
0 0.5 1 1.5 2 2.5 3

Time (years)

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

P
ri
c
e

Investigation of Portfolio Strategies
using NIG-GARCH and CIR

Master’s thesis in Engineering Mathematics and Computational Science

Alexander Bore

Department of Mathematical Sciences
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2016





Master’s thesis 2016

Investigation of Portfolio Strategies

using NIG-GARCH and CIR

Alexander Bore

Department of Mathematical Sciences
Chalmers University of Technology

Gothenburg, Sweden 2016



Investigation of Portfolio Strategies
using NIG-GARCH and CIR
Alexander Bore

© Alexander Bore, 2016.

Supervisor: Patrik Albin, Department of Mathematical Sciences
Examiner: Patrik Albin, Department of Mathematical Sciences
Opponent: Oskar Larsson

Master’s Thesis 2016
Department of Mathematical Sciences
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: 5 different simulations of the General Motors stock compared to the data.

Typeset in LATEX

iv



Abstract
This thesis creates a model for simulating stocks and interest rates to compare
portfolio strategies. The two portfolio strategies used in the thesis are CPPI and
OBPI. CPPI (constant proportion portfolio insurance) is a dynamic strategy that
changes the amount in the risky asset and the safe asset at every timestep. OBPI
(option based portfolio insurance) is a static strategy that invest an amount in the
stock and the put option. It is found out that OBPI performs better in a decreasing
market and that CPPI performs better in an increasing market.

The model used in this thesis can be seen as an extended Black-Scholes model.
The stock will be modelled as a NIG (normal inverse Gaussian) with GARCH as
stochastic volatility. The interest rate is modelled by a CIR (Cox, Ingersoll and
Ross) model. There are some problems with this model, but it is better than the
Black-Scholes model.

Keywords: CPPI, OBPI, NIG-GARCH, NIG, GARCH, CIR.
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1
Introduction

This thesis creates portfolio simulations, based on simulating a stock model and a
model for the interest rate. In this chapter there is background to the problem

and the goal of this thesis. In the next chapter the theory used in this thesis is
presented. In Chapter 3 the model calibration and the numerical implementation
of the model is described. Chapter 4 presents the results of the simulations. In
Chapter 5 the results are discussed.

1.1 Background
When the Black-Scholes model was introduced it opened up a new area of financial
mathematics. The model was a good start to be able to simulate a stock model, but
there are of course some problems with the early model. As financial mathematics
developed new models were created. This thesis will use a stock model based on the
NIG distribution, instead of the normal distribution as in the Black-Scholes case.
In the Black-Scholes case there is constant stochastic volatility, which is something
that will be changed to a time varying stochastic volatility model in this thesis using
GARCH. The Black-Scholes assumes a constant interest rate, but in this thesis it
will be assumed that the interest rate follows a CIR process.

1.2 Aim
The aim of this thesis is to create a model to be able to compare the portfolio
strategies. The aim can be summed up into these four points:

• Create a model for the interest rate using CIR process.
• Create a model for the stochastic volatility using GARCH process.
• Create a model for the stock using NIG distribution.
• Implement the models and compare the portfolio strategies.
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2
Theory

This chapter contains the theory that is used in the thesis. First some basic
theory and notation is introduced. Secondly the two portfolio strategies CPPI

and OBPI are introduced. Thirdly the interest rate is introduced as a CIR process
and GARCH is introduced as the stochastic volatility. In the end of the chapter the
stock price is introduced as a type of NIG process. The parameters that are used
to simulate the processes in the figures are presented in Chapter 4.

2.1 Basics
In this section definitions of some statistics and theory that will be used in the thesis
are presented.

The stock model used in this thesis are defined by

St = S0e
Xt (2.1)

or with the SDE
dSt = StdXt, (2.2)

where the stochastic variable Xt is a Lévy process. More specifically Xt is in this
thesis a NIG-GARCH process, that will be introduced later in this chapter. Equation
(2.2) is also called a stochastic exponential.

Definition 2.1. A stochastic process X = (Xt)t≥0 is a Lévy process if it satisfies:
• X0 = 0 almost surely.
• Independence of increments: for any 0 ≤ t1 < ... < tn <∞, Xt2−Xt1 , ..., Xtn−
Xtn−1 are independent

• Stationary increments: for any s < t: Xt−Xs is equal in distribution to Xt−s.
• Continuity in probability: for any ε > 0 and t ≥ 0 it holds that

limh→0 P (|Xt+h −Xt)|> ε) = 0.

Instead of working directly with the stock the logarithmic return is used or simply
the log return.

Definition 2.2. A log return Xt of a stock St in a discrete time interval ti for
i = 1...n is defined by

Xti = log
(
Sti
Sti−1

)
,

with Xt1 = 0.

3



2. Theory 2.2. Portfolio strategies

Looking at the log return instead at directly on the stock it is easier to compare
the model with a specific probability distribution. Two important features working
with log returns for a stock are the skewness and the kurtosis.

Definition 2.3. The skewness of a random variable X with mean µ is its third
standardized moment and defined by

Skew(X) = E[(X − µ)3]
(E[(X − µ)2])3/2 .

The skewness is a measure of asymmetry around the mean. A distribution is
symmetric if the skewness is 0. The normal distribution have 0 skewness. Log
returns of a stock often are often negatively skewed.

Definition 2.4. The kurtosis of a random variable X with mean µ is its fourth
central moment and defined by

Kurt(X) = E[(X − µ)4]
(E[(X − µ)2])2 .

Kurtosis is a measure of tail heaviness. Distributions with kurtosis 3 are said
to be mesokurtic. The normal distribution have kurtosis 3. If the kurtosis of a
distribution is less than 3 it is said to be platykurtic, which means the tails are thin
or heavy. If the kurtosis of a distribution is more than 3 it is called leptokurtic,
which means the tails are fat or light. Log returns of a stock is often leptokurtic.

2.2 Portfolio strategies
Portfolio strategies are used to maximize the growth in the portfolio, but at the
same time minimize the risk. The basics of a portfolio strategy is that there is a safe
asset and a risky asset which are invested in. The risky asset is in this thesis are the
stock model that was introduced in Equation (2.1). The safe asset is a zero-coupon
bond, that is defined by

B(t, T ) = E[K exp
(
−
∫ T

t
R(s)ds

)
|F(t)],

where K is the face value, R(s) is a CIR process which will be introduced later in
this chapter and F(t) is a filtration. For more information about the filtration see
Shreve [12]. In this thesis we are working with 2 different portfolio strategies; the
CPPI and the OBPI.

2.2.1 CPPI
The constant proportion portfolio insurance abbreviated as CPPI was first intro-
duced in 1986 by Perold [10] and evolved later by Black and Perold in 1992 [5].
CPPI is a dynamic portfolio strategy, meaning it changes the amount invested in

4



2. Theory 2.2. Portfolio strategies

the risky asset and the safe asset at every time step. The strategy has a value Vt
and also has a floor Ft which is the minimum value of the portfolio. There is a
cushion Ct which is the excess over the floor, i.e. Ct = Vt − Ft. The exposure Et is
the investment in the risky asset, Et = min{mCt, Vt}, where m is a multiplier which
describes the risk. The change of value for the portfolio will described by

dVt = Et
dSt
St

+ (Vt − Et)
dBt

Bt

.

In Figure 2.1 the dynamics of a CPPI portfolio can be seen. The falling market
to the left is a BMW stock together with a 12-month LIBOR interest rate and the
raising market to the right is a Nasdaq index together with 12-month LIBOR. It
can be seen in the picture that in a falling market the value of the CPPI never falls
down under the floor and in a rising market the value of the portfolio grows with
the stock.
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Figure 2.1: Values for CPPI in a falling market a) and a rising market b). The
falling market is based on a simulation using the BMW stock together with the 12-
month LIBOR interest rate. Note how the stock is falling below the floor, but that
the CPPI stays above the floor. The rising market is based on a simulation using
the Nasdaq index togheter with 12-month LIBOR.

2.2.2 OBPI
The option based portfolio insurance or OBPI was first introduced by Leland in
1976 [9]. This strategy is a strategy based on options, hence its name. The strategy
is static, meaning an amount is invested in the risky asset and an amount is invested
in the safe asset at the start and this amount stays the same over time. OBPI can
be seen as a generalized CPPI [4]. The value of an OBPI is

Vt = q(St + p(t, St, K)),
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2. Theory 2.2. Portfolio strategies

where p(t, St, K) is the European put price. The fair price of an option is calculated
by assuming the the risk neutral measure from Shreve [12, p. 218]. The formula for
calculating the fair price of an option is

ΠY (t) = Ẽ[exp
( ∫ T

t
−R(s)ds

)
g(ST )|F(t)],

where g(x) is the payoff function. The payoff function for a European put is g(x) =
max(K − ST , 0) = (K − ST )+ at time of maturity T and strike price K. This leads
to that the price of a European put is

p(t, St, K) = exp
( ∫ T

t
−R(s)ds

)
Ẽ[(K − ST )+|F(t)]

= exp
( ∫ T

t
−R(s)ds

) ∫ d

−∞
(K − St exp(x))f(x)dx,

where f(x) is the pdf of the random variable x and d = log(K/St). For the Black-
Scholes model the put can be expressed in an explicit formula, but in the case of
NIG distribution the integral must be calculated. Figure 2.2 presents the put price
with strike price K = 1.25 and time of maturity T = 5 years for a stock based on
the Ford stock and the interest rate based on the 12-month LIBOR rate.
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Figure 2.2: Put price with strike price K = 1.25 and time of maturity T = 5 years
for a stock based on Ford and 12-month LIBOR.

In the OBPI strategy q shares are invested in the stock and q shares are invested
in the put with time of maturity T and strike price K. The value of the OBPI
portfolio is expressed by

Vt = St + p(t, St, K).
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2. Theory 2.3. CIR process

The OBPI strategy also has a floor at time of maturity T . Using options on the stock
it is guaranteed that the value of the portfolio is at least VT = qK, independent of
the stock price ST . The dynamics of a OBPI portfolio are presented in Figure 2.3.
The falling market is based on a simulation using the BMW stock and 12-month
LIBOR. The rising market is based on a simulation using the Nasdaq index and
12-month LIBOR. The OBPI strategy used in the figure is extended from what is
presented here, and will be explained in the next chapter. Note that in comparison
the floor for OBPI is higher than for CPPI. This depends of course on how the
values in both strategies are chosen. Note also that in a rising market the OBPI
strategy grows slower than the CPPI strategy, because the OBPI strategy increases
only after the stock price is higher than the strike price K.
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Figure 2.3: Values for OBPI in a falling market a) and a rising market b). The
falling market is based on a simulation using the BMW stock together with the 12-
month LIBOR interest rate. Note how the stock is falling below the floor, but that
the OBPI stays above the floor. The rising market is based on a simulation using
the Nasdaq index together with 12-month LIBOR. Note how the OBPI strategy does
not increase before the stock grows over K = 1.25.

2.3 CIR process
The interest in this project is modeled by a CIR process. The CIR process was first
introduced by Feller but later changed name by Cox, Ingersoll and Ross in 1985[7].
The CIR process is expressed by

dRt = κ(θ −Rt)dt+ σ
√
RtdWt, (2.3)

where κ, θ > 0, σ2 < 2κθ and Wt is a standard Wiener process. The parameter κ
determines the rate of adjustment. The parameter θ is the long term mean and σ

7



2. Theory 2.3. CIR process

is the volatility. The 2 conditions on the parameters means that Rt > 0, i.e. the
interest rate will always be positive. Having a positive interest rate means, of course,
that we are guaranteed to increase an investment in the bond with a CIR interest
rate at time of maturity.

The transition density function for a CIR process, at time s given the current
time t, is expressed by

f(Rs, s|Rt, t) = ce−u−v
(u
v

)q/2
Iq(2
√
uv),

where

c = 2κ
σ2(1− e−κ(s−t)) ,

u = cRte
κ(s−t),

v = crRs,

q = 2κθ
σ2 − 1

and Iq(.) is the modified Bessel function of first kind order q.
The bond price of a zero-coupon bond for a CIR process is calculated by

B(t, T ) = f(t, Rt) = exp(−RtC(t, T )− A(t, T )), (2.4)

where

C(t, T ) = sinh(γ(T − t))
γ cosh(γ(T − t)) + 1

2κ sinh(γ(T − t)) ,

A(t, T ) = −2κθ
σ2 log

(
γ exp(1

2κ(T − t))
γ cosh(γ(T − t)) + 1

2κ sinh(γ(T − t))

)

and

γ = 1
2
√
κ2 + 2σ2.

This zero-coupon bond guarantees that the bond price at time of maturity isB(T, T ) =
1. For the interested reader there is a more extensive calculation of the bond price
in Appendix A.

Figure 2.4 presents a CIR process based on 12-month LIBOR and its correspond-
ing bond price. Note that the bond price are decreasing at some points, but at the
time of maturity the we have the guaranteed value at B(T, T ) = 1.
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0 1 2 3 4 5

Time (years)

0.008

0.009

0.01

0.011

0.012

0.013

0.014

0.015

0.016

R
(t

)

a)

CIR

0 1 2 3 4 5

Time (years)

0.94

0.95

0.96

0.97

0.98

0.99

1

1.01

P
ri
c
e

b)

Bond

Figure 2.4: a) shows a CIR process based on the 12-month LIBOR rate and b)
shows the bond price for the CIR process.

2.4 GARCH

To model the stochastic volatility this thesis uses GARCH. Generalized autoregres-
sive conditional heteroscedasticity or GARCH was first introduced by Bollerslev in
1986 [6]. If Xt is the log return and σt is the stochastic volatility, the GARCH(p,q)
model will be expressed by

Xt = σtεt, σ2
t = a0 +

p∑
i=1

aiX
2
t−i

q∑
j=1

bjσ
2
t−j,

where εt are iid random variables with mean 0 and variance 1, and ai ≥ 0, bj ≥ 0
and ∑max(p,q)

i=1 (ai + bi) < 1.
Volatility clustering is a phenomena where small changes tends to be followed by

small changes and large changes tends to be followed by large changes. This means
that if the stochastic volatility is small today, it is likely that the stochastic volatility
will be small tomorrow as well, and the same for large volatilities. Since GARCH is
based on previous observations it exhibits volatility clustering.

In Figure 2.5 a stock based on the Dow Jones index and its corresponding
GARCH(1,1) process is presented. Note how large changes in the stock are fol-
lowed by high values of the stochastic volatility. GARCH(1,1) is often considered a
reasonable model [13], and is used in this thesis.
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Figure 2.5: Stock in a) based on the Dow Jones index with its corresponding
GARCH(1,1) in b).

2.5 NIG process
The NIG process will be used to model the stock price in this thesis. The NIG
or normal inverse Gaussian process is based on the normal distribution and IG
(inverse Gaussian) distribution. The normal, IG and NIG processes are all three
Lévy processes [11], which was defined in Definition 2.1. The NIG distribution was
introduced in 1995 by Barndorff-Nielsen [3]. In Appendix B a goodness of fit for
the NIG distribution are presented, which motivates why NIG is a good choice to
model the stock.

2.5.1 Normal distribution
The normal (or Gaussian) distribution is one of the most well-known and important
distributions. The normal distribution has 2 parameters, N(µ, σ2), where µ ∈ R is
the mean and σ2 > 0 is the variance. The probability density function for a normal
distribution is given by

fN(x|µ, σ2) = 1√
2πσ2

exp
(
− (x− µ)2

2σ2

)
.

In the Black-Scholes model, which was the first model in this area, the normal dis-
tribution was used. There are some problems with the normal distribution, which
makes us want to use a better model. As mentioned before the normal distribution
have skewness 0 and kurtosis 3. This means that the normal distribution are sym-
metric, when usually log return of a stock are negatively skewed and the tails are

10



2. Theory 2.5. NIG process

heavier than the log returns are. Due to the problems with the normal distribu-
tion there is need for a better model. In this thesis the NIG distribution, which is
introduced below after the IG distribution, is chosen to be the model.

2.5.2 IG distribution

The IG distribution has probability density function

fIG(x|µ, λ) =
√

λ

2πx exp
(
− λ

2µ2x
(x− µ)2

)
,

where µ > 0 is the mean and λ > 0 is the shape parameter.

2.5.3 NIG distribution

The NIG distribution is based on both the normal distribution and the IG distribu-
tion. The NIG distribution has 4 parameters α, β, µ and δ. The probability density
function for NIG is

fNIG(x|α, β, µ, δ) = α

π
exp

(
δ
√
α2 − β2−β(x−µ)

)
q
(x− µ

δ

)−1
K1

(
δαq

(x− µ
δ

))
,

where q(x) =
√

1 + x2 and K1(.) is the modified Bessel function of third order
and index 1. The parameters α and β are shape parameters, where α is steepness
and β is asymmetry, and it holds that 0 ≤ |β|≤ α. The parameter µ is the location
parameter, where µ ∈ R and δ is the scale parameter, where δ > 0. Figure 2.6 shows
how the different parameters change the pdf. Note how these different parameters
makes the NIG distribution more versatile than the normal distribution and how
the asymmetry and shape can be changed by changing the parameters in NIG.
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2. Theory 2.5. NIG process
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Figure 2.6: Probability density function for NIG. The standard variables used are
α = 1, β = 0, µ = 0 and δ = 1. In a) α is changed, in b) β is changed, in c) µ is
changed and in d) δ is changed.

The NIG distribution have no direct way to generate a random variable. To
generate a NIG random variable both normal distribution and IG distribution are
used. According to Schoutens a NIG(α, β, µ, δ) random variable can be generated
by

Xt = µ+ βδ2IG + δN, (2.5)
where IG is an IG(µ,λ) random variable with µ = (δ

√
α2 − β2)−1 and λ = 1 and N

is a N(0,σ2) with σ2 = IG.
To have a more convenient way of working with the NIG distribution the invariant

parameters ᾱ = αδ and β̄ = βδ are introduced. The probability density function
for the invariant parameters is

f̄NIG(x|ᾱ, β̄, µ, δ) = ᾱ

πδ
exp

(
δ
√
ᾱ2 − β̄2 − β̄

(x− µ
δ

))
q
(x− µ

δ

)−1
K1

(
ᾱq
(x− µ

δ

))
.

One good thing about this parametrization is that NIG(ᾱ, β̄, µ, δ) is a location-scale
family, i.e.

X ∼ NIG(ᾱ, β̄, µ, δ)⇔ X − µ
δ
∼ NIG(ᾱ, β̄, 0, 1).

This feature will be very useful later when a time dependent δ is used and when
calculating the put price.

For simpler notation the variable ρ̄ = β̄/ᾱ = β/α is defined. With this parametri-
sation the formula for the mean is

E(X) = µ+ ρ̄δ√
1− ρ̄2 ,

12



2. Theory 2.5. NIG process

the variance is
Var(X) = δ2

ᾱ(
√

1− ρ̄2)3/2 ,

the skewness is
Skew(X) = 3 ρ̄

4
√

1− ρ̄2
√
ᾱ

and the kurtosis is
Kurt(X) = 3

(
1 + 4ρ̄2 + 1

ᾱ
√

1− ρ̄2

)
.

Note here that both the skewness and kurtosis can change values depending on the
parameters that are used.

2.5.4 NIG-GARCH distribution
The final model will be presented in this section. This model is a NIG process
with stochastic volatility, which was first introduced by Bandorff-Nielsen in 1997
[2]. Work from Andersson in 2001 [1] gives the NIGSV (NIG - stochastic volatility)
model, which is NIG(α, β, µt, δt), where δt is the stochastic volatility. The model
that is used in this thesis is a model from Jensen and Lunde in 2001 [8] which
uses GARCH as stochastic volatility. This model assumes a NIG process with the
invariant parameters, i.e X(t) ∼ NIG(ᾱ, β̄, µ, δ). A time dependent δt is introduced
and the process is X(t) ∼ NIG(ᾱ, β̄, µ, δt). Introducing the parameter γ =

√
α2 − β2

(and γ̄ = δ
√
α2 − β2 =

√
ᾱ2 − β̄2) it follows that

E(Xt) = µ+ δt
β̄

γ̄

and
Var(Xt) = δ2

t

ᾱ2

γ̄3 .

Since the invariant parameters ᾱ and β̄ are used the model can be rewritten in a
more convienient way as

Xt = µ+
√
γ̄β̄

ᾱ
δt + δtηt,

where ηt ∼ NIG(ᾱ, β̄,−
√
γ̄β̄
ᾱ
, γ̄

3/2

ᾱ
). This expression has to be rewritten so that

GARCH can be used. The process ηt has mean

E(ηt) = γ̄3/2β̄

ᾱγ̄
−
√
γ̄β̄

ᾱ
= 0

and variance
Var(ηt) =

( γ̄3/2

ᾱ

)2 ᾱ2

γ̄3 = 1,

and because of this the model can be changed to NIG(ᾱ, β̄, µ, δt γ̄
3/2

ᾱ
). The mean for

this is
E(Xt) = µ+ δt

√
γ̄β̄

ᾱ

13



2. Theory 2.5. NIG process

and the variance is
Var(Xt) = δ2

t .

The time dependent parameter δt is in fact a GARCH process and in this specific
case a GARCH(1,1). The GARCH(1,1) is defined as

σ2
t = a0 + a1σt−1 + b1εt−1, (2.6)

where εt−1 = Xt−1 − E(Xt−1) = Xt−1 − µ− σt−1
√
γ̄β̄
ᾱ

, so that εt fulfills the GARCH
conditions with mean 0 and variance 1. Other conditions that also have to be fulfilled
is that a0 > 0 and a1 + b1 < 1. In conclusion the stock model used in this thesis is

Xt ∼ NIG(ᾱ, β̄, µ, σt
γ̄3/2

ᾱ
),

where σt is a GARCH(1,1) process as in Equation (2.6).
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3
Methods

This chapter contains the information about the parameter estimation, or cal-
ibration of the model and the numerical implementation of the model. The

model is calibrated using the maximum likelihood method. In this chapter it is
assumed that a year consists of 250 trading days, i.e, dt = 1/250. It is also assumed
that there is a discrete time interval (ti)ni=1 and that n is 250, 750 or 1250, so that
T = ndt is 1, 3 or 5 years. Also note that lowercase xti and rti is used to represent
the data and capital Xti and Rti is used to represent the simulated random variable.

3.1 Model calibration
Model calibration is the name for parameter estimation. To calibrate the model the
maximum log-likelihood estimation is used. For NIG-GARCH this will be

lnL(α, β, µ, δ, a0, a1, b1|xt1 , ...xtn) =
n∑
i=1

ln f̄NIG(xti |ᾱ, β̄, µ, δti)

=
n∑
i=1

ln f̄NIG
(
xti |ᾱ, β̄, µ, σti

γ̄3/2

ᾱ

)
,

where γ̄ =
√
ᾱ2 − β̄2 = δ

√
α2 − β2 and σti is a GARCH(1,1) process. This means

that σti is modeled by
σ2
ti+1

= a0 + aiσ
2
ti

+ b1ε
2
ti
for i = 1, ..., n− 1,

where εti = xti − σti
√
γ̄β̄
ᾱ
− µ and σ2

t1 is chosen as the variance from the first 20
observations [1]. This is solved numerically in Matlab. The starting values are
chosen by method of moments. The parameters from the calibration will be used to
generate random variables to simulate the stock price.

For the CIR process the log-likelihood function is
lnL(κ, θ, σ|rt1 , ..., rtn)

=
n−1∑
i=1

ln fCIR(rti+1|κ, θ, σ, rti)

= (n− 1) ln c+
n−1∑
i=1

(
− uti − vti+1 +1

2q ln
(
vti+1

uti

)
+ ln

(
Iq(2
√
utivti+1)

))
,

where c = 2κ
σ2(1−e−κdt) , uti = crtie

κdt for i = 1...n− 1, vti+1 = crti+1 for i = 1, .., n− 1
and q = 2κθ

σ2 − 1. This is solved numerically in Matlab and the values will be used
to simulate the interest rate with a CIR process.
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3. Methods 3.2. Model simulation

3.2 Model simulation
For the portfolio simulations the formulas from previous chapter are discretized. It
is assumed that the stocks, the bonds and the puts are available in the quantity that
is needed, for example it is possible to invest in a fraction of a stock. It is assumed
that the initial value for the portfolio is Vt1 = 1 and that the initial value for the
stock St1 = 1, and that the stock is modeled as discrete version of Equation (2.1),
i.e,

Sti = Sti−1 exp(Xti) for i = 2, ..., n,

where Xti is a NIG-GARCH random variable generated by using Equation (2.5).
The CIR process is simulated by using a discrete version of Equation (2.4) and

is expressd by

Rti+1 = Rti + dRti = Rti + κ(θ −Rti)dt+ σ
√
Rti

√
dt · εi for i = 1, ..., n− 1,

where εi are standard normal variables and Rt1 = r0 is given from the data used.
The bond is modeled by a discrete version of Equation (2.4), which is

B(ti, tn) = f(ti, Rti) = exp
(
−RtiC(ti, tn)− A(ti, tn)

)
for i = 1, ..., n,

with
C(ti, tn) = sinh(γ(tn − ti))

γ cosh(γ(tn − ti)) + 1
2κ sinh(γ(tn − ti))

,

A(ti, tn) = −2κθ
σ2 log

(
γ exp(1

2κ(tn − ti))
γ cosh(γ(tn − ti)) + 1

2κ sinh(γ(tn − ti))

)
and

γ = 1
2
√
κ2 + 2σ2.

The European put is modeled by

p(ti, Sti , K) = exp
( ∫ tn

ti
−Rsds

) ∫ d

−∞
(K − Sti exp(x))f

(
x|ᾱ, β̄, τµ, τσt

γ̄3/2

ᾱ

)
dx,

where d = log(K/Sti) and τ = tn− ti, and the integrals are solved numerically using
Matlab.

To be able to do comparisons between CPPI and OBPI the two strategies will
have the same amount invested in the risky asset. This means that Et1 from CPPI
and q from OBPI will have the same value, i.e., Et1 = q. The both strategies will
also have the same initial amount, V OBPI

t1 = V CPPI
t1 = 1. The rest of the amount for

the OBPI is filled up with the bond, making the value for the OBPI to be

V OBPI
ti

= q(Sti + p(ti, Sti , K)) + hBti ,

where h is the amount invested in the bond, and is calculated by

h =
V OBPI
t1 − q(St1 + p(ti, St1 , K)

Bt1

.
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3. Methods 3.2. Model simulation

The strike price for the bond is chosen to be K = 1.25. The amount invested in
the risky asset and the put is q = 0.7. The floor for this type of OBPI will be
Ftn = qK + h, which changes in each simulation, depending on the put and bond,
but will be approximately Ftn ≈ 0.7 · 1.25 + .12 ≈ 0.99. For CPPI the value of the
portfolio is calculated by

V CPPI
ti+1

= V CPPI
ti

+ dVti ,

where

dVti = Eti
dSti
Sti

+ (V CPPI
ti

− Eti)
dBti

Bti

= Eti
Sti+1 − Sti

Sti
+ (V CPPI

ti
− Eti)

Bti+1 −Bti

Bti

,

where Eti = min(mCti , V CPPI
ti

) and with m = 3.5. The cushion is chosen as Cti =
V CPPI
ti

− Fti with the floor chosen as Fti = F = 0.8.
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4
Results

In this chapter the results for the calibrations are presented, using the methods
described in the previous chapter. The portfolio simulations, that were described

in the previous chapter, have been made by Monte Carlo simulation with N = 50000
simulations. The simulations have used LIBOR (London Interbank Offered Rate)
as interest rate. The stocks have been simulated using the financial indices Dow
Jones, Nasdaq, Nikkei 225 and S&P 500, and the stocks from BMW, Ford, General
Motors and Volkswagen.

4.1 Calibration results
In Table 4.1 the calibration results for the 3 month, 6 month and 12 month LIBOR
interest rates are presented. Note that the results are quite similar for each year.

Table 4.1: Calibration results for different interest rates.

κ θ σ
LIBOR 3-month 1 year 0.3716 0.0204 0.0117
LIBOR 3-month 3 years 0.0004 3.0222 0.0089
LIBOR 3-month 5 years 0.0004 1.3968 0.0076
LIBOR 6-month 1 year 0.0594 0.1296 0.0132
LIBOR 6-month 3 years 0.0004 4.5747 0.0099
LIBOR 6-month 5 years 0.0009 0.8251 0.0084
LIBOR 12-month 1 year 0.1492 0.0595 0.0155
LIBOR 12-month 3 years 0.0009 2.5157 0.0129
LIBOR 12-month 5 years 0.0011 0.8651 0.0107
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4. Results 4.1. Calibration results

Figure 4.1 shows the result of 3 different simulations for the 12-month LIBOR.
In the 1 year simulation in a) it shows that the simulation is similar to the data.
Also in the 3 years simulation in b) the simulation and the data are quite similar.
In the 5 year simulation in c) it shows that the simulation and the data are quite
different. The result for simulating 3-month LIBOR rate and 6-month LIBOR rate
looks similar to the 12 month LIBOR, since the parameters from Table 4.1 are
similar.
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Figure 4.1: Simulation results for 12 month LIBOR compared to the data, a) 1
year, b) 3 years and c) 5 years.
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4. Results 4.1. Calibration results

The calibration results for the stocks are presented in Table 4.2. Since the distri-
bution changes in time it is not possible to plot a pdf and compare it to the data.
By looking at the variable β, we can conclude whether the skewness is positive or
negative, but we cannot know its magnitude. The variable µ tells us that the dis-
tribution are located around 0 for all stocks. The variables a0, a1 and b1 shows that
b1 will be most important when calculating the stochastic volatility.

Table 4.2: Calibration results for stocks.

α β µ δ a0 a1 b1
BMW 1 year 52.1318 -2.2490 0.0000 0.0496 0.0000 0.0470 0.8572
BMW 3 years 161.3547 -1.1124 0.0000 0.0524 0.0000 0.0601 0.9207
BMW 5 years 81.6365 -3.0610 0.0015 0.0782 0.0000 0.0288 0.9649
Dow Jones 1 year 161.7483 7.6339 0.0000 0.0160 0.0000 0.1659 0.7250
Dow Jones 3 years 173.3850 12.8098 0.0000 0.0167 0.0000 0.1811 0.7203
Dow Jones 5 years 173.0489 4.5408 0.0005 0.0184 0.0000 0.1577 0.7676
Ford 1 year 61.8963 -3.7252 0.0000 0.0185 0.0001 0.1893 0.4928
Ford 3 years 55.3888 -1.7224 0.0000 0.0115 0.0001 0.4361 0.2987
Ford 5 years 64.9243 -0.1999 0.0001 0.0176 0.0001 0.2784 0.3860
General Motors 1 year 82.8415 -0.9244 0.0000 0.0280 0.0001 0.1031 0.6069
General Motors 3 years 64.5421 -0.3543 0.0000 0.0180 0.0001 0.2286 0.2507
General Motors 5 years 64.2914 0.4841 0.0001 0.0209 0.0002 0.1345 0.2745
Nasdaq 1 year 118.6849 8.3449 0.0000 0.0251 0.0000 0.0800 0.8718
Nasdaq 3 years 118.8003 -1.4298 0.0012 0.0180 0.0000 0.1952 0.7192
Nasdaq 5 years 136.2092 -2.2369 0.0014 0.0224 0.0000 0.1308 0.7962
Nikkei 225 1 year 81.9400 -2.1287 -0.0000 0.0422 0.0000 0.0743 0.8929
Nikkei 225 3 years 114.7528 0.6292 0.0002 0.0448 0.0000 0.0825 0.8952
Nikkei 225 5 years 136.9897 3.4473 0.0000 0.0540 0.0000 0.0703 0.9069
S&P500 1 year 135.1133 11.4463 0.0000 0.0144 0.0000 0.1430 0.7491
S&P500 3 years 169.6456 16.5561 0.0000 0.0161 0.0000 0.1674 0.7320
S&P500 5 years 155.7278 5.2378 0.0006 0.0174 0.0000 0.1522 0.7693
Volkswagen 1 year 50.6959 1.7989 0.0001 0.0522 0.0000 0.1697 0.7980
Volkswagen 3 years 61.0874 0.0357 0.0000 0.0643 0.0000 0.0746 0.9221
Volkswagen 5 years 69.7610 -0.0036 0.0008 0.0669 0.0000 0.0594 0.9297
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4. Results 4.2. Portfolio results

Figure 4.2 shows the results of the Kernel densities for 3 different simulations with
the Volkswagen stock compared to the data. The Kernel density can be thought of
as the empirical pdf. In a), which is a 1 year simulation, it shows some problems.
First of all the data are not as smooth as for 3 or 5 years of data. Secondly, in
the area at the beginning of the tails the simulation have more observations than
the data and the simulation does not have the same peak as the data. The 3 year
simulation looks a bit better, and the 5 year simulation looks even better.

Figure 4.2: Kernel density for Volkswagen stock simulation compared to the data,
for a) 1 year, b) 3 years and c) 5 years.

4.2 Portfolio results

In Table 4.3-4.5 the results for the portolio simulations are presented. The 3 tables
gives similar answers for the different interest rates. In a decreasing market the
OBPI strategy performs better. In a slightly increasing market the both strategies
performs similarly, sometimes OBPI is better and sometimes CPPI is better. In a
significant increasing stock market the CPPI strategy performs better.
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Table 4.3: Results for portfolio simulations with LIBOR 3-month.

Value Initial 1 year 3 years 5 years
BMW
CPPI 1 0.8920 0.9268 1.2226
OBPI 1 1.0127 1.0574 1.3227
S (σ̄) 1 0.7794 (0.0189) 0.8349 (0.0154) 1.3653 (0.0155)
Dow Jones
CPPI 1 1.1254 1.9205 2.7595
OBPI 1 1.0191 1.5209 2.1349
S (σ̄) 1 1.1555 (0.0071) 1.9925 (0.0070) 2.8703 (0.0070)
Ford
CPPI 1 0.9029 0.9107 1.1177
OBPI 1 1.0031 1.0225 1.1671
S (σ̄) 1 0.8173 (0.0149) 0.8118 (0.0161) 1.1761 (0.0159)
General Motors
CPPI 1 0.9874 1.0239 1.4919
OBPI 1 1.0178 1.0784 1.4425
S (σ̄) 1 0.9761 (0.0146) 1.0298 (0.0164) 1.7079 (0.0174)
Nasdaq
CPPI 1 1.2707 2.1626 4.1098
OBPI 1 1.0902 1.7109 3.1296
S (σ̄) 1 1.3186 (0.0085) 2.2595 (0.0088) 4.2871 (0.0085)
Nikkei225
CPPI 1 0.9345 1.3385 2.8230
OBPI 1 1.0087 1.2329 2.3134
S (σ̄) 1 0.8836 (0.0128) 1.4495 (0.0114) 3.1098 (0.0116)
S&P500
CPPI 1 1.2045 2.2776 3.5928
OBPI 1 1.0446 1.7726 2.7324
S (σ̄) 1 1.2429 (0.0070) 2.3542 (0.0068) 3.7324 (0.0700)
Volkswagen
CPPI 1 1.3629 1.1666 2.9301
OBPI 1 1.2470 1.2324 2.6590
S (σ̄) 1 1.4796 (0.0206) 1.2754 (0.0172) 3.5457 (0.0165)
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Table 4.4: Results for portfolio simulations with LIBOR 6-month.

Value Initial 1 year 3 years 5 years
BMW
CPPI 1 0.8931 0.9305 1.2345
OBPI 1 1.0129 1.0577 1.3253
S (σ̄) 1 0.7788 (0.0190) 0.8350 (0.0155) 1.3709 (0.0155)
Dow Jones
CPPI 1 1.1261 1.9249 2.7574
OBPI 1 1.0190 1.5231 2.1313
S (σ̄) 1 1.1556 (0.0071) 1.9963 (0.0070) 2.8663 (0.0070)
Ford
CPPI 1 0.9032 0.9112 1.1283
OBPI 1 1.0028 1.0213 1.1678
S (σ̄) 1 0.8162 (0.0149) 0.8093 (0.0161) 1.1841 (0.0159)
General Motors
CPPI 1 0.9872 1.0276 1.4955
OBPI 1 1.0173 1.0784 1.4366
S (σ̄) 1 0.9744 (0.0146) 1.0327 (0.0164) 1.6955 (0.0173)
Nasdaq
CPPI 1 1.2704 2.1580 4.1145
OBPI 1 1.0896 1.7066 3.1305
S (σ̄) 1 1.3178 (0.0085) 2.2539(0.0088) 4.2894(0.0085)
Nikkei225
CPPI 1 0.9360 1.3448 2.8282
OBPI 1 1.0086 1.2343 2.3131
S (σ̄) 1 0.8846(0.0128) 1.4541 (0.0114) 3.1101(0.0116)
S&P500
CPPI 1 1.2055 2.2715 3.6036
OBPI 1 1.0447 1.7674 2.7383
S (σ̄) 1 1.2424 (0.0070) 2.3473 (0.0068) 3.7383 (0.0070)
Volkswagen
CPPI 1 1.3624 1.1670 2.9288
OBPI 1 1.2461 1.2306 2.6457
S (σ̄) 1 1.4779 (0.0206) 1.2710 (0.0172) 3.5276 (0.0165)
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Table 4.5: Results for portfolio simulations with LIBOR 12-month.

Value Initial 1 year 3 years 5 years
BMW
CPPI 1 0.8936 0.9365 1.2494
OBPI 1 1.0124 1.0589 1.3264
S (σ̄) 1 0.7780 (0.0190) 0.8405 (0.0154) 1.3722 (0.0155)
Dow Jones
CPPI 1 1.1255 1.9241 2.7700
OBPI 1 1.0186 1.5211 2.1372
S (σ̄) 1 1.1539 (0.0071) 1.9940 (0.0070) 2.8764 (0.0069)
Ford
CPPI 1 0.9047 0.9139 1.1345
OBPI 1 1.0027 1.0201 1.1661
S (σ̄) 1 0.8174 (0.0149) 0.8098 (0.0161) 1.1803 (0.0159)
General Motors
CPPI 1 0.9886 1.0327 1.5092
OBPI 1 1.0172 1.0782 1.4395
S (σ̄) 1 0.9754 (0.0146) 1.0333 (0.0164) 1.7046 (0.0173)
Nasdaq
CPPI 1 1.2719 2.1581 4.1294
OBPI 1 1.0900 1.7054 3.1383
S (σ̄) 1 1.3184 (0.0085) 2.2527 (0.0088) 4.3021 (0.0085)
Nikkei225
CPPI 1 0.9371 1.3510 2.8436
OBPI 1 1.0085 1.2351 2.3170
S (σ̄) 1 0.8841 (0.0128) 1.4568 (0.0114) 3.1177(0.0116)
S&P500
CPPI 1 1.2056 2.2770 3.5976
OBPI 1 1.0440 1.7701 2.7310
S (σ̄) 1 1.2418 (0.0070) 2.3520 (0.0068) 3.7242 (0.0070)
Volkswagen
CPPI 1 1.3694 1.1776 2.9373
OBPI 1 1.2492 1.2330 2.6395
S (σ̄) 1 1.4852 (0.0206) 1.2765 (0.0172) 3.5210 (0.0165)
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5
Conclusion

In Table 4.1 the results for the calibration of the interest rates are presented. The
calibration was done by numerical maximum likelihood method, so there is the
possibility that a local minimum has been found and not the global minimum. The
table shows that for each year the 3-month, 6-month and 12-month LIBOR rates are
quite similar. The parameter θ, which is the long term mean, have a much higher
value than the values are for the interest rate. This means that these parameters
can only be used in a limited time interval. Looking at Figure 4.1 it shows see that
the result for 1 year looks good and 3 years looks quite good. The result for 5 years
does not look so good. This means that the 1 year interest rates are a good fit by a
CIR process and also the 3 years interest rates can be simulated as a CIR process.
The 5 year interest rates are not a CIR process and should better be estimated by
some other random process.

The calibration results for the stocks opens up concerns in some cases. It is know
from Appendix B that the skewness is negative for all cases. The calibrations results
in Table 4.2 shows that β is positive in many cases, meaning that the distribution
will have positive skewness, when in fact the data are negatively skewed. Since there
is time varying parameters there is no way to know the quantity of the skewness,
but it is know that the skewness are positive, when it fact it should be negative.
The calibration has been done numerically by maximum likelihood method, so there
is the possibility that the variables found are not the true variables.

Looking at Figure 4.2 it shows the result for 3 different simulations. In a), which
is a 1 year simulation, the results are not as good as wanted. The simulation does
not get as high peak as the data and the simulation have more observations on
the beginning of the tails than the data. One problem is that the data are not as
smooth as for 5 years. The simulation for 1 year does not give as good fit as the 5
year simulation. A one year simulation is only 250 simulated random variables which
also means that only a few ’bad’ variables have much effect on the result. This is a
problem that happens often with the 1 year simulations. In the 5 year simulation in
c) the results are good. A 5 year simulation includes 1250 random variables, which
makes it more robust than the 1 year simulation. The 3 years simulation is based on
750 random variables, and it is better than the 1 year simulation, but not as good
as the 5 year simulation. For the area in the beginning of the tails, there are some
more observations than in the data. This is a problem with the NIG-GARCH model
that happens quite often due to GARCH. The GARCH model is based on previous
observations, so an extreme variable leads to higher probability of more extreme
observations, due to the fact that the distribution of the log returns changes over
time based on the GARCH model. It can be concluded that the NIG-GARCH model
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5. Conclusion

is a good model, but there are still some problems with this model.
For the portfolio strategy simulations it is clear that the stock price that is most

important for how the portfolio change. For a decreasing stock market the OBPI
performs better than CPPI. For the values that are chosen in the simulations used
in this thesis the floor for the OBPI is higher than the floor for CPPI, which explains
the performance in a decreasing market. For a slightly increasing stock market we
have that OBPI and CPPI performs very similarly. Which of the strategies that
performs better in this case depends both on the time and the stochastic volatility.
For a significant increasing stock market the CPPI performs better than the OBPI.
The CPPI strategy will in this case invest more and more money in the stock, making
the growth better than in the case of OBPI where the investment in the stock is
fixed.
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A
Bond price for a CIR process

This appendix includes a calculation for a zero-coupon bond for a CIR process. The
calculations are based on Shreve [12, p. 272-276]. The interest rate model is a CIR
process which is expressed by

dRt = κ(θ −Rt)dt+ σ
√
RtdWt,

where κ, θ > 0, σ2 < 2κθ and Wt is a standard Wiener process. The discounted
process Dt is expressed by

Dt = exp(−
∫ t

0
R(s)ds)

and it follows from this that the differential of Dt is

dDt = −RtDtdt.

A zero-coupon bond is a contract that promises to pay the face value K (here it
is chosen that K = 1) at time of maturity T . At time T it is guaranteed to get
the value K and at the time leading up to T the bond will have a value lower than
K, depending on the value of interest rate Rt. Considering the risk-neutral pricing
formula it is known that the bond should be a martingale under the risk-neutral
measure, meaning that the price of the bond is

DtB(t, T ) = Ẽ[DT |F(t)], (A.1)

with B(T, T ) = 1. This will give the price formula for a zero-coupon bond to be

B(t, T ) = Ẽ[exp(
∫ T

t
R(s)ds)|F(t)].

The interest rate Rt is given by a stochastic differential equation (SDE) and it is a
Markov process, and it must also hold that

B(t, T ) = f(t, Rt)

for some function f(t, r). We want to find the partial differential equation (PDE)
for the function f(t, r), so we find a martingale, take its differential and set its dt
term equal to zero. The martingale will be the function from equation (A.1), i.e
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A. Bond price for a CIR process

DtB(t, T ) = Dtf(t, Rt), which have the differential

d(Dtf(t, Rt)) = f(t, Rt)dDt +Dtdf(t, Rt)

= Dt

(
−Rf(t, Rt)dt+ ft(t, Rt)dt+ fR(t, Rt)dRt + 1

2fRRdRtdRt

)
= Dt

(
−Rtf(t, Rt) + ft(t, Rt) + κ(θ −Rt)fR(t, Rt)

+ 1
2σ

2RtfRR(t, Rt)
)

+Dtσ
√
RtdWt,

which is calculated by using Ito’s formula and Ito’s product rule. Now use the dt
term for calculating the bond price the PDE of the bond price is

ft(t, r) + κ(θ − r)fr(t, r) + 1
2σ

2rfrr(t, r) = rf(t, r). (A.2)

Now guess the solution to be

f(t, r) = exp(−rC(t, T )− A(t, T ))

and put this expression of f(t, r) in Equation (A.2). This will be
(
(−C ′(t, T ) + κC(t, T ) + 1

2σ
2C2(t, T )− 1)r − A′(t, T )− κθC(t, T )

)
f(t, r) = 0,

where it must hold that C(T, T ) = A(T, T ) = 0. Now it must be that the r term is
zero and therefore there are the two ordinary differential equations (ODE)

C ′(t, T ) = κC(t, T ) + 1
2σ

2C2(t, T )− 1

and
A′(t, T ) = −κθC(t, T ).

The solution of A(t, T ) and C(t, T ) is

C(t, T ) = sinh(γ(T − t))
γ cosh(γ(T − t)) + 1

2κ sinh(γ(T − t)) , (A.3)

and
A(T, t) = −2κθ

σ2 log
(

γ exp(1
2κ(T − t))

γ cosh(γ(T − t)) + 1
2κ sinh(γ(T − t))

)
, (A.4)

where γ = 1
2

√
κ2 + 2σ2. The bond price will be

B(t, T ) = exp(−RtC(t, T )− A(t, T )),

with C(t, T ) as in Equation (A.3), A(t, T ) as in Equation (A.4) and Rt is the interest
rate from a CIR process.
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B
NIG goodness of fit

This appendix contains information on the goodness of fit for the NIG distribution
compared to the normal distribution. Note that no statistical test have been made
and that the goodness of fit is done by looking at the values and graphs and compare
the NIG distribution with the normal distribution. In Table B.1 are the calibrations
results for a NIG process.

Table B.1: Calibration results for the NIG distribution for the stocks.

α β µ δ
BMW 1 year 55.5664 -9.5762 0.0037 0.0255
BMW 3 years 55.2221 -7.3534 0.0023 0.0185
BMW 5 years 67.4266 -8.1323 0.0028 0.0204
Dow Jones 1 year 142.0513 -20.0863 0.0017 0.0095
Dow Jones 3 years 117.7326 -11.7186 0.0010 0.0078
Dow Jones 5 years 115.6097 -7.6197 0.0009 0.0077
Ford 1 year 63.4294 -10.2994 0.0019 0.0156
Ford 3 years 48.6697 -4.1206 0.0005 0.0117
Ford 5 years 58.5758 -2.1980 0.0006 0.0156
General Motors 1 year 84.4321 -6.5504 0.0016 0.0212
General Motors 3 years 58.8766 -3.9140 0.0010 0.0164
General Motors 5 years 61.5733 -1.8088 0.0008 0.0193
Nasdaq 1 year 83.0211 -14.9955 0.0020 0.0087
Nasdaq 3 years 85.4966 -20.3406 0.0026 0.0086
Nasdaq 5 years 103.5277 -24.9447 0.0030 0.0096
Nikkei 225 1 year 63.7231 -9.1142 0.0017 0.0139
Nikkei 225 3 years 82.3038 -12.5492 0.0022 0.0135
Nikkei 225 5 years 102.6659 -8.4403 0.0020 0.0177
S&P500 1 year 131.1383 -6.5769 0.0008 0.0090
S&P500 3 years 116.7815 -10.4292 0.0010 0.0074
S&P500 5 years 105.7119 -7.3283 0.0010 0.0074
Volkswagen 1 year 42.0533 5.5355 -0.0030 0.0244
Volkswagen 3 years 33.7683 -3.0903 0.0009 0.0159
Volkswagen 5 years 42.8087 -3.6565 0.0016 0.0168
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B. NIG goodness of fit

Table B.2 contains the result for mean, variance, skewness and kurtosis, with
the sample values in parenthesis. It is especially skewness and kurtosis that are
of interest in this case. The normal distribution has skewness 0 and kurtosis 3.
Comparing the NIG values and normal values to the sample values it is clear that
NIG is a better fit than normal, for both skewness and kurtosis.

Table B.2: Mean, variance, skewness and kurtosis for a NIG distribution, with its
corresponding sample values in parenthesis.

Mean Variance Skewness Kurtosis
BMW 1 year -0.0007 (-0.0007) 0.0010 (0.0005) -0.4372 (-0.8491) 5.4003 (7.5674)
BMW 3 years -0.0002 (-0.0002) 0.0007 (0.0003) -0.3970 (-0.6114) 6.1726 (7.3232)
BMW 5 years 0.0003 (0.0003) 0.0006 (0.0003) -0.3097 (-0.5310) 5.3250 (6.4804)
Dow Jones 1 year 0.0003 (0.0003) 0.0001 (0.0001) -0.3661(-0.4024) 5.4128(4.1728)
Dow Jones 3 years 0.0003 (0.0003) 0.0001 (0.0001) -0.3133 (-0.2822) 6.4332 (4.9728)
Dow Jones 5 years 0.0004 (0.0004) 0.0001 (0.0001) -0.2095 (-0.1227) 6.4260 (5.1586)
Ford 1 year -0.0007 (-0.0007) 0.0005 (0.0003) -0.4927 (-0.6565) 6.3932 (5.7259)
Ford 3 years -0.0005 (-0.0005) 0.0005 (0.0003) -0.3377 (-0.8679) 8.4552 (19.4473)
Ford 5 years 0.0000 (0.0000) 0.0005 (0.0003) -0.1177 (-0.5935) 6.2973 (12.4187)
General Motors 1 year -0.0000 (-0.0000) 0.0005 (0.0003) -0.1742 (-0.2296) 4.7206 (3.8237)
General Motors 3 years -0.0001 (-0.0001) 0.0006 (0.0003) -0.2031 (-0.3349) 6.1658 (6.8195)
General Motors 5 years 0.0002 (0.0002) 0.0006 (0.0003) -0.0809 (-0.0323) 5.5352 (5.8314)
Nasdaq 1 year 0.0004 (0.0004) 0.0002 (0.0001) -0.6420 (-0.7083) 7.7605 (5.3678)
Nasdaq 3 years 0.0005 (0.0005) 0.0002 (0.0001) -0.8454 (-1.0172) 8.1622 (15.9547)
Nasdaq 5 years 0.0006 (0.0006) 0.0002 (0.0001) -0.7364 (-0.7785) 6.8371 (12.9921)
Nikkei 225 1 year -0.0003(-0.0003) 0.0005 (0.0002) -0.4575 (-0.6843) 6.6899 (6.5125)
Nikkei 225 3 years 0.0001(0.0001) 0.0004 (0.0002) -0.4365 (-0.4756) 5.9860 (6.2913)
Nikkei 225 5 years 0.0005 (0.0005) 0.0004 (0.0002) -0.1830 (-0.3082) 4.6970 (5.5281)
S&P500 1 year 0.0003 (0.0003 ) 0.0001 (0.0001) -0.1386 (-0.3590) 5.5725 (4.4398)
S&P500 3 years 0.0003 (0.0003) 0.0001 (0.0001) -0.2888(-0.3651) 6.5965(5.2995)
S&P500 5 years 0.0005 (0.0005) 0.0001 (0.0001) -0.2357 (-0.1898) 6.9286(5.3162)
Volkswagen 1 year 0.0002 (0.0002) 0.0012 (0.0006) 0.3917 (0.1611 ) 6.1556 (4.9450)
Volkswagen 3 years -0.0005 (-0.0005) 0.0010 (0.0005) -0.3752 (-1.0288) 8.7922 (13.8383)
Volkswagen 5 years 0.0002 (0.0002) 0.0008 (0.0004) -0.3023 (-0.8724) 7.2965 (12.9956)

Figure B.1-B.8 shows the histogram of the log return compared to the pdf of
both NIG and normal distributions. By looking at the figures it is clear that the
NIG distribution is a better fit than the normal distribution. Notice how the NIG
distribution follows the peak much higher than the normal distribution. Even if it
is hard to see it is noticeable that the NIG are negatively skewed. Also notice that
the tails for the NIG distribution are lighter, than for the normal distribution.
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B. NIG goodness of fit

Figure B.1: Histogram for the log returns for BMW with its corresponding pdf for
NIG and normal distribution for a) 1 year, b) 3 years and c) 5 years.

Figure B.2: Histogram for the log returns for Dow Jones with its corresponding
pdf for NIG and normal distribution for a) 1 year, b) 3 years and c) 5 years.
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B. NIG goodness of fit

Figure B.3: Histogram for the log returns for Ford with its corresponding pdf for
NIG and normal distribution for a) 1 year, b) 3 years and c) 5 years.

Figure B.4: Histogram for the log returns for General Motors with its correspond-
ing pdf for NIG and normal distribution for a) 1 year, b) 3 years and c) 5 years.
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B. NIG goodness of fit

Figure B.5: Histogram for the log returns for Nasdaq with its corresponding pdf
for NIG and normal distribution for a) 1 year, b) 3 years and c) 5 years.

Figure B.6: Histogram for the log returns for Nikkei225 with its corresponding pdf
for NIG and normal distribution for a) 1 year, b) 3 years and c) 5 years.
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B. NIG goodness of fit

Figure B.7: Histogram for the log returns for S&P 500 with its corresponding pdf
for NIG and normal distribution for a) 1 year, b) 3 years and c) 5 years.

Figure B.8: Histogram for the log returns for Volkswagen with its corresponding
pdf for NIG and normal distribution for a) 1 year, b) 3 years and c) 5 years.
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