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Abstract

The two-type Richardson model describes the growth of two competing
infections on Z¢. At time 0 two disjoint finite sets &1, &> C Z% are infected
with type 1 and type 2 infection respectively. An uninfected site then
becomes type 1 (2) infected at a rate proportional to the number of type
1 (2) infected nearest neighbors and once infected it remains so forever.
The main result in this paper is, loosely speaking, that the choice of the
initial sets &1 and & is irrelevant in deciding whether the event of mutual
unbounded growth for the two infection types has positive probability or
not.
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1 Introduction

This paper is concerned with certain models for random growth and competition
on the cubic lattice Z¢ in dimension d > 2. The Richardson model, introduced
in Richardson (1973), is one of the simplest models for growth on Z<. Each site
is in either of two states, denoted by 0 and 1, and the set of sites in state 1
increases to cover all of Z?. The dynamics is that a site in state 0 is transferred
to state 1 at a rate proportional to the number of nearest neighbors in state 1
and a site in state 1 remains there forever. This is equivalent to first-passage
percolation with i.i.d. exponential passage times.

In Héggstrom and Pemantle (1998) a generalized version of the Richardson
model is introduced. There are now three possible states, denoted by 0, 1 and
2 respectively, for each site. A site in state 0 is transferred to state 1 (2) with
rate A; (\2) times the number of nearest neighbors in state 1 (2) and the states
1 and 2 are absorbing. Here A1, Ay > 0 are the parameters of the model. For
disjoint sets &1, & C Z4, let P’\l’)‘2 denote the probability law of the generalized
process started at time 0 Wlth the sites in &; being in state 1, the sites in &
in state 2 and the rest of Z¢ in state 0. The states 1 and 2 may be thought
of as representing two different types of infection and the model then describes
the growth of two infections competing for space on Z¢. There are two possible
scenarios: Either one of the infection types at some point completely surrounds
the other, preventing the surrounded type from growing any further, or both
infection types keep growing indefinitely. Write A for the latter event, that is,

A = {both infection types reach sites arbitrarily far away from the origin}.

If the initial sets £; and &> are finite, clearly A° has positive probability. To
decide whether A has positive probability or not is more intricate. First, assume
that & = {0} and & = {1}, where n = (n,0,...,0). Intuitively, A should in
this case occur with positive probability if and only if A\; = As. This intuition
is partly confirmed in Héggstrom and Pemantle (1998,2000). The main result
in the first paper is that if A\; = Ay and d = 2, then Pé"ll’/\?(A) > 0. In the
second paper it is proved that if d > 2 and A; is held fixed, then Pé"ll’)‘Z (A)=0
for all but at most countably many values of A5. The aim in the present paper
is to show that the choice of initial sets is basically irrelevant for these results.
Of course, if one set completely surrounds the other, then mutual unbounded
growth is ruled out. To formulate our main result, we therefore employ the
following definition:

Definition 1.1 Let & and & be two disjoint finite subsets of Z¢. We say that
one of the sets (&;) strangles the other (¢;) if there exists no infinite self-avoiding
path in Z¢ that starts at a vertex in ¢; and that does not intersect &;. The pair
(&1,&2) is said to be fertile if neither of the sets strangles the other.

The main result is as follows:



Theorem 1.1 Let (£1,&2) and (£1,&5) be two fertile pairs of disjoint finite sub-
sets of Z%. For all choices of (A1, X2), we have

A1, A1,A
P (A) >0 Pg;,g;(A) > 0.

This implies that mutual unbounded growth has positive probability when start-
ing from ({0}, {1}) if and only if it occurs with positive probability for every
other fertile initial configuration as well. Hence the results in Haggstrom and
Pemantle (1998,2000) extend to arbitrary initial sets, as desired.

Haggstrom and Pemantle (1998) proved a special case of Theorem 1.1, namely
the case when d = 2, A\; = A2 and (&1, &2) and (&1, &5) consist of single sites. The
proof readily extends to the case where A\; and Ay are arbitrary and &; and &5 are
both connected sets. However, the proof fails to extend to more general initial
configurations, and, since it uses planarity, it is unclear whether it extends to
the case d > 3. These difficulties are overcome in the present paper.

We mention also that a related model for competing growth in continuous space
was studied by Deijfen et al (2003), and the results obtained there include a
kind of continuum analogue of our main result.

2 Preliminaries

In this section we give a concrete construction of the two-type Richardson model
that suits our purposes. We also introduce some notation and formulate a lemma
that will be important in the proof of Theorem 1.1.

To begin with, note that, by time-scaling and symmetry, we may restrict our
attention to two-type processes with rates (1,A) for some A < 1. To build
up such a process, define the distance between two sites z = (z1,...,24) and
y = (y1,...,94) on Z by §(z,y) = Zle |z; — y;| and call two sites nearest
neighbors if they are located at distance 1 from each other. Independently
for each ordered pair (z,y) of nearest neighbor sites on Z9, associate a unit
rate Poisson process P(®%) and, for \ € [0, 1], write AP®) for the thinning
of P(@¥) obtained by removing each Poisson occurrence with probability 1 — \.
Intuitively, at the times of the occurrences in the process P(®¥) | we imagine that
a channel between x and y is opened so that type 1 infection can be transferred
from x to y, that is, if x is type 1 infected at such a time, then y will become
type 1 infected as well. The type 2 infection is controlled analogously by the
process AP®@¥)

To formally define the growth process, let T'!, denote the set of type i infected
sites after n infections and let T}, denote the time point for the nth infection.
Also, for a set n C Z<, define 91 to be the set of sites in 7 that has at least one
nearest neighbor in ¢, that is,

on = {x € n; Iy € Z%\n with 6(x,y) = 1}.

The sequences {T'L}, {T'2} and {T},} are obtained inductively as follows:



1. Let F(l) = 61, F(Z) = 52 and TO =0.
2. Given I'L, T2 and Ty, define Ty,41 = min{7}';,72,,}, where

7L, =inf{T > T,; T € P@Y for some pair (z,y) such that = € oY,
andy ¢ 'L U2}

and T,% 1 is defined analogously but with P@¥) replaced by AP®¥).

3. U T = Tﬁﬂ, then I'2 , =T2 and I'},, | =T}, U{y}, where y is the site

such that Tn+1 e plaw) If Thy1 = TT%_H, then I‘?L is updated in the same
way while '} is left unchanged.

The set of type i infected sites at time t € [T},, T}, +1) is given by I';(t) = 'Y, and
the total set of infected sites at time ¢ is I'(¢) = I'1(¢t) UT'3(¢). When the initial
sets need to be clear from the notation they will be included as superscript, for
instance I'$1:%2(t) denotes the set of infected sites at time ¢ in a process started
from the sets (£1,&2). By standard properties of the Poisson process, the time
until an infected site infects an uninfected nearest neighbor is exponentially
distributed and hence {T'(t)} is a Markov process.

We remark that in the original construction of the two-type Richardson model
given in Haggstrom and Pemantle (1998,2000), the type 1 and the type 2 infec-

tions are generated by independent Poisson processes. More precisely, to each

nearest neighbor pair (z,y) two independent Poisson processes Pl(”’) and PQ("E’y)

\Y)

with rates 1 and A respectively are attached. The process Pl(ac then controls

the type 1 infection and PQ(x’y) controls the type 2 infection. However, in the
present article we will always assume that the type 1 and the type 2 infections
are generated by the same Poisson process as described above. Obviously this
gives a growth process with the same distribution as the original one.

One way of describing the evolution of the infection is to study the infection
graph, denoted by W. It consists of two disjoint graphs, ¥; and W,, describing
the type 1 and the type 2 infection respectively. These are generated as follows:
For i = 1,2, let U;(¢) be the graph with vertex set T';(¢) and edge set obtained by
putting an edge between two nearest neighbor sites x,y € T';(¢) if and only if, at
some time ¢’ < ¢, x was infected by y or vice versa. Define U; = lim;_, o, ¥;(t),
where the limit exists since both the vertex set and the edge set of ¥, (t) is
increasing in ¢, and let W = ¥, U Ws. In the one-type Richardson model started
from a single infected site, U is a tree and its features have been studied in
Newman (1995) and Héggstrom and Pemantle (1998). In general, ¥ is a forest,
that is, each connected component is a tree.

Clearly mutual unbounded growth for the two infection types in the two-type
model occurs if and only if both ¥y and W5 contain an infinite path. The fol-
lowing lemma relates the existence of such paths to the boundary configuration
of the initial set. To formulate it, extend the notation for the infection graphs
to incorporate the initial sets, so that \Ilfl’C2 denotes the type ¢ infection graph
for a process started from ({1, (2).



Lemma 2.1 Consider two growth processes with the same infection rates (1, ),
A < 1, and generated by the same Poisson processes, but started from two dif-
ferent finite initial configurations ((1,(2) and ({1,¢5). Assume that (3 U (y =
UG =C and (NAC C ¢ aAC.

(a) If U2 contains an infinite path, then so does \1151’42.

(b) If there is an infinite path in \Ifgl’42 starting at some site x € 9 N ¢ N(Y,

then the same path is present in \Ilgl’C2 as well.

Proof: Write ¢° for the interior of ¢, that is, (° = ¢(\9¢. We will show that

T$92 (1)\¢° D T (1)\¢° (1)

and

T§2 (E)\¢° € TS (1)\¢° (2)

for all . To this end, order the time points for the infections in the two growth
processes in one single sequence {T n}n>0 where Ty := 0. Note that, since the
growth processes are generated by the same Poisson processes, infections can
take place simultaneously in both processes. Hence an infection time 7}, can
represent an infection that occurs in both processes. Assume that (1) and (2)
hold for ¢t = T),. The only way for (1) to fail at ¢t = Tnﬂ is then that a site that is
uninfected at time 7}, in the process started from (¢1, (2) becomes type 1 infected
in the process started from ((1, (5). However, it is easily seen that if this should
be the case, then the same infection must take place in the process started from
(¢1,C2) as well. Hence both sets [$"¢*(T;,)\¢° and Fii’g (T;,)\C° are extended
by the same site and thus (1) is preserved at time 7),y;. Analogously it can
be seen that (2) is preserved at Tn+1. Furthermore, by assumption, the type 2
infected part of 9(¢; U ¢2) is a subset of the type 2 infected part of 9(¢1 U ¢5),
implying that (1) and (2) hold for t = Tp. It follows by induction over n that
the inclusions (1) and (2) hold for all t € {T},,} and clearly they must then hold
for all ¢ > 0. Part (a) follows immediately from (2).

To establish (b), we first show that

TG (¢) 5 TS (¢) for all £ > 0. (3)

To this end, assume that the site y ¢ ( is infected at time ¢ > 0 in the process
started from ((1,¢5). If y is type 1 infected it follows from (1) that y is (type
1) infected at time ¢ in the process started from (¢1,¢2) as well. So suppose y
is type 2 infected. Then there is an infection chain with passage time at most
t that leads from some site in ¢} to y. Clearly, unless some site in the chain
becomes type 1 infected before it is reached by the type 2 infection, the same
chain is present also in the process started from ((1,(2). However, the fact that
a site in the chain is type 1 infected can only decrease the time it takes for the



infection to reach y. Hence y is infected at the latest at time ¢ in the process
started from (1, (2) and (3) follows.

Now let {v,, } and {e,,} denote the vertex and edge set respectively of the infinite
path starting at x = vg in \Ilgl’gz. We will call a site v,, successful in the process
started from ({7, %) if it is type 1 infected and infects the site v, via the edge

en at the latest at the time when v,41 is infected in the process started from
(¢1,¢2). Using (3), it follows easily by induction over n that all vertices in {v, }

are successful in the process started from ({1, ¢%). Hence {v,} U {ex} C \I/§1’<2,
as desired. O

3 Proof of Theorem 1.1

We are now in a position to prove Theorem 1.1. The proof is based on a coupling
of the processes PQ ! 5)2‘2 and Pg)}l’gﬁ that has certain similarities with the coupling
’ 1182

used in the proof of Proposition 1.1 in Deijfen et al (2003). The geometrical
aspects of our proof are, however, quite different.

Proof of Theorem 1.1: Pick finite sets &;,&9,&;,&, C Z% such that the pairs
(&1,&) and (&],&) are fertile. We will show that if Pg;lé‘Q(A) > 0, then

PQ&ZQ (A) > 0 as well. Interchanging the roles of (£1,&2) and (&],&5) in the

below arguments gives the reverse implication. As pointed out before, by time-
scaling and symmetry, it suffices to consider the case when A1 =1 and Ay < 1,
that is, when the type 1 infection has rate 1 and is more powerful than the type
2 infection.

To begin with, we need some notation. For a finite set n C Z%, let m(n) and
m(n) be the points in Z? with coordinates

m;(n) = max{x;; x; is the ith coordinate of a point in n}

and
m;(n) = min{x;; x; is the ith coordinate of a point in n}

respectively and define
B, = {z € Z% m;(n) < z; <mi(n) for alli =1,...,d},

that is, B, is the smallest box that contains the set n. Write B;’“ for the box
B, enlarged by k sites in each direction, that is,

+k _ d. > ;o
By" ={x €Z% m;(n) —k <z <my(n) +kforalli=1,... d}.

Finally, let £ =& U& UE UL,

Now, first consider a process started from (£1,&2) and let 7 be the time when
the box Bgr 2 is fully infected in this process, that is,

T = inf{t; Bgz C TS ()}



Then consider a process started from (£1,&5) coupled with the one started from
(&1,&2) in such a way that it evolves independently up to time 7 and then
uses the same Poisson processes as the process started from (£71,&2) to generate
the infections after time 7. The notation for this coupled process is equipped
with a hat-symbol, for instance I¢1:¢ (t) denotes the set of infected sites at
time ¢. We will describe a scenario for the time interval [0, 7] in the coupled
process that — combined with Lemma 2.1 — guarantees that both infection types
grow unboundedly in this process given that they do so in the process started
from (&1,&2). To this end, assume that mutual unbounded growth occurs in
the process started from (£1,&3), that is, assume that both infection graphs
5042 and W52 contain an infinite path. Let 21 be the last site on d0¢182(7)
that is touched by an infinite path in \I/§1’52 and let Z; be the last site on
<9Bgr 2 that is touched by the path through z;. (Here “last” refers to time,
that is, sites are ordered with respect to the time when they are infected.) For
simplicity we assume that '*1:$2(7) has no holes so that there are no uninfected
sites completely surrounded by I'é1¢2(7). The desired scenario for the coupled
process is as follows:

1. By definition of the box Bg g, at time O there are at least two infected
sites on JBg¢; g, If none of these is type 1 infected, assume that some
site on OB ¢, becomes type 1 infected before any type 2 infection takes
place. This is possible because of the assumption that £} is not strangled

by &5.

2. Pick a type 1 infected point z on 0Bg g, and assume that the type 1

infection reaches B} via the shortest possible path from z without any
type 2 infections occurring. Also without any type 2 infections occurring,
suppose that the type 1 infection wanders the shortest way along 83;1

to the nearest neighbor of the site z; € 6B; 2 and then moves out to Bg‘ 2
by infecting ;. If Z; happens to be a corner point of B€+ 2 it does not
have a nearest neighbor on Bg‘ 1 To deal with this case, let Z; be the last
(in time) non-corner point on Bg‘ 2 that is touched by the infinite path
through z;. Suppose then that the type 1 infection wanders along 8Bgrl

to the nearest neighbor of Z1, moves out to Bgr 2 by infecting ; and then
follows the infinite type 1 path to .

The configuration at this stage of the construction consists of the initial
sets (€1, &%) and a type 1 path linking the set £ to the point Z; on 63;2,
see Figure 1(a).

3. Now assume that the type 1 infection lies still while the type 2 infection
wanders out from &) to 3Bgr % and invades all sites on 882’ % except #; (and
possibly also Z; and one or more corner points on the type 1 path between
1 and :%1), which is already type 1 infected. Since &} is not strangled by
&!, a path from &} to 3Bgr2 does indeed exist.



(a) Configuration after Step 2. The dashed line indicates
the infinite type 1 path through x; in the process started
from (€1, &2)-

(b) Configuration after Step 4.

Figure 1: Development of the infection in the process started from (£1,&5).
Black circles represent type 1 infected sites and white circles represent type 2
infected sites.



4. Suppose that the type 1 infection wanders from z; to the site z; on
OT%:¢2(7) along the infinite path through x; in \Il'§1’52 while no type 2
infections occur.

To summarize, at this stage all sites on 83; 2 except & (and possibly also

Z1 and one or more corner points on the type 1 path between z; and 3201)
are type 2 infected. We also have a type 1 path, passing 63; 2 at &, that
reaches from & to z1, see Figure 1(b).

5. Assume that O1'¢:%2(7) is infected as follows: If there are sites on OI'¢1:¢2 (1)
that can not be reached from 83; 2 using paths in T¢€2(7) without using
sites on the type 1 path through x; — this is the case if x; is located on a
cape as displayed in Figure 1 — suppose that the type 2 infection lies still
until the type 1 infection has invaded these sites, one at a time, starting
from 21. Then assume that the rest of OI'¢1:¢2(7) is type 2 infected while
no type 1 infections occur. Note that the sites on T'¢:¢2(7) that can not
be reached without using sites on the type 1 path through z; must con-
stitute a connected subset of OI'*1:$2(7). Also, some thought reveals that
these sites must be type 1 infected in the process started from (&1, &2).

6. Suppose that the interior of I'é1:¢2(7) is filled with infection without any
sites outside T'¢1:¢2(7) being infected.

7. Let T denote the time when the above scenario is completed. Assume that
T < 7 and suppose that no infections at all take place in the time interval
(T, 7].

The above scenario clearly has positive probability because it depends only on
finitely many infections. Furthermore, given this scenario, the following hold at
time 7:

— f‘giaéé (7-) = F£1a€2 (7—) = 1",
- (g nor) ¢ (T5% () nor);
— x € D592 (r) N6 (1) N aT.

After time 7 the coupled process is based on the same Poisson processes that
were used to generate the process started from (£, &s). It follows from Lemma

2.1 with (¢1,Ga) = (D§%(7), 1§ (7)) and (¢, ¢3) = (05 (), T§ (7)) that

there is at least one infinite path in both \ilfl’{"’ and @31’52. Hence we have
mutual unbounded growth in the coupled process.

Now let A¢, ¢, denote the event that both infection types grow unboundedly
in the process started from (£1,82) and let Ag ¢ denote the same event in the
coupled process. Trivially

P(Ag ¢y) > P(Ag; ¢y Aey ) P(Ag, ) (4)



The above reasoning shows that if both infection types grow unboundedly in the

process started from (&7, &2), then the scenario described in 1-7 guarantees that

they do so in the coupled process as well. Hence the first factor on the right-

hand side in (4) is positive. The last factor on the right-hand side is positive
. 2 . i 1A

‘Zy assumption. Thus P(Ag ¢) > 0 and, since P(Ag ¢) = PELEZ (A), we are

one. ]
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