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Abstract

Copula functions can be used for modelling the dependence structure

between two random variables. In this thesis we use a GARCH model

in order to model the logreturns of different stock prices. We combine

the GARCH model with the Copula theory in order to price bivariate

rainbow options. In order to validate the model we consider stocks

from different time periods and stock markets.

The aim of this thesis is to evaluate the estimated option price when

the dependence structure between two stock prices is modelled by dif-

ferent copula functions.

Key words: Rainbow options, copula, GARCH, dependence.
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Chapter 1

Introduction

The usage of options can be dated back to ancient times. At that time options

were manly used in agriculture. One famous example is Thales of Miletus whom,

according to legend, bought the rights to use a number of olive presses the following

year, since he had strong reasons to believe the harvest would turn out to be better

than usual. Today options are still used in agriculture, however, the usage has

spread widely and is now covering everything from real estate to stocks.

There are several reasons for using options. One reason is in the sense Thales

of Miletus used them, namely to profit after making predictions about the future.

For example, if one has believes that a stock price will increase by 10% during

the following month, an option contract can be signed giving the holder of the

option the right but not the obligation to purchase the stock for, say 3% higher

than today’s price. Thus, the holder can make a 7 percentage point gain if the

prediction turns out to be correct. However, there is always a price for signing an

option contract and if the prediction turns out to be wrong, the holder risks having

to pay the price of the contract, without exercising the contract. The reason for

not just purchasing the stock today and waiting for the stock price to increase, is

that by signing an option contract one reduces the maximum possible loss to the

price of the contract. If not signing an option contract and instead purchase the

stock straight away, the maximum possible loss is equal to the stock price, since

there is always a possibility for bankruptcy.

A second reason for the use of options is if one has an obligation to purchase

an asset in the future. In such a situation one might want to reduce risk. This can

be done by agreeing on a fixed price in the future through an option contract. In

the same way as for the first reason, the maximum possible loss is the price of the

contract.

The perhaps most common option strategy is the so called delta hedging strat-

egy. In this strategy a portfolio is created in such a way that small changes of the

1



2 CHAPTER 1. INTRODUCTION

underlying asset does not change the total price of the portfolio. In order to create

such a portfolio one can use different options which offset the value change of the

asset. Thus if combined properly options can cancel out an asset price change on

a portfolio.

In this thesis we will aim to price options that depend on two stocks. The stock

price will be modelled using a special case of the General AutoRegressive Condi-

tional Heteroskedasticity model. Often, in option theory, the variance of the log

returns are assumed to be constant, e.g. in Black-Scholes theory. Many studies

has shown that this is not the case, thus a more sophisticated model, such as the

GARCH, is needed in order to model a stochastic variance process. By using this

model we assume that the log returns have standard normal residuals.

Since our option price depend on two stocks, we need to describe the depen-

dence structure between the residuals of the stock prices. We are able to do this by

using the concept of copulas, thus joining the distribution of each log return into a

joint probability distribution. Copulas are a rather modern phenomenon in finan-

cial mathematics. In the last decade the usage for them have rapidly increased.

As for all new applications, some critique has been pointed at people who quite

casually use copulas without understanding what exactly is being modelled. Some

people even take it further and claim that the financial crisis of the late 2000s was

a direct consequence of the use of copulas. At that time Gaussian copulas were

used to model the credit risk of collateralized debt obligations. However, as David

X. Li, the person who introduced the copula concept in credit risk, puts it [15]

”The most dangerous part is when people believe everything coming out of it”.



Chapter 2

Options

An option is a financial derivative that gives a holder the right but not the obliga-

tion to make a transaction on an underlying asset at a pre-specified price, called

the strike price or exercise price, at a given (or up to a) date. Since we in this

thesis will be working with stocks, we will be referring to the asset as a stock and

drop the more general term.

The simplest type of options are the so called European put or call option.

These two options gives the holder of the option the right but not the obligation

to sell or buy, respectively, the underlying stock at a given date and price. With

this in mind it is easy to find that the payoff function, g(x), for a European call

option with expiration date T is

g(S(T )) = max (S(T ) − K, 0))

where S(T ) is the underlying stock price at expiration date T and K is the pre-

specified strike price of the stock. If an option can be exercised at any time during

its lifetime of the option it is called an American option and they are more common

on exchanges than their European counterpart [9].

2.1 Pricing an option

Assuming that a stock price, S(T ), is arbitrage free and that the market is com-

plete, the Fundamental theorem of asset pricing [5] states that there exists a prob-

ability measure Q such that the discounted stock price, e−r(T−t)S(T ), is a mar-

tingale under Q and Q is also equivalent1 to the real world probability measure

P. The fact that the discounted stock price is a martingale under Q is essential to

option pricing since the fair price of the option boils down to the expected value

of the options payoff.

1Q is equivalent to P if they have the same null set [10].

3



4 CHAPTER 2. OPTIONS

Definition 2.1.1 Let t be todays date and T the date of maturity, thus (T-t) is

the time to maturity. Furthermore, let S be a stock price as before and g(S) be the

payoff function. The fair option price is

V (t) = e−r(T−t)
E

Q[g(S(T )) | Ft] (2.1.1)

where Ft is the filtration containing all information about stock S up to time t and

r is the risk-free interest rate.

From an economical point of view this can be seen as an investor is risk-neutral,

i.e. an investor do not need any extra payment for the risk she takes [9]. Thus,

the expected return on the stock is the risk-free interest rate. Since investors are

viewed as risk-neutral, Q is therefore referred to as the risk-neutral probability

measure.

In particular, equation 2.1.1 gives us that when the payoff function is g(S(T )) =

S(T ) we get that the option price simply is the value of the stock price today, i.e.

V (t) = S(t). This follows directly from the measurability and since the expected

return of the stock under Q is the risk-free interest rate.

2.2 Bivariate options

Options consisting of two or more underlying stocks are called rainbow options.

The price of these options are dependent of the dependence structure between the

stocks since the fair option price still is the expected value. We define the fair

price of a bivariate rainbow option as

Definition 2.2.1 Let S1 and S2 be two stocks traded on a complete and arbitrage

free market. Let t be the present time and T the time of maturity, then the price

of an option with payoff function g(S1, S2) is

V (t, S1, S2) = e−r(T−t)
E

Q[g(S1(T ), S2(T )) | Ft]

= e−r(T−t)

∫ ∞

0

∫ ∞

0
g(x, y)fQ

S1,S2
(x, y)dxdy. (2.2.1)

Here fQ
S1,S2

is the joint probability distribution of the two stocks under the risk-

neutral probability measure Q and as in the one-dimensional case Ft is the filtration

containing all information about the two stocks.

The bivariate option with payoff function g(S1(T ), S2(T )) = S1(T ) + S2(T ) has

the fair price of S1(t) + S2(t) since the expectation is a linear function, thus the

problem is reduced to the one-dimensional case.
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2.3 Different bivariate payoffs

There are obviously numerous different payoff functions for rainbow options. The

payoff function can be constructed to fit the clients specific needs. The options

listed below are the ones we will focus on and investigate in this paper.

• One important rainbow option is the so called Exchange option. This option

gives the holder the right to exchange stock 1 for stock 2. This means that

the option will be exercised only if stock 2 is worth more than stock 1. Thus

we get the following payoff function

g(S1(T ), S2(T )) = max (S2(T ) − S1(T ), 0).

• The second option we will examine is the Maximum option. It gives the

holder the highest valued stock at expiration date. With this definition, the

owner of the option is guaranteed a positive cash-flow at maturity except

for the extreme event when both stocks have become worthless. The payoff

function is

g(S1(t), S2(t)) = max (S1(T ), S2(T )).

• The third option is the call on the Maximum option, and it is called the Call

on max. Here we essentially have the same option as before only now we also

demand that the highest valued stock exceeds the strike price K. The Call

on max option has the following payoff function

g(S1(T ), S2(T )) = max
[

max (S1(T ), S2(T )) − K, 0
]

.

• The final option is the Average spread option. It is a so called path-dependent

option, i.e. the payoff function depend on the path of the stocks. Thus, it

requires the daily prices of both stocks for the entire life of the option. If the

average spread between the two stocks exceeds the strike price the option is

executed. The payoff function is

g(S1(T ), S2(T )) = max
( 1

T − t

T
∑

i=t

(S1(i) − S2(i)),K
)

.
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Chapter 3

GARCH

The GARCH process (Generalized Autoregressive Conditional Heteroskedasticity)

was first introduced by Tim Bollerslev in 1986 [1] and is as its name implies an

extended version of Engle’s ARCH process. It is one of the most well-known

processes for conditional variances and it captures features such as mean reverting

and time dependence. Empirical studies have shown that stock prices have these

properties [9]. The following introduction to the GARCH model follows Bollerslev’s

work, however since this thesis is built on financial time series we will use financial

terms.

3.1 GARCH(1,1)

Given a stocks price history {St}n
i=0, its corresponding log returns, Rt, are defined

as

Rt = log (St) − log (St−1), t = 1, 2, . . . , n. (3.1.1)

Here each t can, without loss of generality, be viewed as one trading day. The

definition of the conditional variance, ht, under the general GARCH(p, q) model

is given by

Definition 3.1.1

Rt = ǫt

√

ht

ǫt ∼ N(0, 1)

ht = α0 +

q
∑

i=1

αiR
2
t−1 +

p
∑

i=1

βiht−i

= α0 +

q
∑

i=1

αiǫ
2
t−iht−i +

p
∑

i=1

βiht−i

where t = 1, 2, . . . , n.

7



8 CHAPTER 3. GARCH

The p is the the number of previous variance-terms affecting the next days con-

ditional variance and q is the number of previous log returns. The constants α1

and β are weights given to the previous information and α0 is associated with the

long-run mean2. In order for the process to make sense they are given the following

constraints

α0 > 0

α1 ≥ 0

β ≥ 0

α1 + β < 1.

The last constraint is of great importance since if the weights sums up to one the

variance process will explode.

3.2 Duan’s model

We will use an alternative model, suggested by Duan in 1995 [6]. In this model

the process of the asset’s log returns are changed but the structure of the con-

ditional variance is kept. We will call it the DGARCH process and will use the

DGARCH(1, 1), e.g. p and q are set to 1. The definition of this process is as

follows

Definition 3.2.1 Let r be the risk-free interest rate and λ > 0. Under the

DGARCH process the log returns, Rt for t = 1, 2, . . . , n, are given by

Rt = r + λ
√

ht −
1

2
ht +

√

htǫt (3.2.1)

ǫt ∼ N(0, 1)

ht = α0 + α1ǫ
2
t−1ht−1 + βht−1 (3.2.2)

The constants, α0, α1 and β, have the same constraints as before. Duan developed

this model in order to price options and hence we chose this model instead of the

original GARCH model. There are plenty of other types of GARCH processes,

including the Heston-Nandi [8] which also was developed in order to price options.

3.3 DGARCH under risk-neutral measure

In order to price options we require the risk-neutral measure Q. To obtain Q, Duan

introduces the so called locally risk-neutral valuation relationship, or LRNVR, and

gives the following definition of Q

2Long-run mean = α0/(1 − α1 − β)
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Definition 3.3.1 A measure Q is said to satisfy the LRNVR if measure Q is

mutually absolutely continuous with respect to measure P (real world). Under Q,

we have

E
Q

[

St

St−1
| Ft

]

= er

and

V arQ(Rt | Ft) = V arP(Rt | Ft).

This means that the conditional variance in the consecutive time step is the same

for both measures, thus we can estimate the parameters in Equation 3.2.2 under

P. With this definition Duan proves that under the local risk-neutral measure Q,

the DGARCH model from Definition 3.2.1 becomes

Rt = r − 1

2
ht +

√

htǫ
∗
t

ǫ∗t ∼ N(0, 1)

ht = α0 + α(ǫ∗t−1 − λ
√

ht−1)
2 + βht−1. (3.3.1)
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Chapter 4

The Basic Concepts of Copulas

One tool to model the depencence between two random variables is to use the

concept of copulas. The word copula origins from the Latin noun which means

a link or a tie. The word was firstly used in mathematical statistics by Sklar in

1959. He introduced the term in a theorem on how there exists functions that

joins one-dimensional distribution functions to form a multivariate distribution

function.

In this chapter we present the basic concepts of copulas and we will follow the

notations used in Nelsen [13], if not stated otherwise. We will restrict ourselves

to the two dimensional case, however, the interested reader can turn to Nelsen for

the generalization in n dimensions. The details and proofs of this chapter may

also be found therein.

4.1 Definitions and Basic Properties

By having known marginal distributions, the goal with using a copula is to con-

nect these marginal distributions to form a multivariate distribution. Primarily,

the data is transformed into uniformly distributed random variables. Thus, we

gain a dependence structure which depends on the uniformly distributed random

variables. We start off this section by defining a two-dimensional copula, which

we from now on only will refer to as a copula.

Definition 4.1.1 A copula is a function C : I2 → I, where I is the unit interval,

with the following properties

1. For every u, v ∈ I

C(u, 0) = C(0, v) = 0

2. For every u, v ∈ I

11



12 CHAPTER 4. THE BASIC CONCEPTS OF COPULAS

C(u, 1) = u and C(1, v) = v

3. For every u1, u2, v1, v2 in I such that u1 ≤ u2 and v1 ≤ v2

C(u2, v2) − C(u2, v1) − C(u1, v2) + C(u1, v1) ≥ 0

A function that fulfills Property 1 is named grounded and a function that fulfills

Property 3 is said to be 2-increasing [3].

Theorem 4.1.2 Let C be a copula. For any v ∈ I, the partial derivative ∂C(u, v)/∂u

exists for almost all3 u. The same is true for the partial derivative ∂C(u, v)/∂v,

where u ∈ I

Theorem 4.1.3 Let C be a copula. If ∂C(u, v)/∂v and ∂2C(u, v)/∂u∂v are con-

tinuous on I
2 and ∂C(u, v)/∂u exists for all u ∈ (0, 1) when v = 0, then ∂C(u, v)/∂u

and ∂2C(u, v)/∂v∂u exist in (0, 1)2 and ∂2C(u, v)/∂u∂v = ∂2C(u, v)/∂v∂u.

This leads us to the following definition [3] for the density function of a copula

Definition 4.1.4 The density c(u, v) associated to a copula C(u, v) is

c(u, v) =
∂2C(u, v)

∂u∂v
.

One important theorem in statistics is Sklar’s Theorem, as we mentioned earlier.

It plays a central role in the theory of copulas and describes how copulas connect

marginal distributions to their joint distribution.

Theorem 4.1.5 (Sklar’s Theorem). Let F be be a joint distribution function with

margins FX and FY . Then there exists a copula C such that ∀x, y ∈ R̃, where R̃

denotes the extended real line [−∞,∞],

F (x, y) = C(FX(x), FY (y)). (4.1.1)

If FX and FY are continuous, then C is unique; otherwise, C is uniquely deter-

mined on Ran(FX)×Ran(FY ), where Ran(FX) and Ran(FY ) denote the range of

FX and FY respectively. Conversely, if C is a copula and FX and FY are distri-

bution functions, then the function F is a joint distribution function with margins

FX and FY as defined in Equation 4.1.1.

3In the sense of Lebesgue measure, thus the set for which this does not hold is a null set.
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Since the second order derivative is defined for a copula we can, by using Sklar’s

theorem and the chain rule, obtain an expression for the density of a copula. It is

given by

c
(

FX(x), FY (y)
)

=
f(x, y)

fX(x)fY (y)
. (4.1.2)

By taking the inverse of each margin in Equation 4.1.1 we can instead obtain an

expression for the copula in terms of the joint distribution function and the two

margins. However, if a margin is not strictly increasing the inverse of the margin

does not exist. Therefore, in those cases, the definition of a quasi-inverse of a

distribution functions will be necessary to obtain an equation for the copula in

terms of the joint distribution function and its margins.

Definition 4.1.6 (Quasi-Inverse). Let F be a distribution function. Then a

quasi-inverse of F is any function F (−1) with domain I such that

1. ∀t ∈ Ran(F ),

F (F (−1)(t)) = t

2. t 6∈ Ran(F ), then

F (−1)(t) = inf{x | F (x) ≥ t} = sup{x | F (x) ≤ t}.

With this definition in mind we, by inverting 4.1.1, obtain

C(u, v) = F (F
(−1)
X (u), F

(−1)
Y (v)).

However, if we have strictly increasing margins the usual inverse exists and the

copula is given by

C(u, v) = F (F−1
X (u), F−1

Y (v)). (4.1.3)

For a two-dimensional sample an empirical copula can be obtained by the

following definition

Definition 4.1.7 (Empirical Copula). Let {(xk, yk)}n
k=1 denote a sample of size

n from a continuous bivariate distribution. The empirical copula is the function

Cn given by

Cn

( i

n
,
j

n

)

=
number of pairs (x, y) in the sample with x ≤ x(i), y ≤ y(j)

n
.
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4.2 Copula Families

In this section we will present some families of copulas that will be relevant for

this paper. We will follow the notation used in Umberto et al. [3] if not stated

otherwise.

The bivariate Gaussian copula

Definition 4.2.1 The Gaussian copula CG,ρP
is defined as

CG,ρP
(u, v) = ΦρP

(

Φ−1(u),Φ−1(v)
)

where Φ is the standard normal distribution function and ΦρP
is the joint distribu-

tion function of a two-dimensional standard normal vector, with Pearson’s linear

correlation coefficient ρP .

Through the defintion we have the following expression for the Gaussian copula

ΦρP

(

Φ−1(u),Φ−1(v)
)

=

∫ Φ−1(u)

−∞

∫ Φ−1(v)

−∞

1

2π
√

1 − ρ2
P

exp

(

2ρP st − s2 − t2

2(1 − ρ2
P )

)

dsdt.

Figure 4.1 displays a contour plot of the cumulative distribution function, as well

as the probability density function for a Gaussian copula.
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(a) Contour plot of cumulative distribution
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4

uv

(b) Probability density function.

Figure 4.1: The Gaussian copula with ρP = 0.3

The bivariate Student’s t copula

In order to be able to define the Student’s t copula we first need to remind ourselves

of the univariate Student’s t distribution function. Let tν : R → R be the (central)
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univariate Student’s t distribution, with ν degrees of freedom

tν(x) =

∫ x

−∞

Γ
(

(ν + 1)/2
)

√
πν Γ(ν/2)

(

1 +
s2

ν

)− ν+1

2

ds

where Γ is the Gamma function. For ρP ∈ [−1, 1] and tρP ,ν the bivariate distribu-

tion corresponding to tν is given by

tρP ,ν(x, y) =

∫ x

−∞

∫ y

−∞

1

2π
√

1 − ρ2
P

(

1 − 2ρP st − s2 − t2

ν(1 − ρ2
P )

)− ν+2

2

dsdt.

Definition 4.2.2 The bivariate Student’s t copula Ct,ρP ,ν is defined as

Ct,ρP ,ν = tρP ,ν

(

t−1
ν (u), t−1

ν (v)
)

=

∫ t−1
ν (u)

−∞

∫ t−1
ν (v)

−∞

1

2π
√

1 − ρ2
P

(

1−2ρP st − s2 − t2

ν(1 − ρ2
P )

)− ν+2

2

dsdt.

A contour plot of the cumulative distribution function and a probability density

plot are presented in Figure 4.2. Remember that as ν → ∞ the Student’s t

distribution approaches the standard normal distribution. Thus, in this case the

Student’s t copula is equal to the Gaussian copula.
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8

uv

(b) Probability density function

Figure 4.2: The Student’s t copula with ρP = 0.3 and ν = 5.

Archimedean Copulas

A special class of copulas are the Archimedean Copulas. Due to the ease of which

these copulas can be constructed, the Archimedean copulas are very important in

applications. Also, thanks to the many different families of copulas in this class,

the Archimedean copulas can be applied in a wide range of areas [13].

Consider the continuous, decreasing and convex function φ : I → [0,∞], and

such that φ(1) = 0. We call such a function φ a generator.
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Definition 4.2.3 The pseudo-inverse of φ is defined as

φ[−1](x) =

{

φ−1(x) 0 ≤ x ≤ φ(0)

0 φ(0) ≤ x ≤ 0

Furthermore, we have φ[−1]
(

φ(x)
)

= x for every x ∈ I.

Definition 4.2.4 Given a generator φ and its pseudo-inverse φ[−1], an Archimedean

copula CA is generated as follows

CA(u, v) = φ[−1]
(

φ(u) + φ(v)
)

.

Whenever φ(0) = +∞ we call φ a strict generator. In this case, the pseudo-inverse

equal the usual inverse, φ[−1] = φ−1. The strict Archimedean copula CA is then

given by CA(u, v) = φ−1
(

φ(u) + φ(v)
)

.

In this thesis we will only consider the one-parameter families of Archimedean

copulas. Such a copula is constructed by using a generator φθ(x), for a real valued

θ. Table 4.1 describes the Archimedean copulas we will use in this thesis.

Name Generator φθ(x) Range for θ C(u, v)

Clayton 1
θ (x−θ − 1) [−1, 0) ∪ (0,+∞) max

[

(u−θ + v−θ − 1)−1/θ , 0
]

Frank − log exp(−θx)−1
exp(−θ)−1 (−∞, 0) ∪ (0,+∞) −1

θ log

(

1 + (exp(−θu)−1)(exp(−θv)−1)
exp(−θ)−1

)

Gumbel −(log(x))θ [1,+∞) exp
{

−[(− log(u))θ + (− log(v))θ]1/θ
}

Table 4.1: Some Archimedian copulas

Figure 4.3, Figure 4.4 and Figure 4.5 displays the contour plot of the cumulative

distribution function and the probability density function for the Clayton, Frank

and Gumble copula respectively. The density plots of the Clayton and the Gum-

ble copula have been cut off at 5 and 7 respectively for a better illustration of the

behaviour of the probability densities.
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(b) Probability density function, cut off at 5.

Figure 4.3: The Clayton copula with θ = 2
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(b) Probability density function.

Figure 4.4: The Frank copula with θ = 2
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(b) Probability density function, cut off at 7

Figure 4.5: The Gumbel copula with θ = 2
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Chapter 5

Measures of Dependence

In this section we will present some different approaches on how to measure the

dependence between random variables. One of the most well-known measures

of dependence is Pearson’s linear correlation coefficient, ρP . However, it turns

out that this correlation mainly is useful when dealing with the Gaussian copula.

Thus, for the other copulas presented in this thesis other measures of association

are needed, such as Kendall’s tau, τK , and Spearman’s rho, ρS.

5.1 Pearson’s measure of linear correlation

Consider two random variables X and Y , then the correlation coefficient ρP is

given by

ρP =
cov(X,Y )

√

var(X)var(Y )
.

For a normal distribution this measure is important since a zero correlation, in

this case, implies independence between the random variables.

When using the correlation in copula theory one has to be a bit cautious. This

due to the fact that the correlation depends on the choice of marginal distributions

for the copula. This can be shown by considering

cov(X,Y ) =

∫ ∞

−∞

∫ ∞

−∞

xyfX(x)fY (y)
[

c
(

FX(x), FY (y)
)

− 1
]

dxdy

=

∫ 1

−1

∫ 1

−1
F−1

X (u)F−1
Y (v)

[

c(u, v) − 1
]

dudv

where the last equation is obtained by setting x = F−1
X (u) and y = F−1

Y (v), which

means dx = du/fX(x) and dy = dv/fY (y). Note here that c(u, v) is the probability

density function of the known copula.

19
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5.2 Measures of Association

In this section we will follow the notation used in Nelsen [13], if not stated other-

wise. Before presenting two other measures of association we need to clarify the

meaning of the word concordance. We say that (xi, yi) and (xj , yj) are concordant

if xi < xj and yi < yj, or xi > xj and yi > yj. We say that (xi, yi) and (xj, yj)

are discordant if xi < xj and yi > yj, or xi > xj and yi < yj. This means that the

pairs are concordant if (xi−xj)(yi−yj) > 0 and discordant if (xi−xj)(yi−yj) < 0.

Kendall’s tau

Consider a random sample of n observations, {(xi, yi)}n
i=1. Let nc be the number

of concordant pairs and let nd denote the number of discordant pairs. For such a

sample, that thus has
(n
2

)

distinct pairs, Kendall’s tau for is defined as

τK =
nc − nd

nc + nd
= (nc − nd)

/

(

n

2

)

=
(nc − nd)

0.5n(n − 1)
.

Thus, for a sample, Kendall’s tau is the probability of the difference between con-

cordant pairs and discordant pairs. When considering a population, Kendall’s tau

is defined similar to the one for a sample. Consider a vector (X,Y ) of continuous

random variables with joint distribution function F . Now, let(X1, Y1) and (X2, Y2)

be i.i.d. random vectors, each with the joint distribution function F . Kendall’s

tau τK for a population is then defined as

τK = P
[

(X1 − X2)(Y1 − Y2) > 0
]

− P
[

(X1 − X2)(Y1 − Y2) < 0
]

.

It turns out that when X and Y are continuous random variables with a copula

C, Kendall’s tau is given by

τK = 4

∫ 1

−1

∫ 1

−1
C(u, v)dC(u, v) − 1.

The interested reader can turn to Nelsen for the proof.

Spearman’s rho

Another way to measure the concordance and the discordance of a population is to

use Spearman’s rho, ρS . Let (X1, Y1), (X2, Y2) and (X3, Y3) be three independent

random vectors with a common joint distribution F and a copula C. Spearman’s

rho is given by

ρS = 3
(

P
[

(X1 − X2)(Y1 − Y3) > 0
]

− P
[

(X1 − X2)(Y1 − Y3) < 0
]

)

.
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As for Kendall’s tau we can get an expression for Spearman’s rho in terms of

a copula. For the continuous random variables X and Y whose copula is C,

Spearman’s rho is given by

ρS =

∫ 1

−1

∫ 1

−1
uvdC(u, v) − 3.
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Chapter 6

Method

We now have all the tools we need in order to price a bivariate rainbow option.

• The DGARCH model gives us the marginal distributions for each stock price.

• We use copula theory in order to join each marginal distribution into one

bivariate joint distribution.

• The option pricing theory is used to get the fair price of a bivariate rainbow

option.

From Equation 2.2.1 and Equation 4.1.2 we have, under the risk-neutral probability

measure Q,

V (t, S1, S2) = e−r(T−t)

∫ ∞

0

∫ ∞

0
g(x, y)fQ

S1,S2
(x, y)dxdy

= e−r(T−t)

∫ ∞

0

∫ ∞

0
g(x, y)fQ

S1
(x)fQ

S2
(y)c(F Q

S1
(x), FQ

S2
(y))dxdy

(6.0.1)

where g is the payoff function.

Given two vectors, R1, R2 containing the log returns for the two stocks, see Equa-

tion 3.1.1, we will now present a way to price a bivariate option using the DGARCH

model, copulas and Monte Carlo simulations. We have chosen to use a numerical

method to calculate the option price due to the complexity of the DGARCH model

and copulas. This procedure has been inspired by Chiou and Tsay [4].

1. For each vector of log returns, use maximum likelihood to estimates the

parameters α0, α1, β1 and λ in Equation 3.2.2. Thus, the problem is to

maximize

logL(µ, ht) = −n

2

[

log (2π) +
1

n

n
∑

t=1

[

log (ht) +
(xt − µ)2

ht

]

]

23
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with respect to the parameters. In the DGARCH framework the xt’s are

the last term in Equation 3.2.1, namely ǫt

√
ht. According to the theory

the xt’s should have zero mean, thus reducing the problem considerably.

The maximization can be done by using standard optimization tools, e.g.

fmincon in Matlab.

2. Use the estimated parameters to calculate ht and ǫt in Equations 3.2.2 and

3.2.1 for each stock.

3. In order to fit the data to copulas, we need to transform the data into

uniformly distributed random variables. Thus we transform the ǫi, i = 1, 2,

obtained in step 2 for each stock into uniformly distributed variables, by

ui = Φ(ǫi), where Φ is the standard normal cumulative distribution function.

4. Use maximum likelihood to fit a copula to [u1, u2]. That is, for the trans-

formed data {u1,t, u2,t}n
t=1, estimate the copula parameters θcopula

θ̂copula = ArgMaxθcopula

n
∑

t=1

log
[

c
(

(u1,t, u2,t); θcopula

)

]

where θcopula are the parameters for the copula function C, and where c is

the probability density function for the given copula.

5. Now it is time to calculate the option price using Monte Carlo simulations.

First generate a sample {u∗
1,t, u

∗
2,t}T

t=1 from a uniform marginal distribution

from the chosen copula, see Appendix A. Here T is the time to maturity for

the option.

6. For each time step transform the generated margins to standard normal

margins, in the risk-neutral world, by

ǫ∗i,t = Φ−1(u∗
i,t), for i = 1, 2.

7. Using the ǫ∗i,t calculate the conditional variances by Equation 3.3.1 and the

parameters estimated is step 1. The two future stock prices at time T are

Si(T ) = Si(0) exp
[

rT − 0.5
T

∑

t=1

hi,t +
T

∑

t=1

√

hi,tǫ
∗
i,t

]

, for i = 1, 2.

8. Repeat step 5 to 7 for N runs and let g(S1(T ), S2(T )) be the payoff function

for the option. Thus we obtain the Monte Carlo option price as

V (t) =
e−r(T−t)

N

N
∑

i=1

g(S1,i(T ), S2,i(T )).



Chapter 7

Analysis of the data

For the bivariate rainbow options, the two stocks chosen were the food process-

ing company Kraft Foods (KFT) and the technology company Hewlett-Packard

(HPQ), both traded on the New York Stock Exchange. Both stocks are compo-

nents of the Dow Jones Industial Average, which is a stock market index containing

30 of the major companies in America. The data was collected from the Internet

at Yahoo Finance4.

We consider a one year time period from 1 June 2010 to 31 May 2011. We use

daily close prices in USD that are adjusted for dividends and splits. During this

time period there were 253 trading days. We choose a one year period since it is a

rule of thumb in financial applications to use the same data length as the length

of the later generated sample, i.e. the time to maturity for the option. The one

year interest rate for this period was set to be approximately equal to the yield

to maturity for a one year government bond in the U.S. Thus, the yearly risk-free

interest rate was set to 0.25%.

Figure 7.1 and Figure 7.2 displays the stock prices and the log returns for KFT and

HPQ respectively, over the chosen time period. Note that HPQ experiences some

strong increase and decrease in the stock price from one day to another. This is

especially clear when observing the log returns for HPQ. One possibility for these

spikes could be that HPQ are launching a new product or technology. KFT is

less volatile in that sense. The log returns for KFT has a mean of 9.06 × 10−4

and a standard deviation of 0.0087. The mean for the log returns for HPQ is

−7.56 × 10−4 and the standard deviation is 0.0171.

In Table 7.1 different measures of dependence between the log returns of KFT

and HPQ are displayed. The table also displays the p-values for the null hypothesis

that there is no autocorrelation. Thus, we clearly see that the two different stocks

4http://finance.yahoo.com/
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Figure 7.1: Daily stock prices and log returns for KFT over the sample period.
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Figure 7.2: Daily stock prices and log returns for HPQ over the sample period.

are statistically dependent.

Figure 7.3 displays the histograms for the log returns of KFT and HPQ. In

many elementary models in finance the log returns are assumed to be normally

distributed. However, even if one can not conclude whether or not the log returns

for the stocks are normally distributed, it is common knowledge that this most

often is not the case. Thus, a more sophisticated model, such as DGARCH, is

necessary for simulating future stock prices.

Spearman’s rho, ρS Kendall’s tau, τK Pearson’s rho, ρP

Correlation 0.231 0.158 0.162

P-value 2.104 ×10−4 1.872 ×10−4 0.010

Table 7.1: Measures of dependence between log returns of KFT and log returns of

HPQ.
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Figure 7.3: Histograms of the log returns for KFT and HPQ with 40 bins.
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Chapter 8

Analysis of the DGARCH

model

In this section we will implement the method described in Chapter 6 in order to

obtain the parameters in the DGARCH model. Tests are carried out in order to

validate the model.

8.1 The parameters

The parameters obtained when using MLE on the DGARCH model for the stocks

KFT and HPQ are given in Table 8.1. As we can see, the parameters fulfills the

required constraints in the DGARCH model.

Stock α0 α1 β1 λ

KFT 3.43 × 10−7 1.44 × 10−2 0.978 0.114

HPQ 2.85 × 10−4 8.72 × 10−3 1.05 × 10−4 4.72 × 10−6

Table 8.1: DGARCH parameters

8.2 The residuals

The residuals in the DGARCH model, i.e. ǫt, should in theory follow a standard

normal distribution. Furthermore they should also have independent increments.

The Kolmogorov-Smirnov test or K-S test, see Appendix B, are applied for each

stocks residual with a 5% significance level. The residuals empirical distribution

are tested against the standard normal distribution and the p-values and test

statistics are presented in Table 8.2.

29
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KFT HPQ

p-value 0.926 0.209

Test statistic 0.034 0.066

Table 8.2: P-values and K-S distance for standard normality of the residuals.

Clearly, we can not reject the null hypothesis that they are indeed standard normal

distributed. For a graphical interpretation the QQ-plots for the residuals are also

displayed, see Figure 8.1.
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(a) KFT’s residuals
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(b) HPQ’s residuals

Figure 8.1: QQ-plots for the residuals of the stocks.

The independence property of the increments is tested with the so called Ljung-

Box test, see Appendix B. The null hypothesis is that there is no autocorrelation.

For standard normal variables, this implies independent increments. Again we

have a 5% significance level and, as can be seen in Table 8.3, we can not reject the

null hypothesis that they are independent.

KFT HPQ

p-value 0.621 0.527

Test statistic 17.515 18.926

Table 8.3: P-values for independence of the residuals using Ljung-Box test.



Chapter 9

Fitting a copula to the data

In this section we will fit our data to the copulas of our choice. In order to vali-

date the parameters obtained in the MLE fit we will combine three approaches to

determine how well the different copulas fit the data. This due to the technical

challange in preforming a bivariate, two-sample Kolmogorov-Smirnov test. Thus,

we will start of by using a graphical approach. Then we will examine the distances

between the empirical copula and the estimated copula. Finally, we will examine

how well each copula manages to preserve the different measures of dependence

from the data.

First, the standard normal residuals ǫt obtained from the DGARCH, are trans-

formed into uniformly distributed variables. We use maximum likelihood, as pre-

sented in Chapter 6, to estimate the parameters for the different copulas. The

parameters obtained are presented in Table 9.1.

Copula Gaussian Student’s t Clayton Frank Gumbel

Parameter 0.152 (0.271, 10.991) 0.070 1.670 1.196

Table 9.1: The estimated parameters for the diffrerent copulas.

In Figure 9.1 we have illustrated how the cumulative distribution function for each

copula behaves in comparison to the empirical copula for the data. From these

contour plots, the Student’s t copula and the Frank copula are the best fit. Also,

the estimated Clayton copula seems to be the copula that is furthest away from

the empirical copula.

In the next step we examine the distances between the empirical copula and

the estimated copulas. We do this by finding the maximum difference between the

copulas in the same way as when using a two-sample K-S test, see Appendix B.
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The distance is given by

D = max(|C(u, v) − Cemp(u, v)|)

where C is the estimated copula in each point (u, v) and Cemp is the empirical

copula in (u, v).

Copula Gaussian Student’s t Clayton Frank Gumbel

Distance 0.073 0.069 0.080 0.069 0.070

Table 9.2: The distances between empirical copula and estimated copulas.

As one could already see in the countour plots, the K-S distances gave us that the

Student’s t copula and the Frank copula are the estimated copulas closest to the

empirical copula and the Clayton copula is the one that is furthest away from the

empirical copula.

However, the question wheather or not the copula manages to capture the

dependence between the log returns remains. We examine this by observing the

measures of dependence, Spearman’s rho, Kendall’s tau and Pearson’s rho as pre-

sented in Table 9.3. These measures are calculated on the residuals of the data.

Data CI Gaussian Student’s t Clayton Frank Gumbel

ρS 0.230 [0.107, 0.355] 0.145 0.255 0.051 0.268 0.241

τK 0.156 [0.069, 0.244] 0.097 0.174 0.034 0.181 0.164

ρP 0.152 [-0.037, 0.329] 0.152 0.269 0.056 0.256 0.260

Table 9.3: Measures of depencence for the residuals and different copulas.

In theory, for the Gaussian copula the linear correlation ρP captures the depen-

dence between the variables. In Table 9.3 we see that this is the case, since we

for the Gaussian copula gained the same ρP for the residuals as for the estimated

copula. However, for the other copulas the linear correlation will not capture the

entire dependence, thus for those copulas ρS and τK will be of greater importance.

We also notice that these measures of dependence are not accurate for the Gaus-

sian copula in comparison to the data. The Clayton copula, once again, seems to

be the least good fit, since it for two measures fall outside the confidence interval.

For the Student’s t, Frank and Gumbel copula ρP and ρS are of the same mag-

nitude as for the residuals of the data and it seems like these copulas are a good

fit.
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Figure 9.1: Contour plots for the estimated cumulative distribution functions of

the copula and the empirical copula. The smooth contour lines represent the

estimated copula and the crooked lines represent the empirical one.
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Figure 9.2: The probability density functions for the different copulas, with the

estimated parameters.



Chapter 10

Simulating future stock prices

Using the DGARCH parameters that where estimated with MLE and presented

in Table 8.1, together with the fitted copulas for the residuals, Table 9.1, we can

simulate future stock prices and the corresponding conditional variances in the

risk-free world. In Figure 10.1 and Figure 10.2, at the right hand side of the

vertical line, possible stock paths and their daily conditional variances are shown

using simulated data from the fitted Gaussian copula. At the left hand side of

the vertical line the historical stock price path and its corresponding conditional

variance are show. The same is displayed in Figure 10.3 and Figure 10.4, but with

the Frank copula. It is simulations like these that will be used in the Monte Carlo

simulation of the option price.
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Figure 10.1: Simulated future stock price and conditional variance for KFT, using

a Gaussian copula.
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Figure 10.2: Simulated future stock price and conditional variance for HPQ, using

a Gaussian copula.
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Figure 10.3: Simulated future stock price and conditional variance for KFT, using

a Frank copula.
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Figure 10.4: Simulated future stock price and conditional variance for HPQ, using

a Frank copula.



Chapter 11

Calculating the option price

We have now reached the point where we are able to calculate option prices for the

stocks of KFT and HPQ. First, however, we would like to investigate whether or

not our model generates correct option prices. In previous sections we have noted

that we get good fits to our model, but how well does our model perform when

calculating option prices?

Before pricing options with more advanced payoff functions, we, as a final check,

find the fair price for the option presented in Chapter 2.2. This is done since this

is the only option for which we have a known price. We remind the reader that

for this bivariate option, the payoff function at maturity T is g(S1(T ), S2(T )) =

S1(T )+S2(T ). The real option price today, that is in time t, is then S1(t)+S2(t).

For the KFT stock and the HPQ stock the real option price is $71.45. If we obtain

estimated option prices close to this real price, the model works. In Table 11.1 we

present the percental differences between the real option price and the estimated

option prices gained from Monte Carlo simulations.

Gaussian Student’s t Clayton Frank Gumbel

2.63 × 10−4 −2.01 × 10−4 −3.57 × 10−4 −1.43 × 10−4 0.57 × 10−4

Table 11.1: Percental differences in estimated option price with different copulas.

Clearly, the percental differences are very small, thus, our model seems to be fit-

ting the theoretical option price well. These option prices were estimated using

100 000 Monte Carlo simulations. When performing the calculations we noticed

that the model requires a large amount of simulations and a minimum of 50 000

iterations should be used.

The different types of options presented in Chapter 2.3 were calculated, again
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using 100 000 iterations. The result are presented in Table 11.2. We can see that

the option prices when using the Student’s t, Frank and Gumbel copulas are very

close to eachother. Since the Gaussian and the Clayton copulas gave a worse fit

for the data in comparison to the other three copulas, as we saw in Chapter 9,

they probably will give a larger error in the option prices examined in Table 11.2.

Gaussian Student’s t Clayton Frank Gumbel

Exchange 5.38 5.20 5.52 5.23 5.22

Maximum 39.77 39.59 39.91 39.61 39.61

Call on max 5.13 5.06 5.19 5.07 5.06

Average spread 2.32 2.22 2.40 2.23 2.22

Table 11.2: Option prices using different copulas



Chapter 12

Options prices using other

stocks

In order to ensure the quality of our model, we will now examine the results we

obtain when choosing other underlying stocks for our options. Additional stocks

were chosen from the components of Dow Jones Industial Avarage, but also from

OMX Stockholm 30, OMXS30. This is a stock market index of the 30 most-traded

stocks on the Stockholm Stock Exchange. The Swedish data was also collected

daily5 and is stated in SEK. For the American stocks we examine two different

time periods, 1 January 2006 to 31 December 2006 and also 1 June 2010 to 31

May 2011. The number of trading days were 251 and 253 respectively. For the

Swedish stocks we chose only to look at the time period 1 June 2010 to 31 May

2011, which was 255 trading days. In Table 12.1 we summarize the chosen stocks.

Stock Label Industry Index

Alcoa AA Aluminium Dow

Atlas Copco - stock A AC Manufacturing OMXS30

Ericsson - stock B ER Telecommununications OMXS30

General Electric Company GE Conglomerate Dow

The Coca-Cola Company KO Beverage Dow

Svenska Handelsbanken SH Financial Services OMXS30

Table 12.1: Additional stocks used for option pricing.

For all the stocks, we could not reject the null hypothesis regarding the residuals

in the DGARCH model, that is that the residuals are i.i.d. standard normal. In

Table 12.2 we present the K-S distances between the empirical copula and the

5This data was collected at http://www.nasdaqomxnordic.com/
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estimated copula for the American stocks during 2010-2011. In Appendix D the

results for the Swedish data and the other time period for the American stocks

can be found.

In Table 12.3 we present the measures of dependence for the residuals of the

data of AA and GE. The measures of dependence for the other stock pairs can be

found in Appendix C. We get similar results for all pairs, namely that the Gaussian

copula corresponds well with the linear correlation ρP and that the Clayton copula

underestimates the dependence between the stocks. The Clayton copula is in fact

the only copula that show tendencies to fall outside the confidence interval. This

is the same result we found for KFT and HPQ.

We will start with finding the fair option price of the bivariate rainbow option

with payoff function g
(

S1(T ), S2(T )
)

= S1(T ) + S2(T ), at maturtity T , as we did

in Chapter 11. In Table 12.4, the percental difference between the theoretical and

the estimated option price are presented. The tables for the other time period

and stock market can be found in Appendix E. We used 50 000 Monte Carlo

simulations when estimating the option price. For the examined stocks, we once

again receive small differences which indicated that the model works well. How-

ever, there are no conclusive result regarding whether or not the Clayton and the

Gaussian copula are less accurate than the other copulas.

Stocks Gaussian Student’s t Clayton Frank Gumbel

AA & GE 0.065 0.060 0.100 0.065 0.065

AA & KO 0.099 0.096 0.128 0.093 0.090

GE & KO 0.089 0.083 0.118 0.085 0.083

Table 12.2: The maximum distance between the estimated copula and the empir-

ical copula for the American stocks in 2010-2011.

Data CI Gaussian Student’s t Clayton Frank Gumbel

ρS 0.611 [0.525, 0.701] 0.577 0.593 0.438 0.649 0.530

τK 0.443 [0.371, 0.514] 0.407 0.425 0.305 0.463 0.375

ρP 0.596 [0.484, 0.706] 0.596 0.617 0.461 0.619 0.554

Table 12.3: Measures of dependence for the residuals of the data and different

copulas for the AA and GE stocks in 2010-2011.

As we did for KFT and HPQ, we priced the bivariate options with more advanced

payoff functions. The result for the option prices with AA and GE as the underly-

ing assets are presented in Table 12.5. For the Gaussian, the Student’s t and the

Frank copula the option prices are very close to eachother. In general, this was
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the result we obtained for the other stock pairs, see Appendix E.

Stocks Gaussian Student’s t Clayton Frank Gumbel

AA & GE 2.64 × 10−4 1.74 × 10−3 −2.43 × 10−4 9.70 × 10−4 7.82 × 10−5

AA & KO 2.42 × 10−5 8.40 × 10−4 −1.34 × 10−4 −3.58 × 10−4 7.68 × 10−4

GE & KO 2.19 × 10−4 −4.28 × 10−4 −6.77 × 10−4 −2.00 × 10−4 1.63 × 10−4

Table 12.4: Percental differences in real and estimated option prices with different

copulas for the American stocks in 2010-2011.

Gaussian Student’s t Clayton Frank Gumbel

Exchange 3.06 3.03 3.23 3.02 3.12

Maximum 19.82 19.80 20.00 19.80 19.87

Call on max 2.58 2.56 2.69 2.56 2.60

Average spread 0.85 0.83 0.99 0.83 0.89

Table 12.5: Option prices for AA and GE 2010-2011.
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Chapter 13

Conclusions

In this thesis we have studied rainbow options that depend on two underlying

stocks. We have modelled the stock prices using a special type of GARCH pro-

cess, that we have chosen to call the DGARCH model. In order to estimate the

depencende structure between the stocks we have adapted copula theory. We have

chosen to examine the Gaussian, the Student’s t, the Clayton, the Frank and the

Gumbel copula. Various tests have been carried out in order to validate the sug-

gested model. Data from different stock markets and time periods were tested in

the model. In order to price the options we have adapted a Monte Carlo approach.

We have found evidence that the DGARCH model fits well to our data, in the

sense that we could not reject that the residuals of the DGARCH model were i.i.d.

standard normal. This is a crusial property since we need these distributions of

the residuals for our estimation of the copula function.

Throughout our copula estimation, using maximum likelihood, we found that

the Clayton copula was furthest away from the empirical copula distribution when

considering the Kolmogorov-Smirnov distance. However, one can argue whether or

not this results are due to the fact that the data sets were fairly small. In general,

one needs large data sets in order to obtain accurate estimations of bivariate dis-

tributions. Since we only had access to daily stock prices, we could not use larger

data sets without violating the rule of thumb that is to only to use historical data

for the same time length as the future prediction. We also found that the Clayton

copula did not manage to capture the measures of dependence as well as the other

copula functions. This was true except for one case where the Gumbel copula

was slightly less accurate. For our data, the Clayton copula showed tendencies to

underestimate the measures of dependence.

No matter what copula we chose, we got very satisfactory results when pricing

the option with the most basic payoff function. Despite the indications that the
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Clayton copula did not manage to capture the dependence structure of the data as

well as the other copulas, it still gives very pleasing results. This did not come as

a surprise since the payoff function itself did not consider the depencence stucture

between the stocks. Therefore, when pricing options with more advanced payoff

functions we had strong reason to believe that the Clayton copula might not be

as accurate as the other copula functions.

We chose to examine four options with more complicated payoff functions,

namely the Exchange, the Maximum, the Call on Max and the Average Spread

option. The payoff function where we suspected that the option price was most

sensitive to the choice of copula was for the path-dependent Average Spread option.

This since the estimated option price depends on the simulated stock prices for

each day. We saw indications that this was in fact the case. Most often the price

difference between the options when using different copulas was higher for the

Average Spread option, in comparison to the other options. For the other options

we saw no clear trends in the behaviour of the option price. In most cases, when

using the Clayton copula we obtained option prices that differed slightly more, in

comparison to the other copulas.

Since our Monte Carlo simulation require a vast amount of iterations the pro-

cedure quickly becomes computationally heavy. If one wants to price rainbow

options for more than two stocks the computation might in fact become too time

consuming, thus useless for practical purposes.

Thus, when pricing an option with a fairly simple payoff function the price is

less affected by the choice of copula. However, as soon as the payoff function

becomes more complicated the choice of copula is of greater importance and one

needs to be more careful when choosing the copula that describes the dependence

structure.



Appendix A

Generate random variate from

a copula

For computational resons one might be interested in generating random draws

from a copula. For the copulas presented in this paper, the procedure is quite

straight forward. Throughout this section we will follow the notation used in [7].

Algorithm for the Gaussian copula

1. Find the Cholesky decompositionA A of R (linear correlation matrix)

2. Simulate n independent random variates z1, ..., zn from a standard normal

distribution.

3. Set x = Az.

4. For i = 1, ..., n, set ui = Φ(xi).

5. Then (u1, ..., un)T ∼ CGaussian

Algorithm for the Student’s t copula

1. Find the Cholesky decomposition A of R.

2. Simulate n independent random variate z1, ..., zn from a standard normal

distribution.

3. Simulate a random variate s from χ2
ν independent of z1, ..., zn.

4. y = Az.

A”The Cholesky decomposition of R is the unique lower-triangular matrix L with LLT = R”

[7]
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5. x =
√

ν
√

s
y.

6. For i = 1, ..., n, set ui = tν(xi).

7. Then (u1, ..., un)T ∼ Tρ,ν

Algorithm for an Archimedean copula

Consider an Archimedean copula with generator φ.

1. Simulate two independent random variates s and q from a uniform distribu-

tion on [0, 1].

2. Set w = K−1
C (q), where KC(t) = t − φ(t)

φ′(t) .

3. Set u = φ[−1](sφ(w)) and v = φ[−1]
(

(1 − s)φ(w)
)

.



Appendix B

Goodness of Fit

B.0.1 Kolmogorov-Smirnov Test for a single sample

A Kolmogorov-Smirnov test for a single sample is used to compare a data set

F (x) to a known cumulative distribution function G(x). The null hypothesis it

that x ∼ G, and the Kolmogorov-Smirnov statistic is given by [11]

DKS1
= max

(

|F (x) − G(x)|
)

.

B.0.2 Kolmogorov-Smirnov Test for two samples

The Kolmogorov-Smirnov test can also be used to compare the distributions of two

different samples with cumulative distribution functions F1(x) and F2(x) respec-

tively. The null hypothesis is that the two samples come from the same distribution

and the statistic is give by [14]

DKS2
= max

(

|F1(x) − F2(x)|
)

.

Note that this does not test whether or not the two samples come from a known

cumulative distribution function G(x). It merely tests how similar the two samples

are distributed.

B.0.3 Ljung-Box Test for independence

Using the Ljung-Box test we can test the null hypothesis that the residuals of a

sample have an autocorrelation that is zero. In this case, for normally distributed

residuals, we get that the residuals are independent [2]. The Ljung-Box statistic

is given by [12]

Q = N(N + 2)

M
∑

k=1

ρ2
k

N − k
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where N is the sample size, M is the number of autocorrelation lags and ρk is the

autocorrelation at lag k. Under the null hypothesis the statistic is asymptotically

χ2(M).



Appendix C

Tables of the measures of

dependence

Data CI Gaussian Student’s t Clayton Frank Gumbel

ρS 0.395 [0.280, 0.512] 0.401 0.399 0.248 0.460 0.369

τK 0.279 [0.193, 0.363] 0.275 0.278 0.168 0.317 0.255

ρP 0.418 [0.286, 0.554] 0.417 0.419 0.268 0.439 0.393

Table C.1: Measures of dependence for the residuals of the data and different

copulas for the AA and KO stocks in 2010-2011.

Data CI Gaussian Student’s t Clayton Frank Gumbel

ρS 0.460 [0.355, 0.570] 0.460 0.478 0.341 0.535 0.407

τK 0.326 [0.245, 0.407] 0.318 0.337 0.234 0.373 0.283

ρP 0.479 [0.351, 0.606] 0.478 0.501 0.364 0.510 0.432

Table C.2: Measures of dependence for the residuals of the data and different

copulas for the GE and KO stocks in 2010-2011.

Data CI Gaussian Student’s t Clayton Frank Gumbel

ρS 0.200 [0.075, 0.328] 0.202 0.204 0.105 0.230 0.176

τK 0.139 [0.051, 0.225] 0.136 0.138 0.070 0.155 0.119

ρP 0.212 [0.083, 0.340] 0.211 0.214 0.114 0.220 0.192

Table C.3: Measures of dependence for the residuals of the data and different

copulas for the AA and GE stocks in 2006.
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Data CI Gaussian Student’s t Clayton Frank Gumbel

ρS 0.240 [0.121, 0.362] 0.197 0.213 0.122 0.262 0.184

τK 0.166 [0.084, 0.249] 0.133 0.145 0.082 0.177 0.125

ρP 0.207 [0.076, 0.338] 0.207 0.225 0.133 0.251 0.201

Table C.4: Measures of dependence for the residuals of the data and different

copulas for the AA and KO stocks in 2006.

Data CI Gaussian Student’s t Clayton Frank Gumbel

ρS 0.443 [0.340, 0.548] 0.417 0.431 0.387 0.470 0.349

τK 0.306 [0.231, 0.383] 0.286 0.299 0.266 0.324 0.240

ρP 0.435 [0.304, 0.566] 0.434 0.451 0.410 0.449 0.372

Table C.5: Measures of dependence for the residuals of the data and different

copulas for the GE and KO stocks in 2006.

Data CI Gaussian Student’s t Clayton Frank Gumbel

ρS 0.428 [0.322, 0.536] 0.380 0.434 0.333 0.478 0.354

τK 0.298 [0.218, 0.377] 0.260 0.303 0.228 0.330 0.244

ρP 0.396 [0.260, 0.529] 0.396 0.456 0.355 0.456 0.378

Table C.6: Measures of dependence for the residuals of the data and different

copulas for the AC and ER stocks in 2010-2011.

Data CI Gaussian Student’s t Clayton Frank Gumbel

ρS 0.488 [0.376, 0.603] 0.504 0.505 0.374 0.567 0.476

τK 0.356 [0.270, 0.441] 0.351 0.359 0.257 0.398 0.334

ρP 0.523 [0.412, 0.636] 0.523 0.529 0.397 0.541 0.501

Table C.7: Measures of dependence for the residuals of the data and different

copulas for the AC and SH stocks in 2010-2011.

Data CI Gaussian Student’s t Clayton Frank Gumbel

ρS 0.392 [0.282, 0.505] 0.337 0.414 0.286 0.461 0.322

τK 0.272 [0.192, 0.353] 0.230 0.289 0.195 0.317 0.221

ρP 0.353 [0.149, 0.546] 0.352 0.435 0.308 0.440 0.345

Table C.8: Measures of dependence for the residuals of the data and different

copulas for the ER and SH stocks in 2010-2011.



Appendix D

Tables of Kolmogorov-Smirnov

distances

Stocks Gaussian Student’s t Clayton Frank Gumbel

AA & GE 0.062 0.061 0.075 0.064 0.061

AA & KO 0.081 0.078 0.093 0.076 0.074

GE & KO 0.068 0.064 0.087 0.066 0.064

Table D.1: The maximum distance between the estimated copula and the empirical

copula for the American stocks in 2006.

Stocks Gaussian Student’s t Clayton Frank Gumbel

AC & ER 0.100 0.094 0.122 0.094 0.089

AC & SH 0.094 0.088 0.126 0.084 0.080

ER & SH 0.100 0.090 0.123 0.086 0.086

Table D.2: The maximum distance between the estimated copula and the empirical

copula for the Swedish stocks in 2010-2011.
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Appendix E

Tables of option prices

Stocks Gaussian Student’s t Clayton Frank Gumbel

AA & GE −3.71 × 10−4 5.71 × 10−4 4.05 × 10−4 −2.40 × 10−6 3.63 × 10−4

AA & KO −7.25 × 10−4 1.14 × 10−3 5.14 × 10−4 3.81 × 10−5 −6.29 × 10−4

GE & KO 2.41 × 10−4 −2.62 × 10−4 5.89 × 10−4 4.67 × 10−4 3.76 × 10−4

Table E.1: Percental differences in option prices between different copulas for the

American stocks in 2006.

Stocks Gaussian Student’s t Clayton Frank Gumbel

AC & ER 1.31 × 10−4 −9.28 × 10−4 −8.01 × 10−4 −4.57 × 10−4 2.43 × 10−4

AC & SH −4.69 × 10−4 −7.61 × 10−4 9.08 × 10−4 −3.34 × 10−4 −7.61 × 10−4

ER & SH −5.88 × 10−5 1.32 × 10−3 −9.25 × 10−4 −5.09 × 10−4 −3.60 × 10−4

Table E.2: Percental differences in option prices between different copulas for the

Swedish stocks in 2010-2011.

Gaussian Student’s t Clayton Frank Gumbel

Exchange 49.10 49.11 49.11 49.11 49.11

Maximum 65.87 65.87 65.88 65.88 65.87

Call on max 24.65 24.65 24.66 24.66 24.65

Average spread 1.78 1.77 1.93 1.75 1.80

Table E.3: Option prices for AA and KO 2010-2011.
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Gaussian Student’s t Clayton Frank Gumbel

Exchange 46.56 46.59 46.59 46.59 46.59

Maximum 65.87 65.87 65.88 65.88 65.88

Call on max 23.40 23.40 23.40 23.40 23.40

Average spread 1.71 1.69 1.82 1.68 1.75

Table E.4: Option prices for GE and KO 2010-2011.

Gaussian Student’s t Clayton Frank Gumbel

Exchange 5.19 5.18 5.30 5.17 5.21

Maximum 32.54 32.54 32.66 32.54 32.57

Call on max 3.97 3.97 4.05 3.96 3.98

Average spread 1.69 1.69 1.77 1.68 1.70

Table E.5: Option prices for AA and GE 2006.

Gaussian Student’s t Clayton Frank Gumbel

Exchange 14.76 14.76 14.79 14.74 14.76

Maximum 42.12 42.12 42.15 42.11 42.12

Call on max 7.63 7.62 7.65 7.61 7.63

Average spread 1.75 1.73 1.81 1.70 1.75

Table E.6: Option prices for AA and KO 2006.

Gaussian Student’s t Clayton Frank Gumbel

Exchange 11.01 11.01 11.01 11.01 11.02

Maximum 41.94 41.94 41.94 41.94 41.95

Call on max 5.79 5.78 5.79 5.79 5.79

Average spread 1.04 1.02 1.06 1.02 1.09

Table E.7: Option prices for GE and KO 2006.

Gaussian Student’s t Clayton Frank Gumbel

Exchange 0.42 0.31 0.52 0.32 0.45

Maximum 162.71 162.61 162.85 162.61 162.76

Call on max 39.29 39.23 39.39 39.23 39.31

Average spread 9.20 8.82 9.46 8.82 9.30

Table E.8: Option prices for AC and ER 2010-2011.
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Gaussian Student’s t Clayton Frank Gumbel

Exchange 48.21 48.18 49.37 48.08 48.47

Maximum 210.53 210.47 211.65 210.38 210.74

Call on max 31.87 31.83 32.65 31.77 31.95

Average spread 9.23 9.17 10.35 9.05 9.45

Table E.9: Option prices for AC and SH 2010-2011.

Gaussian Student’s t Clayton Frank Gumbel

Exchange 116.27 116.22 116.23 116.19 116.23

Maximum 207.57 207.53 207.53 207.51 207.53

Call on max 59.27 59.22 59.22 59.21 59.22

Average spread 9.10 8.59 9.37 8.58 9.17

Table E.10: Option prices for ER and SH 2010-2011.
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