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Abstract

We provide nonunimodular counterexamples to two properties that are well-
known for automorphism invariant percolation on unimodular transitive graphs.
The first property is that the number of encounter points in an infinite cluster
is a.s. 0 or ∞. The second property is that speed of random walk on an infinite
cluster is a.s. well-defined.

1 Introduction

In a highly influential 1996 paper, Benjamini and Schramm [5] proposed a systematic
study of percolation beyond the usual Z

d setting. In particular, they suggested that
the class of transitive graphs (or somewhat more generally the quasi-transitive ones)
might provide a fruitful level of generality. A locally finite connected graph G =
(V, E) is said to be transitive if for any two vertices v1, v2 ∈ V there exists a graph
automorphism mapping v1 on v2; in other words, the graph “looks the same” from
every vertex. Definitions of further concepts discussed in this section are deferred to
Section 2. For surveys of the area that to a large extent was sparked by [5] and that is
informally known as “percolation beyond Z

d”, see for instance Lyons [14], Häggström
and Jonasson [11], and Häggström [10].

Benjamini and Schramm [5] focused on iid percolation on various transitive and
other graphs G, and correctly identified amenability vs nonamenability of G as a
relevant dichotomy. In a later paper, Benjamini, Lyons, Peres and Schramm [1]
found that certain powerful techniques, in particular the so-called mass-transport
method, extend far beyond the iid setting to automorphism invariant percolation
processes, but require a property of G known as unimodularity. In many cases
where results have been proved in the unimodular case, it turns out that it is not
just the proof technique that breaks down, but also the results themselves. Hence,
unimodularity vs nonunimodularity is a dichotomy whose substance goes beyond the
mere applicability of certain mathematical tools.

The purpose of the present paper is to add further credibility to the view that
the unimodularity vs nonunimodularity distinction is of substantial importance, by
considering a couple of known properties of automorphism invariant percolation on
unimodular graphs, and producing counterexamples to these properties for a partic-
ular nonunimodular graph known as Trofimov’s graph.
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The first concrete property we consider is the number of so-called encounter
points in infinite clusters. Encounter points is a geometric notion, which dates back
to a classical paper of Burton and Keane [6], and which plays a role in percolation
theory that is pivotal – both in the graph-theoretic and the metaphorical sense of the
word. It is folklore knowledge in percolation theory that in automorphism invariant
percolation on a unimodular transitive graph, a.s. every infinite cluster has either
zero or infinitely many encounter points (Theorem 2.7). In Theorem 2.8, we establish
that on Trofimov’s graph, there exist percolation processes with arbitrary numbers of
encounter points per infinite cluster.

The second property we consider concerns simple random walk on an infinite
cluster of automorphism invariant percolation on G, in particular its so-called speed.
If Sk denotes the distance between the random walker’s position at time k and its
starting point, then the speed S is defined as S = limk→∞ Sk/k, provided the limit
exists. Benjamini, Lyons and Schramm [3] showed that for automorphism invariant
percolation on a unimodular transitive graph, the speed exists a.s. (Theorem 2.9). In
Theorem 2.10 we produce a counterexample to this behavior on Trofimov’s graph.

The rest of the paper is organized as follows. In Section 2 we give the definitions
and background missing in the present section, plus precise statements of the main
results. In Section 3, which is included purely for expository purposes, we treat
the case of unimodular graphs, recalling the mass-transport technique and showing
how it leads to short proofs of Theorems 2.7 and 2.9. Finally, in Section 4, we
introduce a technique, based on a kind of tree-indexed Markov chain, for generating
counterexamples on Trofimov’s graph, and apply it to prove Theorems 2.8 and 2.10.

2 Definitions and main results

We consider bond percolation on an infinite locally finite graph G = (V, E), meaning
that edges are assigned values 0 (closed) or 1 (open) at random. In other words, such
a percolation process is a {0, 1}E-valued random object X = {X(e)}e∈E. Percolation
theorists are interested in connectivity and related properties of the subgraph of G
obtained by throwing out all closed edges. In particular, focus tends to be on whether
there exist infinite connected components, a.k.a. infinite clusters, and if so, how
many there are and what are their properties. (Our choice to study bond rather than
site percolation is essentially arbitrary. Everything in this paper translates, mutatis
mutandis, to the site percolation setting where it is the vertices rather than the edges
that are declared open or closed.) The special case where the X(e)’s are iid is called
iid percolation.

To say much of interest, we need to impose some structure on G. We begin with
transitivity.

Definition 2.1 Let G = (V, E) be an infinite locally finite connected graph. A bijec-

tive map f : V → V such that 〈f(u), f(v)〉 ∈ E if and only if 〈u, v〉 ∈ E is called

a graph automorphism for G. The graph G is said to be transitive if for any

u, v ∈ V there exists a graph automorphism f such that f(u) = v. More generally,

G is said to be quasi-transitive if there is a k < ∞ and a partitioning of V into

k sets V1, . . . , Vk such that for i = 1, . . . , k and any u, v ∈ Vi there exists a graph

automorphism f such that f(u) = v.

A very natural class of percolation processes on a transitive (or quasi-transitive) graph
G consists of the automorphism invariant ones.
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Definition 2.2 Let G = (V, E) be an infinite locally finite connected graph. For a

graph automorphism f : V → V , write f∗ : E → E for the induced mapping of edges,

so that f∗(〈u, v〉) = 〈f(u), f(v)〉. A {0, 1}E-valued bond percolation process is said to

be automorphism invariant if for any n, any e1, . . . , en ∈ E, any b1, . . . , bn ∈ {0, 1}
and any γ ∈ Aut(G), we have

P(X(γ∗e1) = b1, . . . , X(γ∗en) = bn) = P(X(e1) = b1, . . . , X(en) = bn) .

This encompasses many important examples: first and foremost iid percolation, but
also things like uniform spanning forests (see, e.g., [2]), minimal spanning forests (see,
e.g., [15]) and the random-cluster model (see, e.g., [7]).

We move on to the concept of amenability. Roughly speaking, amenability of a
graph means the existence of finite subgraphs with arbitrarily small surface-to-volume
ratio.

Definition 2.3 The isoperimetric constant h(G) of a graph G = (V, E) is defined

as

h(G) = inf
S

|∂S|

|S|
,

where the infimum ranges over all finite nonempty subsets of V , and ∂S = {u ∈
V \ S : ∃v ∈ S such that 〈u, v〉 ∈ E}. The graph G is said to be amenable if

h(G) = 0; otherwise it is said to be nonamenable.

The prototypical example of an amenable transitive graph is the Z
d lattice for any

d, whereas a basic example of a nonamenable transitive graph is the infinite regular
tree Tn (for n ≥ 2) in which every vertex has exactly n + 1 incident edges.

Next, unimodularity:

Definition 2.4 Let G = (V, E) be a transitive or quasi-transitive graph with auto-

morphism group Aut(G). For v ∈ V , the stabilizer of v is defined as Stab(v) = {γ ∈
Aut(G) : γv = v}. The graph G is said to be unimodular if for all u, v ∈ V in the

same orbit of Aut(G) we have the symmetry

|Stab(u)v| = |Stab(v)u| . (1)

Most examples of transitive graphs encountered in practice are unimodular. A basic
counterexample, however, is Trofimov’s graph, which we go on to define next. An
end in a graph G = (V, E) is an equivalence class of uni-infinite self-avoiding paths
in X , with two paths equivalent if for all finite W ⊂ V the paths are eventually in
the same connected component of the graph obtained from G by deleting all v ∈ W .

Example 2.5 (Trofimov’s graph [17]) Consider the regular tree Tn with n ≥ 2,
and fix an end ξ in this tree. For each vertex v in the tree, there is a unique uni-

infinite self-avoiding path from v that belongs to ξ. Call the first vertex after v on this

path the ξ-parent of v, and call the other two neighbors of v its ξ-children. The

ξ-grandparent of v is defined similarly in the obvious way. Let GT ,n = (VT ,n, ET ,n)
be the graph that arises by taking Tn and adding, for each vertex v, an extra edge

connecting v to its ξ-grandparent.

Trofimov’s graph GT ,n = (VT ,n, ET ,n) is obviously transitive, and furthermore it
inherits the nonamenability property of Tn. The key to seeing that it is also nonuni-
modular is the observation that given a vertex v ∈ VT ,n, the ξ-parent of v can be
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identified purely from the local graph structure, i.e. without any further knowledge
of any labeling of the vertices. This can be seen as follows.

Among the n2 +n+2 neighbors of v, there are exactly n2 +1 that each share only
one common neighbor with v; these are the ξ-grandchildren and the ξ-grandparent of
v (the remaining n+1 neighbors of v each share exactly n neighbors with v). Among
these n2+1 vertices, there is exactly one that has no neighbor other than v in common
with any of the others; this vertex is the ξ-grandparent of v. Finally, the ξ-parent of
v is the unique joint neighbor of v and v’s ξ-grandparent.

To complete the argument for nonunimodularity, let u be the ξ-parent of v and
note that |Stab(u)v| = n whereas |Stab(v)u| = 1 (each vertex has n ξ-children but
only one ξ-parent), so (1) fails and G is nonunimodular.

Moving on to Theorems 2.7 and 2.8 about encounter points, we need first to recall
from Burton and Keane [6] what an encounter point is.

Definition 2.6 Given a graph G = (V, E) and a percolation configuration η ∈ {0, 1}E,

a vertex v ∈ V is said to be an encounter point for v if the set of open edges in η
contains at least three disjoint infinite self-avoiding paths starting at v with the further

property that for any two of these paths, going from a vertex on one of them via open

edges to a vertex on the other necessitates going through v.

The following result is folklore, but will be proved in Section 3. See also Benjamini et
al [1, Prop. 7.1] for a closely related result on the number of ends in infinite clusters,
proved using the same idea.

Theorem 2.7 Let G be a transitive unimodular graph, and let X = {X(e)}e∈E be

an automorphism invariant bond percolation process on G. Then, a.s., any infinite

cluster has either zero or infinitely many encounter points.

In fact, extending the proof of this result to the case where transitivity is relaxed to
quasi-transitivity is easy, but since we are interested in the result mainly as a contrast
to Theorem 2.8 below, we are content with the transitive case. The same remark
applies to Theorem 2.9 below concenring the speed of random walk on transitive
unimodular graphs.

We further remark that in the case where G is amenable, a.s. every infinite cluster
has zero encounter points; this was proved by Burton and Keane [6] although they
stated their result more narrowly. Our main result concerning encounter points is the
following.

Theorem 2.8 For any n ≥ 2 and k ≥ 1, there exists an automorphism invariant bond

percolation process X on Trofimov’s graph GT ,n with the property that it produces,

a.s., infinitely many infinite clusters, all of which contain exactly k encounter points.

Given the tree-indexed Markov chain technique to be outlined in Section 4, the proof
of Theorem 2.8 is short and simple, and may be viewed as a kind of warm-up for the
more involved construction to be used in proving Theorem 2.10 on random walk. A
similar example on a different nonunimodular graph is given by Benjamini et al [1,
Ex. 7.6].

For G = (V, E) and a percolation process X = {X(e)}e∈E on G, simple random
walk Z = (Z0, Z1, . . .) on X starting at a fixed vertex v ∈ V is defined as follows.
First let Z0 = v. Given Z0, pick Z1 according to uniform distribution among all
vertices that share an open edge in X with Z0. (This is ill-defined in the boring case
in which v has no adjacent open edges, in which case we take the random walk to stay
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put: Z0 = Z1 = Z2 = · · · = v.) We then proceed iteratively: given (Z0, Z1, . . . , Zk),
we pick Zk+1 according to uniform distribution on the set of vertices sharing an open
edge with Zk.

Various properties of this random walk and its asymptotic behavior are of interest.
Here we focus on the distance

Sk = distG(Z0, Zk)

between the random walker and its starting point, and its asymptotics as k → ∞,
where distG denotes graph-theoretic distance in the graph G. We define the asymp-
totic speed S = limk→∞

Sk

k
, provided the limit exists. If the random walk happens to

start in a finite cluster, then of course Sk is bounded, so S = 0. When it starts in an
infinite cluster, things are less obvious, but it turns out that we have the following.

Theorem 2.9 (Benjamini, Lyons and Schramm [3]) Let G be a transitive unimodular

graph, and let X = {X(e)}e∈E be an automorphism invariant bond percolation process

on G. Then the asymptotic speed S of simple random walk on X exists a.s.

We emphasize that this is not the main result in [3] – the authors go on to establish a
variety of fairly general conditions on X beyond automorphism invariance, for guar-
anteeing that S is strictly positive as long as the walk starts in an infinite cluster.
The unimodularity condition in Theorem 2.9 cannot be dropped:

Theorem 2.10 For any n ≥ 2, there exists an automorphism invariant bond perco-

lation process X on Trofimov’s graph GT ,n with the property that for simple random

walk on X, the asymptotic speed S a.s. does not exist.

Rather than using graph-theoretic distance with respect to G, we could have chosen
to look at graph-theoretic distance with respect to the percolation configuration. This
may affect the value of the asymptotic speed, but does not change whether or not it
exists in Theorems 2.9 and 2.10 whose proofs go through in that setting with very
small changes.

3 On unimodular graphs

As mentioned in Section 1, the so-called mass-transport technique has turned out to
be important in the study of percolation on nonamenable (quasi-)transitive graphs in
the unimodular case. Here we explain it in the transitive setting.

For an automorphism invariant bond percolation process X on a transitive graph
G = (V, E), let µ be the corresponding probability measure on {0, 1}E. Consider a
nonnegative function m(u, v, ω) of three variables: two vertices u, v ∈ V and the per-
colation configuration ω taking values in Ω = {0, 1}E. The way to think of m(u, v, ω)
is as the mass transported from u to v given the configuration ω. We assume, cru-
cially, that m(·, ·, ·) is invariant under the diagonal action of Aut(G), meaning that
m(u, v, ω) = m(γu, γv, γω) for all u, v, ω and γ ∈ Aut(G). The following result is due
to Benjamini, Lyons, Peres and Schramm [1], who were inspired by an embryo for the
technique in [9].

Theorem 3.1 (The Mass-Transport Principle, [1]) Given G, µ and m(·, ·, ·) as

above, let

M(u, v) =

∫

Ω

m(u, v, ω)dµ(ω)
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for any u, v ∈ V . If G is unimodular, then the expected total mass transported out of

any vertex v equals the expected mass transported into v, i.e.,

∑

u∈V

M(v, u) =
∑

u∈V

M(u, v) . (2)

The Mass-Transport Principle as stated here fails if G is not unimodular. To see this
for Trofimov’s graph GT ,n, we may consider the mass transport in which each vertex
simply sends unit mass to its ξ-parent, regardless of the percolation configuration.
Then each vertex sends mass 1 but receives mass n, thus violating (2). On the other
hand, Benjamini et al [1] do have a (somewhat less powerful) version of the Mass-
Transport Principle that holds also in the nonunimodular case, involving a reweighting

of the mass sent from u to v by a factor |Stab(u)v|
|Stab(v)u| .

The proof of the Mass-Transport Principle is particularly simple in the case where
G is the Cayley graph of a finitely generated group H , so here we settle for that,
referring to [1] for the general case.

Proof of Theorem 3.1 for Cayley graphs. For u, v ∈ V , u and v are group
elements of H , and there is a unique element h = uv−1 ∈ H such that u = hv. This
gives

∑

u∈V

M(v, u) =
∑

h∈H

M(v, hv) =
∑

h∈H

M(h−1v, v)

=
∑

h′∈H

M(h′v, v) =
∑

u∈V

M(u, v) .

2

The proof of Theorem 2.7 exemplifies the power and simplicity of the mass-transport
technique.

Proof of Theorem 2.7. Assume for contradiction that there exist, with positive
probability, infinite clusters with a finite nonzero number of encounter points, and
consider the following mass transport. Each vertex that sits in such an infinite cluster
sends unit mass, and distributes it equally among the encounter points of its cluster.
All other vertices send zero mass. Since no vertex sends more than unit mass, we have
∑

u∈V M(v, u) ≤ 1. On the other hand, any encounter point in an infinite cluster with
finitely many encounter points receives infinite mass, so

∑

u∈V M(u, v) = ∞. Hence
∑

u∈V M(v, u) <
∑

u∈V M(u, v), contradicting (2) as desired. 2

Moving on to the task of proving Theorem 2.9 on simple random walk, it turns out
useful to first consider a delayed simple random walk (Z ′

0, Z
′
1, . . .), defined by

taking Z ′
0 = v and then proceeding iteratively: given (Z ′

0, Z
′
1, . . . , Z

′
k), select Z ′′ at

random (uniform distribution) among all the G-neighbors of Z ′
k, and let

Z ′
k+1 =

{

Z ′′ if X(〈Z ′
k, Z ′′)〉) = 1

Z ′
k if X(〈Z ′

k, Z ′′)〉) = 0 .

The ordinary simple random walk (Z0, Z1, . . .) with distribution as defined in Section
2 can then be recovered by sampling (Z ′

0, Z
′
1, . . .) at the times of its jumps, i.e., by

setting
(Z0, Z1, . . .) = (Z ′

J0
, Z ′

J1
, . . .)
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where J0 = 0, J1 = min{i > J0 : Z ′
i 6= Z ′

J0
} and, iteratively, Jk+1 = min{i > Jk :

Z ′
i 6= Z ′

Jk
}.

The point of first considering the delayed simple random walk is that it satis-
fies a rather strong stationarity property. The following result, which goes back to
Häggström and Peres [12] and Lyons and Schramm [16], says that the percolation con-
figuration “as seen from the point of view of the delayed random walker” is stationary
in time.

Lemma 3.2 Let G = (V, E) be transitive and unimodular. Fix v ∈ V , and for each

u ∈ V , define γu to be some G-automorphism mapping u on v. Let X ∈ {0, 1}E

be an Aut(G)-invariant bond percolation process, and define a Borel measurable F :
{0, 1}E → [0, 1] that is Stab(v)-invariant in the sense that F (X) = F (γX) for all

γ ∈ Stab(v). Then

(F (γZ′

0
X), F (γZ′

1
X), F (γZ′

2
X), . . .)

is a stationary sequence.

Proof. Note that for any F as in the lemma, any n and any a0, . . . , an ∈ [0, 1] we
may form another function

G(X) = P(F (γZ′

0
X) ≤ a0, F (γZ′

1
X) ≤ a1, . . . , F (γZ′

n
X) ≤ an |X)

which itself satisfies the requirements on F . Hence, in order to prove the lemma, it
suffices to show that

E[F (γZ′

0
X)] = E[F (γZ′

1
X)] (3)

for any F as in the lemma. Write d for the degree of (i.e., common to all vertices in)
G, and for each u ∈ V , write Du for the number of edges e incident to u satisfying
X(e) = 1. Consider the mass transport where, for any u1, u2 ∈ V , the mass sent from
u1 to u2 is







1
d
F (γu2

X) if 〈u1, u2〉 ∈ E with X(〈u1, u2〉) = 1
d−Du1

d
F (γu1

X) if u2 = u1

0 otherwise.

The point of this choice is that

∑

v∈V

M(u, v) = E[F (γZ′

1
X)] (4)

and
∑

v∈V

M(v, u) = E[F (γZ′

0
X)] . (5)

Due to Stab(v)-invariance of F , the Mass-Transport Principle applies, so combining
(4) and (5) with (2) yields (3), and we are done. 2

Proof of Theorem 2.9. We wish to apply the pointwise Subadditive Ergodic The-
orem (see, e.g., [13, Thm. 9.14]) to the array {distG(Z ′

k, Z ′
l}k,l≥0. Note first that

the subadditive relation distG(Z ′
i, Z

′
k) ≤ distG(Z ′

i, Z
′
j) + distG(Z ′

j , Z
′
k) holds for any

i, j, k ≥ 0. Furthermore, for any m, n ≥ 0 and any i1 . . . , in, the functions

F = P(distG(Z ′
0, Z

′
m) ≤ i1, distG(Z ′

m, Z ′
2m) ≤ i2, . . . , distG(Z ′

(n−1)m, Z ′
nm) ≤ in)
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and

G = P(distG(Z ′
0, Z

′
1) ≤ i1, distG(Z ′

0, Z
′
2) ≤ i2, . . . , distG(Z ′

0, Z
′
n) ≤ in)

are Stab(v)-invariant, so Lemma 3.2 applies to show that the stationarity assumptions
of the Subadditive Ergodic Theorem are in force, so that, a.s., the limit

S′ = lim
n→∞

1

n
distG(Z ′

0, Z
′
n)

exists.
Another application of Lemma 3.2 gives that (I{Z′

1
6=Z′

0
}, I{Z′

2
6=Z′

1
}, . . .) is a station-

ary sequence, so the ordinary pointwise Ergodic Theorem ensures that its (possibly
random) ergodic average T = limn→∞

1
n

I{Z′

k
6=Z′

k−1
} exists. The combined existence

of S′ and T ensures the existence of

S = lim
n→∞

distG(Z0, Zn)

n
=

S′

T
.

2

4 On Trofimov’s graph

In this section, we devise a general scheme for constructing a certain kind Aut(GT ,n)-
invariant bond percolation processes on Trofimov’s graph GT ,n = (VT ,n, ET ,n). This
scheme will then be applied to produce two concrete counterexamples: first a fairly
straightforward one the establishes Theorem 2.8, and then a somewhat more compli-
cated one that establishes Theorem 2.10.

As a preliminary step in constructing the Aut(GT ,n)-invariant bond percolation
processes, we first devise the following scheme for attaching values to the vertices of
GT ,n in an Aut(GT ,n)-invariant way. The construction is reminiscent of tree-indexed
Markov chains (see, e.g., [4]) but allows for a kind of sibling dependencies that has
previously been exploited in the construction of random-cluster measures for trees [8].

Scheme I. Let S = (s1, s2, . . .) be a finite or countably infinite set, fix n ≥ 2,
and consider the following class of procedures for picking an SVT ,n -valued random
object. For each s ∈ S, let Qs be a probability measure on Sn. For each such
Qs, we let Q̂s be a symmetrized version corresponding to permuting the coordinates
1, . . . , n at random. In other words, Q̂s is the distribution of the Sn-valued random
element (Xπ1

, . . . , Xπn
) where X = (X1, . . . , Xn) ∈ Sn is chosen according to Qs, and

independently π = (π1, . . . , πn) is chosen according to uniform distribution on the set
of permutations of (1, . . . , n). With the same notation, let Qproj

s be the distribution
of Xπ1

. Note that {Qproj
s (t)}s,t∈S is the transition matrix of a discrete time Markov

chain on S. Assume that this Markov chain has a unique stationary distribution, and
denote the distribution by ρ.

Next define, for any v ∈ VT ,n, the set D(v) ⊂ VT ,n as consisting of v, its ξ-
children, its ξ-grandchildren, its ξ-great grandchildren, and so on. Given a fixed vertex
v1 ∈ VT ,n, we now proceed to define a configuration Y 1 = {Y 1

v }v∈D(v1) ∈ SD(v1), i.e.,
Y 1 will be an assignment of values from S to the vertices in D(v1). First, assign v1

value Y 1(v1) chosen according to the distribution ρ on S. Next, assign the n children
of v1 values according to the joint distribution Q̂Y 1(v1). Then continue inductively, by
letting the ξ-children of a vertex v that has been assigned value Y 1(v) attain values
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according to the joint distribution Q̂Y 1(v), with the obvious conditional independence
structure. This defines the random configuration {Y 1(v)}v∈D(v1). Note that if we
follow a fixed line of ξ-descendants downwards, what we see is a Markov chain with
transition matrix {Qproj

s (t)}s,t∈S . Hence, and by the choice of Y 1(v1), we get for
every v ∈ D(v1) that Y 1(v) gets distribution ρ.

We go on to define v2 ∈ VT ,n to be the ξ-parent of v1, and continue inductively
for each i by letting vi+1 be the ξ-parent of vi. Note that D(v1) ⊂ D(v2) ⊂ · · · and
that the sequence exhausts VT ,n, i.e., ∪∞

i=1D(vi) = VT ,n. For each i, we can now
define the configuration Y i(D(vi)) ∈ SD(vi) by the same procedure as for the case
i = 1. A key point now is that, by the homogeneity of the construction and the
fact that the distribution ρ is preserved as we move down the chain vi, vi−1, . . . , v1,
we get for j < i that Y i(D(vj)) has the same distribution as Y j(D(vj)). Hence,
by Kolmogorov’s extension theorem, we can send i → ∞ and obtain a probability
measure µ on SVT ,n such that for any i, the projection of µ on SD(vi) agrees with the
distribution of Y i(D(vi)).

Scheme I is now defined as the random assignment of S-values to VT ,n obtained
by choosing Y ∈ SVT ,n according to µ. 2

Lemma 4.1 With S, Q, ρ, µ and Y ∈ SVT ,n as in Scheme I, the distribution of Y
is Aut(GT ,n)-invariant.

Proof. What we need to show is that for any finite W = {w1, . . . , wn} ⊂ VT ,n, any
s1, . . . , sn ∈ S and any γ ∈ Aut(GT ,n) we have

P(Y (w1) = s1, . . . , Y (wn) = sn) = P(Y (γw1) = s1, . . . , Y (γwn) = sn) . (6)

We will assume that W consists of a single vertex w plus, for some m ≥ 1, all the
ξ-descendants of w down to the m’th generation starting from w. There is no loss
of generality in doing so, because any finite vertex set in GT ,n is contained in such
a W . But for such W , the desired relation (6) is obvious due to the facts (a) that
Y (w) and Y (γw) both have distribution ρ, and (b) that the descendants of w and the
descendants of γw obtain their Y -values from those of their ancestors via identical
mechanisms. 2

Given Scheme I, we construct automorphism invariant percolation processes on GT ,n

as follow.

Scheme II. There are two kinds of edges in GT ,n: those that connect ξ-parent to ξ-
child, and those that connect ξ-grandparent to ξ-grandchild. Corresponding to these,
define two functions g1 : S2 → {0, 1} and g2 : S2 → {0, 1}. Pick a configuration
Y ∈ SVT ,n as in Scheme I, and then generate a percolation process X ∈ {0, 1}ET ,n

from Y in the following manner. For each edge e = 〈u, v〉 connecting a ξ-parent
u to a ξ-child v, let X(e) = g1(Y (u), Y (v)), whereas for each edge e connecting a
ξ-grandparent u to a ξ-grandchild v, let X(e) = g2(Y (u), Y (v)). 2

Lemma 4.2 The percolation process X obtained as in Scheme II is Aut(GT ,n)-
invariant.

Proof. It is clear from the construction that X inherits Aut(GT ,n)-invariance from
Y , whose Aut(GT ,n)-invariance is ensured by Lemma 4.1. 2
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Remark. A possible generalization of Scheme II would be to allow randomization
by letting the functions g1 and g2 be [0, 1]- rather than {0, 1}-valued, and to obtain
X from Y by letting each e ∈ 〈u, v〉 independently attain value 1 with probability

{

g1(u, v) if u is the ξ-parent of v
g2(u, v) if u is the ξ-grandparent of v.

It turns out, however, that this does not lead to a more general class of Aut(GT ,n)-
invariant bond percolation processes, because it is possible to encode all the necessary
randomness using a larger state space in Scheme I. We omit the details. 2

The specific implementations of this construction for proving Theorems 2.8 and 2.10
will have in common that g2(s, t) = 0 for all s, t ∈ S, i.e., the grandparent-grandchild
edges are never open in the percolation processes. This may at first sight appear para-
doxical, as it suggests that these edges are superfluous and that it would be possible
to construct automorphism invariant percolation processes with the desired proper-
ties already on the regular tree Tn, which would contradict Theorems 2.7 and 2.9.
However, the grandparent-grandchild edges are essential, because they restrict the
class of graph automorphisms, thereby expanding the class of automorphism invari-
ant percolation processes (even if we restrict to those that live only on the parent-child
edges).

The lack of open grandparent-grandchild edges in our constructions implies that
the connected components will be trees. Each such tree will have a ξ-topmost vertex.
The specific constructions will be all about controlling the branching behavior of
these trees as we move downwards (away from ξ) in the tree. In the construction for
proving Theorem 2.8, a finite number of encounter points will be obtained by letting
the tree branch a finite number of times, below which there are only naked branches
downwards to ∞. In the construction for Theorem 2.10, we exploit the fact that the
speed at which simple random walk on a tree moves away from its starting point
depends on how fast the tree branches, and we will make the branching of the tree
oscillate between binary branching (corresponding to speed 1

3 ) and trinary branching
(speed 1

2 ) over suitably increasing spatial scales.

Proof of Theorem 2.8. Take S = {1, 2, . . . , k, k + 1, k + 2}. The construction
will be such that Y (v) = i corresponds to the event that from v there are exactly
k + 2 paths to ∞ going “downwards” (i.e., away from ξ) from v – these paths are
self-avoiding but not necessarily disjoint. The transition mechanisms Q1, . . . , Qk+2

will all be deterministic (though randomness will automatically be introduced when
passing from Qi to the permutation invariant version Q̂i), and defined as follows:

{

For i = 1 Q1((1, k + 2, k + 2, . . . , k + 2)) = 1
For i = 2, . . . , k + 2 Qi((i − 1, 1, k + 2, k + 2, . . . , k + 2)) = 1.

The corresponding Markov chain on S is irreducible and aperiodic, so it has a unique
stationary distribution ρ. This specifies the first stage (Scheme I) of the construction.

The second stage (Scheme II) is as follows. As already declared, the grandparent-
grandchild edge function will be g2(i, j) = 0 for all i, j ∈ S. The parent-child function
will be given by

g1(i, j) =

{

0 if j = k + 2
1 otherwise.

This defines the percolation process. The interpretation of Y (v) = i as the number of
infinite paths downwards from v is easy to check, first for i = 1, and then, inductively,
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for i = 2, 3, . . . , k +2. It furthermore follows from the construction that every infinite
cluster has exactly k + 2 paths to infinity, and that the number of vertices in the
cluster with X(v) = i is

{

∞ for i = 1
1 for i = 2, . . . , k + 2 .

(7)

Again from the construction we have that the degree of a vertex v with Y (v) = i is 2
if i = 1 or i = k + 2, while if i ∈ {2, 3, . . . , k + 1} then the degree is 3. In this latter
case v is also an encounter point (which obviously it cannot be in case the degree
is 2). From (7) we know there are exactly k vertices v in each infinite cluster with
Y (v) ∈ {2, 3, . . . , k + 1}, so there are exactly k encounter points, as desired. 2

Remark. The construction proving Theorem 2.8 can easily be modified to obtain
automorphism invariant percolation processes on GT ,n in which infinite clusters with
different numbers of encounter points coexist. Any subset of {0, 1, 2, . . .} ∪∞ can be
obtained. We omit the details. 2

Moving on to the proof of Theorem 2.10 on the existence of percolation processes on
GT ,n with badly behaved random walk properties, it simplifies matters to restrict to
n ≥ 4. Arguably, the cases n = 2, 3 are not terribly important, as the point here is to
obtain a nonunimodular counterexample to Theorem 2.9, but will be mentioned for
completeness at the very end.

Construction for Theorem 2.10 with n ≥ 2. This time, we let the state space
S for the vertex variables be S = {0, 1, 2, . . .}, which will be given the following
interpretation. Y (v) = 0 indicates that v is the “topmost” vertex of its connected
component: it has no open edge to its ξ-parent or its ξ-grandparent, implying that
the component contains only v and (some subset of) its descendants. More generally,
Y (v) = i denotes how far (i.e. how many generations up) the component’s topmost
vertex is from v.

Let M1 < N1 < M2 < N2 < M3 · · · be a rapidly increasing sequence of positive
integers; exactly how rapidly will be made more specific later. For s ∈ S, we set Qs

to be deterministic: Qs(Rs) = 1 with

Rs =

{

(s + 1, s + 1, 0, 0, . . . , 0) if s ∈ [0, M1) ∪ [N1, M2) ∪ [N2, M3) ∪ · · ·
(s + 1, s + 1, s + 1, 0, 0, . . . , 0) if s ∈ [M1, N1) ∪ [M2, N2) ∪ [M3, N3) ∪ · · ·

(8)
The corresponding Markov chain has the property that at each step, it has probability
at least n−3

n
of jumping to state 0. Hence it is positive recurrent with a unique

stationary distribution ρ. This completes Scheme I and defines the vertex process
{Y (v)}v∈VT ,n

. Scheme II consists in setting g2(s, t) = 0 for all s, t ∈ S (as usual, no
grandparent-grandchild edges) and

g1(s, t) =

{

0 if t = 0
1 otherwise.

The resulting percolation process {X(e)}e∈ET ,n
consists of infinite trees each contain-

ing a root (the topmost vertex) followed by binary splitting down to generation M1,
then trinary splitting down to generation N1, then binary splitting again down to
generation M2, and so forth alternating between binary and trinary splitting. 2

Consider now random walk Z0, Z1, . . . on an infinite cluster of the percolation pro-
cess just defined, and note that Y (Z0), Y (Z1), . . . is a discrete time birth-and-death
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process, i.e. a Markov chain on S = {0, 1, . . .} with transition matrix {Pi,j}i,j∈S such
that Pi,j = 0 unless |i − j| = 1. The transition probabilities when |i − j| = 1 in this
particular birth-and-death process are given by P0,1 = 1, and, for i ≥ 1,

Pi,i+1 = 1 − Pi,i−1 =

{

2
3 if i ∈ [0, M1) ∪ [N1, M2) ∪ [N2, M3) ∪ · · ·
3
4 if i ∈ [M1, N1) ∪ [M2, N2) ∪ [M3, N3) ∪ · · ·

(9)

Lemma 4.3 There exists a choice of (M1, N1, M2, N2, M3, . . .) such that the birth-

and-death process Y (Z0), Y (Z1), . . . satisfies

P

(

lim inf
k→∞

Y (Zk)

k
=

1

3

)

= 1 (10)

and

P

(

lim sup
k→∞

Y (Zk)

k
=

1

2

)

= 1 . (11)

Proof. Assume first that the initial value Y (Z0) is 0. The birth-and-death pro-
cess stochastically dominates one in which Pi,i+1 = 2

3 for every i ≥ 1 and for

which Y (Zk)
k

would tend to 1
3 a.s.; hence the actual birth-and-death process satisfies

lim infk→∞
Y (Zk)

k
≥ 1

3 a.s., regardless of the choice of (M1, N1, M2, N2, M3, . . .). We

similarly obtain lim supk→∞
Y (Zk)

k
≤ 1

2 regardless of (M1, N1, M2, N2, M3, . . .). For

the slightly more intricate conclusions lim infk→∞
Y (Zk)

k
≤ 1

3 and lim supk→∞
Y (Zk)

k
≥

1
2 we need to make a judicious choice of (M1, N1, M2, N2, M3, . . .).

Fix a decreasing sequence ε1, ε
′
1, ε2, ε

′
2, ε3, . . . tending to 0. For any m ≥ 0, define

the random hitting time Tm = inf{k : Y (Zk) = m}. Note that a birth-and-death
process whose “jump to the right” probabilities Pi,i+1 exceed and are bounded away
from 1

2 is transient, so that in particular P(Tm < ∞) = 1 for any m.

If, hypothetically, we had Pi,i+1 = 2
3 for every i ≥ 1, then Y (Zk)

k
would tend to 1

3
a.s. as k → ∞. Hence, by choosing M1 sufficiently large, we can ensure that

P

(

Y (ZTM1
)

TM1

≤
1

3
+ ε1

)

≥ 1 − ε1 .

Fix such an M1.
Next note, again hypothetically, that if we had Pi,i+1 = 3

4 for all i ≥ M1, then we

would get limk→∞
Y (Zk)

k
= 1

2 a.s., because by transience the process will hit values

to the left of M1 only finitely often, which is not enough to influence limk→∞
Y (Zk)

k
.

Hence, by picking N1 large enough, we can make sure that

P

(

Y (ZTN1
)

TN1

≥
1

2
− ε′1

)

≥ 1 − ε′1 .

Fix such an N1.
We then continue iteratively. Given (M1, N1, M2, . . . , Ni−1), we pick Mi large

enough to ensure that

P

(

Y (ZTMi
)

TMi

≤
1

3
+ εi

)

≥ 1 − εi , (12)

and then Ni large enough so that

P

(

Y (ZTNi
)

TNi

≥
1

2
− ε′i

)

≥ 1 − ε′i . (13)
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We thus get a sequence (M1, N1, M2, N2, M3, . . .) ensuring that (12) and (13) hold for
any i. Since limi→∞ εi = 0 and limi→∞ ε′i = 0, we get the inequalities

lim inf
k→∞

Y (Zk)

k
≤

1

3
and lim sup

k→∞

Y (Zk)

k
≥

1

2

needed to deduce (10) and (11). Hence the lemma is established for the case Y (Z0) =
0.

For the more general case Y (Z0) = i, note that we can couple (Y (Z0), Y (Z1), . . .)
with another birth-and-death process (Y (Z∗

0 ), Y (Z∗
1 ), . . .) starting with Y (Z∗

0 ) = 0 in
such a way that from the first time T ∗

i that the latter process hits state i, it acts as
a time-delayed version of the former:

(Y (Z∗
T∗

i
), Y (Z∗

T∗

i
+1), Y (Z∗

T∗

i
+2), . . .) = (Y (Z0), Y (Z1), Y (Z2), . . .) .

Since limk→∞
T∗

i +k

k
= 1, and since we already know that lim infk→∞

Y (Z∗

k)
k

= 1
3 , we

get

lim inf
k→∞

Y (Zk)

k
= lim inf

k→∞

Y (Z∗
T∗

i
+k)

k
= lim inf

k→∞

T ∗
i + k

k

Y (Z∗
T∗

i
+k)

T ∗
i + k

= lim inf
k→∞

Y (Z∗
T∗

i
+k)

T ∗
i + k

= lim inf
l→∞

Y (Z∗
l )

l
=

1

3
.

Similarly, lim supk→∞
Y (Zk)

k
= lim supl→∞

Y (Z∗

l )
l

= 1
2 , so (10) and (11) are established

for arbitrary starting values, and the proof is complete. 2

Proof of Theorem 2.10. Consider first the case n ≥ 4. We then define the
percolation process as above, and note that what we need to show is that

lim
k→∞

distGT ,n
(Z0, Zk)

k
fails to exist a.s. (14)

Define w as the topmost vertex (in the direction of ξ) in the infinite cluster containing
Z0, and note that since, for any k, Zk is a ξ-descendant of w, we get the following. If

Y (Zk) is even, then the shortest path from w to Zk in G consists Y (Zk)
2 grandparent-

grandchild edges, whereas if Y (Zk) is odd, this shortest path consists of Y (Zk)−1
2

grandparent-grandchild edges plus one parent-child edge. Hence,

distGT ,n
(w, Zk) =

{

Y (Zk)
2 if Y (Zk) is even

Y (Zk)+1
2 if Y (Zk) is odd.

(15)

Transience yields limk→∞ Y (Zk) = ∞, so that limk→∞
distGT ,n

(w,Zk)

Y (Zk) = 1
2 . In combi-

nation with Lemma 4.3, this gives

lim inf
k→∞

distGT ,n
(w, Zk)

k
=

1

6
and lim sup

k→∞

distGT ,n
(w, Zk)

k
=

1

4
a.s. (16)

Next note that limk→∞
distGT ,n

(w,Z0)

k
because distGT ,n

(w, Z0) is a constant (random,
but independent of k). This, together with the triangle inequality for distGT ,n

, allows
us to go from (16) to

lim inf
k→∞

distGT ,n
(Z0, Zk)

k
=

1

6
and lim sup

k→∞

distGT ,n
(Z0, Zk)

k
=

1

4
a.s.,
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so (14) follows and the proof for n ≥ 4 is complete.
For the cases n = 2 and n = 3, the above construction doesn’t work (for n = 2 the

defining equation (8) fails to make sense, whereas for n = 3 we run into problems when
trying to establish positive recurrence of the corresponding Markov chain). There are
various ways to modify it. For instance, we can switch from letting the percolation
process live on parent-child edges to letting it live on grandparent-grandchild edges;
this leaves plenty of room for alternating between binary and trinary splitting already
for n = 2. Adapting the proof for n ≥ 4 to such a construction is tedious but
straightforward, so we omit the details. 2
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