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Abstract

This Masters thesis deals with aspects of the modelling of deperiodized and
deseasonalized electricity spot prices by means of infinitely divisible Ornstein-
Uhlenbeck processes. Further, models for periodic (weekly) and seasonal compo-
nents of the electricity prices are investigated.
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1 Introduction

1 Introduction

On the first of January 1996 the Swedish electricity market was deregulated,
meaning that the prices of electricity are determined by a market with free price
establishment and competition among different sellers and buyers. At the same
time the Swedish state, via Svenska Kraftnit (SvK ') which is the administrator of
the national electrical grid, became part owner in the Norwegian power exchange
Nord Pool. Hereby the Swedish and Norwegian electricity markets became one
common free market which the other Nordic countries, with the exception of
Island, later took part in.

When the Swedish market was still regulated, i.e. before the year 1996, the
consumers were forced to buy electricity from one distributor. The electricity
companies had the right to sell their electricity only to fixed areas. Thus the con-
sumers had no opportunity to influence the electricity prices. After the deregula-
tion of the electricity market, the purpose was to give the consumers alternatives
among different electricity distributors and with free competition. The aim of the
deregulation was to create a more effective price establishment.

We have decided to model the electricity spot prices of the years 1996-2001,
which will be discussed more in detail further on. The reason that we left out the
modelling of the years 2002-2003 was that these years were extremely dry. The
extreme situation, which occurred during the autumn and winter 2002/2003 (week
21 year 2002 until week 12 year 2003), is very rare and years as dry as these have
not occurred for the past 20 years. During that period the flow of water in the
reservoirs was very low, having lower electricity production as a consequence. This
made the electricity prices rise to the extreme levels observed in the extremely
high spikes of this period. The total flow of water to the reservoirs during this
period, of the year 2003, was 20 TWh lower than the average of the totals of the
years 1980-2003 of the same period. In the period in question there were moments
where the temperature became extremely low. This in turn increased the demand
of electricity and thereby led to the increase of electricity prices.

Since we decided not to include the years 2002-2003 it was not possible to
include the year 2004. The reason for this being that problems such as change
of level and effect of dependency will take place in the data if we would have
linked the years 1996-2001 with the year 2004. In the beginning of 2005, emission
allowances were introduced and they play a big role in today’s electricity mar-
ket. They have nearly doubled the electricity prices since introduced. Emission
allowances will be discussed later in the report. Thus, when having access to only
a small set of historical data of emission allowances, this will not be enough for
modelling. This is the reason why we left the years 2005-2006 aside.

The mean reverting nature of spot prices and the existence of jumps or spikes
in the prices are two distinctive features which are present. We know that in stock
markets, prices are allowed to evolve freely but this is not true for electricity prices.
When facing abnormal market conditions, price spreads are observed in the short
run, but in the long run supply will be adjusted and prices will move towards,
and gravitate around the level of production costs.
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2 Electricity market

2.1 Nord Pool

The Nordic electricity market, Nord Pool, is the power exchange servicing the
Nordic countries of Europe, including Norway, Denmark, Sweden, and Finland,
who were all at some point deregulated and connected through interconnectors
(electric lines and electrical plants and meters for the transfer of electricity to or
from the transmission system). Anyone who is connected to any part of a national
network in these countries can, in principle, buy (or sell) electricity from (or to)
anyone else connected to the network.

The Norwegian power market was deregulated in 1991 and it took two more
years, i.e. 1993, before Nord Pool was established. When introduced it was the
first of its kind and was actually the first power exchange in the world. It quickly
became a world wide trading place with many participants. The Nordic countries
produce a total of approximately 380-390 TWH per year. Sweden accounts for
approximately 40%, Norway 30%, Finland 20%, and Denmark 10%.

Storage of electricity is very difficult, sometimes impossible, or otherwise often
very expensive. Hence, markets must be kept in balance on a second-by-second
basis. Hydroelectricity, which can be considered a storable form of electricity, is
traded in large quantities in Nord Pool. Water can be stored in reservoirs and
lakes. The reservoirs fill up during the spring and at the beginning of the summer,
caused by the melting of the snow, and at the beginning of the autumn, caused
by rain.

Approximately 50% of the electricity produced in Sweden comes from hydro-
electricity, see [12]. According to [7] the optimal use of the stored water over a
year time basis is to start using it at the end of march. The storability makes
hydroelectricity more similar to other commodities. It lowers the height of spikes
and reduces the price volatility.

Electricity that is consumed and produced must be in balance at every in-
stant, which is achieved by balance control. In every country there exists a TSO,
transmission system operator, who is responsible for the task of maintaining this
balance and for maintaining the national grid. The TSO arranges the transmis-
sion of electricity from power stations to consumers through a network of power
lines (national grids, regional networks and local networks).

Nord Pool includes the following markets:

e FElspot is the spot price market. The spot price is the price set daily on
the spot market. It is determined by supply and demand. This price is
called system price or spot price and is an average price for the whole power
market (Sweden, Norway, Finland, Denmark). The producers and power
trading companies, i.e. the different participants, inform daily, before 12:00,
how much they are going to supply (producers) and buy (power trading
companies) the coming day. The daily price is determined by the intersection
between the demand curve and the supply curve. This spot price is therefore
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an average price, an index, which is used as a reference of the electricity
market. See Figure 1 below.
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Figure 1: The x-axis is the turnover. The values of the y-axis do not represent real

electricity price level.

Eltermin is a purely financial market involving futures and forward markets
for speculation and hedging of power contracts (with no physical delivery)
over periods such as days, weeks, months, and years. A contract is an agree-
ment which involves that you are obliged, in the future, to buy electricity
for a fixed price, previously decided. This price reflects what the market
believes the future spot price will be.

Elbas is a market for adjusting imbalances for short term physical delivery.
Participants who have earlier taken their positions on Elspot can adjust
their positions up to 2 hours prior to delivery.

Eloption trade consists of European-style settlement power options with
forward contracts as their underlying instruments. It is a financial market
for risk management and for forecasting future income and costs related to
trade in electricity contracts.

Currency Erxchange Rates has its daily Nord Pool published exchange rates
for each SEK (Swedish Krone), FIM(Finnish Mark), DKK (Danish Krone),
and NOK (Norwegian Krone) versus the Euro.
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2.2 Emission allowances

From December 1 through 11, 1997, more than 160 nations met in Kyoto, Japan,
to negotiate binding limitations on greenhouse gases for the developed nations.
The outcome of the meeting was the Kyoto protocol, in which the developed na-
tions agreed to limit their greenhouse gas emissions, relative to the levels emitted
in 1990. Countries that ratify this protocol commit to reduce their emissions of
carbon dioxide together with five other greenhouse gases. If they desire to increase
their emissions of these gases then they will be committed of buying emission al-
lowances.

Producers must try to minimize the emissions of greenhouse gases. Trading
with emission allowances started at the beginning of January 2005 and comprises
all European Union (EU) countries. The system of emission allowance was created
in order for the EU to fulfill its undertaking of the Kyoto protocol. During the
first phase, years 2005-2007, trading concerns only carbon dioxide while during the
second phase, years 2008-2012, there are possibilities to include other greenhouse
gases as well.

The system works in the following way. A roof is set for how much emissions
of carbon dioxide is allowed during a specific period. Those countries that are
members of the so called EU-15 must, on average, reduce their emissions by 8%
compared to the levels of the year 1990. The remaining member countries, which
joined the EU in may 2004, have their own individual goals that are adjusted
to the Kyoto protocol. Every country divides its own, by the EU individually
allotted, number of emission allowances between the producing companies of the
country. Naturally this concerns only companies which emit carbon dioxide. This
division follows so called National Allocation Plans (NAP) which the countries
themselves establish. The National Allocation Plans must first be approved by
the EU commission. There are at the moment 750 electricity producers in Sweden
that are connected to this system. All country is responsible to set up a particular
register where all transactions that are carried out must be registered. In Sweden
it is the power authorities that are responsible for this register, which is called
Svenskt utslappsrattssystem, SUS (the Swedish emission allowance system).

Those who own one emission allowance have the right to emit one ton of carbon
dioxide during a stated trading period. During the first trading period, at least
95% of the emission allowances have to be divided freely to those connected to the
system. The Swedish state has decided that all Swedish companies shall get their
emission allowances for free. The companies that emit less carbon dioxide than
the quantity of emission allowances that they have received, can either save the
emission allowances for later use, or sell the surplus to other companies. On the
other hand, companies that emit more carbon dioxide must buy more emission
allowances.

The price of the emission allowances is determined by supply and demand.
A very important parameter in the pricing of the emission allowances is the to-
tal amount of emission allowances handed out by the EU. A greater supply of
emission allowances means lower prices and vice versa. Other factors that affect
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the price are, among others, weather, the economical development, and political
(in)security.

2.3 Electricity certificates

In may 2003 the so called electricity certificates were introduced. It is a market
based system created to support the production of renewable electricity. It is more
expensive to produce electricity from renewable energy than from the traditional
production types used in Sweden. Thus, the government created this electricity
certificate system in order to help the producers. Power sources that are entitled
to electricity certificates are wind power, sun power, geothermal power, bio-fuel,
wave power, certain water power types, and peat.

Producers of renewable electricity are allotted a certificate for every Megawatt
hour (1 MWh=1000 kWh) of electricity they produce and they can then sell them
to electricity trading companies. The price of electricity certificates is set by
the market according to the principle of supply and demand. The compensation
producers receive, by selling these electricity certificates, is supposed to cover the
extra cost for producing the renewable electricity, compared to the traditional way
of producing electricity. Furthermore, this compensation should also stimulate the
producers to invest further in renewable forms of electricity.

2.4 Factors affecting electricity prices

The most important factors that affect the electricity spot price are supply and
demand.

Demand: Temperature and business cycles are the major factors that affect the
demand of electricity. When the temperature is very low, the consumer’s
demand will increase which will lead to an increase of electricity prices which
is due to the lack of produced electricity. Temperature affects how much
water there is available in the reservoirs. Depending on how much water is
available in the reservoirs will affect the electricity price. Hence, the more
water the lower the electricity price. When it comes to business cycles,
consumers demand more electricity during economic booms than during
economic recessions.

Political decisions: Political decisions regarding taxes and fees also play a role.
Another example of politically related factors are emission allowances.

Supply: Emission allowances for carbon dioxide play a big role today since they
affect the marginal costs for carbon condense production. During a large
part of a normal water level year the Danish and Finish carbon condense
production prices determine the marginal cost on the Nordic market. The
more water available for water power production, the less carbon condensing
will be a price determining factor. The marginal costs for a carbon condense
power plant varies with time, partly because of varying fuel prices and partly

6
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because of varying prices of the emission allowances. Today’s prices of emis-
sion allowances have nearly doubled the marginal costs for carbon condense
power plants, both in the Nordic countries and in the remainder of Europe.
Looking at the years 1996-2006 below one can clearly see the effect of the
emission allowances. See Figure 2 below.

El ectricity spot prices for the years 1996-2006
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Figure 2: Electricity prices 1996-2006.

When it comes to lack of production of electricity, import of electricity from
other countries will take place. When having simultaneously a low demand
of electricity and a high production of electricity, export of electricity will
take place.
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3 Ornstein-Uhlenbeck processes

As has already been mentioned our aim is to see how Ornstein- Uhlenbeck processes
(OU processes) can be used to model electricity spot prices. We here introduce
some theory needed in order to define OU processes, together with some instru-
ments used when fitting these processes to data.

The motivation for choosing OU processes to fit to electricity spot prices is,
among others, their particular jumping behaviour. They move up entirely by
jumps and then tail off exponentially, where this decay takes place between the
jumps of the process. Another motivation is that they have a so called mean
reverting behaviour, meaning that they oscillate around a process mean value.
This corresponds well with the features of electricity spot prices. OU processes
are driven by Lévy processes, which are processes with the ability of jumping.
The OU processes jump according to the jumps of the driving Lévy processes.

3.1 Building Lévy processes

Definition 3.1 (Lévy process) A stochastic process {X (t)}i>0 ({X(t) her) is
a Lévy process if the following conditions hold:

1. X 1is right continuous and has left limits with probability one;
2. X(0) = 0 with probability one;

3. X has independent increments, i.e. X (t1) — X (to),..., X (tn) — X (tn—1) are
independent for all to <t < ... <ty,;

4. X has stationary increments, i.e. X(t) — X(s) 2 X (t—s) for all s < t;

5. X is stochastically continuous, i.e. lim, o P {|X(t+h)—X(t)| > €} = 0,
fore >0, for all t.

If X is a Lévy processes, then each process value X (¢) can be represented
as a sum of n independent identically distributed (IID) random variables, whose
distribution is that of X (¢/n). In other words, X () can be divided into n IID
parts. Distributions with this property are called infinitely divisible distributions:

Definition 3.2 (Infinite divisibility) A random variable Y is infinitely divis-
ible if, for each n € N, and some IID random wvariables Yi,...,Y,, we have

YEVi+.. . +Y,.

The random variables {Y}}7_, that divide Y must have common characteristic
function (CHF)

Oy, (U) =F [eiuY1:| —E [eiu(Y1+"'+Yn)]1/n - E [eiuY:| 1/n = (py(u)l/n for u € R.

Conversely, to each infinitely divisible distribution D, there exists a Lévy pro-
cess X such that X (1) ZD.
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Theorem 3.3 (Lévy-Khintchine) A random variable Y is infinitely divisible if
and only if there exists a unique so called triplet (0%, v,~), with

02 >0 the Gaussian coefficient,
v the Lévy measure on R satisfying v({0}) =0 and /yQ/\ 1dv(y) < oo,
R
v €R the drift coefficient,

such that the CHF satisfies the Lévy-Khintchine formula

1 <.
by (u) = exp{z’yu - 502u2 +/ (e™* -1 - iua:l{|w|<1})1/(d:v)} forueR

To clerify the role of the Lévy measure actually does, we give an alternative
equivalent (as it turns out) definition of it:

Definition 3.4 (Lévy measure) The Lévy measure of a Lévy process X is the
measure v on R defined by

v(A)=E[#{t€[0,1]: X(t)— X (t7) € A\{0}}] for ACR

Definition 3.5 (Compound Poisson process) Let {N(t)};>o be a Poisson
process with intensity A and {Y;}$°, IID random variables with cumulative prob-
ability distribution function (CDF) F that are independent of N. A compound
Poisson process with intensity A > 0 and jump size distribution F' is given by

N(t)

X(t)zZY; fort > 0.

=1

Then X (t) has CHF

b (u) = exp{t)\ /_ (e —1) F(dm)} forueR.

oo

Note that, for a compound Poisson process X, the Lévy measure of X (1) is
given by v(A) = A [, dF.

From the Lévy-Khintchine formula, we see that an infinitely divisible random
variable consists of three independent parts: a constant, a zero-mean normal
distributed part, and a part of compound Poisson distribution type (that more
exactly is the limit of a compound Poisson distribution, but for simplicity we will
call the compound Poisson part).

Now consider a Lévy process built up by the infinitely divisible random vari-
able in question. The Lévy measure v dictates how the jumps occur. Jumps of
sizes in the set A occur according to a compound Poisson process with intensity
parameter v(A). Hence, each Lévy process is the sum of a Brownian motion with
drift (continuous part), plus an independent jump process of compound Poisson
processes type.

10
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3.2 Specific Lévy processes

In this section we introduce the Lévy processes that feature in this thesis (besides
Brownian motion and the Poisson process, the definitions of which are elemen-
tary). These processes all have zero Gaussian component % = 0.

Definition 3.6 (Inverse Gaussian Process) The Inverse Gaussian distribu-
tion (IG) with parameters a,b > 0 and u € R, is the infinitely divisible distribution

with CHF
e (u;a, b, ) = exp {—a(\/ —2iu + b?> — b) + iu,u} :
The probability density function (PDF) of the IG distribution is given by
a a? b2 (x — )
exps ab — —
V2r (z — p)*? p{ 2(z — p) 2
An 1G process is a Lévy process {X (t) }i>o0 such that X (1) is 1G(a, b, u) dis-
tributed. Then X (t) — X (s) 2 1G(a(t— s),b, p(t — s)) for 0< s < t.

fIG(x;aaba /’L) =

} forxz > p.

Definition 3.7 (Normal Inverse Gaussian Process) The Normal Inverse
Gaussian distribution, NIG(«, 3, d, i), with parameters o > 0, —a < B < «, and
0 > 0, is the infinitely divisible distribution with CHF

onic (u; a, B, 0, ) —exp{ (Vo2 — (B + iu)? — Va2 - j3?) +wu}
The PDF of the NIG distribution is given by
Ky (/6 + (2 —p)?)
z;a, 3,9, —eX o a?—5%+ or t€R,
fria(ws 0, 8,6, 1) = = exp{6v/0? =+ Blo—p) | e
where K is the modified Bessel function of the third kind

1 oo
K,(z) = 5/ P e W2 gy for x> 0.
0

A NIG process is a Lévy process {X (t)}+>0 such that X (1) is NIG(e, 5,0, )
distributed. Then X (t) — X (s) L NIG(a, B,0(t—s), u(t—s)) for 0 <s<t.

Definition 3.8 (Generalized Inverse Gaussian Process) The Generalized
Inverse Gaussian distribution, GIG(A, a, b, 1), with parameters a,b > 0 and p, A €
R s the infinitely divisible distribution with CHF

1 i\ M2 '

¢Glg(u )\ a, b ,U,) K)\(ab) <1 — %) K,\(abv 1- 2’L’U,b_2) ik

The PDF of the GIG distribution is given by

Bl o —pf™ @ B
2K (ab) 2(x — ) 2

Special cases of the GIG distribution includes the IG distribution.
A GIG process is a Lévy process {X (t) }1>0 such that X(1) is GIG distributed.

faa(w; A, a,b, 1) = } forx > p.

11
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Definition 3.9 (Gamma Process) The Gamma distribution, Gamma(a, b, 1),

with parameters a,b > 0 and p € R s the infinitely divisible distribution with
PDF

a

fcamma (%5 a, b, ) = %(:v —w)* texp(—(x — p)b) for x > p.

The Gamma process is a Lévy process {X (t) }+>0 such that X (1) is Gamma(a,
b, 1) distributed. Then X (t) — X (s) 2 Gamma(a(t — s), b, u(t —s)) for 0< s < t.

Definition 3.10 (Variance Gamma Process) The Variance Gamma distribu-
tion, VG(a,b,c, u) with parameters a,b,c > 0 and p € R is the infinitely divisible
distribution with CHF

be ¢ i
e
be + (¢ — b)iu + u? ’

¢VG (U, a, ba &) ,LL) = (

and is distributed as the difference between two independent Gamma distributed
random variables. The PDF of the VG distribution is given by

fVG(a,b,c,u) (l')

_ vbte (b—c)z—m)/(256) [T 1" (b+c)(x—p)
- € Ko ipp| ——— ) Lo
['(a)/7be(x — p) b+c 2bc

Vb+c (b—c)(z—p)/(2be) (M —T aK _(b+o)(z—p) 1
+ e — a12\ =7 ) L{a<u}
[(a)/mbe(p —x) b+c 2bc

for x € R.

A VG process is a Lévy process {X(t)}i>0 such that X(1) is VG(a,b,c, p)
distributed. Then X (t) — X (s) Z VG(a(t—s),b,c,u(t—s)) for 0 < s<t. Further,
the VG process is the difference of two independent Gamma processes.

Definition 3.11 (Meixner Process) The Meixner distribution, Meizner(a, f3,

0, 1), with parameters a > 0, —m < f < m, 6 > 0 and p € R is the infinitely
divisible distribution with CHF

: _ cos(8/2) ?
¢Meizner(ua «, /B; 5, ,LL) - (COSh((CMU — ’Lﬂ)/?)) e w .

The PDF of the Meixner distribution is given by

2arl'(20)
A Meixner process is a Lévy process { X (t) }1>0 such that X (1) is Meizner(c, 3,
d, p) distributed. Then X (t)—X(s) 2 Meixner(a, 3, 6(t—s), u(t—s)) for 0 <s<t.

2

fMeizner(x; a, Ba 5a /'1’) =

forx e R

12
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Definition 3.12 (Generalized Hyperbolic Process) The Generalized Hyp-
erbolic distribution, GH(«, 3, 6, v, p), with parameters

>0, |Bl<a if v>0,
>0, |Bl<a if v=0,

>0, |B<a if v>0,
s the infinitely divisible distribution with CHF

e

o? — B2 )'42 K, (5\/042_ (,B+iu)2>

Pau(u; @, B, 0,v, 1) = (a2—(5+w)2 K, (5\/‘W)

The PDF of the GH distribution is given by
fGH(xa aaﬁaéa v, ,U,)

a?— 32 v/2(52 1 z—p)? v/2-1/4 B
= \/ﬂail/(%”]((((j\/ip)_iﬁz) K, 12(0/0° + (z—p)?) " forz e R

Special cases of the GH distribution includes the VG distribution as well as the
NIG distribution.

The GH process is a Lévy process { X (t) }s>0 such that X (1) is GH distributed.
The GH process is a

Some distribution have no known closed form probability density functions.
For such distributions one can find an approximation of the PDF by numerical
Fourier invers transform of the CHF in question.

Proposition 3.13 (Inverse transform of CHF) If a random variable & has
an integrable CHF ¢¢, then it has a continuous PDF given by

fe(z) ! /00 e " de(t)dt  for x> 0.

:% .

3.3 Ornstein-Uhlenbeck processes

Definition 3.14 (Ornstein-Uhlenbeck process) Let {L(t)}ier be a Lévy pro-
cess, which is usually refered to as the Background Driving Lévy Process (BDLP).
For a constant X\ > 0, the Ornstein-Uhlenbeck process (OU process) is given by

Z(t) = /_t e M= dL(s) for teR

o0

13
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If Z is an OU process, then it will be a stationary process, that is, it will have
translation invariant finite dimensional distributions. This is so because

t+h

o A+h—s) dL(s)} — {/t e A(=9) dL(s+h)} 2 {Z(t)}biew

teER —00 teR

{zwm»mR:{/

—0oQ

for h € R, by the stationary increments of L.

Definition 3.15 (AR Process) Given an p € N, a process {X (t) }iez is called
an Autoregressive process with index p, AR(p) process, if it is a stationary process,
that for some constants ap =1 and ay, ..., a, € R satisfies

e(t) = kz_;akX(t —k)=X(t)+ ;akX(t — k) forte.
e(t) is independent of X (t — 1), X (t — 2),...

It turns out that there are restrictions on the coefficients ai,...,a, for an
AR(p) process. For example, for an AR(1) process, we must have |a;| < 1 (see

[3])-

As for an OU process

t
Z(t) = e Z(tg) + / e M=) dL(s)  for t > t,,

to

so that Z(t) only depends on the history {Z(t)}i<s, through the value of Z(t),
Z(t) is a Markov process. In addition, taking to = ¢t — 1, this shows that an OU
process is an AR(1) process with parameter a; = e™ € (0,1) and IID noise

@@h@={llywﬂwu@h%,

which is infinitely divisible (by approximating the intregral with Riemann sums).
The OU process is the solution to the Langevin stochastic differential equation

dZ(t) = —\Z(t)dt + dL(t) fort>0, Z(0)= / st dL(s)

—0o0

(see [2], page 29). This equation explains the so called mean-reverting feature of
the OU process, i.e., its tendency to move back to its equilibrium state.

3.4 Approximated infinitely divisible distribution

We will build an infinitely divisible distribution that is styled to fit with the fea-
tures of our data, which we call the Approximated Infinitely Divisible Distribution
(AIDD). This distribution consists of a sum of Gaussian random variable and an

14



3 Ornstein-Uhlenbeck processes Approximated infinitely divisible distribution

independent sum of independent rescaled Poisson distributed random variables
with different intensities

N(u,0%) + Y bPo(a;), pER, 0>>0,a1,...,a,>0,by,....b, €R (3.1)
=1

We will now explain how the AIDD can be used to approximate any infinitely
divisible distribution D: By the Lévy-Khintchine formula, the CHF ¢p of D is
given by

. 0'211,2 oo uxr .
ng(u):exp{Z’yu— 5 +/ (e —1—zux1{x<1})1/(dx)},

o0

where v € R and 02 > 0 are constants and v the Lévy measure. Now we make an
approximation 7 of the Lévy measure v by point masses

dx

This gives

. o’u? ® . X
op(u) = exp{wu— +/ (e“”—l—zux1{|$|<1})1/(dx)}

2 —00
2

_ cu? o, . :
= exp{wu - + ;(emb’c -1- lubk1{|bk<1})ak}

ou?
= exp{i/m— 5 +;(e’“bk—1)ak},

where 1 = v —ar > ;1 bel{p, <13 This in turn is the CHF of the distribution
(3.1).

As any Lévy measure can be approximated arbitrarily well by point masses,
in the sense that approximated CHF can be made to converge to the true one,
we have shown that any infinitely divisible distribution can be approximated ar-
bitrarily well by an AIDD distribution.

15
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4 Initial data analysis

4 Initial data analysis

We started by analyzing the electricity prices from the date 1996-01-01 until 2006-
08-29, see Figure 3 below.

El ectricity spot prices for the years 1996-2006

1000 -
800+
600
400

200

1000 2000 3000

Figure 3: Electricity prices 1996-2006.

As we mentioned earlier we did not include the years 2002-2006 in our data set
when modelling the electricity prices. Since the extreme case of the winter of 2002-
2003 is very unusual, we decided to ignore this abnormality and thus eliminate
the years 2002-2003. We also did not want to get into modelling the years 2005-
2006 because of emission allowances, as there is not enough data available for
the trade of emission allowances to model their behaviour. Stationary models
for current electricity prices will not behave representatively until the trade of
emission allowances has stabilized. The year 2004 was also eliminated since it is
squeezed between those years. Thus our decision was to model the electricity spot
prices for the years 1996-2001.

As can be seen in Figure 4 below, there is a strong mean reversion of the
spot price present, so that it oscillates around a mean level with periods of high
volatility characterizing the behaviour of the spikes observed in the market.

17
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El ectricity spot prices for the years 1996-2001
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Figure 4: Electricity prices 1996-2001.

It seems cleat the above electricity spot prices are not normally distributed, as
the thin tails of the normal distribution will not be able to capture the extreme
values that appear in the data. This conclusion is supported by the normal-plot
in Figure 5 below.

Nor mal -pl ot of the electricity
spot prices years 1996-2001
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Figure 5: Normal-plot of the electricity prices 1996-2001.

Another fact that speaks against the normal distribution is the high skewness
and kurtosis coefficients of our data, that are now described.

Definition 4.1 (Skewness and kurtosis) The skewness of a random variable
X, which measures the degree to which the distribution of that random variable is
asymmetric, is defined as
E[(X - E[X])’]
(Var[X])3/2

18



4 Initial data analysis

The kurtosis, which is a way of measuring the heaviness of the tail of the distri-

bution, is defined as
E[(X - E[X])!]
(Var[X])?

Table 1 below displays the mean, variance and standard deviation of our data
set, together with the skewness and kurtosis.

Mean 162.532
Variance 4782.27
Standard Deviation | 69.1539
Skewness 1.73072
Kurtosis 16.4609

Table 1: Stylized facts of the data.

As one can see, the data exhibits very high spikes. These are naturally not
appreciated neither by consumers nor by the electricity traders. This phenomenon
is known as lack of effect in the electricity market, which (not suprisingly) means
that there is a lack of produced effect on the electricity market!

As can be seen, on the 24th of January 2000, the electricity price jumped from
a level of approximately 100-150 Kr/MWh to 1000 Kr/MWh. On the 5th and
6th of February 2001 the price was nearly as high as well. These high spikes were
due to lack of effect .

We now give an example of how the eletricity market may work in the situation
of lack of effect: It is January and very cold. Since some nuclear reactors are put
out of function, people responsible for controlling the balance of the electricity
production of Sweden know that all production resources must be in use in order
to be on the safe side the coming morning, in order to avoid the phenomenon of
extremely high price spikes, due to demand exceeding supply.

There is a risk that lack of effect will take place the coming morning. Ev-
erybody tries to adjust to this situation: The producers try to produce as much
electricity as posible, and the consumers, who directly or indirectly, feel the day-
market price try to minimize their use of electricity.

In order to achieve a balance between the buying and selling of electricity
orders, the day-market prices for those critical hours in the morning will be very
high. When we come near the morning hours it turns out that there is not
enough electricity produced, i.e., the demand will exceed the available production
capacity. The price of the balance adjustments will rise and transactions carried
out will have prices that are much higher than the daily market price set the
day before. Thus, further stakes will take place in order for more production of
electricity to occur.

In [13], a report which was sent to SvK on the 29th of August 2000, we can see
a situation where a load of about 28000 MW may take place. A scenario which,
according to the report, happens approximately once every 10 years. These high
spikes jump up and stay at that level for a couple of hours. The incident that took

19
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place on the 24th of January 2000, which had a very high load level, is shown in
Table 2 below, for different time intervals.

Time | MWh/h | Time | MWh/h | Time | MWh/h
06-07 | 22285 | 11-12 | 23775 | 16-17 | 23736
07-08 | 24202 | 12-13 | 23492 | 17-18 | 23829
08-09 | 24595 | 13-14 | 23229 |18-19| 23316
09-10 | 24328 | 14-15 | 23229
10-11 | 24192 | 15-16 | 23501

Table 2: Load on the 24th of January year 2000, according to Nord Pool.

In the table we can see that the highest load level was between 08-09, a time
that is usual for top levels. During the hours 07-11, we had a maximum variation
of 403 MWh/h between the top load level, between the hours 08-09, and the
minimum load level, between 10-11. Thus, as a conclusion, according to SvK:s

data,

the electricity consumption scenario given above, if one uses the interval

[top load, top load-500 MW], has a probability of occurring in a ratio of 4 hours
per 10 years i.e. a probability of 0.0046.
Comments on lack of effect and how SvK acts in such situations:

There is not enough statistical data on lack of effect scenarios to be able to
predict these situations.

When calculating the risk of lack of effect one must take into consideration
that the market reacts differently on situations depending on which price
prevails.

Low electricity prices and high delivery safety can hardly be combined on a
deregulated electricity market.

Closing down production units will increase the risk of lack of effect. In
these situations one must be able to cover the lack of energy needed in order
to fulfill the consumer’s demand.

There is a clear risk that the perception of the market is that SvK takes the
responsibility of supplying enough running power reactors, regardless of the
markets behaviour. If this is the case, the market clearly does not seem to
take the responsibility of supplying these power plants themselves.
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5 Random numbers

There are a couple of general methods to simulate random numbers with a desired
distribution. As these general methods usually are quite slow and /or unstable, due
to involving numerical integration and numerical equation solving, it is desirable
to try to find special algorithms that work for a specific distribution.

5.1 Inverse method

Let X be a random variable with continuous CDF F'. Then
P[F(X)<z]=P[X < F Y (z)]=F(F ' (z)) =2 forz€(0,1)

(where F'~! denoes a generalized inverse, should the inverse not exist). Hence the
random variable F'(X) is uniformly distributed over (0,1). It follows that we can
generate a random number X with the CDF F' by first generating a uniformly
distributed random number U, and then applying the inverse CDF X = F~}(U).
See also [10].

However, often there is no closed form expression available for F~!. In that
situation one has to rely on numerical methods to solve the equation F(X) = U
for X.

5.2 Rejection method

Another method that is a bit quicker than the inverse method, but unfortunately
also a bit less stable, is the rejection method, see [10]. Here the idea is to look
at the ratio between two distributions, where we already know how to generate
random number from one of them.

Let g be a PDF which we do how to generate random numbers from, and
let f be the PDF we want to generate random numbers from. Then this can be
achieved if the following properties hold:

e g and f are defined on the same domain.

e We have
f(z)

¢ =sup —= < 00,
z 9()

where the supremum is taken over all x in the domain of g and f. For most
of the distributions considered in this thesis, it is a good choice to pick the
PDF g with polynomially decaying tails, for numerical reasons.

The rejection method works as follows:

1. Generate a random number z, with PDF ¢, and an independent random
number v uniformly distributed over (0, 1).
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2. If
f(zy)

cg(zy)’
then go to Step 3, otherwise return to Step 1.

u <

3. Accept z, as a random number with PDF function f.

5.3 1IG and NIG random numbers

In [4] the following algorithm for generating NIG(«, 3,0, ) distributed random
numbers is suggested, making use of an IG distributed random number:

1. Generate an IG(6%,a? — 3%,0) distributed random number in the following

way:

(a) Let V be a x?(1) distributed random number.

(b) Let £ =6/+/a?— B2

(c) Put
- SY L5 2 212
W—§+ 552 + 252\/4&5 V+&2V2.
(d) Let U be a uniformly distributed random number over (0, 1) indepen-
dent of V.
(e) Put

{ Woif U< ¢/W,
7 = ,
e/W it U>¢/W.

2. Let Y be a N(0, 1) distributed random number independent of Z.

3. Then the random variable X = p+3Z++/ZY is NIG (e, 3, 6, 1) distributed.

5.4 GH random numbers

In [1] the following algoritm for generating GH distributed random numbers is
suggested, taking off from a GIG distributed random number:

1. Let Z come be a GIG(v, §, v/a? — 32,0) distributed random number.
2. Let Y be a N(0, 1) distributed random number independent of Z.

3. Then the random variable X = u+3Z++/ZY is GH(a, 3, , v, ) distributed.

Note that the transformation of GIG to GH is the same as that of IG to NIG.
GIG random numbers we generate using the rejection method.
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5.5 Numerical integration

When generating random number one usually needs to make use of the CDF F
of the distribution of the random numbers in question. Having access only to
the PDF f of the distribution, and no closed formula for the CDF, one needs to
employ numerical integration, i.e. to find a numerical approximation of

Flz) = / " ) dy. (5.1)

But how do we numerically approximate —oo?

The answer, in the case of the distributions considered here, is given by a study
of the tails: All distributions considered in this thesis, except for the lighter tailed
Gaussian distribution, are so called semi-heavy tailed distributions. This means
that their tails behave according to

(5.2)
Cylz|P+e ™ asz — oo

£(z) ~ { C_|z|P~e™ 2l as 2 — —oc0
for some constants p_,p, € Rand C_,C,,n_,ny > 0.

The property (5.2) is very useful, as we can use it in our numerical integration
procedure (5.1) to determine what finite interval [z*, z] to integrate over, instead
of [—o0,z], for example by selecting z* such that f(z*) = 107% ensuring that
the contribution of the omitted integration domain [—oo,[z*] to the integral is
neglible.

As an example, in the case of the NIG distribution, it can readily be established
from the form of the PDF that

o 0
f(z) ~ ,/%exp {6/ a?—p?} BE e~ (@thllzl 45 1 - —c0.

|z

And for this distribution we selected z* = p — 50/(a + ).
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6 Fitting OU processes to electricity spot prices

When fitting Ornstein Uhlenbeck processes to data, we used that the OU process
is a special type of AR(1) process. This means that if our observed data {z;}}_;
is modeled by an OU process, then the sequence e(t) = xy—azi1,t =1,...,n,is
IID for some « € (0, 1). Hence we try to find this a, as well as fitting an infinitely
divisible distribution to the sequence {e(t)}7 ;.

The parameter estimation is done by the maximum likelihood (ML) estimation.
In our specific case, the likelihood function takes the form

n

L({xt}?zl; a, @) = l_If(avZ — QT @),

=1

where f(y; ©) is the PDF of a parametric infinitely divisible distribution that is
consideration.
To evaluate our fit we use the Kolmogorov-Smirnov (KS) goodness-of-fit test:

Definition 6.1 (Kolmogorov-Smirnov (KS)) Given a data set {x;}}_, with
empirical distribution function

1 n
Fn(t) = ﬁ Z l{miﬁt}i
i=1

the KS goodness-of-fit test of a fitted CDF F s based on the KS test statistic
KS,,, also called the KS distance between F,, and F', given by

KS,, = sup | F,,(z) — F(x)‘
z€R

A useful numerical form of KS,, to be used in computations, is that

?

A 71— 1 ~
where x(1), ..., T denotes the ordered data set.

6.1 Fitting GH OU processes

When trying to fit an infinitely divisible distributions to eletricity spot prices, in
the fashion above, the only distribution that gave us a reasonably good fit was the
GH distribution: The ML estimate of the GH(a, b, d, v, 1) parameters are given in
Table 3 below, together with the Kolmogorov-Smirnov (KS) distance.
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o} a b d v 1 KS
0.95 | 0.16688 | 0.01371 | 0.33574 | 3.28605 | 4.36503 | 0.0653054

Table 3: Estimated parameters of the GH distribution and the KS distance.

As a general rule, the KS distance should be at most in order for the fit to be
accepted for a data set of our size (a point to be discussed later on), so our value
0.065 is way too large. And even if the fit were accepted anyway, the GH-OU
process would not necessarily be a good model for the raw electricity prices, as
we have not yet checked that {z; —ax;_1}}, are independent.

The estimated GH PDF is shown in Figure 6 below together with a histogram
of the data set {x; — ax;_1}},. Further, the empirical distribution function of
the data is plotted together with the estimated GH CDF.

Hi stogram of the data and the fitted CH-density

0.04
0.03 ¢
0.02}
0.01¢
-50 0 50 100
The enpirical distribution function
of the set {e(t)}t and the GH-distribution
— — — Fa(t)
F(t)
100 750 50 100

Figure 6: Upper: GH PDF. Lower: Empirical distribution function of z; — axz; 1
together with the estimated GH CDF.
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6.2 Testing independence

There are various ways to test mutual independence for the members of an ob-
served time series {y; }7 ;.

Auto correlation plots are one common method for testing correlation between
f(y) and f(yi1x), where usually f(y) = |y|, or f(y) = y* for s = 1,...,m and
k=1,...,n—t, for some m € N, ie., it is a way of investigating if different
moments are correlated, see [8].

The Ljung-Boz test is another way of testing independence, based on correla-
tion methodology. It is a modification of the so called Portmanteau test, and is
described next.

Definition 6.2 (Sample auto correlation function) The auto correlation func-
tion of a stationary stochastic process {Y (t)}1>0 is defined as

Cov[Y (1), Y(t+h)]  _ Cov[¥(0),Y (k)
\/Var[Y ()] Var[Y (¢ + h)] Var[Y (0)]

py (h) =

Given an observed stationary time series {y;}1,, we can estimate the auto
correlation function by the sample auto correlation function

Zyt ) fork=0 n—1

(n— 182
t=1

where Y is the sample mean and 55 the sample variance.

Definition 6.3 (Ljung-Box (LB)) Let {y;}!, be an observed time series. In
the Ljung-Box (LB) test the null hypothesis is that the data are uncorrelated,
which s tested against the alternative that the data are not uncorrelated.

The LB test statistic is given by

S

where M is the number of lags being tested, that is a number that has to be choosen
by the statistician. Under the null hypothesis Que(M) is X3, distributed, so that
the null hypothesis is rejected on the test level 5 (which we usually take to be 0.05),
showing that data are not uncorrelated, if

Qus(M) > X%—ﬂ,M?
where X7_g 5 s the 1 = quantile of the x3, distribution.

The LB test statistic is a weighted sum of squared sample auto correlations
for different lags k. Of course, if the data set is independent, then all correlations
and thus the sum should be near zero.

The following Figure 7 shows a plot of the time series {z; —az; 1}, and its
sample auto correlation function, with « taken from the GH fit of the previous
section.
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The terns e(t)=S(t)-aS(t-1), created

wWith & i.e. the estimated o
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Auto correlation of the terns e(t)=S(t)-aS(t-1)

Figure 7: Upper: Plot of z; —ax;_1.
Lower: Auto correlation of z; —a ;1.

Note that the auto correlation plot indicates dependence between data.
Table 4 below shows the LB test statistic, calculated for the data set {z; —

azy 1}, atlags M =1,...,25. A comparison is made with the X%.%,M quantile.

M 1 2 3 4 bt

xﬁ/f’ol% 3.84146 | 5.99146 | 7.81473 | 9.48773 | 11.0705

Qrp(M) | 243.815 | 278.319 | 282.717 | 282.77 | 288.147
M 6 7 8 9 10

X095 | 12.5916 | 14.0671 | 15.5073 | 16.919 | 18.307

Qrp(M) | 288.636 | 323.732 | 324.006 | 326.217 | 326.225
M 11 12 13 14 15

Xiogs | 19-6751 | 21.0261 | 22.362 | 23.6848 | 24.9958

Qre(M) | 326.246 | 329.302 | 329.347 | 361.833 | 361.85
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M 16 17 18 19 20
X305 | 26.2962 | 27.5871 | 28.8693 | 30.1435 | 31.4104
Qre(M) | 366.277 | 366.292 | 366.405 | 369.241 | 369.474

M 21 22 23 24 25
X305 | 32-6706 | 33.9244 | 35.1725 | 36.415 | 37.6525
Qrp(M) | 413.519 | 414.089 | 415.752 | 415.802 | 417.193

Testing independence

Table 4: Comparison between X%_95, s quantiles and LB test statistics Qz,g(M) on the
data set for M =1,...,25.

As one can see, there is a very clear indication of dependence for each choice
of lag M.

As a result of our investigations, we are all anxious to see how simulated GH
OU trajectory based on the ML estimated parameters compares with a plot of
the observed eletricity spot prices. Such a comparison is made in Figure 8 below.

El ectricity spot prices for the years 1996-2001
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600 r
400 -
200
560 1060 1560 2060
Sinul ated GH QU trajectory
based on the M. estimated paraneters
1000
800
600
400
500 1000 500 ¥ 2000

Figure 8: Upper: Electricity spot prices 1996-2001. Lower: Simulated GH OU trajec-
tory.
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7 Data filtration

As have been demonstrated in Chapter 7, it is not possible to get a satisfactory
fit of OU processes to raw electricity prices.

If one wants to fit an OU process model X to a time series {z;},, then it has
to hold that the differences {z;—az;_1 }} ; are independent for a suitable a € (0, 1),
see Section 3.1. To get an initial idea of what kind of dependence structure our
data posseses, we plot the sample auto correlation function in Figure 9 below.

Raw el ectricity prices, years 1996-2001
1000 +

800 |
600 |
400 ¢

200

500 1000 1500 2000

Aut ocorrel ation of the electricity prices.
A period of d=7 is evident.

14

5 10 15 20 25 30 35

Figure 9: Upper: Raw electricity prices, years 1996-2001. Lower: The sample auto
correlation of the raw electricity prices.

At a first glance it is clear that there is a period of d = 7 present. Hence, the
first thing to do is to remove this period.

In order to filter a data setto remove periodicity from it, different smoothing
techniques are needed:

Definition 7.1 (Simple moving average) Given a number ¢ € N, the moving
average of a stochastic process { X (t) }ien is given by

Mona(X(1)) = 5 37 X(t+3) for g <1

J=—q
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if the window size d = 2q+1 is odd, and by

Mama( X (1)) = éexu—q) £ Y X+ %X(wq)) for g <t

iof the window size d = 2q is even.

For a finite observed data series {z;}}_, we have the so called end-effect prob-
lem, that moving average smoothed data {y;}7=2¢ will have d points less at the
beginning and d points less at the end of the series, as compared with the original
data series. This problem can be solved in the following way: If the window size
is odd d = 2¢+ 1, then the filtered data become

(
To+ ...+ Ty for 0<t<qg—1

d
1 q
msma($t):< szt+j for g<t<n—gq
J=—q
xn_q+c.i..+xn for n—q+l<t<n
\

while if the window size is even d = 2q, the filtered data become

( 1 1
E‘TO +.’E1 4 ... +£C2q_1 + 5.1‘2,1

for 0<t<q-—1

d
1(1 ik 1
Mgma (T¢) = < d §£Et_q + Z $t+j§$t+q for g<t<n-—gq
Jj=—q+1

1 1
§xn—2q + xn—2q+1 +...+ Tp + an

for n—q+1<t<n
\ d

7.1 Deperiodization

As mentioned, our firsr task is to remove the possible periods. We have taken the
following approach to carry this out from [5]:

Method 1 (Period removal) Let {z:}}, be a data set that has period d.
Apply the following steps in order to remove the period:

1. Apply the moving average filter to get the filtered data set {mgma(2¢)}i—)\ ;-
2. Let ¢ = |d/2|. Compute the mean deviations

l(n—q—k)/d]
Z (x; — Mema(5)) fork=1,...,d.

i=l(g+1-k)/d|

1
n — 2q

Wy =
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3. The periodical component 5 is computed according as

d
1
§k:wk—g2wi fork=1,....d,
i=1

while Sy = Sp_q for k > d.
4. The deperiodized data is computed as dy = xy — §; fort=1,...,n.

The previously described end-effect problem, which one with this procedure
for removal of period, is resolved in above described manner.

For our data, {wy}{_,, d = 7, represents the averages of the week days, as the
period is the number of days in a week, so called intra-week periodicity.

Figure 10 below shows a plot of the deperiodized data together with the original
electricity price data set.

The deperi odi zed electricity prices
dt)=x(t)-s(t), t=1,..., 2192

1000
800}
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400}

200

560 10‘00 1500 2000
Raw el ectricity prices, years 1996-2001

1000 +
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400

200

560 1060 15‘00 2000

Figure 10: Upper: Deperiodized electricity prices, years 1996-2001. Lower: Raw elec-
tricity prices, years 1996-2001.

As one can see from the auto correlation plot of the deperiodized data {d;}},
in Figure 11 below, the intra-week periodicity that was previously present in the
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Deperiodization 7 Data filtration
Aut ocorrel ati on of the deperiodized electricity prices.
16
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The period conponent, , illustrated for 5 consecutive
weeks.
10
-5t
-10+
- 15 L
Figure 11: Upper: The auto correlation (for lags £k = 0,...,37) of the deperiodized

electricity prices.
Lower: The period component series {ét}fil

data has now been removed. That periodicity is extracted and represented by the
sequence {8 }7 ;.

The next thing to do is to filter the deperiodized data {d;}}_,, in such a way
that we end up with two components; a so seasonal component {s;}}_,, and a
noise component {y;}7_, that can be modeled as an OU process, i.e., that is such
that {y;} is stationary and {y; — y;—1}7_; is an IID sequence for some « € (0,1).

7.2 Exponential filtration

The following filter is presented in [6]:

Definition 7.2 (Exponential smoothing) Given a number 6 € (0,1), the ex-
ponential moving average of a stochastic process {X (t) }iez is given by

o

Mexp(X (£),0) =) 0(1—0Y X (t - j).

J=0
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7 Data filtration Exponential filtration

In our case with n observed data {z;}} ;, the exponential filtration becomes

[y

t—
mexp(xt,ﬁ) = 0(1—9)j$t_j for t = 1,...,77,
J

Il
)

The advantage of this filter, as compared to other filters which are based on
smoothing with fixed window sizes, is that it does not have the end-effect problem.

A drawback on the other hand, is that the first couple of smoothed values
depend too strongly on themselves together with a few values preceeding them.
In the case of electricity prices, this effect is recognized from the resulting noise
component d; — Z;;B (1 —60)’d,_;, which is too regular for first couple of values.

When smoothing {d;}?_, using the exponential moving average technique, we
start by creating the seasonal component

t—1

51(0) = mep(dy, 0) = Y 0(1—0)d,,

§=0
giving the noise component
yt(ﬁ) = dt - St(g) = dt — mexp(dt, 0)

Since our aim is to find a noise which can be modeled as an OU process, we
want to find values of « and 6 such that €,(0, o) =y 1(0)—ay(0),t =1,...,n—1,
are IID.

More specifically, we wish to find values of a and #, such that the LB test
statistic

wd ﬁ {et 0 o }t ) 2
—1)(n+1) Z < X1,0.95) (7.1)
— n—1—k
where M is the number of lags considered in the LB test.

We will carry out the parameter estimate by minimizing the LB test statistic
with respect to # and . When we have found values of the parameters such
that the test statistic is not significant, i.e., such that (7.1) holds, then we have a
filtration which we consider satisfactory.

Naturally, a parameter pair # and « that gives us the lowest value of the LB
test statistic for one specific lag, say M = 5, do not have to minimize it for another
lag size, say M = 15. This problem is resolved by trying to pick values of 6 and
« that make the test statistic non-significant for all lags considered.

Our specific choises of parameter values where # = 0.235 and a = 0.221, for
which the LB test showed independence for all lags checked. See Figure 12 below.
Also note the seemingly stationarity stationary look of the noise, which is one of
the features we are looking for.
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Exponential filtration 7 Data filtration

The exponential noving average filtered noi se conponent
y(t)=d(t)-s(t)=d(t)-Mup(d(t))

600 |

400

Figure 12: Upper: The exponential moving average filtered noise y¢(#). Lower: The
error terms of the exponential moving average filtered noise €,(0, @).

We also checked is whether the sample auto correlations of the squared error
terms p({€?(0, a)}::_f, k) had the same behaviour as the sample auto correlation

of the error terms themselves. See Figure 13 below.

The autocorrelation of the error terns p(e(t), k).
le

20 40 50
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7 Data filtration Exponential filtration

The autocorrel ation of the squared error terms p(e?(t), k).

le

0.6 H

10 20 30 40 50

Figure 13: Upper: The sample auto correlation function of the error terms p({e;(0,

@)} k). Lower: The sample auto correlation function of the squared

error terms p({e?(6, a)}7=L, k).

As there seems to be no difference between these auto correlations, we do again
have an indication of independence.

After extracting the noise from the deperiodized electricity prices, the seasonal
component remains. Hence, the original electricity prices x; are broken down as

Ty = Pt + St + Y,
where {p;}? , is the period component, {s;}} ; the seasonal component, and

{y:}7-, the noise component. See Figure 14 below.

The exponential noving average filtered seasonal conponent
S (t)=mexp (d(t))
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Exponential filtration 7 Data filtration

The autocorrel ati on of the seasonal conponent p(s(t), k).

1
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10 20 30 40 50

Figure 14: Upper: The exponential moving average filtered seasonal component s; =
Mexp(dy). Lower: The sample auto correlation function of the seasonal
component p({s;}y, k).

A of the exponential moving average approach, except for the problem with
the starting values, is the lack of robustness of the filter. This is the reason why,
at certain spikes, the seasonal component partially inherits the spiky behaviour.
With these problems in mind, we try to find another filter, that is more robust.

It should be mentioned that the procedure described above has also been
executed on logged electricity prices, without obtaing any satisfying result.

7.3 Moving median filtration

When looking for a robust smoothing technique, a natural choice is to use a
moving median filter:

Definition 7.3 (Moving median) The median of a data set {z;}}_, is defined

T(k41) ifnisodd n=2k+1,
med({xt}?zl) =3\ Tk) T T(k+1)
2
where 1s (1) < ... < I(y) 18 the ordered data set.
The moving median filter of an observed time series {x;}}_,, and an odd win-
dow size l = 2q+1, is given by

med({zx}il,)  for 0<t<yg,
Mmed(Tt, 1) = med({xk}f;qt_q) for ¢+1<t<n—qg+1,
med({zk}h_p_sq) Jor n—q<t<n,
while for an even window size | = 2q,
med({xk}i‘fol) for 0<t<ug,
Mimea(Te, 1) = ¢ med({zx};70_) for q+1<t<n—q+1,
med({zx}n_5,) for n—q+2<t<n.

if n is even n = 2k,
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7 Data filtration Moving median filtration

The end-effect problems for the moving median filter is taken care of in the
same way as for the moving average filter.

As for the exponential smoothing, we start by creating the seasonal component
$¢(l) = mpeq(ds, 1), after which the noise is obtained as y;(I) = dy — s;(1) =
dy — Mmeq(ds, ). Just as before, we want the noise to display the OU process
characteristics of being stationary, and makin the error terms €;(l, o) = y441(1) —
ay(l),t=1,...,n—1, IID for some « € (0, 1).

Once again, we look for parameter values [ and « such that the LB test statistic
is non-significant for each lag M considered, i.e.,

Q) = -1+ 3 PHICELE

k=1

Our parameter choices where [ = 9 and o = 0.173. See Figure 15 below. Note
the stationarity look of the noise.

The noving nedian filtered noi se conponent
y(t)=d(t)-s(t)=d(t) Mg (d(t))

800
600 -
400
200 -

The error ternms e(t)=y(t+1l)-ay(t), o=0.173

800 -

600 -

400 -

200

000 500

Figure 15: Upper: The moving median filtered noise y;(l). Lower: The exponential
moving average filtered error terms ¢(l, a).

Figure 16 below shows a plot of the LB test statistic Q(M) and the x§ g5 -
quantile for M =1,...,40.
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Moving median filtration 7 Data filtration

The x?(0.95, M)-quantile and the Ljung-Box test statistic Q(M:
Based on the noving nmedian filtered e(t).
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Figure 16: Upper: The X?VA,’O_%—quantile. Lower: The LB test statistic Q(M) for the
error terms €;(l, o).

Figure 17 below shows plots of the sample auto correlation functions of the
error terms and the squared error terms.
The autocorrelation of the error ternms p(e(t),k):
Based on the noving nedian filtered e(t)

le

,WM%MV& K
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The autocorrel ation of the squared error ternms p(e?(t),k):
Based on the noving nmedian filtered e(t)
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Figure 17: Upper: The sample auto correlation of the errors p({e;(l, a)}}%;, k). Lower:
The sample auto correlation of the squared errors p({e7(l, @)}, k).
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7 Data filtration Moving median filtration

In the auto correlation plot we have also plotted confidence bands for the auto
correlation, assuming independence, given by +1.96/1/n, see [8], pp. 19-20.

Note that there is no additional dependence present in the auto correlations
of the squared error, as compared with the auto correlations of the error terms
themselves, which is another indication of independenceides, besides the fact that
the auto correlations themselves indicates independence.

What we are left with after extracting the noise from the deperiodized elec-
tricity prices is the seasonal component. See Figure 18 below.

The nmoving nedian filtered seasonal conponent
S (t)=Mred (d(t))
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The autocorrel ati on of the seasonal conmponent p(s(t), k).
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Figure 18: Upper: The exponential moving median filtered seasonal component s; =
mped(d;). Lower: The sample auto correlation fucntion of the seasonal
component p({s;Hy, k).

The original electricity prices {x;}}_; can be broken down as
Ty =Py + St + Y,

where {p;}?_, is the periodic component, {s;}? ; is the seasonal component, and
{y:}?-, is the noise component.

Hence, we have managed to filter out two different noise time series, both
of which satisfy our requirements, by an exponential smoothing and a moving
median filtration, respectively. Which one should we choose?
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The choice is actually quite easy: If one starts by looking at the independence
tests, the moving median filtration showed stronger indications of independence.

Another factor that supports the moving median filtered noise is found from
the pure looks of the two filtered components, which is where the robustness of
the moving median filtration comes into the picture: The exponentially filtered
seasonal component contains a lot of the spikes from the raw electricity prices,
whereas the moving median filtered seasonal component shows a more smooth
behaviour.

So what does that indicate? The answer is that the moving median filtration
suceeded better in putting the jumps and spikes into the noise component, rather
than into the seasonal component, than did the exponential filtration.
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8 Empirical critical values

IID data

8 Empirical critical values

8.1 IID data

Sometimes when one wants to make inference, the test statistics used either have
no tabulated quantiles nor computer package implementations, or have no known
distributions at all. In these situations one might simulate critical quantiles for
the test statistic in question.

In this thesis a lot of goodness-of-fit tests are made, using the KS test statistic.
The way this test is used here, it assumes that our data IID observations from
a parametric distribution F. So we fit the parameters of F' to our data, for
instance using maximum likelihood (ML) estimation, and perform our KS test by
evaluating the KS distance between the fitted distribution ' and the empirical
distribution F;, of the data.

To get critical valued for our KS test we do as follows:

1. Estimate the parameters for the parametric distribution F', to recive a fitted
distribution F'.

2. Calculate the KS distance between the fitted distribution £ and the empir-
ical distribution F,, of the data.

3. Simulate 1000 samples of size n, the size of the original data set, from the
distribution F'.

4. For each of the 1000 samples, make a fit of the parameters for the paramet-
ric distribution F', and calculate the corresponding KS distance, to obtain
simulated KS statistics {K S5 11000,

5. Find the empirical 0.95-quantile of {K S5’ }1%%0. This value is the simulated
critical value to be used in the KS test.

It should be observed that, as critical KS test values asymptotically do not
depend on the distribution that is tested, for our rather large data set, all sim-
ulated critical values should be close to the asymptotic distribution free critical
value 0.03, or just below it, because of the flexibility offered by the parameters.

To find critical test values for the Anderson-Darling goodness-of-fit test intro-
duced in Definition 9.1 below, we employed an obvious modification of the above
simulation scheme.

We also employed a version of (Steps 3-5 of) the procedure above, to find
simulated critical values for our LB tests. But it turned out that these simu-
lated critical values differed in a neglible way from those of the asymptotic 2
distributions of the test statistics.
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Non-independent data 8 Empirical critical values

8.2 Non-independent data

Some times our data {z:}}_, are observations of a stationary Markov process X
with a parametric transition PDF

fily; ©lz) = P{X (t+s) € dy| X (s) = z},

As such data are not independet, the ML estimation procedure has to be adapted
from the elmentary IID context, to our Markov data.

For observations {z;}? ; of a stationary Markov process X with transition
PDF f;(-;©|-), the likelihood is given by

L(®) = fX(l),...,X(n) (T1,...,00;0) = fX(1)($1; 0) Hfl(xz‘; Olzi_1).

=2

As Markov process data are not IID, their goodness-of-fit can not be evaluated
by a KS test of the fit of the marginal distribution. However, the likelihood could
be used to test goodness-of-fit as well, as is now described:

1. Assume that the data set {x1,...,z,} is an observation of the random vari-
able (X(1),...,X(n)) with a parametric distribution Fx (). x(n) (%1, ., Zn;
0).

2. Estimate the parameter(s) © by the ML method, and note the value of the
corresponding likelihood L(©).

3. Simulate 1000 samples of size n, coming from the fitted distribution.

4. For each of the simulated sample, re-estimate the parameter(s) by the ML
method, and note the corresponding likelihoods {L(©)®}199°,

5. Find the empirical 0.05 quantile of {L(©)®}1%%0, This value is the simulated
critical value to be used in the goodness-of-fit test, so that if the likelihood
L(©) of the fit to the original data is lower than this critical value, then the
hypothesis that the data has the distribution Fix(y),.. x(n)(21,...,%,;0) is
rejected.
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9 Fitting OU processes to the noise

9 Fitting OU processes to the noise

Recall that we in Section 7.3 by a moving median filtration obtained a filtered data
set {y:}7~, that could be modeled as an OU process, as the coefficient oo = 0.17
gave us an independent data set {e(¢)}}; = {yr+—ay—1}7,. See Figure 15 above.

We have tried to fit VG, GIG, IG, GH, Meixner, Gaussian and AIDD distri-
butions to this noise {e(t)}{ ;.

We do not report the detailed results fit of the fits of the VG, GIG, IG and
Gaussian distributions, because we had numerical problems that could not be
resolved with the ML fit of the VG and GIG distributions, while the IG and
Gaussian distributions gave very poor fits. We did also tried the method of mo-
ments for the VG fit, but found that the moments of our data could not be fitted
to VG moments for any parameter values.

One regularly uses the KS test to test goodness-of-fit. However, if one is
interested in analyzing extreme values, an additional Anderson-Darling (AD) test
is motivated, because the latter test is more sensitive for deviations in the tails
betseen the tested distributions, than is the KS test.

Definition 9.1 (Andersson-Darling (AD)) Given data w1, ...,z, with em-
pirical distribution function F,, the AD goodness-of-fit test of a fitted CDF F
is based on the AD test statistic AD,,, also called the the AD distance between F,

and F, given by

weR\/Fx ))

9.1 Fitting Meixner OU processes

We fitted the Meixner distribution to {e(¢)}}~, using the ML method, and calcu-
lated the KS and AD goodness-of-fit test statistics. To test if these statistics were
significantly too large, indicating a poor fit, we used simulated critical values as
described in Section 8.

The ML parameter estimates are given together with the KS and AD tests in
Table 5 below.

Q B ) 14
114.3976 | 0.6407 | 0.0403 | -0.3276

Observed test statistic value | simulated Meixner critical value
KS 0.0270959 0.0295183
AD 0.680677 0.10796

Table 5: Parameter values of the fitted Meixner distribution and the KS and AD
goodness-of-fit tests.

The KS test indicates a good fit. However, the AD test, on the other hand,
informs us that the Meixner distribution do not seem well-suited to model the
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Fitting Meixner OU processes 9 Fitting OU processes to the noise

extreme values present in the data. This means that the judgement whether it is
a good fit or not depends on what one wants to model. It is of course also possible
to model the tails separately.

Figure 19 below shows the fitted Meixner PDF together with a histogram of
the data {e(t)}}_,. Further, a plot the empirical distribution function is plotted
together with the fitted Meixner CDF.

Hi stogram of the data and the fitted Meixner -density

-40 -20 0 20 40

The enpirical distribution function
of the set {e(t)}; and the Meixner (a, 3, 5, u)-distribution

— = = Rt

Figure 19: Upper: The fitted Meixner PDF together with a histogram of the data.
Lower: The empirical distribution function together with the fitted Meixner
CDF.

Following our positive result with the Meixner fit, we are all anxious to see
how similar a simulated Meixner OU process trajectory, based on fitted Meixner
distribution, looks when compared with the moving median filtered data {y;}} ;.
Such a comparison is displayed in Figure 20 below.
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9 Fitting OU processes to the noise Fitting Meixner OU processes

Si mul ated MEI XNER QU trajectory
based on the M. estimated paraneters
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The noving nedian filtered noi se conponent
y(t)=d(t)-s(t)=d(t) Mg (d(t))
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Figure 20: Upper: Simulated Meixner OU trajectory. Lower: The moving median
filtered data {y:}7;.

9.2 Fitting NIG OU processes

We fitted the NIG distribution to {e(t)}}_; using the ML method, and performed
KS and AD goodness-of-fit tests of the fit. The results are displayed in Table 6

below.

7 p o 0
-1.14773 | 0.0199287 | 0.0339394 | 5.18225
Observed test statistic value | simulated NIG critical values
KS 0.029483 0.0300413
AD 0.216949 0.118424

Table 6: ML parameter estimates for the NIG distribution and the goodness-of-fit
tests.

We have a good fit, according to the KS test, while the AD test statistic is
slightly higher than the empirical critical value, indicating a less than perfect fit
of the tails. However, as the NIG AD test statistic is considerably smaller than
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Fitting NIG OU processes 9 Fitting OU processes to the noise

that for the Meixner fit, it seems that NIG models the extreme values of the data
better than Meixner.

Figure 21 below shows the fitted NIG PDF together with a histogram of the
data {e(t)}{_,. Further, the empirical distribution function is plotted together
with the fitted NIG CDF.

Hi stogram of the data and the fitted N G-density

-40 -20 0 20 40

The enpirical distribution function
of the set {e(t)}; and the N G(y B, o, 5) -di stribution

1t o

— — — Fa(t)

40

Figure 21: Upper: The fitted NIG PDF together with a histogram of {e(¢)}}_,. Lower:
The empirical distribution function together with the fitted NIG CDF.

Figure 22 below shows a simulated NIG OU process trajectory, based on the
fitted NIG distribution, together with the moving median filtered data {y;}? .
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Simulated NG QU trajectory
based on the M. estimated paraneters
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The noving nedian filtered noi se conponent
y(t)=d(t)-s(t)=d(t)-Mmeq (d(t))
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Figure 22: Upper: Simulated NIG OU trajectory. Lower: The moving median filtered
data {y:}7 4.
9.3 Fitting GH OU processes

We fitted the GH distribution to {e(t)}7; using the ML method, and calculated
the KS distance for the fit. The results are displayed in Table 7 below.

o B 0 v 1 KS
0.0055689 | 0.0043228 | 7.07693556 | -0.8621878 | -0.2520776 | 0.0363786

Table 7: Parameter values of the fitted GH distribution and the KS distance.

We had difficulties in simulating samples from a GH distribution with the
fitted parameters, and could therefore not find the critical value of the KS test
by simulations. However, as that critical value should be slightly less than or
equal to 0.03, it is clear that the KS distance 0.036 indicates a poor fit of the GH
distribution to the data.

As the GH distribution contains the NIG distribution as a special case, a
correct fit of the GH distribution should always be as least as good as a NIG
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Fitting GH OU processes 9 Fitting OU processes to the noise

fit. Thus our failure with the fit of the GH distribution has to be blamed on
numerical problems finding the true global maximum of the likelihood for the
very complicated GH distribution, with its 5 parameters.

Figure 23 below shows the fitted GH PDF together with a histogram of the
data {e(t)};_,. Further, the empirical distribution function is plotted together
with the fitted GH CDF.

H stogram of the data and the fitted CH-density

-40 -20 0 20 40

The enpirical distribution function
of the set {e(t)}:t and the Meixner (a, 3, 5, u)-distribution

— — = Rt

Figure 23: Upper: The fitted GH PDF together with a histogram of {e(¢)}}_,. Lower:
The empirical distribution function together with the fitted GH CDF.

As a result of our problems with simulating random numbers from the fitted
GH distribution, we cannot give a plot of a GH OU process trajectory, based on
the fitted GH distribution.

9.4 Fitting AIDD OU processes

We now describe the results of the AIDD fit: Recall that the AIDD CHF looks
as follows

2,,2 n
¢AIDD(U; o, i, at, - - '7anab1: .. 7bn) = eXP{WU - Uzu + Zak(embk _1)}
k=1

90



9 Fitting OU processes to the noise Fitting AIDD OU processes

The more steps n of added rescaled Poisson distributed random variables that is
carried out, the better the fit will be, at least in theory. However, because of the
many parameters involved, one cannot take for granted that fitting procedures
like the ML method will be unproblematic.

The AIDD estimation procedure runs as follows:

Step 1 In the first step, n = 1, we found estimates of the parameters {0(1), ),
agl), bgl)} by the method of moments.

Step 2 In the second step, n = 2, we found estimates {o® u(®), at?, a?, ng)} of
the parameters by keeping b; = bgl) from Step 1, and using the ML method

to estimate the other parameters.

Step 3 In the third step, n = 3, we found estimates {o®), u©®, a§3), ag?’), a:(,,s), bgg)}

of the parameters by keeping b; = bgl) and by = ng) from Step 2, and using
the ML method to estimate the other parameters.

Step .. This procedure is carried on step-by-step until a decent fit is achieved.

After nine steps we got the KS distance 0.083, which we felt satisfied with.
Naturally one can keep on taking more steps until a much better fit is found.
Table 8 below shows the results of the fit.

aq a9 as (47} as
1.829-107% | 7.559 - 107 65847 5.216-10~* | 8.616 - 10~*
bl b2 b3 b4 b5
0.641 3.821-1072 | 3.676 - 10~7 | 4.524 - 10! —0.09
Qg ay as Qg o
6.969-10"1 | 1.412-10~* | 2.604-107% | 3.213-10~* | 0.0100
be by bs by o KS
3.326-107% | —7.147-10* 0.888 0.893 —0.0241 | 0.083

Table 8: The estimated AIDD parameters and the KS distance.

Naturally this model is somewhat intractable because of the many parameters.
Therfore it argubly is to prefer to try to find distributions with fewer parameters,
that give good fits, as we have done with the Meixner and NIG distributions.

Figure 24 below shows the fitted AIDD PDF together with a histogram of the
data {e(t)} .

Figure 25 below shows a simulated AIDD OU process trajectory, based on the
fitted AIDD distribution, together with the moving median filtered data {y;}} ;.
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9 Fitting OU processes to the noise
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Figure 24: The fitted AIDD PDF together with a histogram of {e(¢)}7-;.
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Figure 25: Upper: Simulated AIDD OU trajectory. Lower: The moving median fil-
tered data {y:}7 ;.
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10 Seasonal component and periodicity

10.1 Seasonal component

Recall that we had filtered the electricity spot prices and thereby achieved a
component called the seasonal component.

A factor that affects the electricity spot price a lot is the amount of water in
the reservoirs. Thus, the plot of the typical amount of water in the reservoirs
during a year in Figure 26 below is of great interest for our study of electricity
spot prices.

Fyllnadsgrad i vattenmagasin (100%= 33 758 GWh)
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Figure 26: Water in the reservoirs.
Figures 27-29 below show the seasonal component, for each of the years 1996-

2001 separately, in order to illustrate the behaviour of the price related to the
amount of water in the reservoirs.

Detrended seasonal conponent Detrended seasonal conponent
year 1996 year 1997
325 250
300 225
275 200
250 175
225 150
200 125
100
50 100 150 200 250 300 350 50 100 150 200 250 300 350

Figure 27: Upper: Seasonal component of 1996. Lower: Seasonal component of 1997.
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10 Seasonal component and periodicity
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Figure 28: Upper: Seasonal component of 1998. Lower: Seasonal component of 1999.
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Figure 29: Upper: Seasonal component of 2000. Lower: Seasonal component of 2001.

Before starting to explain the models used for fits to the seasonal component,
we will start by explaining which data set we have chosen to model. To that en
we first present the seasonal component data set in Figure 30 below.
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Figure 30: The seasonal component for the years 1996-2001.

We first remove linear trend from the seasonal component. The resulting

detrended data set is shown in Figure 31 below.
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10 Seasonal component and periodicity Seasonal component
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Figure 31: Upper: The seasonal component and its linear regression.
Lower: The detrended seasonal component.

A statistical test showed that the slope of linear trend —0.025 differs signifi-
cantly from the zero trend.

As a second step we used Fourier series to filter out seasonal periodicities the
detrended data set. To that end we the Fourier series

28: [a(k) cos @%) + b(k) sin (%)}

" tk2m .
a(k) = ﬁ/o cos (%> metroid(t) dt,

bk) = 2 / sin (“‘ﬁ> metroid(t) dt.
n )y 365

Here n is the length of our data set (the detrended seasonal component), which
is equal to 2192. Further, metroid is the function which linearly interpolates the
data points in our time series, {z;}} ;, which is defined as

where

metroid(t) = ([t] + 1 —t) x|y+1 + (£ — [t]) T|4)4o-

)



Seasonal component 10 Seasonal component and periodicity

We filtered the detrended seasonal component using the Fourier series as de-
scribed above, and found the deterministic periods to be as shown in Figure 32
below.

Periods filtered out fromdata

20

-20+

40}

Detrended seasonality together with the filtered periods

300
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100 +

Figure 32: Upper: Periods extracted from the detrended seasonal component.
Lower: Extracted periods together with the detrended seasonal component.

To get the final result of the filtering procedure, we subtract the determin-
istic periods we found from the detrended seasonal component. The detrended
deperiodized seasonal component obtained in this manner is shown in Figure 33
below.
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Det rended deperi odi zed seasonal conponent
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Figure 33: Detrended deperiodized seasonality.

In addition, we mean adjust the detrended deperiodized seasonal component.
Since we had no access to historical data on water levels, nor to data on historical
temperatures, we were forced to remove the influence of these two factors in some
way. The reason for this is that we know that they are two major influences on
electricity prices. This can easily be seen by looking at the years 1996 and 2001.
The mean levels of the electricity prices of these years are much higher than those
of the years 1997-2000. The reason for this is that the years 1996 and 2001 are so
called dry years, meaning that the levels of water in the reservoirs of these years
were much lower than the water levels of the years 1997-2000.

The temperatures during a year are strongly correlated with the levels of water
in the reservoirs. This phenomenon, in turn, is strongly correlated to the supply
and demand of eletricity. We selected to deal with this problem by removing the
mean level of each year, of the detrended deperiodized seasonal component, so
the data would lie on the same level. The data mean adjusted in this fashion is
shown in Figure 34 below.

Mean adj usted detrended deperi odi zed seasonal conponent
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Figure 34: Mean adjusted detrended deperiodized seasonal component.
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Seasonal component 10 Seasonal component and periodicity

It is this data set which we will model from here on. For easiness, we will refer
to the mean adjusted detrended deperiodized seasonal component as our data set.

We will be modeling the data using the Lévy market model X (t) = X (0) e*®)
where {L(t)}+>o is a Lévy process, which is a family of exponential models used
regularly in financial modeling. Further, we be modeling the data using two
different diffusion processes, namely the CIR process and the Vasicek interest
rate model

10.2 Periodicity

Recall that we had recognized weekly periods in the auto correlation function of
the electricity spot prices and thereby used filtration methods for extracting them.
We called this deterministic component Periodicity.

Figure 35 shows a plot of the periodicity of the electricity spot prices.

Periodicity

IATAVANA

] \/\/

Figure 35: Periodicity, 4 weeks.

U‘I

U‘I

For modelling this deterministic component, the Periodicity, we use the pre-
viously defined metroid function together with Fourier series which we described
earlier. In our specific case, we included £ = 7 components in the Fourier series

i[c cos(m”) + d(k) sin(@)].

k=0
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11 Lévy market model

11 Lévy market model
For the Black-Scholes type exponential Lévy model X () = X (0) e*®, we have
e, = log(X (1)) — log(X (t—1)) = L(t) — L(t—1) 2 L(1).

If our observed data {z;}}_, follows this model, the observed log-returns (log-
increments) r; = log(z;) — log(x;_1) should thus be IID.

The mean adjusted detrended deperiodized seasonal component has some neg-
ative values. Therefore we changed their starting point to that of the original data,
the seasonal component, so that the log-returns are taken on the mean adjusted
detrended deperiodized seasonal component starting as the seasonal components.

Figure 36 below shows the observed log-returns.

Logreturns of the nean adjusted detrended deperiodiced seasonality

Figure 36: Log-returns of the data.

Figures 37 and 38 below show a histogram of the observed log-returns, and a
normal probability plot of them, respectively.

Hi stogram of the log-returns of the
nmean adj usted detrended deperi odi zed seasonal conponent
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Figure 37: Histogram of the log-returns.
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11 Lévy market model

Nor mal -pl ot of the log-returns of the nean adjusted
detrended deperiodi zed seasonal conponent

Figure 38: Normal probability plot of the log-returns.

Table 9 lists the first 4 moments of the observed log-returns.

Mean 0.000217616
Variance 0.000395041
Standard Deviation | 0.0198756
Skewness 122.526
Kurtosis -0.94944

Table 9: Stylized facts of the log-returns.

We will try to fit appropriately distributed theoretical log-increments {&;}7;
to our observed log-returns {r;}} ;.

After the successful procedure of getting a good fit for the log-returns, we
want to get back to the original data set. So, after simulating {&;}}_;, we might
compare the simulated Lévy model X (¢) = X (¢ —1)e® and X (0) = z, with the
observed data {z:}} ;.

We did try several different Lévy processes to achieve a good fit of the log-
returns. In the final stage we transform the data back to its original form.

Below we report on the fitting of the Meixner distribution, the NIG distribu-
tion, and the GH distribution to the observed log-returns.

We also tried to fit a Gaussian distriburion, which gave a very poor fit, and
had unsuccesful attempts to fit VG and GIG distribution: For both these latter
distributions the ML method gave numerical problems that we could not resolve.
We tried the method of moments for the VG distribution, but it turned out that
VG moments could not be fitted to the moments of the dataset.

11.1 Fitting Meixner distribution to log-returns

The Meixner distribution gave good fit to the observed log-returns: Table 10 below
shows the results of the ML parameter estimation for the Meiner distribution,
together with a KS test.
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11 Lévy market model

Fitting Meixner distribution to log-returns

Q B 0 7
0.1188618 | 0.1592844 | 0.0462980 | -0.0002550
Observed test statistic value | Meixner empirical critical value
KS 0.0277297 0.0282861

Table 10: ML estimates of parameters of the Meixner distribution and the KS test.

As one can see from the KS test, we have a good fit.

Figure 39 below shows the PDF of the ML method fit of the Meixner distribu-
tion together with a histogram of the observed log-returns. Further, a plot of the
empirical distribution function of the log-returns is given together with the fitted
Meixner CDF.
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60

50}
40}
30}
20}

10+

-0.05 0 0.05 0.1

The enpirical distribution function of the log-returns
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Figure 39: Upper: The fitted Meixner PDF together with a histogram of the log-
returns. Lower: Empirical distribution function together with the fitted
Meixner CDF.

We can see that the Meixner distribution gives a good fit to the log-returns.
Figure 40 below shows simulated Meixner noise from the fitted model, together
with the observed log-returns.

61



Fitting Meixner distribution to log-returns

11 Lévy market model

Figure 40:

Si nul ated Mei xner (o, B, &, u) -sanpl e based on the estinmated paraneters
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| og-returns

Upper: Simulated Meixner noise. Lower: Log-returns.

11.2 Fitting NIG distribution to log-returns

The NIG distribution gave a good fit to the observed log-returns: Table 11 be-
low shows the results of the ML parameter estimation for the NIG distribution,
together with a KS test.

7 B

o )

-0.0002470 | 1.3498047 | 16.546860 | 0.0056761

Observed test statistic value

NIG empirical critical value

KS

0.0280766

0.029992

Table 11: Parameter values of the fitted NIG distribution and value of the goodness-
of-fit test statistic.

Figure 41 below shows the PDF of the ML fitted NIG distribution together
with a histogram of the log-returns. Further, a plot of the empirical distribution
function of the log-returns is given together with the fitted NIG CDF.
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11 Lévy market model Fitting NIG distribution to log-returns

H stogram of the data and the fitted N G-density
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Figure 41: Upper: The fitted NIG PDF together with a histogram of the log-returns.
Lower: Empirical distribution together with the fitted NIG CDF.

We see that the NIG distribution gives a really good fit to our data set.
Figure 42 below shows a plot of simulated NIG noise based on the fitted NIG
model, together with the observed log-returns.
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Figure 42: Upper: Simulated NIG noise. Lower: Log-returns.

| og-returns

11.3 Fitting GH distribution to log-returns

The GH distribution gave a good fit as well: Table 12 below shows the results of
the ML parameter estimation for the GH distribution, together with a KS test.

(07

g

d

()

1

17.588743

1.2799168 | 0.0055485

-0.478612

-0.000248

Observed test statistic value

GH empirical critical value

KS

0.02822

0.02959

Table 12: Parameter values of the fitted GH distribution and value of the goodness-

of-fit test statistic.

Figures 43 and 44 below show a plot of the PDF of the fitted GH distribution,
together with a histogram of the log-returns, and a plot of the empirical distribu-
tion function of the log-returns, together with the fitted GH CDF, respectively.
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Figure 43: The ML fitted GH PDF and a histogram of the observed log-returns.
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The enpirical distribution function of the log-returns
and the fitted GH(a, B, 6, Vv, u)-distribution
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Figure 44: Empirical distribution function together with the fitted GH CDF.

Figure 45 below shows a plot of simulated GH noise based on the fitted GH
model, together with the observed log-returns.
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Figure 45: Upper: Simulated GH noise. Lower: Log-returns.
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11.4 Independence of log-returns

Thus far we have assumed that the log-returns are independent and identically
distributed. However, we have not yet checked the assumption of independence.
This we will do now: We start by plotting the empirical auto correlation function
of the observed log-returns, as well (as is customaty in mathematical finance) the
auto correlation of the squared log-returns. See Figure 46 below.

Aut ocorrel ation of the |og-returns

Autocorrel ati on of the squared | og-returns

10 20 30 40 50

Figure 46: Upper: auto correlation of the log-returns. Lower: Auto correlation of the
squared log-returns.

Further, we give a table of the LB test statistic, calculated for the observed
log-returns, at lags M = 1,...,25. These test statistics are compared to the x?,
distribution for M =1,...,25. See Table 13 below.
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Independence of log-returns

M 1 2 3 4 5
Qup(M) | 731209 | 146,54 | 195.232 | 211.697 | 211.886
Xosar | 3-84146 | 5.99153 | 7.81473 | 9.48773 | 11.0705

M 6 7 8 9 10
Qus(M) | 212.035 | 216.729 | 231.592 | 255.506 | 269.068
Xaosar | 125916 | 14.0671 | 155073 | 16.919 | 18.307

M 11 12 13 14 15
Qus(M) | 289.558 | 305.299 | 320.507 | 324.599 | 330.728
Xoosar | 196751 | 21.0261 | 22.362 | 23.6848 | 24.9958

M 16 17 18 19 20
Qus(M) | 334.496 | 336.538 | 337.113 | 339.812 | 339.893
Xeosar | 26.2062 | 27.5871 | 28.8693 | 30.1435 | 31.4104

M 21 22 23 24 25
Qrs(M) | 341.436 | 341.436 | 341.439 | 342.308 | 342.332
Xeosar | 32.6706 | 33.9244 | 35.1725 | 36.415 | 37.6525

Qr(M) of the log-ret’urns, for lags M =1,...,25.

350
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Xo0.95"2 —-distribution together with Ljung-Box

test statistic, for lags M=1

Table 13: Quantiles of the X%_% a distribution together with the LB test statistic

We can see in the comparison, for every lag, that the log-returns are in fact
strongly dependent, rather than independent.
given in Figure 47 below.

A further illustration of this is

5
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Figure 47: Upper: The LB test statistic of the log-returns, Qr5( ,25.

Lower: X%_%,M-quantiles, M=1,...,25.

M), M=1,...

As the requirement of independence of the log-returns is not fulfilled, we con-
clude that the Lévy market model is not the model we are looking for.
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12 Fitting diffusions to the seasonal component CIR

12 Fitting diffusions to the seasonal component

12.1 CIR
The Cox Ingersoll Ross (CIR) model {X (%) };>¢ is given by

dX () = b(a — X(£))dt + /X ()dB(t),

where a,b > 0 are parameters and {B(t)};>¢ is standard Brownian motion.
The moments of a CIR process X are given by

E|
Var|

X)) = e"X(0)+a(l—e™),
X@®)] = X(0)(e7® —e ") /b+a (1 —2e7b +e72) /(2).
Further, the CIR process has a stationary distribution
['(2ab, 2bx)
Fs a y @y =1-—— 7
tat (73 0, 0) I'(2ab)

and stationary density
4abb2ab ebe x2ab—1

zI'(2ab)

fsta.t (iE; a, b) =
The transition density is given by

2b(x+ebty)} (e”ty)abml <4bebt/2,/xy>
2ab-1 | — | »

2b
Ixwixo (y]z) = 1_ o0t Py T T T ebt—1

where [ is the modified Bessel function of the first kind.

Using the stationary density and the transition density we estimate the pa-
rameters using the ML. method. Since the process has a stationary distribution,
we can use the KS test. The result are diplayed in Table 14 below.

a b
111.854 | 0.0980397

Observed test statistic value
KS 0.0474246

Table 14: Upper: Parameter values of the estimated CIR model.
Lower: The KS goodness-of-fit test statistic.

Figure 48 shows the empirical distribution together with the stationary dis-
tribution of the fitted CIR model. Figure 49 shows the mean adjusted seasonal
component together with a simulated fitted CIR trajectory.
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The enpirical cdf and the fitted stationary Cl R-distribution
1,

0.8

50 100 150 200

Figure 48: Empirical distribution function and the fitted stationary CIR. distribution.
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Figure 49: Upper: Mean adjusted seasonal component. Lower: CIR trajectory.
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CIR

As we can see the KS value is 0.047 > 0.03. The CIR fit is rejected. Although
0.047 — 0.03 = 0.017 is not big (we could possibly have a good fit for a lower
significance level), and let us pretend for a second that the fit is not rejected, this
is still not a guarantee that everything is ok. It could be the case that the finite
dimensional distributions, of dimension n > 2, do not give a good fit. Hence, since
we saw that the 1-dimensional fit was rejected, we chose to not go any further in
our analysis and we rejected the fit of the whole CIR process.

Another problematic feature of the CIR process is that it is very hard to
simulate (see [9] ). The square root in the sde causes problems since it can create
complex values. Usually one has to do simulations with dt being very small,
dt = 1/1000 will be satisfactory. Hence, if the data time scale consists of time
unit steps equal to 1 and one wants to replicate the data consisting of n data
points by simulations, one has to sample 1000n CIR steps. Now, imagine that
you would have to simulate 1000 samples, each consisting of 2192 - 1000 data
points, you would need weeks in order to finish the simulations.

12.2 Vasicek

One diffusion process which, considering its characteristics, is a good candidate
for modelling the mean adjusted detrended deperiodized seasonal component is
the Vasicek interest rate model {R(t)}i>0, given by

dR(t) = (a — BR(t))dt + odB(1),

where o € R and 3,0 > 0 are parameters. The solution to this equation

R(t) = e P* R(0) + % (1—eP) +oe /Ot efs dB(s).

is found by applying Ito’s formula to f(¢, X (t)), where
ft,z) =e P R(0) + % (1—e?)+oe Py

and
X@:/&Mﬂ@

It follows that R(t) is a Gaussian random variable with moments

ER(t)] = e R0)+a(l—e")/p,
Var[R(t)] = o%(1—e?") /(2p).
One desirable property of this model is its so called mean reverting behaviour.

In order to fit the Vasicek process to our data and execute the likelihood based
goodness-of-fit test previously described, we need the transition density function

i Bla+z8) — e (a+yB)?
e v15) =~ exp s+ E TR = LT

71



Vasicek 12 Fitting diffusions to the seasonal component

Our parameter estimates are & = —0.048237, B = 0.0237674, and 6 = 5.54064.
The value of the log-likelihood function was —6837.28. The corresponding empir-
ical critical value was found to be —6918.41, meaning that the fit was accepted.
See Figure 50 below.

Si mul ated Vasicek trajectory
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Figure 50: Upper: Simulated trajectory from the Vasicek model.
Lower: The mean adjusted seasonal component.

Note that the Vasicek model is a Gaussian OU process modified to have an
exponential type of drift. See [11], p. 150, for a more thorough presentation.
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13 Merging of the model

13 Merging of models
According to our modelling, the electricity spot prices follow the model
E(t)=D(t)+ S(t) + N(t).

The model is built up by OU processes used as noise, N (t), a diffusion process used
for the seasonal stochastic modelling, S(¢), and a deterministic function consisting
of all deterministic components extracted, D(t).

The deterministic function D(t) is built up by the extracted deterministic
components

() ()]

The affine part of D(t) represents the linear trend, where a is the starting value and
b is the estimated slope. The second part is the Fourier series which represents the
yearly periodicity. Finally the third part is describing the intra-week periodicity,
referred to as the Period component.

The seasonal component S(t) is represented by the Vasicek diffusion process

dS(t) = (o — B)S(t)dt + odB(t).
The OU noise process N(t) is given by
dN(t) = —=AN(t)dt + dL(t),
where either
N(t)—e*N(t—1) 2 Nig(a, 8,0, ), t=1,...,n,

or

N(t)—e Nt —1) 2 Meixner(«, 5,6, u), t=1,...n.

13.1 CIR with different OU noises

Just for curiosity we tried to simulate the final model using CIR instead of using
Vasicek, before finally simulating the model using Vasicek. It could still be the
case that the trajectories look similar to the original spot prices. Hence, S(t) is

defined by
dS(t) = Bla — S(t))dt + /S(t)dB(t).

Figure 51 shows 11 trajectories of our model consisting of the seasonal compo-
nent, S(t), where it is a CIR process, the previously defined deterministic compo-
nents D(t), and the noise being a NIG OU process. The last graph in the fourth
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13 Merging of the model

row and the third column shows the electricity spot prices we are trying to model,
for the year 1996.

Model

Seasonal conponent simulated by CIR
Noi se sinmulated by NIG QU
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Figure 51: Trajectories of the model built up by a CIR process and a NIG OU process.
The electricity spot prices, year 1996, are shown in the 4:th row and the

3:rd column.
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Figure 52 below shows 11 trajectories for modelling the year 2001. The last
graph in the fourth row and the third column shows the electricity spot prices we
are trying to model, for the year 2001.

Model
Seasonal conponent sinulated by CIR
Noi se sinulated by NIG QU
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50 100 150 200 250 300 350 50 100 150 200 250 300 350 50 100 150 200 250 300 350
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500 500 500
400 400 400
300 300 300
200 200 200
100 100 100
50 100 150 200 250 300 350 50 100 150 200 250 300 350 50 100 150 200 250 300 350
600 600 600
500 500 500
400 400 400
300 300 300
200 200 200
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50 100 150 200 250 300 350 50 100 150 200 250 300 350 50 100 150 200 250 300 350

Figure 52: Trajectories of model built by up a CIR process and a NIG OU process.
The electricity spot prices, year 2001, are shown in the 4:th row and the
3:rd column.
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13 Merging of the model

Figure 53 below shows 11 trajectories of our model consisting of the seasonal

component, S(t), where it is a CIR process, the previously defined deterministic
components D(t), and the noise being a Meixner OU process. The last graph
in the fourth row and the third column shows the electricity spot prices we are
trying to model, for the year 1996.

Model

Seasonal conponent simulated by CIR
Noi se sinul ated by Meixner QU
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300 300 300
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50 100 150 200 250 300 350 50 100 150 200 250 300 350 50 100 150 200 250 300 350
400 400 350
300
300 300 250
200 200 200
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100 100 100
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50 100 150 200 250 300 350 50 100 150 200 250 300 350 50 100 150 200 250 300 350
400 350 350
300
300 300
250 250
200 200 200
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100 100 100
50 50

50 100 150 200 250 300 350

50 100 150 200 250 300 350

50 100 150 200 250 300 350

Figure 53: Trajectories of model built up by a CIR process and a Meixner OU process.
The electricity spot prices, year 1996, are shown in the 4:th row and the

3:rd column.
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13 Merging of the model CIR with different OU noises

Figure 54 below shows 11 trajectories for modelling the year 2001. Again the
last graph in the fourth row and the third column shows the electricity spot prices
we are trying to model, for the year 2001.

Model :
Seasonal conponent sinmulated by CIR
Noi se sinul ated by Meixner QU
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50 100 150 200 250 300 350 50 100 150 200 250 300 350 50 100 150 200 250 300 350
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Figure 54: Trajectories of model built up by a CIR process and a Meixner OU process.
The electricity spot prices, year 2001, are shown in the 4:th row and the
3:rd column.

As one can see, despite the fact that the CIR process did not pass the goodness-
of-fit test, using it for describing S(t), it did a good job. It managed to create
trajectories which did not deviate too much from the looks of the real electricity
spot prices. It really fulfills the graphical demands one can put on a process trying
to fit data.
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Vasicek with different OU noises 13 Merging of the model

13.2 Vasicek with different OU noises

Figure 55 below shows 11 trajectories of our model consisting of the seasonal com-
ponent, S(t), where it is a Vasicek process, the previously defined deterministic
components D(t), and the noise being a NIG OU process. The last graph in the
fourth row and the third column shows the electricity spot prices we are trying to
model, for the year 1996.
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Figure 55: Trajectories of the model built up by a Vacisek process and a NIG OU
process. The electricity spot prices, year 1996, are shown in the 4:th row
and the 3:rd column.
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Figure 56 below shows 11 trajectories for modelling the year 2001. The last
graph in the fourth row and the third column shows the electricity spot prices we
are trying to model, for the year 2001.
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Figure 56: Trajectories of the model built up by a Vacisek process and a NIG OU
process. The electricity spot prices, year 2001, are shown in the 4:th row
and the 3:rd column.
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13 Merging of the model

Figure 57 below shows 11 trajectories of our model consisting of the seasonal

component, S(t), where it is a Vasicek process, the previously defined determinis-
tic components D(t), and the noise being a Meixner OU process. The last graph
in the fourth row and the third column shows the electricity spot prices we are
trying to model, for the year 1996.
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Figure 57: Trajectories of the model built up by a Vacisek process and a Meixner QU
process. The electricity spot prices, year 1996, are shown in the 4:th row

and the 3:rd column.
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Figure 58 below shows 11 trajectories for modelling the year 2001. The last
graph in the fourth row and the third column shows the electricity spot prices we
are trying to model, for the year 2001.
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Figure 58: Trajectories of the model built up by a Vacisek process and a Meixner OU
process. The electricity spot prices, year 2001, are shown in the 4:th row
and the 3:rd column.
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14 Afterthoughts

Today it is very crucial to have a good model for predicting electricity spot prices
and to analyze risk. We would like to give some points where further research
can be made on the hot subject of modelling electricity spot prices. This is not
an easy task. This needs a deep understanding of the electricity spot market and
the factors that affects electricity spot prices.

e Searching for weather data and try to use them in the spot price modelling.
e Derive expressions for futures and forwards.

e For modelling electricity spot prices from year 2005 and on, so you need to
be able to model the emission allowances thus needing their historical data.

e Analyzing and modelling of the extreme observations (spikes).

e Trying to model the noise using other distributions in the OU processes.
The distributions we have in mind are for instance mixture models, which
could be normal mixture models. The reason why one would want to apply
these distributions is to achieve distributions with heavier tails than the
semi-heavy tails seen in this thesis.
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