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Leading game theorist Karl Sigmund calls his latest book The Calculus of

Selfishness, although arguably The Calculus of Cooperation would have been
an equally suitable title. The central problem is this: How can cooperation,
or even altruism, come about in a population of selfish individuals? We
see plenty of cooperation around us, most prominently in human societies
but also within other species and even between species. This is a bit of a
mystery, because such cooperation appears to be prohibited by Darwinian
survival of the fittest, which rewards those individuals who best look after
their self-interest. It is they who get to pass their genes (and presumably,
their behavior) on to later generations, as opposed to those who waste time
and resources helping others. What is going on here?

A prototype model, mimicking various real-world situations, is the Pris-

oner’s Dilemma. Here two individuals, denoted Player I and Player II,
simultaneously and independently decide on either of two moves: Cooper-
ate (C) or Defect (D). Each player is rewarded by an amount that depends
on both players’ moves, in such a way that, on one hand, no matter what
the other player does it is better for oneself to play D, whereas on the other
hand it is better for both players if both of them play C than if both of them
play D.

A special case is the Donation Game, which is used by Sigmund as an
example throughout much of the book. Here each player can choose to
donate $5 in order for the other player to receive $15 (C), or to refrain from
donating (D). Obviously it is better for both players if they both donate,
leaving each with a net benefit of $10, than if they both refrain, in which
case they get nothing. On the other hand, each player has the incentive to
save $5 by refraining, no matter what the other player does. Hence, it seems
that two self-interested players are doomed to both play D, thus missing out
on the $10 benefit that each of them might otherwise have acquired.

There are various ways to try to explain how the players might never-
theless come to play C. One approach, sometimes favored in evolutionary
biology, is kin selection. Helping a sibling can be in my interest – or rather
in the interest of my genes – because she shares 50% of them. From this
perspective, the $5 donation is a bargain, because the $15 that my sibling
receives is worth $7.50 to me.

Another approach, receiving more attention in Sigmund’s book, is re-
peated games. If you and I are set to play the Prisoner’s Dilemma many
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times, then it might start to look like a good idea for me to play C early
on, with the idea of building up a relation of trust in which you are more
inclined to play C in later rounds than you otherwise might have been (and
vice versa). The situation quickly becomes incomparably more complex
than in the single-round game, due partly to a combinatorial explosion in
the number of possible strategies.

Robert Axelrod’s classic 1984 book The Evolution of Cooperation, which
did much to popularize the subject and to stimulate further research, reports
on a fascinating experiment. He invited colleagues and others to submit
computer programs to play the iterated Prisoner’s Dilemma with each other.
After a first round-robin tournament, he published an analysis of the results
and opened invitations for another one.1 A wide variety of strategies were
submitted, but remarkably enough both tournaments were won by the same
very simple strategy, called Tit For Tat, which plays C in the first round,
and from then on simply copies what the opponent just did. Tit for Tat
is by no means a universal winner independently of the environment of co-
competitors – for instance, in his analysis of the first tournament Axelrod
gave an example of a variation of Tit for Tat that would have won (ahead of
Tit for Tat and all others) if only it had been submitted. Still, Tit For Tat
performs well under sufficiently wide conditions to merit the large amount of
attention it has received in the game theory literature, including Sigmund’s
book.

All this is an example of game theory, which can be described as decision
theory in the presence of other agents whose decisions affect how success-
ful your own decisions are (and vice versa). This is interesting both as a
mathematical topic in its own right, and for modeling in biology and in
economics. One of several aspects that contribute to game theory being a
fascinating subject is the multiplicity of methodologies involved. In current
research we find rigorous mathematical analysis, we find extensive computer
simulations, and we find experiments aimed at uncovering how real human
beings act in idealized game-theoretic situations. Sigmund concentrates on
mathematical analysis, but there is of course interesting interplay with the

1In this second tournament, he also adjusted for a flaw in the first one, namely that
the number of iterations of the games was fixed beforehand, at 200, opening up the
nightmare of backward induction: Clever contestants realize that they have no reason to
play anything other than D in the last round. It follows that they have no such reason
in round 199 either, and so on, seemingly leading rational players to defect from round
1. In the second tournament the number of rounds between each pair of contestants
was announced to be random – more specifically, geometrically distributed with a given
expectation.
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other approaches, which he does not ignore.
Of particular interest is evolutionary game theory, where one imagines

a large population of agents playing with each other, and where the fre-
quency of a given strategy in the population changes depending on how
successful it is. With a symmetric game with n possible strategies, let A

be the payoff matrix of dimension n × n, where Aij denotes Player I:s pay-
off if he plays strategy i and Player II plays strategy j. Furthermore let
xi(t) denote the frequency at time t of strategy i in the population, and
x(t) = (x1(t), . . . , xn(t)). The so-called replicator equation prescribes that
the rate of relative change of xi(t) equals the success of a player with strategy
i in the population minus the average success in the population:

x′

i(t) = xi(t)[(Ax(t)i) − x(t) · Ax(t)]

for i = 1, . . . , n. In biological applications, we may think of this as describing
the change of gene frequencies in the population resulting from Darwinian
selection, whereas in economics it may be more natural to think of it as re-
sulting from agents imitating the behavior of other, more successful, agents.

The replicator equation leads to fascinating and not-so-easy-to-guess dy-
namics even in seemingly simple situations. An important notion here is
that of rest points, i.e., population compositions such that x′

i(t) = 0 for
i = 1, . . . , n. A central question is whether they are stable under perturba-
tions. Rest points are closely related (but not quite equivalent) to so-called
Nash equilibria. The bulk of Sigmund’s book consists of analyses of the
replicator dynamics in various situations.

One example is the iterated Prisoner’s Dilemma which, under reason-
able conditions, can be represented as a single game and plugged into the
replicator equation. There are infinitely many possible strategies for this
game, and we need to focus on a finite collection of them. Already with
three simple strategies – Tit For Tat (TFT), Always Cooperate (AC), and
Always Defect (AD) – the dynamics becomes fairly intricate. If only TFT
and AC are present in the population, everyone will cooperate forever, and
the two kinds of agents will look the same to the outside observer. Intro-
ducing a noise term in the dynamics, allowing TFT and AC to mutate into
each other, causes the frequencies of the two strategies to diffuse back and
forth. What if we also introduce another mutation term, allowing occasional
attempts by AD to invade the population? If, at the time of an invasion
attempt, the population is dominated by AC, then AD will be able to ex-
ploit AC and quickly take over the entire population. On the other hand, if
it is dominated by TFT, then AD will fail and be eliminated, at the same

3



time as the proportion of TFT will increase at the cost of AC. This has the
interesting consequence that, starting from a population dominated by TFT
plus a smaller proportion of AC, AD will have a very hard time to invade if
the mutation rate in its favor is too high, because every time it attempts to
invade the proportion of TFT will go up, making the next attempt even less
likely to succeed. Only if invasion attempts come more rarely, so that the
TFT vs AC proportion has time to diffuse towards a significantly greater
proportion of AC between invasion attempts, does AD have a chance to
succeed in taking over the population reasonably quickly.

There are many natural ways to vary this situation. Introducing an er-
ror term in the players’ choices (so that they sometimes make a different
move than intended) can alter the dynamics drastically, and tends to dis-
favor Tit For Tat. Another option, particularly popular in recent years, is
the study of indirect reciprocity (as opposed to the direct reciprocity of Tit
For Tat in the iterated Prisoner’s Dilemma), where two agents meet only
once, but can nevertheless adjust their moves depending on what has taken
place before. This can be surprisingly effective, provided the agents apply
vicarious reciprocity (Player I cooperates with Player II depending on how
Player II has previously behaved towards third parties) rather than the psy-
chologically tempting misguided reciprocity (Player I cooperates with Player
II depending on how Player I himself has previously been treated by third
parties).

Yet another variation treated by Sigmund is a multi-player generalization
of the Prisoner’s Dilemma, sometimes known as the Tragedy of the Com-

mons. The commons is a piece of grass land owned collectively by a group
of local farmers. Everyone is free to use it for their sheep, but the tragedy
consists in the fact that if the total level of exploitation of the commons gets
too large, it will collapse. The importance of understanding a game like the
Tragedy of The Commons is its structural similarity with many important
problems – environmental and others – in society; finding ways to stimulate
agents to play Cooperate in Tragedy of the Commons-like situations is an
enormously important task for political science and related subjects, and
one may hope that game theory is able to contribute. A major example is
the emission of greenhouse gases, where I find it disheartening to see that
the biggest polluter2 seems to be dead set on continuing to Defect.

As a prerequisite for the book, a year of undergraduate mathematics

2I am referring to the United States. While it is true that in absolute terms, China
has recently surpassed the US as the biggest emitter of greenhouse gases, it is nevertheless
the case that the US is still way ahead of China in terms of per capita emissions, as well
as in terms of cumulative (historical) emissions.
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should be more than enough. More important, however, is that the reader
is willing to focus seriously on the material and to invest time and energy.
Sigmund’s enthusiasm for the topic shines through very clearly, and I enjoyed
reading this up-to-date introduction to a very lively and exciting research
area. Nevertheless, I would hesitate to use the book for a course. The reason
for this is Sigmund’s choice, despite the mathematical rigor he employs, to
settle for a narrative structure entirely devoid of the Definition-Lemma-
Theorem-Proof-Exercise layout that, after all, has proved over the years to
be an efficient means to structure and communicate mathematical ideas.
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