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Abstract
In this thesis, two portfolio strategies are compared. The Option Based Portfolio
Insurance (OBPI) is a static strategy. The investor buys the stock and a European
put option written on the stock. The rest of the investment is used to buy the risk
free asset. The amount invested in the assets remains constant until maturity. The
Constant Proportion Portfolio Insurance (CPPI), is a dynamic strategy, where the
investor reallocates the capital invested in the risk free and the risky asset in every
time step. In general, OBPI performs better in a falling market, while CPPI takes
a better advantage of a sharp increase in the stock price. To generate paths for the
stock and the put, the Heston stochastic volatility model is used, calibrated from
real market data. To price the risk free asset, in this case a Zero Coupon Bond, the
Hull-White one factor model is employed.

Keywords: CPPI, OBPI, Heston, Hull-White, stochastic volatility, Options, Zero
Coupon Bond, Monte Carlo Simulation.
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1
Introduction

In this thesis we will compare two simulated portfolio strategies, using two different
models. Heston model will be used to simulate the stock and therefore the put

option paths. The Hull-White model will be used to generate interest rates and
price the Zero Coupon Bond. Chapter 1, is a quick introduction to the problem and
a glance at the goal of the thesis. Next chapters include the theory used, calibration
of the models and simulation (chapters 2 and 3 respectively). Last but not least, in
chapter 4, the results will be presented followed by conclusions.

1.1 Background
The Black-Scholes-Merton (BSM) model was introduced in 1973 and led to a boom
of the Options trading and opened many doors in Mathematical finance. It is widely
used by professionals in the industry until today. However, BSM is based on some
strong assumptions. One of them is constant volatility.

Heston, in 1993, proposed to model volatility as a stochastic quantity and intro-
duced his famous stochastic volatility model. With the performance of volatility
being uncertain, the evolution of financial products is now, more realistic.

The Hull-White model was first introduced by John Hull and Alan White in 1990.
It is a mean reverting Ornstein–Uhlenbeck process and for this thesis, the one-factor
model will be employed, meaning that only one of the parameters is time dependent.
This model is also very popular in the industry and a common tool for practitioners,
as it takes into account the term structure of interest rates.

In the end, two portfolio strategies are compared. The Option Based Portfolio
Insurance (OBPI) is a static strategy and it was firstly introduced in 1976 by Leland
and Rubinstein. The Constant Proportion Portfolio Insurance (CPPI), is a dynamic
strategy, introduced by Perold (1986).

1.2 Aim
The goal of the thesis is to compare the performance of two portfolio strategies,
following the steps below:

• Calibrate the models using real market data.
• Use the Heston model to simulate stocks and price a put option.
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1. Introduction

• Use the Hull-White model to simulate interest rates and price a Zero Coupon
Bond.

• Compare the two portfolio strategies using the simulated stock, put and bond
paths.
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2
Theory

This chapter equips the reader with the basic theory behind the calculations and
results. Firstly, the Heston model will be presented along with some discussion

about its parameters and the property of providing closed form solutions for Euro-
pean vanilla calls using characteristic functions. This property will be used later for
calibration purposes. Secondly, the Hull-White model is presented followed by the
the portfolio strategies and their structure.

2.1 The Heston model
As stated in the introduction, in 1993, Heston introduced the Heston stochastic
volatility model [8]. The evolution of the underlying asset S(t) is determined by the
following dynamics (risk-neutral):

dS(t) = rS(t)dt+
√
V (t)S(t)dW (t)S (2.1)

dV (t) = a(V̄ − V (t))dt+ η
√
V (t)dW (t)V , (2.2)

with

dW (t)S dW (t)V = ρ dt.

The parameters in the equations above are:

• S(t) is the asset’s price (more likely, the stock price at time t)
• r is the risk free rate of interest
• V (t) is the variance at time t
• V̄ is the long run average variance
• a is the speed at which V (t) reverts to V̄
• η is the volatility of variance
• dW (t)S, dW (t)V are correlated Brownian motions, with correlation ρ.

The Heston model, describes volatility as a CIR process which is a mean-reverting
process. This phenomenon is observed in the market, where if that was not the
case, assets could experience volatility explosion or going to zero. A mean reverting
process helps to avoid such cases.
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2. Theory

To get an essence of time series with stochastic volatility, a simulated future path
for the S&P 500 index is illustrated below in Figure 2.1:

Figure 2.1: One year Simulation of the S&P 500 index using the Heston model
and the 1-year LIBOR risk free rate. Simulations will be discussed later.

Another nice property of the model, bringing the analysis closer to the real world,
is that the stock price and the volatility are not independent. Usually, when the
market plunges, volatility tends to rise. The VIX index is a descent example. It is
also called the Fear Index and it measures the volatility in the market. VIX tends
to increase fast when major indexes such as S&P 500 fall. This is a reason to expect
negative correlation between the stock and the variance.
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2. Theory

Figure 2.2: The negative correlation between the stock price and market volatility.
This 2-year simulation, is based on the Goldman Sachs stock. We assume that the
initial price is 1. Most of the time, for a declining market, one can observe spikes in
volatility.

As stated before, equations (2.1) and (2.2) are in the risk neutral probability world
and not the real probability world. This means that we are not able to infer whether
the price of an asset will rise or fall, so everyone has the same expectations and val-
ues derivatives with the same price. For the interested reader, the transition of the
real world to the risk-neutral world dynamics, can by found in [4].

In order to give a more intuitively meaning to some of the parameters, a quick
definition of the logarithmic returns is given below:
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2. Theory

Definition 2.1.1. A logarithmic return X(t) of a stock S(t) in a discrete time in-
terval ti for i = 1, ..., n is defined by:

X(ti) = ln
(
S(ti)
S(ti−1)

)
,

where X(t1) = 0.

While working with log returns, one can observe the lack of symmetry in the distri-
bution, namely the skewness of the distribution, which is in our case represented by
the correlation ρ. Another feature of logarithmic returns distribution, the kurtosis,
is controlled by the parameter η from the Heston model.

2.1.1 Characteristic functions and options prices
A very convenient result in the Heston model framework is the existence of closed
form solutions for call options. That means that there is a formula to compute
the fair price of such an option given a specific set of parameters. In the following
subsections the method to derive the formula will be described.

Definition 2.1.2. The risk-neutral price (or fair price) at time t = 0 of the Euro-
pean call option with strike K, payoff YT = (ST−K)+ and maturity T > 0 is given by:

C(t0, K, T ) = e−rT
∫ ∞

0
YT p(ST ) dST ,

where p(ST ) is the risk-neutral probability density of the asset at time T .[3]

A common problem is that there exist some processes for which the density function
is hard to obtain, as it may be not available in closed form. The idea here is to use
the logarithm of the stock price as a process and secure a formula for the character-
istic function:

Definition 2.1.3. Let X be a random variable. The function φX : R→ C given by

φX(u) = E[eiuX ],

is called the characteristic function of X .

Now, if the variable X admits the density fX , then

φX(u) =
∫
R
eiuX fX(x) dx (2.3)

which means that the characteristic function, is basically the inverse Fourier trans-
form of the density [3].
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2. Theory

The density function of X can then be recovered using its characteristic function,
by applying the Inverse Fourier transform and get:

fX(x) = 1
2π

∫ ∞
−∞

e−iux φX(u) du.

2.1.2 The closed-form solution
As seen in Heston (1993), the fair price of a European call option is given by:

C0 = S0 ∆1 − e−rT K ∆2, (2.4)
where ∆1,2 are obtained with the following formulas:

∆1 = 1
2 + 1

π

∫ ∞
0
<
[
e−iu ln(K) φlnST

(u− i)
i u φlnST

(−i)

]
du (2.5)

and

∆2 = 1
2 + 1

π

∫ ∞
0
<
[
e−iu ln(K) φlnST

(u)
i u

]
du. (2.6)

The proof of the formulas can be found on the Appendix A of [5] .

The expression for ∆1 can be interpreted as the Delta of the call option, while ∆2
is seen by traders as the probability of the option expiring in the money (ITM),
meaning that the stock price at maturity is greater than the strike K.
The only thing missing now, in order to have a closed form solution for the call as
seen in equation (2.4), is a formula for the characteristic function.

A formula for the Heston characteristic function was introduced by Gatheral in 2006
[7] and it is the following:

φlnSt(u) = exp
(
c(t, u) V̄ +D(t, u)V0 + i u ln(S0 e

rt)
)
, (2.7)

where

c(t, u) = a
[
q− · t−

2
η2 ln

(1−Ge−λ t
1−G

)]
,

D(t, u) = q− ·
1− e−λ t

1−Ge−λ t ,

q± = β ± λ
η2 ,
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2. Theory

λ =
√
β2 − 4ᾱη

2

2 ,

G = q−
q+
,

ᾱ = −u(u+ i)
2 ,

β = a− ρ ηiu.

Now, we can plug equation (2.7) in the equations (2.5) and (2.6) in order to calculate
∆1 and ∆2. Finally we use them to obtain the fair value of the European call option
under the risk-neutral measure, given by (2.4).

A last observation is that C0 is a function of all the Heston model parameters
[a, η, V0, V̄ , ρ], a result that later will help us with the calibration of the model.

2.2 The Hull-White one factor model
In this thesis, the interest rates are modeled using the Hull-White model [2]. Hull
and White (1990) introduced the following no-arbitrage mean reversion model for
the evolution of interest rates [2]:

dr(t) = [θ(t)− ar(t)] dt+ σ dW (t) (2.8)

= a
[
θ(t)
a
− r(t)

]
dt+ σ dW (t).

One can say that this is similar to a Vasicek model but now, the long term mean
level is time dependent. In fact, it is called a mean-reverting Ornstein–Uhlenbeck
process. The other parameters are speed of reversion a and volatility σ.

Given that the parameter θ is time dependent, using Itô’s Lemma and (2.8) yields
the following expression:

r(t) = e−at r0 +
∫ t

0
ea (s−t) θ(s) ds+ σ e−at

∫ t

0
ea s dW (s).

Therefore, r(t) is normally distributed with mean and variance given by:

8



2. Theory

E[r(t)] = e−at r0 +
∫ t

0
ea (s−t) θ(s) ds

and

V ar[r(t)] = σ2

2a (1− e−2at),

respectively. As seen in [2] and [10], θ(t) can be described by the following expression:

θ(t) = Ft(0, t) + aF (0, t) + σ2

2 a(1− e−2 a t). (2.9)

The term F (0, t) is called the Instantaneous forward rate or just the Forward rate.
The Forward rate is calculated based on interest rates for various maturities. These
rates are typically plotted on a graph forming the so called, yield curve which illus-
trates the yield of the bonds with different maturity dates but equal credit score.

As seen in later chapters, in this thesis, the Forward rate will be taken to be polyno-
mial in nature [12]. This polynomial is just a function of time, so Ft(0, t) in equation
(2.9) is the derivative of that polynomial with respect to time t.

A common expression to derive the Forward rates F (0, t) using the rates from the
yield curve R(0, t), is the following [9]:

F (0, t) = t
∂R(0, t)
∂t

+R(0, t). (2.10)

Below, a plot of the yield curve data which were downloaded from the US Depart-
ment of the Treasury web page and the derived Forward curve based on these data
and equation (2.10) are illustrated:

9



2. Theory

Figure 2.3: Yield curve in blue and the derived Forward curve in red, as seen on
July 24th, 2019. Maturities span from 1 month to 30 years.

10



2. Theory

Later in the thesis, the bond will be used in the portfolio strategies, so we need to
know its price at time t using the interest rates from the Hull-White dynamics (2.8).

In general, the price at time t of a Zero Coupon Bond, with a face value of 1 at
maturity time T is given by the following expectation:

P (t, T ) = E
[
e
∫ T

t
e−r(s)ds

]
.

This expectation can in fact, be computed under the dynamics (2.8) and gives:

P (t, T ) = A(t, T ) e−B(t,T )r(t), (2.11)

where

B(t, T ) = 1
a

[
1− e−a(T−t)

]
and

A(t, T ) = P (0, T )
P (0, t) exp

[
−B(t, T )∂ log(P (0, t))

∂t
− σ2

4a3

(
e−aT − e−at

)2 (
e2at − 1

)]
.

Formulas from [2]. (2.11) will be used later to price the bonds given the dynamics
of the interest rates.

11



2. Theory

Below, in Figure 2.4, a simulated path of the interest rates using the Hull-White
model and the corresponding bond price paying 1 at maturity T=2 years, using
equation (2.11) can be seen:

Figure 2.4: Hull-White path for the interest rate in blue and the corresponding
bond price with face value of 1, maturity 2 years in red. In general bond prices
increase, when interest rates decrease. More information in later chapters.

12



2. Theory

2.3 Portfolio strategies
In this section, the portfolio strategies of this thesis will be presented. When we
say portfolio strategies, we mean trading techniques, able to maximize profits, while
minimizing the risk. Their performance of course, is strongly related to the risk
appetite of the investor and the market volatility.

2.3.1 OBPI
The Option Based Portfolio Insurance (OBPI), was firstly introduced in 1976 by
Leland and Rubinstein [11]. This strategy is designed in such a way, in order to
limit the losses of the investor when the markets declines. It is a static strategy, as
the amount invested in the risky and the safe asset remains the same until maturity,
without changing in between.

The investor at time t = 0 is purchasing the underlying asset, which is usually shares
of a stock and at the same time they purchase a European put option written on
that stock.

The value of the OBPI portfolio at time t is therefore:

V OBPI(t) = q̄ (S(t) + p(t, S(t), K, T )), (2.12)

where q̄ is the number of shares of the stock and the number of shares of the put
p(t, S(t), K, T ) written on that stock with strike K and maturity T . We will assume
that q̄ ∈ [0, 1] is also possible (purchasing a fraction of one share).

The price of the put will be given, by using the Put-Call parity along with the closed
form solution for the call option (2.4):

S(t)− C(t, S(t), K, T ) = K e−r(t−t) − p(t, S(t), K, T ). (2.13)

Therefore, if we calculate the price of the European call option, by using the Put-
Call Parity we can obtain the price of the put option with strike K and payoff
(K − S(T ))+ at maturity T .

To simplify, assume that q̄ = 1. At maturity, as we hold both the stock and the put
the value of the portfolio will be:

V OBPI(T ) = S(T ) + (K − S(T ))+. (2.14)

Therefore, the investor will get at least the strike K. This outcome does not depend
on S(T ). If q̄ < 1, this strategy promises at least q̄ K at maturity. This rela-
tion shows that an increase in the initial risk appetite, will increase the guaranteed
amount at maturity.

Below, in Figure 2.5, a simulated path of the put price written on Goldman Sachs’
(GS) shares with strike K = 1.25 and maturity T = 2 years, in order to point out

13



2. Theory

the correlation of the put and the stock in case of a market drop. We assume that
the initial GS stock price is 1.

Figure 2.5: Put price written on GS shares with maturity T = 2 and strike
K = 1.25. The 1-year LIBOR was used as the risk-free rate.

2.3.2 CPPI
The Constant Proportion Portfolio Insurance (CPPI) was introduced by Perold
(1986) mainly for fixed income, but also for equity instruments later in 1987 by
Black and Jones [see 1,13]. A difference from the previous strategy, is that CPPI
is a dynamic strategy, as the capital allocated in the risky and the risk-free asset,
changes in every time step (for example, daily).

This strategy requires a position in a risk free asset, usually a Treasury bond, in
order to guarantee the principal amount at maturity.A leveraged position in a risky
asset is taken simultaneously and it is usually shares of a stock. The position in the
risky asset is usually called the "performance engine" of the strategy, as the investor
enjoys a notable increase in profits when the stock price rises.

The CPPI then, is like taking a long position on a call option, as it has limited losses
but unlimited capital gains, because of the long stock. Below, the mechanics behind
the strategy are explained step by step [1]:

• The investor chooses a floor F̄ (t) which represents the lowest portfolio value
they can accept.

• Then, there is a cushion c̄(t) which is computed as the difference between the
portfolio value and the floor F̄ (t):

14



2. Theory

¯c(t) = V CPPI(t)− F̄ (t).

• The exposure Ē(t) in the risky asset is then calculated as:

¯E(t) = min
[
m c̄(t), V CPPI(t)

]
,

where m is called multiplier and it is a measure of risk appetite. It is usu-
ally between 3 and 5. The bigger m they choose, the bigger is the gain in a
notable market increase, but the portfolio will approach the floor faster in a
market decline. The remaining funds are usually invested in the risk free asset.

It is important to point out that the floor ¯F (t) and the multiplier m depend on the
personal choice of the investor and therefore, they are exogenous to the model [1].
The previous steps are executed in every time step (e.g daily), as this is a dynamic
strategy. Therefore, the change in value of a portfolio following the CPPI strategy
is then given by:

dV CPPI(t) = ¯E(t)dS(t)
S(t) + (V CPPI(t)− ¯E(t))dP (t, T )

P (t, T ) , (2.15)

where P (t, T ) is the price of the risk-free asset, namely the bond, at time t and
maturity T , given by equation (2.11). When the portfolio performs well, more
capital goes to the stock, otherwise, in the case of a decline (i.e the portfolio value
approaches the floor), a bigger percentage is allocated to the bond.

15
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3
Methods

In this chapter, we will introduce the methods used in order to generate the data
for the portfolio simulations. First, the calibration of the Heston model will be

presented. The calibration for this model is achieved by taking advantage of the
closed form solution for the European call option. Later the Hull-White model
calibration is illustrated, using historical interest rates data as well as, the initial
term structure (yield curve). Lastly, the discrete version of the stochastic differential
equations, the pricing formulas and the portfolio value are displayed.

3.1 Calibration

Calibration is another expression for parameter estimation, using historical data,
most of the time. In our case, real market data were used for both models. For
the Heston model, data from the Nasdaq options chain website were used, while for
the Hull-White model, the US Department of the Treasury web page was the main
source for acquiring historical rates.

3.1.1 Heston
As stated in chapter 2 and the summary of this chapter, the Heston Model enjoys
a closed-form solution for call options. This is a very convenient result because one
can use this sophisticated model to price vanilla options fast and also take advantage
of this feature of the model in order to estimate the parameters.

From equations (2.4)-(2.7), we can see that the call option price is a function of
the five unknown parameters of the Heston model : Ψ =

[
V̄ , V0, ρ, η, a

]
which are

the long-term average variance, the initial variance, the correlation between the un-
derlying and the volatility, the volatility of variance and the mean reversion speed,
respectively.

The plan here is to measure the distance between the model price and the real price
of the market and then minimize this distance by running an optimization. One of
the most common approaches is by minimizing the Mean Squared Error given by:

H̄(Ψ) = 1
n

n∑
i=1

[
CΨ
i (Ki, Ti)− Cmarket

i (Ki, Ti)
]2
, (3.1)

17



3. Methods

where CΨ
i (Ki, Ti) is the option price using equation (2.4) along with the set of pa-

rameters Ψ and Cmarket
i (Ki, Ti) is the real option price from the market.

Additionally, the parameters need to be aligned with the following condition:

2aV̄ > η2. (3.2)

This inequality is also known as the Feller condition (1951) and assures that the pro-
cess V (t) is strictly positive, as it is impossible for an asset to have negative volatility.

The problem with this approach is that we cannot say if the objective function is
convex, giving the possibility of multiple local minima. Therefore, the outcome of
the minimization can be dependent on the initial choice of the parameter set Ψ0.
As a result, the valuation of the solution is quite difficult, because we are not able
to see if it is a local or global minimum.

In order to estimate the parameters, a constrained nonlinear 5-dimensional local
optimization will be performed. MATLAB gives us such possibility by using fmin-
con, an algorithm that finds the minimum of constrained nonlinear multivariable
functions. Our objective in this case is (3.1), while our nonlinear constraint for the
parameters here is the Feller condition (3.2).

Besides the selection of initial value for the parameters, lower and upper bounds
need to be set a priori. The long-term variance and the average variance V̄ , V0 will
have the same bounds spanning from 0 to 1, as it is not common for the volatility
of an asset to go beyond 100 %. It is known that correlation ρ is taking values from
-1 to 1. However, we expect mostly negative correlation between the variance and
the asset. The volatility of variance η can take large values in general since the
volatility as a process is quite volatile. Therefore we let it span from 0 to 10. Lastly,
the mean reversion speed a will be bounded automatically, as it has to respect the
Feller condition.

The results of this calibration method are presented in the next chapter.
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3.1.2 Hull-White
In chapter 2, while introducing the Hull-White model, the time dependent long term
mean level was mentioned. This is because of θ(t), a parameter which changes in
every time step (e.g daily) and in order to calibrate it, the initial term structure i.e
the yield curve needs to be known.

Park (2004) [12], introduces a way to calibrate the Hull-White one factor model,
using the initial term structure of interest rates R(0, t). Next step is calculating
the forward rates F (0, t) using R(0, t) in equation (2.10). Then, it is assumed that
F (0, t) is a polynomial.

Using MATLAB, we can approximate the forward curve, with a least squares ap-
proximation package. The result is a n-degree polynomial describing the forward
rates as a function of time:

F (0, t) = p0 + p1t+ p2t
2 + ...+ pnt

n. (3.3)

The degree of the polynomial, depends of course on the current market conditions.

As soon as we have the fitted curve, to express θ(t) we use (also seen in the previous
chapter) :

θ(t) = Ft(0, t) + aF (0, t) + σ2

2 a(1− e−2 a t).

In addition, Hull (2009) [9] assumes that the term :

σ2

2 a(1− e−2 a t)

is very small and it can be left out in most cases, when the parameter θ(t) is
calculated. Therefore, equation (2.9) becomes:

θ(t) = Ft(0, t) + aF (0, t), (3.4)

where Ft(0, t) is the partial derivative with respect to time t of the polynomial (3.3)
and a is the mean reversion speed.

It is obvious that we need to estimate a, in order to have an expression for θ(t).This
parameter can be estimated by minimizing the following expression:

HW (a) =
n∑
i=1

[
r(ti)− r(ti−1)− Ft(0, ti−1)∆t− a(F (0, ti−1)− r(ti−1))∆t

]2
, (3.5)

where r(ti) is the historical 12-months interest rate data from the US Department of
the Treasury web page. These data, were collected daily so ∆t = 1/250 (250 trading
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days per year). It is assumed that we already have an expression for F (0, t), so its
values can be used in the minimization (3.5). Having F (0, t), â and the expression
(3.4), it is possible to estimate θ as a function of t.

Lastly, to estimate the volatility σ of the model, the one-step prediction equation is
used [6]:

˜r(ti) = (Ft(0, ti−1) + âF (0, ti−1))∆t+ (1− â∆t) r(ti−1),

where â is the estimated value given by the minimization of (3.5).

Next, the standard deviation s of the errors:

êr(i) = ˜r(ti)− r(ti)

is calculated. Finally, the volatility for the Hull-White one factor model is given by:

σ̂ = s√
∆t
. (3.6)

Having all the parameters estimated, we can use the model to generate future paths
for the interest rates. The calibration results will be presented in the next chapter.
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3.2 Simulation
In this section, we will introduce how the calibrated models generate future paths
for the variables. For the stock and the put option, a discrete version of the Heston
model will be used. To simulate paths for the interest rates, the discrete version
of the Hull-White model is used. These interest rates help in pricing the risk-free
asset, which in our case is a Zero Coupon Bond. Employing the portfolio processes
along with the simulated stock, put and bond paths, one can obtain paths for both
strategies.

3.2.1 Heston
To simulate the Heston stochastic volatility model, we will need a discrete form of
the SDE’s (2.1) and (2.2). To achieve this goal, the Milstein scheme discretization
for the processes V (t) and lnS(t) will be employed.

Starting with a value V0, which is estimated by (3.1) and given a value for V (ti), we
get V (ti+1) as:

V (ti+1) = V (ti) + a(V̄ − V (ti))dt+ σ
√
V (ti)dtWV + 1

4σ
2dt(W 2

V − 1),

which can be written as [14]:

V (ti+1) =
(√

V (ti) + 1
2σ
√
dtWV

)2
+ a(V̄ − V (ti))dt−

1
4σ

2dt, (3.7)

where WV is a random number from the standard normal distribution.

Knowing the volatility at time ti and assuming that S0 = 1 the discretization for
the stock price is then [14]:

S(ti+1) = S(ti) exp
((
r − 1

2V (ti)
)
dt+

√
V (ti)dtWS

)
, (3.8)

where WS is a random number from the standard normal distribution and r is the
risk free rate. The proof of the formulas can be found in the paper: Rouah F D.
Euler and Milstein discretization [14].

In the introduction, we saw how the volatility is correlated with the stock price by
letting:

dW (t)S dW (t)V = ρ dt.

To achieve correlated Brownian motions here, we need to generate two independent
standard normal variables Zi and Zj such that:
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WV = Zi

and

WS = ρZi + Zj
√

1− ρ2.

Finally, the discrete formula of the call price at time ti, is given by:

C(ti, S(ti), K, tn) = S(ti)∆1 − e−r(tn−ti) K∆2 (3.9)

,where the integrals ∆1 and ∆2 ((2.5) and (2.6) respectively) are evaluated numeri-
cally in MATLAB for each time step. The term tn symbolizes maturity.

The Put Option price is easily derived by the Put-Call parity:

S(ti)− C(ti, S(ti), K, ti) = K e−r(t−ti) − p(ti, S(ti), K, ti),

so that
p(ti, S(ti), K, tn) = K e−r(tn−ti) − S(ti) + C(ti, S(ti), K, tn). (3.10)

3.2.2 Hull-White
The discrete version of the model in order to simulate future paths for interest rates
is the following:

r(ti) = (Ft(0, ti−1) + a(F (0, ti−1))dt+ (1− a dt) r(ti−1) + σ
√
dtZi (3.11)

Observe that:

Ft(0, ti−1) + a(F (0, ti−1) = θ(ti−1).

In this case, r0 will be the last data point from the data set used for calibration,
denoting today’s 12-months rate and the beginning of the future path. It is the
same for every simulation.

Now the discrete form of equation (2.11) for the bond price is:

P (ti, tn) = A(ti, tn) e−B(ti,tn)r(ti), (3.12)
where

B(ti, tn) = 1
a

[
1− e−a(tn−ti)

]
,

and

A(ti, tn) = P (0, tn)
P (0, ti)

exp
[
B(ti, tn)F (0, ti)−

σ2

4a3

(
e−atn − e−ati

)2 (
e2ati − 1

)]
.
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3.2.3 Portfolio Processes
OBPI is the static strategy, so the amount invested in the risky and the risk free
asset remains the same in every time step. The initial value of the portfolio will be:
V OBPI(t1) = 1. The value of the portfolio in discrete form is given by:

V OBPI(ti) = q̄ (S(ti) + p(ti, S(ti), K, tn)) + h̄P (ti, tn),

where q̄ is the amount invested in the risky asset and h̄ symbolizes the remaining
capital invested in the bond, given by:

h̄ = V OBPI(t1)− q̄ (S(t1) + p(t1, S(t1), K, tn))
P (t1, tn) .

As q̄ depends on the personal choices of the investor and remains constant, the same
happens for h̄. The stock, the put and the bond price at time t are given by (3.8),
(3.10) and (3.12), respectively.

At maturity, the investor secures that the portfolio value will be at least:

floor = q̄ K + h̄

,which is the floor of the strategy. Observe how the portfolio manager earns at least
a percentage of the strike K from the risky asset plus a percentage of the face value
of the Zero Coupon Bond, which in this thesis is taken to be 1. The floor depends
on the initial capital allocation.

CPPI is the dynamic strategy, so the allocation between the stock and the bond
will change in every time step. Also starting with V CPPi(t1) = 1, the dynamics of
CPPI are given by:

V CPPI(ti) = V CPPI(ti−1) + Ē(ti−1)S(ti)− S(ti−1)
S(ti−1)

+(V CPPI(ti−1)− Ē(ti−1))P (ti, tn)− P (ti−1, tn)
P (ti−1, tn) ,

where
¯E(ti) = min

[
m c̄(ti), V CPPI(ti)

]
and

¯c(ti) = V CPPI(ti)− F̄ .

F̄ is the lower value of the portfolio and is chosen by the investor, such as the
multiplier m. The exposure Ē in the risky asset changes in every time step. As we
want to make comparisons between the two strategies, the initial exposure in the
risky asset has to be the same for both strategies. So, we set ¯E(t1) = q̄.
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Results

In this chapter, the data and the results of the calibration will be presented ,first.
We then feed the estimated parameters in the models and employ them for the

future path generation. When the assets are simulated, the portfolio processes can
be simulated as well, letting us make comparisons between them in a falling or
increasing market, as well as their overall performance at maturity. The risky assets
are the Goldman Sachs stock and a put option written on that stock, while the risk
free asset will be a Zero Coupon Bond paying 1 at maturity.

4.1 Results from the calibration
To calibrate the Heston model, 15 Exchange traded call options written on the
Goldman Sachs (GS) shares were used:

Spot Strike Maturity Mid Rate

195.5 172.5 0.1260 24.45 0.0241
195.5 185 0.1260 13.65 0.0241
195.5 192.5 0.1260 8.70 0.0241
195.5 195 0.1260 7.20 0.0241
195.5 200 0.1260 4.90 0.0241
195.5 180 0.2794 20.25 0.0245
195.5 185 0.2794 16.65 0.0245
195.5 190 0.2794 13.20 0.0245
195.5 195 0.2794 10.45 0.0245
195.5 200 0.2794 7.85 0.0245
195.5 175 0.6054 27.90 0.0237
195.5 180 0.6054 24.30 0.0237
195.5 185 0.6054 21.20 0.0237
195.5 190 0.6054 18.15 0.0237
195.5 195 0.6054 15.35 0.0237

Table 4.1: Call Option prices (Mid price) with three different maturities and five
different strikes for each maturity were used (in the money, at the money and out of
the money calls). The risk free rate is aligned with each maturity. The spot price is
the GS stock closing price observed when the data were collected (June 10th, 2019).
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Using the data from the table along with the minimization formula (3.1), the pa-
rameters for the Heston model minimizing the distance between the market price
and model price are the following:

Param. Value
V̄ 0.0692
V0 0.0755
ρ -0.7170
η 1.1703
a 9.8938

Table 4.2: Calibrated values for long term average variance, initial variance, cor-
relation, volatility of variance and mean reversion speed, respectively. Observe how
the parameters respect the Feller condition (3.2), which yields a strictly positive
variance process.

In order to evaluate our calibration, a repricing of these options were performed
using the calibrated parameters and the closed form solution for calls of the Heston
model (2.4). The results are summarized in the following figure:

Figure 4.1: The repricing of our 15 Options using the estimated parameters. The
blue circle denotes the real market price, while the red star denoted the model price.
The model did a good job in capturing the price. The parameters will later be used
for simulations.

26



4. Results

For the Hull-White model, the yield curve is needed in order to compute forward
rates and eventually obtain a polynomial expression for F (0, t). Yield curve data
can be seen below:

Rate Maturity
0.0212 0.0833
0.0215 0.1667
0.0206 0.2500
0.0209 0.5000
0.0197 1
0.0183 2
0.0179 3
0.0183 5
0.0194 7
0.0208 10
0.0238 20
0.0261 30

Table 4.3: Different yields across different contract lengths spanning from 1 month,
to 30 years. The plot of the yield curve can be found in Figure 2.3.

Using the data from the previous table, it is possible to calculate the forward rates.
A plot of the forward rates was seen in Figure 2.3. We approximate the forward
curve with a fourth degree polynomial:

F (0, t) = p0 + p1 t+ p2 t
2 + p3 t

3 + p4 t
4, (4.1)

where

p0 =0.021,
p1 =− 0.0025,
p2 =5.5430 · 10−4,

p3 =− 3.1347 · 10−5,

p4 =5.3518 · 10−7.

A visualization is illustrated here:
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Figure 4.2: The polynomial (4.1) approximating the forward rates which were
derived using formula (2.10).

To calibrate the parameters a and σ of the Hull-White model, we used the 12-months
historical rates from the US Department of the Treasury. Data span from January
2018 to July 2019. A snippet can be seen below:

12-Months Rate
0.0183
0.0181
0.0182
0.0180

.

.

.
0.0190
0.0194
0.0195
0.0197

Table 4.4: Data from January 2018 to July 2019 from the US Department of the
Treasury web page (389 values).
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The parameters obtained by the previous data are the following:

Param. Value
â 0.2894
σ̂ 0.0036

Table 4.5: Parameter estimation for the Hull-White model with the procedures
described in the previous chapter such as equations (3.5) and (3.6) along with the
historical rates.

Finally, using the results from Table 4.5 and the equation (3.4), the expression for
θ(t) is the following:

θ(t) = p0 + p1(t+ â) + p2t(t+ 2â) + p3t
2(t+ 3â) + p4t

3(t+ 4â),

where pi is estimated from the fitted polynomial and given below equation (4.1).

Putting everything together, using the discrete form of Hull-White (3.14) and the
first value of the Table 4.4, we compare the obtained path to the data. We generate
389 values, since this is the number of our historical data points used for calibration:

Figure 4.3: The 12-months rates used for calibration with blue compared to the
path generated using the calibrated Hull-White model in orange. The model seems
to capture the whole trend of the data set, however it lays below the data almost
always.
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4.2 Assets and Portfolio results

Having our models calibrated, the last thing is to employ the simulated paths ob-
tained from them in the portfolio strategies and draw the final results. Comparisons
will be made mostly from their performance in a market decline and in a rising
market. In the end, their overall performance at maturity will be discussed.

Before presenting the results, the exogenous parameters of each strategy have to be
stated, as well as the selection of the strike for the put option and the maturity of
each portfolio process.

Starting with the OBPI static strategy, imagine an investor with an initial capital
of 1 at t = 0. The investor chooses to invest q̄ = 0.75 in Goldman Sachs shares
with S0 = 1 and a put option written on these shares with strike K = 1.25 (ITM)
and maturity T = 2 years. Such put costs now ≈ 0.2595. Therefore, they invest
h̄ ≈ 0.0575 in a bond that costs now 0.963 and pays 1 in 2 years. The floor of this
strategy will be then ≈ 0.99. It is important to state again that the parameters q̄
and therefore h̄ are exogenous to the model, since they reflect personal preferences.
It is now time to see how the strategy performs under different market conditions:

Figure 4.4: The performance of the OBPI strategy with floor 0.99 in a declining
market, maturity 2 years (500 trading days). Observe how the strategy remains
above the floor, even if the Goldman Sachs share price plummets after the first year.
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Figure 4.5: The performance of the OBPI strategy compared to a booming market.
The portfolio increases slower in value, as the Goldman Sachs share price grows.
When the stock passes the strike price K = 1.25, the portfolio value increases
faster.

To compare the OBPI with the CPPI dynamic strategy, we also consider an investor
with capital 1 at time t = 0, who chooses the initial exposure to be Ē(t0) = 0.75 = q̄.
This means that OBPI and CPPI have the same initial exposure to the risky asset.
However, the allocation between the risky and the risk free asset changes in every
time step for CPPI. The investor chooses a floor F̄ = 0.75 and a multiplier m = 3.
Then, rebalances the portfolio daily, according to the market conditions and the
performance of the Goldman Sachs stock. Results in different market scenarios
below:
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Figure 4.6: The performance of the CPPI strategy with floor 0.75, compared with
a declining market. In this strategy, the only risky asset is the stock, so CPPI is
more similar with the GS stock performance. However, when the share price drops
below the floor, the portfolio value stays above, as the portfolio manager will allocate
more capital to the risk free asset.

Figure 4.7: The performance of the CPPI strategy compared to an increasing
market. Here the portfolio seems to be similar to a long stock strategy, as it grows
almost together with the GS share price and the investor enjoys more or less equal
returns.
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After a number of Monte-Carlo simulations for the OBPI and CPPI paths using the
Goldman Sachs stock and the 1-year LIBOR risk free rate, their value at maturity
T = 2 years (500 trading days) is summarized below:

Initial T = 2 σ Floor
OBPI 1 1.057 0.13 0.99
CPPI 1 1.052 0.29 0.75

Table 4.6: Mean and standard deviation of the portfolio value using the Goldman
Sachs stock for both strategies after 2 years, with an initial investment of 1.
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Conclusion

The OBPI strategy seems to provide protection from t = 0 until the maturity of 2
years. The initial capital is almost guaranteed at maturity, as the floor of the strat-
egy is very high. OBPI preserves the investment in a significantly falling market
and gently participates in a bull market. Observe in Figure 4.5 how the portfolio
value rises faster when the stock passes the strike K = 1.25. This is because the
put option is very cheap, while the stock gains value. Holding a put option means
that the investor expects a market decline and wants to protect the long position
in the stock. To purchase a Put Option requires paying a premium, which is an
extra expense. Options are known for their time-decay, which makes them loose
their value, especially when maturity approaches. That leaves them with just their
intrinsic value in the end.

The CPPI strategy has a lower floor, which in this case was selected by the portfolio
manager. This strategy reaches the floor faster when the share price declines, but
that also depends on the multiplier. However, as it is a dynamic strategy, when the
stock price increases, the strategy will invest more and more in the risky asset and
less in the risk free asset, taking advantage of the market performance. From the
previous figures, it can be seen that CPPI’s value is very close to the stock for a
sharply rising market. On the other hand, it also follows the market performance
in a decline, but does not fall below the floor, as seen in Figure 4.6.

In general, OBPI is safer in a falling market since it is hedged by the long put,
but does not take good advantage of an increasing market compared to the other
strategy. The CPPI provides higher returns in a rising market than OBPI but suffers
bigger losses when the market declines. From Table 4.6, we see that OBPI has a
mean value slightly above CPPI at maturity, for the Goldman Sachs stock. On
the other hand, for the CPPI, the standard deviation is more than double, making
it a riskier strategy. Riskier strategies means fatter distribution tails and therefore
access in more extreme events like higher returns. The higher the risk, the higher the
reward. It is obvious that the most important part of both strategies is the stock,
which is the main performance engine for both portfolios. Both of the strategies
have limited losses but unlimited gains, because of the long position in GS shares.
In those cases, higher volatility works in favor of both investors.
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