of anti-NHST sentiment that I can embrace. I do not claim any originality in taking on this 

position. On the contrary, I daresay it is held by virtually all professional statisticians. Note that not holding the 

very weakly anti-NHST position is tantamount to accepting the practice of sizeless science (item (d) in Section 

2). Since accepting that practice means accepting the scientific literature to be filled with reports of statistically 

significant findings without mentioning whether the observed effect sizes are large enough to matter, the very 

weakly anti-NHST position becomes pretty much obligatory for anyone with a reasonable sense of good 

scientific practice.   

5. What needs to be done 

That practitioners of statistical methods in a variety of applied disciplines have taken over much of the initiative 

from statisticians in the debate on how to do statistics is in my opinion a welcome development; a broad 

interest in these matters is likely to help the scientific community move forward on them. I only wish that 

fewer of these participants took on poorly grounded anti-NHST positions. 

In my humble opinion, statisticians still have a lot to contribute to these discussions, and it is therefore 

important that they take part. Without their participation, much of the body of knowledge of statistical 

inference accumulated during the 20th century and onwards risks getting lost. For instance, if the editors of 

BASP had had contact with professional statisticians, they would probably have been spared the 

embarrassment of banning NHST methods on the confused grounds that they did. Another case in point – less 

dramatic but nonetheless interesting – is the paper by cognitive scientist John Kruschke (2010), who advocates 

the abandonment of NHST methods, arguing that their violation of the so-called strong likelihood principle 

(SLP) is unacceptable. He does not use that terminology, however, being apparently unaware both of SLP being 

known at least since Savage (1962), and of the long controversy over SLP since then (see, e.g., Cox and Hinkley, 

1974, Barndorff-Nielsen, 1985, and Pawitan, 2001). I am sure his paper would have been much more 

interesting and useful to the scientific community if there had been statisticians around to inform him of this 

discourse so that he could have taken into account the arguments for and against SLP that have accumulated 

over the years, rather than trying to reinvent the discussion from scratch. 



One of the referees for this paper asked what role I hope the distinction proposed in Section 4 between 

strongly and weakly anti-NHST positions will play in the debate. I am a bit reluctant to give away my answer to 

this question, for reasons analogous to why one might not want to ruin a joke by explaining it, but all right, 

here it is: none. I do not expect or even hope to encounter future debates whose contestants have, for clarity, 

signed up for the strongly versus and weakly anti-NHST camp, respectively. Rather, my ambition is that anyone 

with an anti-NHST sentiment reading Section 4, will, faced with the strongly vs weakly anti-NHST distinction, 

realize that both positions are untenable, and therefore give up being anti-NHST altogether (or switch to the 

third option of being very weakly anti-NHST, which actually is not an anti-NHST position at all, but rather one 

about what constitutes good NHST practice). Once that is accomplished, there is no further need for the 

distinction.  

Besides the much-needed presence of statisticians in the debate over what constitutes good statistical practice, 

their presence is even more badly needed in the direct workings of applied sciences – in the actual research 

projects. Because, as I’ve argued in Section 4, NHST cannot be abandoned without seriously hurting science, 

and therefore the competence level among practitioners of statistical methods needs to improve, so as to 

avoid statistical pitfalls and malpractices such as those discussed in Section 2. This, I believe, requires both a 

better (qualitatively as well as quantitatively) statistics part of the undergraduate and graduate training in 

other disciplines, and an increased presence of statisticians in research projects in these disciplines. 

A particular point where I think an improved understanding among scientists would greatly benefit science 

itself is the interpretation of a statement like ``p<0.05´´. Suppose everyone understood that statistical 

significance on level 0.05 on its own is no more than (at most) the observation that data suggest that an effect 

may well be present, an observation that can be taken to warrant further study of the possible presence of the 

effect. If scientists in general understood this, then the low success rate of replication studies (item (g) in 

Section 2) might no longer deserve the term ``replication crisis´´, but would instead represent a reasonably 

healthy state of science. As things are today, ``p<0.05´´ is way too often taken to mean something like ``beyond 

reasonable doubt´´, or to serve as an excuse for cocksure statements such as the title of the Bygren (2014) 

paper that I quoted in item (e) of Section 2. For that kind of interpretation of statistical significance, way lower 

significance levels are needed – although at this point I am reluctant to give a number, because how low it is 

reasonable to go depends very much on the particulars of the problem, including how a priori plausible the 

existence of the searched-for effect seems to be. The p-value alluded to by Fisher (1956) in the passage quoted 

in Section 3.2 is about 0.00003 – which in some contexts I might consider small enough to state with a high 

degree of confidence that the null hypothesis is probably false, but certainly not in all. For instance, the Big 

Data revolution in areas like bioinformatics (see, e.g., Efron 2012) has led to routine experiments involving 

thousands or even millions of hypotheses to be tested simultaneously; in such situations, a raw p-value of 

0.00003, untouched by multiple inference analysis, does not even warrant a raised eyebrow.  

A more well-calibrated and realistic interpretation of the evidential value of statements like ``p<0.05´´ would 

likely (or at least should) come hand in hand with placing a higher value on replication studies. Unfortunately, 

today such studies are generally not held in high regard. The view of Mitchell (2014) is extreme (and utterly 

confused due to committing fallacy (a) of Section 2), but the dominant view in most empirical sciences today is 

depressingly similar to the one expressed by the anonymous professor in following anecdote, told by Richard 

Feynman in a commencement speech at Caltech in 1974: 

When I was at Cornell, I often talked to the people in the psychology department.  One of the 

students told me she wanted to do an experiment. […] It had been found by others that under 

certain circumstances, X, rats did something, A.  She was curious as to whether, if she changed 

the circumstances to Y, they would still do A.  So her proposal was to do the experiment under 

circumstances Y and see if they still did A. 

I explained to her that it was necessary first to repeat in her laboratory the experiment of the 

other person – to do it under condition X to see if she could also get result A, and then change 

to Y and see if A changed.  Then she would know that the real difference was the thing she 

thought she had under control. 



She was very delighted with this new idea, and went to her professor.  And his reply was, no, 

you cannot do that, because the experiment has already been done and you would be wasting 

time.  This was in about 1947 or so, and it seems to have been the general policy then to not 

try to repeat psychological experiments, but only to change the conditions and see what 

happens. (Feynman, 1985, p 344) 

That was in the 1940s, but the same contemptuous view of replication studies is still dominant. It is time we 

overcome it. 
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