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Abstract
Audio anomaly detection in the context of car driving is a crucial task for ensuring vehicle
safety and identifying potential faults. This paper aims to investigate and compare different
methods for unsupervised audio anomaly detection using a data set consisting of recorded
audio data from fault injections and normal "no fault" driving. The feature space used in
the final modelling consisted of: CENS (Chroma energy normalized Statistic), LMFE (Log
Mel Frequency Energy), and MFCC (Mel-frequency cepstral coefficients) features. These
features exhibit promising capabilities in distinguishing between normal and abnormal
classes. Notably, the CENS features which revealed specific pitch classes contribute to
the distinguishing characteristics of abnormal sounds. Four Machine learning methods
were tested to evaluate the performance of different models for audio anomaly detection:
Isolation Forest , One-Class Support Vector Machines, Local Outlier Factor, and Long
Short-Term Memory Autoencoder. These models are applied to the extracted feature
space, and their respective performance was assessed using metrics such as ROC curves,
AUC scores, PR curves, and AP scores. The final results demonstrate that all four models
perform well in detecting audio anomalies in cars, where LOF and LSTM-AE achieve the
highest AUC scores of 0.98, while OCSVM and IF exhibit AUC scores of 0.97. However,
LSTM-AE displays a lower average precision score due to a significant drop in precision
beyond a certain reconstruction error threshold, particularly for the normal class. This
study demonstrates the effectiveness of Mel frequency and chroma features in modelling
for audio anomaly detection in car and shows great potential for further research and
development of effective anomaly detection systems in automotive applications.

Keywords: Audio Anomaly detection, Outlier detection, Machine learning, Mel Fre-
quency, Chroma.
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1
Introduction

The development of autonomous vehicles has led to an increased interest in the use
of sensor data for various applications, including anomaly detection. Microphone(s)
inside a vehicle is one key sensor which can provide valuable information about the
environment and the vehicle’s internal systems. For instance, Previous research has used
smartphone audio to detect when the air particle filter in a car needs to be replace, using a
machine learning approach with Mel-Cepstrum, Fourier and Wavelet features as input into
a classification model [Siegel et al., 2017]. However, the use of audio data for anomaly
detection is still a relatively new field, and there is a lack of understanding of suitable
methods for profiling and processing as well as classifying sound.

Further, it is particularly interesting for vehicle manufacturers, such as Volvo Cars, to
develop these methods. As audio anomaly detection (AAD) can be a useful tool for
detecting mechanical faults in cars that give rise to noise. The microphone of a car can
capture a wide range of sounds: produced by for instance the engine, transmission, and
suspension. For example, unlubricated brakes can produce a high-pitched sound, while
a stuttering engine can produce a knocking sound. These sounds can provide valuable
information about the health of the car’s mechanical systems. By using appropriate feature
spaces generated from audio data captured in cars; models can be trained to recognize
patterns in the audio signal that correspond to specific mechanical faults which can further
be used to classify the audio signals as "normal" or "anomalous".

The advantage of using AAD for detecting mechanical faults is that it can be done in
real-time and does not require any additional sensors or equipment. This makes it a
cost-effective and non-invasive method for monitoring the health of a car’s mechanical
systems. Additionally, audio anomaly detection can be used to detect early warning signs
of potential mechanical problems, allowing for preventative maintenance to be carried out
before the problem becomes critical. Research has shown that AAD can be effective for
detecting machine failures even in noisy factory environments[Tagawa et al., 2021].

The aim of this project has been to find the optimal feature space and classification
algorithm for AAD in cars thru reviewing previous research and applying relevant methods
to data collected in our test cars. This paper will first outline previous use of ADD,
particularly in the context of fault detection, and describe relevant theory. We then
describe the data set used in this study, which consists of various audio recorded in
different environments as well as the prepossessing of the audio data by extraction of
Mel frequency and chroma features. We then used the features to model Unsupervised
machine learning algorithms for AAD, including the Local Outlier Factor, One Class
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1. Introduction

SVM, Isolation Forest and a Long short-term memory Autoencoder, and evaluate their
performance using AUC, ROC curve and Precision-Recall metrics.

Our experimental results demonstrate the effectiveness of the proposed approach in de-
tecting audio anomalies. Overall, this research provides a thorough evaluation of audio
anomaly detection and highlights the potential of this approach in real-world in car appli-
cation.
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2
Theory

2.1 Audio Anomaly Detection and Classification
Audio anomaly detection (AAD) plays a crucial role in various domains, including car
and machine fault detection. AAD methods work by identifying unusual patterns and
deviations from normal behaviour in audio signals, enabling proactive maintenance, safety
improvements, and enhanced system performance.

In the context of cars, previous research has been mostly focused on identifying engine
faults, exploring the application of AAD for faults in engines such as Air filters faults and
engine misfires. Researchers have done this by recording audio from engines via micro-
phone and analysing the resulting signals with time and frequency domain features and
classifying with different Machine learning algorithms. Choices of audio features have
included Discrete Wavelet Transform (DWT), Mel-Cepstrum, and Fourier Transform fea-
tures [Siegel et al., 2016][Kabiri and Makinejad, 2011][Siegel et al., 2017]. While clas-
sification methods have included tree based ensemble classification [Siegel et al., 2017]
[Siegel et al., 2016] and Artificial Neural Network [Dandare and Dudul, 2013].

Additionally, researchers have studied other machine fault detection in the context of
factory machines. Where the most popular audio features in primarily based on the
Fast Fourier transform, and include Short term Fourier transform (STFT), Mel-frequency
cepstral coefficients (MFCCs), log-Mel energy (LME) and other spectrum-based ’spectral’
features [Nunes, 2021].

Furthermore, studies in audio classification, such as speech recognition and music genre
classification, provide valuable insights and methodologies that can be adapted for audio
anomaly detection in cars [Bonet-Solà and Alsina-Pagès, 2021].

A general summary of the typical AAD approach is illustrated in Figure 2.1 and will be
reviewed in the following sections.
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2. Theory

Pre- Proccesing Windowing/
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Feature 
Extraction

Anomaly
Detection 
Algorithm 

IForest
LOF
OCSVM
Autoencoders

Audio signal

Figure 2.1: Typical approach in Audio anomaly detection

2.2 Feature extraction
Feature extraction is a fundamental step for using audio signals in AAD, where the raw
audio signal needs to be transformed to features that characterise the sound. Different
audio features have been used in the fields of audio classification and anomaly detection,
each characterising specific aspects of the underlying audio data. This section will describe
relevant features and their use in audio anomaly and event detection. While useful features
can be obtained from the time-frequency domain. The features relevant for this project
include spectrum and filter-spectrum features.

2.2.1 Transforms

2.2.1.1 Fast Fourier Transform

The majority of commonly used audio features are in the frequency or time-frequency
domain. To obtain these features the raw time domain audio signal is transformed to the
frequency domain using either the FFT or the Wavelet Transform (WT). Using the FFT
frequencies can be analysed without taking time into account. The FFT computes the
discrete Fourier transform of an audio signal formulated as in Equation 2.1, where 𝑋 (𝑘) is
the complex frequency-domain representation of the signal, 𝑥(𝑛) is the input signal in the
time domain, 𝑁 is the number of samples in the input signal and and 𝑘 is the frequency
bin index respectively.

Alternatively, frequencies and their magnitude can be analysed over time using STFT,
where the time dimension is reduced using different windowing and hop lengths. The
Discrete STFT is defined as in Equation 2.2, where 𝑤(𝑛 − 𝑚) is a window function.
Given a windowing method, window size and hop length the audio signal is transformed
into frames for which the FFT is performed. The resulting frames provides information
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2. Theory

of the frequency and amplitude content of the time points which can be illustrated in a
spectrogram like in Figure 2.2[Sharma et al., 2020].

𝑋 (𝑘) =
𝑁−1∑︁
𝑛=0

𝑥(𝑛) · 𝑒− 𝑗 ·2𝜋· 𝑘𝑛
𝑁 (2.1)

𝑋 (𝑚, 𝜔) =
𝑁−1∑︁
𝑛=0

𝑥(𝑛) · 𝑤(𝑛 − 𝑚) · 𝑒− 𝑗 ·𝜔𝑛 (2.2)
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Figure 2.2: STFT Spectrogram Example

2.2.1.2 Constant-Q transform

The Constant-Q transform[Brown, 1991] is similar to the Fast Fourier Transform but uses
a logarithm spaced frequency axis to better distinguish pitch classes. It is therefore often
used to extract chroma features[Ewert, 2011].

2.2.2 Spectrum based features
A Spectrograms visualizes frequency contents of an audio signal over time, allowing for
the identification of abnormal spectral patterns [Khan et al., 2021]. While the spectrogram
alone can be used for audio characterisation. Spectral features can be extracted from the
spectrogram for lower dimensional representation of the audio signal[Sharma et al., 2020]

2.2.2.1 Mel filterbank

Filter based frequency features apply filter banks to the spectrum of an audio signal. Mel fil-
ter banks are often used to produce a Mel spectrum which mimics the human perception of
sound in that the distance between units of pitch are equally spaced [O’Shaughnessy, 2000].
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2. Theory

The Mel spectrogram can then be used to compute Mel-frequency cepstral coefficients
(MFCCs), derived from the power spectrum of audio signals, and Log-Mel Frequency
Energy features.

Filter based features, and MFCC’s in particular have been shown to be significant features
for audio anomaly detection as well as general audio classification [Nunes, 2021][Bonet-Solà and Alsina-Pagès, 2021][Siegel et al., 2017].
Pereira et al [Pereira et al., 2021] built an in-vehicle anomaly detection model with sim-
ulated anomalies by mixing noise of e.g. coughing and breaking glass to normal in-
vehicle using exclusively filter-spectrum based features: including MFCCs, Gammatone
Frequency Cepstral Coefficients (GFCCs), Mel Frequency Energy Coefficient (MFEC)
achieving a AUC value of 78% using a Artificial Neural network.

2.2.2.2 Chroma

Chroma based features represents audio by mapping its spectrum into the 12 traditional
pitch classes or ’chromas’. This audio feature is often, unsurprisingly, used in music
classification [Muller and Kurth, 2006] but has otherwise been shown effective in classi-
fication of Environmental Sounds including traffic sound such as car horns and engine
idling as well as other indoor and outdoor sounds [Mushtaq and Su, 2020]. It would thus
be interesting to explore if chroma features could be useful in audio anomaly detection.
Particularly Chroma energy normalized statistics (CENS) which has been used for audio
similarity matching [Muller et al., 2005]

2.3 Machine learning algorithms
Machine learning algorithms are commonly used in audio anomaly detection to learn
complex patterns and identify anomalies within the data. Unsupervised methods such as
One Class Support Vector Machines and Autoencoders are particularly popular as they
allow for anomaly detection by deviation from the norm without needing to train on
anomalous data. This section will give a brief overview of One Class Support Vector
Machines, Isolation forest, the Local outlier Factor and Autoencoders.

One Class Support Vector Machines (OCSVM) works by learning a decision boundary
that separates normal data points from anomalies in a high-dimensional feature spaces
by finding the optimal hyperplane that maximizes the margin around the normal data
points while minimizing the number of support vectors; capture the inherent struc-
ture of the distribution of normal data. This method has been used by researchers in
audio anomaly detection for machine failures[Tagawa et al., 2021] and abnormal event
detection[Lecomte et al., 2011].

The Isolation Forest (IF)[Liu et al., 2012] algorithm is another unsupervised method based
on ensemble learning and makes the assumption that anomalous data points are few and
different. the algorithm isolates anomalies by partitioning the data into sub spaces, and
provides an anomaly score based on number of splits needed to isolate a data point. The
Local Outlier Factor (LoF) algorithm detects anomalies by measuring the local density
deviation of a data point compared to its neighbors and, while not commonly used for audio
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2. Theory

data, has shown good performance on high dimensional spectral data[Yu et al., 2020]

Lastly, Autoencoders, a type of neural network, have been successfully used to handle
high-dimensional audio features by reconstructing the input data while capturing abnor-
mal patterns[Dandare and Dudul, 2013][Nunes, 2021]. Making it particularly suited to
anomaly detection, as the reconstruction error can be used as a measure of deviation from
the norm.

7
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3
Methods

This section will describe the data collected, features extracted and Machine Learning
methods chosen for ADD modeling

3.1 Data

3.1.1 Data Collection
The data used in this research consisted of audio recorded from two vehicle of model: Volvo
XC90. Audio was recorded of sound during normal driving in different environments and
of sound after fault injections. The data was recorded via three smartphones: an iPhone
12, Samsung s10E and a Samsung s10 connected to the in-car microphones. These will be
referred to as the iPhone, Samsung and In-car microphones respectively throughout this
paper.

Mobile phones were used in order to assess the potential for audio anomaly detection that
is accessible and reproducible. Since smartphones are widely used a smartphone audio
recordings-based model would be easy to replicate. Multiple microphones were used in
order to test if a difference in microphone and location makes a difference for our AAD
modelling.

The iPhone was positioned on the centre of the windshield and the Samsung was placed
between the driver and passenger seat. Both phones were set up using car mounts. We
chose these locations in order to capture sounds like that which is heard by the driver and
passengers.

The in-car microphones are also located along the center of the car and are the same
microphones used for in-car phone calls.

The final data set largely consisted of normal recording form driving on normal roads:
on country roads, regular city and suburb asphalt roads and highways. A second set
of recordings was collected at the Volvo Hällered Proving Grounds, where there are 15
different tracks that simulate different type of roads. Three Hällered tracks were used
for data collection: the High speed track, simulating high speed high way driving, the
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3. Methods

Country road track, simulating bumps and turn of country roads, and the Skid pad, a large
circular track allowing for turning and manoeuvring of a car. Normal ‘no-fault’ driving
data was collocated at the High speed and Country road tracks and data from the fault
injections were collocated at one or two or all three tracks depending on the nature of the
fault injection.

The location (Hällered or Normal road), duration (in seconds), and weather conditions of
the normal driving recordings are described in Table 3.1.

Table 3.1: Description of Normal Recordings

Total duration (sec)
Location Road type Microphone Weather

Normal Roads Country road in-car Clear 866
Rain 1078

iPhone Clear 910
Rain 1075

Highway in-car Clear 1027
Cloudy 1651

Rain 666
Snow 541

iPhone Clear 1495
Cloudy 1674

Rain 675
Snow 541

Samsung Cloudy 602

Regular asphalt road in-car Cloudy 1411
windy/snow 1110

iPhone Clear 490
Cloudy 1411

Snow 1110
Samsung Cloudy 1411

Hällered Tracks Country road track in-car Clear 397
Rain 215

iPhone Clear 404
Rain 219

High speed track in-car Clear 423
Rain 425

iPhone Clear 409
Rain 446

3.1.1.1 Fault injections

The faults injection chosen for this research were:

10



3. Methods

• A 5g weight put on the front drive shaft to simulate a U-joint fault.

• A loosened left front wheel

• Two exhaust pipe leaks of size 0.5mm & 1mm to simulate different-sized exhaust
pipe holes.

The fault injections made noise at different points of driving. The exhaust pipe leak would
make a rough louder-than-normal noise at acceleration while the axle/joint fault would
make an unusual singing noise at acceleration, and deceleration and a higher pitched
singing noise when turning, the later of which was most prominent when recording at the
Skid pad. The total amount of abnormal noise recorded for each fault injection varies
based on the fault and track and are describe in Table 3.2 along with information on
weather condition during recording. The microphone type is not described as all phones
were used for data collation of fault injections.

Table 3.2: Description of fault injection recordings

Duration (sec) (total recording)
Track Fault Weather

Country road track Drive shaft weight Clear 40 (2200)
Exhaust pipe leak [0.5 mm] Cloudy 60 (1916)

Exhaust pipe leak [1 mm] Rain 130 (2244)
High speed track Drive shaft weight Clear 80 (4108)

Exhaust pipe leak [1 mm] Rain 40 (1460)
Skid pad Drive shaft weight Clear 40 (480)

Wheel loose nut Clear 90 (300)

3.1.1.2 Semi-controlled environment

Since this research is of exploratory nature, we wanted to record data in the ’best case
scenario’. Therefore, sound was recorded without any talking and all unexpected sound
events, such as the dropping of an object, were excluded during data cleaning.

Further, only the segments where abnormal noises occurred from the fault injections
were used during modeling. While it would be interesting to use the full recordings for
’sequential’ anomaly detection that it will not be explored within the scope of this thesis.
The total amount of recorded time is presented together with the abnormal sound duration
in Table 3.2
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3. Methods

3.1.2 Data Pre-processing

The data was recorded in .m4a format, at a sampling rate of 48khz, and converted to .wav.

3.1.2.1 Data Segmentation

The recorded audio data was segmented into smaller units of non-overlapping audio clips,
based on fixed time intervals to maintain consistency and ensure comparability among
the different segment lengths in anomaly detection to analyze the impact of segment
length on modeling performance. In this study, we chose to test three different segment
lengths: 3 seconds, 5 seconds, and 10 seconds, 5 and 10 second segments are commonly
segmentation lengths in audio anomaly detection research [Nunes, 2021] and 3 second
clips was included to test if shorter clips preform well in modelling. However, only the
results from the best preforming, 10 second, segment length are presented in the results
section.

3.1.3 Test - Development - Train split

The data was split into three sets. The first, training set, was used for training the models
while the second, development, set was used for validation and evaluation of the model
parameters. The last, testing set, was used as a final evaluation of the models on unseen
data.

The focus of this project has been to develop a unsupervised learning model, which has
only normal data in the training set, the normal/abnormal recordings are shown in Table
3.3. The train, development and test set consisted of 1072, 613 and 526 clips respectively.

In order to have a representative training set, it was sampled from a normal subset of all
types of roads recorded during both rainy and clear days. The development set was then
sampled with the inclusion of normal Hällered track and exhaust fault recordings, while
the reaming normal driving recordings, the drive shaft weight and loose wheel nut fault
injection recordings where left as a test set. These samples and their proportions can be
seen in 3.4

Table 3.3: Train - Dev - Test split proportions

set Normal/Abnormal

Train Normal 1.000000
Dev Normal 0.859316

Abnormal 0.140684
Test Normal 0.768293

Abnormal 0.231707
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Table 3.4: Fault and Normal recording Road types

Proportion
Set Fault injection / road

Train Regular asphalt road 0.5179
Highway 0.396

Country road 0.0871
Dev Regular asphalt road 0.468

Highway 0.269962
Exhaust pipe leak [1 mm] 0.099

High speed track 0.084
Exhaust pipe leak [0.5 mm] 0.042

Country road track 0.023
Country road 0.015

Test Highway 0.405
Regular asphalt road 0.226

Drive shaft weight 0.149
Country road track 0.0762

High speed track 0.06
Wheel loose nut 0.046

Exhaust pipe leak [1 mm] 0.0244
Exhaust pipe leak [0.5 mm] 0.0122

Country road 0.003

3.2 Feature extraction and Anomaly Detection algorithms

Previous research in profiling of sound has focused on identifying patterns and features in
the audio signal that can be used for various applications such as speech recognition, music
classification, and anomaly detection [Darji, 2017]. This thesis will focus on features based
on previous research described in 2.

The features used in the models presented in this paper were: Log Mel Frequency Energy,
MFCC and Chroma features. which were extracted using python packages torchau-
dio[Yang et al., 2021], nnAudio, speechpy[Torfi, 2017] and librosa. MFCC and LMFE
where extracted from the STFT while the chroma features where extracted from the Con-
stant Q- transform of the clips.

Window size 2048 and hop lengths 512 are commonly chosen for audio analysis, but
this study used longer windows to reduce the amount of features stored. The MFCC and
chroma extraction used a window size of 8192 FFTs with a hop length of 1024, for 12
coefficients and pitch classes, corresponding to a window step of 0.17 and hop length of
0.04 resulting in 108x12, i.e. 1416, frames each. The LMFE was extracted using 0.5
second hop and window lengths and 79 filter banks and resulted in a total of 1404 LMFE
frames.

13
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While different windowing sizes where tried the best performing combination was kept for
the final comparison of modelling, which included a total of 4236 features per 10 second
clip.

3.2.1 Unsupervised Models
As mentioned in previous sections, the focus of this study was be to evaluate commonly
used methods for unsupervised anomaly detection. All of which have a variety of pa-
rameters and settings. In order to get the optimal performance of these models, a grid
search was preformed using the development set as a validation set. This was done for the
Local outlier detectors k number of neighbours parameter and One Class Support Vector
Machine’ (OCSVM’s) nu parameter. which resulted in k = 86 and nu=0.005. Further,
since the training set contains no abnormal cases the ’contamination’ parameter for LOF
and IF were set to 0.0001.

The Autoencoder (AE) approach was implemented using a Long short-term memory
(LSTM) neural network using Tensorflow with two hidden layers, a ’relu’ activation and
latent dimensions 64, with a batch size of 800 and 100 epochs. The LSTM-AE was trained
using a Mean absolute error (MAE) loss function.

All the models where evaluated using the metrics described in the following section. The
LOF, OCSVM and IF were evaluated using their respective anomaly score which consider
data point with lower values as anomalous. Conversely higher reconstruction error indicate
anomalous data for the LSTM-AE model.

3.3 Comparing methods - Evaluation metrics
The models were compared via relevant evaluation metrics. In the context of in car audio
anomaly detection, it would be desirable to not falsely flag noise as abnormal, that is to
have a high true positive rate (TPR) rate for the normal class, that is a high Precision. Yet
we still want a model that correctly identifies the abnormal class, i.e. the false positive
rate (FPR) needs be as low as possible.

Precision-recall curves and Area Under the Curve (AUC) of a ROC curve will therefore
be used to assess the performance of the anomaly detection models. The ROC curve gives
a visual representation of the TP-FP trade-offs made at different thresholds of a model.
Similarly, the Precision-recall curve gives a visual representation of precision-recall trade-
offs made by a model. Additionally, an advantage of these metrics in the context of
unsupervised models that provide anomaly score is that a threshold can be chosen such
that a desired Precision-recall score and/or TP-FP rate is reached in the development set.
Lastly, AUC, TPR and FPR score have been the standard for evaluating Anomaly detection
models in previous research [Nunes, 2021].

Further, given the diversity of conditions, fault injections and road types in our data set:
various diagrams and plots will be used to illustrate different models’ performance on
different sub-categories.
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4
Results

4.1 Feature Extractions and Illustrations
The extracted features, including CENS (Chroma energy normalized), LMFE (Log Mel
Frequency Energy), and MFCC (Mel-frequency cepstral coefficients), demonstrate promis-
ing results in distinguishing between normal and abnormal classes. Particularly the CENS
features which showed a notable difference when plotting the Chroma spectrum where the
biggest difference can be seen in the Highway Track recordings.

A sample of Normal and abnormal clips are illustrated in Figures 4.1 and 4.1 where the
pitch classes with the biggest difference are colored in red. For the exhaust pipe leak these
are pitch classes B, G and F sharp, and for the Drive shaft weight they are pitch classes
B, G and D. In the highway recordings the normal clips have a more even distribution of
energy across frames while the abnormal clips seem to have a more energy concentrated
in specific pitch classes. The normal country road recordings 4.2 do not have as even an
energy distribution between classes yet they are still visually distinguishable from the fault
injection recordings. This is not too surprising as country road driving has more variation
in noise then highway driving.

The distribution of the means by class labels for our extracted features can be seen in Figure
4.3, 4.4 and 4.5. The CENS and LMFE show a clear difference in distributions of means,
where the central point of the abnormal clips is different from the normal clips. While the
MFCCs means do not show as clear of a difference between labels, these features were
kept as they improved modelling. The results from modelling with CENS, LMFE and and
MFCCs are presented in the following sections.
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Figure 4.1: Chroma energy normalized (CENS) frames of Highway - normal and fault
recordings
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Figure 4.2: Chroma energy normalized (CENS) frames of Country road - normal and
fualt recordnings
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Figure 4.5: MFCC Means
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4.2 Modelling results
When modeling with our feature space, all four models: LOF, IF, OCSVM and LSTM-AE
showed good performance. Each methods ROC curve, AUC score, PR curve and AP score
are displayed in 4.6 for the development set results and figure 4.7 for the test set results.
LOF and LSTM-AE have the best AUC score at 0.98 while LSTM-AE has the lowest
average precision score at 0.75. The LSTM-AE PR curve tells us that the models precision
drastically drop past a certain reconstruction error threshold. Given that the positive class
in this case is the normal class, its the precision of normal classes that drops.

The other models, OCSVM and IF also perform well with AUC at 0.97 and AP score at 1.
Figure 4.8 and 4.9 show the distribution of each models anomaly score on the development
and test sets respectively, where the LSTM-AE’s score is such that a higher score means
more less normal while the other models have a negative anomaly score. By looking
at the distribution we see that the models do indeed separate the classes very well. All
model scores make a clear distinction between normal and abnormal audio data in the
development set and test set, while the LSMT-AE model has the biggest overlap in scores
between the two classes in the test set if compared to the other models.

As for the test set metrics in Figure 4.7, the models all preform less well with a drop around
0.10 in AUC score, which still gives a AUC score of over 0.8 for respective models. The
models are thus all good at detecting anomalies. However, the performance of the models
greatly depend on the choice of threshold for the anomaly scores, which if give varying
results if chosen in the training and development of stages of the models. In this regard
the LOF, IF and OCSVM preform the best. A comparison is made between the LOF and
LSTM-AE as an illustrative example in the following section.

Additionally, table 4.1 shows the average model scores by class and microphone used.
Here we can see that on average abnormal recordings lower and negative scores by the
decision function models and a higher reconstruction error for the neural network model.
There is also not a big difference in score by microphone. Given that the full recording
were used for the normal recordings when modeling, and only a the subset of abnormal
noise was selected from the full fault injection recordings, a model could be built to detect
anomalies by on the full recordings of driving with a car fault by comparing the aggregated
10 second clip anomaly scores. However, this possibility was not explored in this thesis.
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Figure 4.6: Development set Metrics for LOF, IF and OCSVM,and LSTM-AE
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Figure 4.7: Test set Metrics for LOF, IF, OCSVM and LSTM-AE
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Figure 4.8: Distribution of scores on the Development set for all models
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Figure 4.9: Distribution of scores on the Test set for all models
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Table 4.1: Median prediction score by Class, Microphone and Model

Anomaly score
recording variable brand

abnormal IF in-car -0.041937
iphone -0.042046

samsung -0.041991
LOF in-car -0.163040

iphone -0.173543
samsung -0.149762

LSTM-AE in-car 0.119340
iphone 0.120137

samsung 0.119211
OC in-car -0.075701

iphone -0.075990
samsung -0.073149

normal IF in-car 0.046265
iphone 0.054393

samsung 0.078799
LOF in-car 0.090711

iphone 0.077525
samsung 0.082236

LSTM-AE in-car 0.077853
iphone 0.080064

samsung 0.072077
OC in-car 0.041617

iphone 0.041140
samsung 0.041904
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4.2.1 LSTM vs LOF

In this section a comparison is made between our LSTM-AE and LOF models. While the
two models have similar AUC scores (see Figure 4.10) and anomaly score distributions as
seen in Figure 4.9, a choice of anomaly detection in using LSTM-AE does not translate well
to the test set. For instance, if we want 0.8 precision and recall in the development set using
the LSTM-AE model we might chose the reconstruction error threshold of 0.10. Given a
threshold of -0.05 for the LOF model chosen by the same criteria, the LOF preforms far
better on the test set. This is due to the LOF being better at distinguishing between normal
recordings and abnormal recording as represented by its AP score. Figure 4.12 shows the
anomaly scores of the models by recording, in both the test and development set. Here we
can see that it’s the normal country road track driving that the LSTM-AE model has the
most trouble reconstructing. The LOF model also gives lower scores to these recordings
but classifies less normal recordings as anomalous at a -0.05 threshold. This shows that
the Precision-Recall curve gives us a good representation of a models ability to detect
anomalies.
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Figure 4.10: LOF vs LSTM-AE Model - Development set
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Figure 4.11: LOF vs LSTM-AE Model - Test set
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4.2.2 Effect of microphone
The presented results indicate that AAD modelling with Chroma, LMEF and MFCC
features show promising results on audio recording from unseen environments and faults,
When all microphone recordings are used during training and validation. To see how
the performance is on recordings from an unseen microphone; the LSTM-AE and LOF
models where remodeled, on only the Samsung and IPhone recordings using the same
settings and parameters as in sections.

Anomaly detection thresholds were decided based on the loss distribution of the devel-
opment set and a desired minimum of 0.80 recall/precision scores based on the Curves
seen in table 4.13. Their performance was then finally evaluated on a test set with the test
set recordings from the same microphones and a separate test set with the in-car subset
recording previously excluded. It is clear from ROC and P-R curves of the LOF and
LSTM-AE model that the LOF preformed much better on a unseen microphone, with an
average precision of 0.99 vs the LSTM-AE models 0.63. Interestingly, the LOF increased
in both AUC and AP score compared to previous results. The thresholds chosen for the
LSTM-AE based on the development set is illustrated together with scores and recording
type in figure 4.14, where we can see that a large chunk of the normal recordings are
classified as abnormal in the in-car set. Conversely, figure 4.15, shows that the LOF model
makes an even better distinction then when trained on all microphones.
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5
Conclusion

Our results demonstrate the effectiveness Mel Frequency and Chroma features and unsu-
pervised machine learning in detecting anomalies in car audio data. In particular Chroma
features and the Local outlier factor, the first of which is more commonly used for music
classification and the later not commonly used for audio data. While all the tested models
preformed well, the Local Outlier factor excelled in both AUC score, Average Precision
on our test set and on classifying audio data from an unseen microphone making it a great
choice for audio anomaly detection in the context of cars. This project has been limited
in that it has only explored a hand full of car faults, but shows great potential for further
research, where the methodology presented can be further explored by testing on new car
faults and normal driving data.

To conclude, these findings contribute to the understanding of different approaches and
their performance in identifying anomalies in car audio data, which can provide insights
for developing effective anomaly detection systems in automotive applications.

33



5. Conclusion

34



Bibliography

[Bonet-Solà and Alsina-Pagès, 2021] Bonet-Solà, D. and Alsina-Pagès, R. M. (2021). A
comparative survey of feature extraction and machine learning methods in diverse
acoustic environments. Sensors, 21(4).

[Brown, 1991] Brown, J. C. (1991). Calculation of a constant q spectral transform. The
Journal of the Acoustical Society of America, 89(1):425–434.

[Dandare and Dudul, 2013] Dandare, S. and Dudul, S. (2013). Multiple fault detection in
typical automobile engines: A soft computing approach. WSEAS Trans. Signal Process,
10:254–262.

[Darji, 2017] Darji, M. C. (2017). Audio signal processing: A review of audio signal clas-
sification features. International Journal of Scientific Research in Computer Science,
Engineering and Information Technology, 2(3):227–230.

[Ewert, 2011] Ewert, S. (2011). Chroma toolbox: Matlab implementations for extracting
variants of chroma-based audio features. In Proc. ISMIR.

[Kabiri and Makinejad, 2011] Kabiri, P. and Makinejad, A. (2011). Using pca in acous-
tic emission condition monitoring to detect faults in an automobile engine. In 29th
European Conference on Acoustic Emission Testing (EWGAE2010), pages 8–10.

[Khan et al., 2021] Khan, A. S., Ahmad, Z., Abdullah, J., and Ahmad, F. (2021). A
spectrogram image-based network anomaly detection system using deep convolutional
neural network. IEEE Access, 9:87079–87093.

[Lecomte et al., 2011] Lecomte, S., Lengellé, R., Richard, C., Capman, F., and Ravera,
B. (2011). Abnormal events detection using unsupervised one-class svm-application
to audio surveillance and evaluation. In 2011 8th IEEE International Conference on
Advanced Video and Signal Based Surveillance (AVSS), pages 124–129. IEEE.

[Liu et al., 2012] Liu, F. T., Ting, K. M., and Zhou, Z.-H. (2012). Isolation-based anomaly
detection. ACM Transactions on Knowledge Discovery from Data (TKDD), 6(1):1–39.

[Muller and Kurth, 2006] Muller, M. and Kurth, F. (2006). Enhancing similarity matrices

35



Bibliography

for music audio analysis. In 2006 IEEE International Conference on Acoustics Speech
and Signal Processing Proceedings, volume 5, pages V–V. IEEE.

[Muller et al., 2005] Muller, M., Kurth, F., and Clausen, M. (2005). Chroma-based
statistical audio features for audio matching. In IEEE Workshop on Applications of
Signal Processing to Audio and Acoustics, 2005., pages 275–278.

[Mushtaq and Su, 2020] Mushtaq, Z. and Su, S.-F. (2020). Efficient classification of
environmental sounds through multiple features aggregation and data enhancement
techniques for spectrogram images. Symmetry, 12(11).

[Nunes, 2021] Nunes, E. C. (2021). Anomalous sound detection with machine learning:
A systematic review. arXiv preprint arXiv:2102.07820.

[O’Shaughnessy, 2000] O’Shaughnessy, D. (2000). Speech communications : human
and machine. IEEE Press, New York, 2. ed. edition.

[Pereira et al., 2021] Pereira, P. J., Coelho, G., Ribeiro, A., Matos, L. M., Nunes, E. C.,
Ferreira, A., Pilastri, A., and Cortez, P. (2021). Using deep autoencoders for in-vehicle
audio anomaly detection. Procedia Computer Science, 192:298–307.

[Sharma et al., 2020] Sharma, G., Umapathy, K., and Krishnan, S. (2020). Trends in
audio signal feature extraction methods. Applied Acoustics, 158:107020.

[Siegel et al., 2016] Siegel, J., Kumar, S., Ehrenberg, I., and Sarma, S. (2016). Engine
misfire detection with pervasive mobile audio. In Machine Learning and Knowledge
Discovery in Databases: European Conference, ECML PKDD 2016, Riva del Garda,
Italy, September 19-23, 2016, Proceedings, Part III 16, pages 226–241. Springer.

[Siegel et al., 2017] Siegel, J. E., Bhattacharyya, R., Kumar, S., and Sarma, S. E. (2017).
Air filter particulate loading detection using smartphone audio and optimized ensemble
classification. Engineering Applications of Artificial Intelligence, 66:104–112.
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