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Abstract

Market-based Pricing and Calibration of VIX Options under

Merton’s Jump-Diffusion Framework

by

Hede Luquene Gustafsson

This thesis examines the performance of Merton’s Jump-Diffusion model (MJD) in a market based

valuation of VIX futures option for three different maturities. The first step was to derive the risk

neutral dynamics of the MJD model. Second, model parameters are estimated and model prices are

computed based on their estimates using the fast Fourier approach. Lastly, the results are compared

to its predecessor the Black-Scholes model. The time frame of the options covered months shortly

before and past the Lehman Brother collapse which triggered the financial crisis of 2008. The results

imply that Merton’s Jump-Diffusion model is a significant improvement to the traditional Black-

Scholes mode and cannot in fact perform worse than its forerunner since it is embedded as a special

case of the MJD model.
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1 Introduction

The most prominent risk faced by investors are price movements in the marketplace. Consequently,

finance practitioners and researchers are concerned with understanding and predicting future market

volatility as it mainly impacts the decision making in several areas, such as security valuation, risk

management, monetary policymaking, and more. In 1993, the Chicago Board Options Exchange

(CBOE) introduced the Market Volatility Index (VIX), which has become a popular way of esti-

mating future volatility. The VIX is intended to provide investors with a snapshot of the market

expectation of the volatility of the S&P 500 index option (SPX) over the next 30 days (Implied

Volatility). Thus, VIX is used as a proxy for near-term market uncertainty, which investors take

into account when determining trading strategies for current market environments.

Continuous-time models relying on Brownian motion play a significant role in modeling and

pricing derivatives. The best-known member of this category is the so-called Black-Scholes model.

Presented for the first time in 1973 in the paper, ”The Pricing of Options and Corporate Liabilities,”

this option pricing model is still one of the most celebrated inventions in modern financial theory. The

Black-Scholes model (also called the Black-Scholes-Merton model) has ever since its introduction had

a tremendous influence on the way practitioners value and hedge financial derivatives and has largely

contributed to the explosive growth of financial innovation over the past 40 years. Nevertheless, the

Black-Scholes model relies on several unrealistic assumptions, which misrepresents reality. As a

result, succeeding studies and research papers have modified the traditional Black-Scholes model by

rejecting the hypothesis that asset returns are normally distributed. This discovery has emphasized

the need to revise its traditional elements. After all, practitioners rely on models for risk management

and valuation purposes. For example, using an inaccurate model could lead to an inappropriate

hedging strategy.

One of the first models beyond the Black-Scholes model was only three years away. It came

to be known as the Merton Jump-Diffusion model (MJD) and was a significant improvement to
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the Black-Scholes model in the sense that it could better capture the negative skewness and excess

kurtosis of the return distribution, which have been observed among asset prices since the 1950s

[8]. The research paper ”Empirical Performance of Alternative Option Pricing Models” by Gurdip

Bakshi, Charles Cao and Zhiwu Chen (1997) states that adding a jump component improves model

performance for the pricing of short-term options [7].

Despite practitioners’ and the research community’s eagerness and the endless quest of trying

to find the ”perfect” model, it is just as important to find a proper and efficient method which can

capture its parameters. This paper will treat the ill-posed problem of finding the model parameters

of Merton’s Jump-Diffusion model such that observed market quotes of the VIX are replicated as

closely as possible. The model prices generated by the Merton Jump-Diffusion will also be compared

to its predecessor, the Black-Scholes model, which calibration is performed analogously to the one

of the MJD.



3

2 Recalling the Black-Scholes Model

2.1 Model Assumptions and Setting

In its original setting, the Black-Scholes-Merton world presumes a 1+1 dimensional capital market

consisting of two types assets, a risk-free asset, B (bond) and a risky asset, S (stock) [9]. The

risk-free bond is typically a short rate government note corresponding to the length of the option

contract (commonly used are 1, 3, or a 6 month Treasury bill) and generates a risk-free rate of return

rt, which grows at a constant continuously compounding rate. Nevertheless, for simplicity, we will

further consider rt to be nonrandom although it could vary with time. Thus, the price of the Bond,

Bt, at time t is assumed to satisfy the differential equation

dBt = rBtdt,

which has the unique solution B0 = 1 as

Bt = B0e
rt.

In addition to the preceding assumptions, the authors Fischer Black and Myron Scholes outlined

the following vast assumptions assumed by this model:

1. There are no fees or transaction costs from buying or selling the option (i.e. ”frictionless

market”).

2. Investors are allowed to borrow any fraction of the stock price, at the risk-free rate r. This

holds for either buying or holding the security.

3. The interest rate r is known and constant throughout the lifetime of the option.

4. The underlying stock pays no dividend or income during the lifetime of the option.

5. The model can only value European options (i.e., options that can only be exercised at matu-

rity).
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6. The Stock price process follows a geometric Brownian motion, where the price at each future

time is log-normally distributed.

The stock price process {St}t≥0 is assumed to be dictated by a geometric Brownian motion with

mean rate of return µ and volatility σ (both constant) and satisfy the stochastic differential equation

(SDE)

dSt = µStdt+ σStdWt

where {Wt}t≥0 denotes a standard Brownian motion (also referred as standard Wiener process) [6].

Nevertheless, in the risk-neutral setting the Black-Scholes satisfies the SDE

dSt = rStdt+ σStdWt

and its solution is given by l

St = S0e
(r−σ22 )t+σWt .
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3 Surpassing the Black-Scholes

3.1 Merton’s Jump-Diffusion Model

One of the very first expansions of the traditional Black-Scholes-Merton model was Merton’s Jump-

Diffusion model (MJD) developed in 1976 by Robert C. Merton himself. In this framework, the

dynamics of the returns of St is under the physical probability measure P

dSt
St−

= µdt+ σdWt + d(

Nt∑
i=1

(eYi − 1)) (3.1)

where St− = limu→t− Su. However, from this point forward, we use that St− ≡ St. The Merton

Jump-Diffusion model differs from the conventional Black-Scholes model in the last term, which

contains two sources of randomness. The parameter Nt is a Poisson process with intensity λ per unit

time, which is intended to capture the abnormal price changes caused by the arrival of influential

market information (i.e., jump in the asset price). Second, eYi is a is non-negative log-normally

distributed random variable (i.e., Yi ∼ N(µ, δ2)), which measures the magnitude of each jump[8].

The parameters µ ∈ R+ and δ > 0 describes the mean log-return jump-size and standard deviation

of log-return jump respectively. Additionally, the jumps in the asset price are assumed to occur

independently and identically.

The percentage change in the stock price achieved by jumps is described as follows:

dSt
St

=
eYiSt − St

St
= eYi − 1.

Observe that whenever Yi = 0 we obtain

dS

St
= µdt+ σdWt,

the traditional Black-Scholes SDE. Hence, the Black-Scholes model is a special case of the Merton

Jump-Diffusion model.
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3.2 The Risk-Neutral Pricing Dynamics of MJD

Risk-neutral pricing is a technique used in mathematical finance to value financial derivatives. Sim-

ilar to most games of chance where the price of a given game is based on its expected payoffs, the

value of a financial asset is determined by its discounted future expected payoffs. In games of chance,

the probabilities of various outcomes are known and expressed in terms of the real-world probability

measure P. Nevertheless, the price of a financial asset is dependent on each investor’s level of risk

aversion as rational investors demand a higher return for bearing risk (i.e., investors require a risk

premium for taking on risk). As a consequence of the latter, the rate at which investors discount

their expected payoffs would differ across all investors and so the price of the derivate.

Given the laboriousness and complexity of quantifying each investor’s risk aversion, practitioners

would rather use a probability measure Q in which investors are neutral to risk and only expect the

risk-free return. The Fundamental Theorem of Asset Pricing affirms the existence of a risk-neutral

measure (also called Equivalent Martingale Measure (EMM)) if and only if the market is arbitrage

free. However, in the cases when the markets are incomplete, this measure is not unique. With

the assistance of Radon-Nikodým derivative and Girsanov’s theorem, one can define a risk-neutral

measure Q equivalent to the real-world P.

In the Merton Jump-Diffusion framework, the Radon-Nikodým derivative for t ≤ T is given by

dQ
dP
|T = exp

(
− θ2

2
T − θWT +

NT∑
i=0

(γYi + υ)λκ′T

)
. (3.2)

With the expected proportional jump size being κ ≡ EP[eY − 1], the moment generating function of

all jump sizes is given by

κ′ ≡ eυMP,Y (γ)− 1 = eυEP[eγY ]− 1. (3.3)

One can easily verify that (3.2) satisfies the property of a Radon-Nikodým derivative and that it is a

martingale in the real world measure P. However, the choices of the parameters υ and γ will dictate

which EMM will be generated and as a consequence determine the distribution of the jump size and
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the jump intensity respectively. Thus, υ and γ can be chosen such that it produces an EMM for

(3.1). The following lemma will assist in forming the risk-neutral dynamics for the Merton-Jump

Diffusion model.

Lemma 3.1. Let P and Q be equivalent measures. Further, allow (Ω,F ,Ft,P) to be the probability

measure space such that Ft is the natural filtration generated by a standard Brownian motion Wt, a

compounding Poisson process
∑Nt
i=0 Yi with the intensity λ > 0, and a Radon-Nikodým derivative of

the form (3.2) where λ, υ ∈ R and κ′ is given by (3.3).

Then the Brownian motion Wt has drift −θ under the risk-neutral measure Q and the compound

Poisson process
∑Nt
i=0 Yi under the measure Q has a new intensity λ̂ = λ(1 + κ′) and a new dis-

tribution for the jump-sizes. The moment generating function of the jump-size distribution is given

by

MQ,Y (u) =
MP,Y (γ + u)

MP,Y (γ)

[3].

Recall that under the risk-neutral measure the discounted price process is a martingale. First,

assume that γ = 0 and υ = 0. Next, setting κ′ = 0 in Lemma 3.1 will under the measure Q provide

the Poisson process with the intensity λ̂ = λ.

The discounted stock process DtSt = e−rtSt can then be expressed as

d(DtSt) = −rSte−rtdt+ e−rtdSt

= −rSte−rtdt+ e−rt
(
µStdt+ σStdWt + Std(

Nt∑
i=1

(eYi − 1))
)

= σe−rtSt

(µ− r
σ

dt+ dWt +
1

σ
d(

Nt∑
i=1

(eYi − 1))
)

= σDtStdW
Q
t

(3.4)

where

WQ
t =

∫ t

0

θds+Wt, (3.5)
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which yields

θ =
µ− r + λκ

σ
where κ = EQ[eY − 1]. (3.6)

The parameter θ can be interpreted as an analogue to the Sharpe ratio (or Reward-to-Volatility

ratio), where the expected jump-magnitude κ have an impact on the excess return.

Recall that the distribution of the jump sizes is characterized by (3.3). Given the choice of γ

and υ, the distribution of Y under Q is equivalent to the distribution under the original measure P,

i.e., Y ∼ N(µj , δ
2). Hence, the average jump size can be expressed as

κ = EQ[eY − 1] =

∫
R
(ey − 1)f(y)dy = eµj+

δ2

2 − 1. (3.7)

The new process dWQ
t = θdt+dWt is a standard Brownian motion under the risk-neutral measure

Q categorized by the Radon-Nikodym derivative, where θ is an adapted process and Wt a standard

Brownian motion under P. The parameter θ is also known as the market price of risk, i.e., the

additional return an investor requires for bearing risk. The risk-neutral measure Q as defined in

Girsanov’s Theorem is equivalent to the physical measure P, which turns the discounted stock price

DtSt into a martingale. More rigorously, applying Itô’s formula on (3.4) results in

DtSt = S0 +

∫ t

0

σDuSudW
Q
u

where the second term is an Itô integral, which by definition is a martingale. Substituting dWt with

dWt
Q yield the risk-neutral return dynamics of the MJD model

dSt
St−

= (r − λκ)dt+ σdWt
Q + d(

Nt∑
i=1

(eYi − 1)).
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4 Empirical Discussion

4.1 Data

The data used in the calibration was historical quotes on European call options on the VIX, which

was purchased directly from the Chicago Board Options Exchange (CBOE). The date range spans

June 16, 2008, to November 19, 2008 (cf. Figure 2). This section focuses on the underlying asset,

the VIX volatility index, and its statistical characteristics. The time frame of the valued options

spanned 111 days and was evaluated over maturities of one, three and five months. This time frame

is considered one of the most distressed and volatile periods in history. Figure 1 display a larger

time frame of the VIX, which feature the distressed period following the collapse and bankruptcy of

the United States fourth-largest investment bank Lehman Brothers on September 15, 2008.
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Figure 1: The VIX and the S&P 500 for January 2, 1990, - November 15, 2017. Data: Bloomberg
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4.2 Empirical Properties

By adding the compounded Poisson jump component to the traditional Black-Scholes model, Merton

aimed to capture the empirically observed leptokurtic feature of the return distribution, which is

characterized by heavier tails and higher peakedness. Table 2 displays the four empirical moments of

log returns for the realizations in Figure 3. Figure 4 and 6 provides us with an pictorial representation

of the characteristics listed in table 2. Both Kernel estimates (cf. Figure 5 and 7) seem normally

distributed with slight positive skewness. As mentioned earlier, the Merton Jump Diffusion model

aims to capture both negative skewness and excess kurtosis, which has been empirically observed in

stock log return density P[ln(St/St−1)].

The negative skewness in aggregate returns is a result of the positive and upward drift that stocks

market exhibits over longer time frames. VIX differs from traditional indexes and stocks in the sense

that it is supposed to measure the expected volatility in the market. According to CBOE, there has

historically existed an inverse relationship between the VIX and the S&P 500 index. Statistics of

this relationship based on 3206 trading days are captured in table 1 for the time frame January 1,

2000, to September 28, 2012, [2]. This relationship stresses that the log return distribution of the

VIX is positively skewed since it experiences more number of downturns compared to the number

of upturns in the long run. Figure 1 illustrates this relationship.
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Figure 2: The VIX between June 16, 2008 - November 19, 2008. Data: Bloomberg
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Figure 3: The log returns of VIX spanning June 16, 2008-November 19, 2008.
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Table 1: Relationship between the VIX and SPX

(January 1, 2000, - September 28, 2012.)

S&P 500 Up VIX Index Down Percent Opposite

1692 1390 82.15%

S&P 500 Down VIX Index Up Percent Opposite

1514 1187 78.40%

Table 2: Descriptive Statistics of the CBOE VIX.

Period Mean Standard Deviation Skewness Excess Kurtosis

Jun 16 2008 - Nov 19 2008 0.00014433 0.0926517 0.1008 4.3305

Jan 2 1990 - Nov 15 2017 -3.87607e-05 0.0636204 0.6903 7.4532
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Figure 4: Histogram of VIX log returns for June 16, 2008, - November 19 2008.
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Figure 5: Kernel Estimate of VIX log returns for June 16, 2008, - November 19 2008.
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Figure 6: Histogram of VIX log returns for Jan 2, 1990, - Nov 15 2017.
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Figure 7: Kernel Estimate of VIX log returns for Jan 2, 1990, - Nov 15 2017.
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5 Fourier Based Option Pricing

There are several acceptable approaches to valuing European call options. For example, one can

through Monte-Carlo methods simulate a large number of sample paths of the underlying asset. The

price of the option is then computed by averaging the sum of the payoffs generated by each sample

path. One can also calculate the price by numerically solving partial differential equations through

the means of finite difference or finite element methods. However, there exists a more accurate and

faster pricing method called the Fast Fourier Transform (FFT). Nevertheless, the method requires

that the risk-neutral probability density of the logarithmic stock price is known. Unfortunately, for

many pricing processes, the risk-neutral density is unknown. Instead, the Fourier transform of these

densities, i.e., their characteristic functions, can in most cases be obtained in closed form. Before

going into the details about FFT, a brief, but complete introduction on Fourier transforms will be

provided.

5.1 Fourier Transforms

The Fourier transform, f̂(ω), of the integrable function f(x) : R→ C is given by

f̂(ω) = (Ff)(ω)

∫ ∞
−∞

e−iωxf(x)dx (5.1)

where i ∈ C and u ∈ R ∨ C.

By inverting (5.1) yield the inverse Fourier transform

f(x) = (F−1f)(ω) =
1

2π

∫ ∞
−∞

eiωxf̂(ω)dω.

Also, to ensure the existence of the Fourier transform (5.1), f(x) must be fully integrable, i.e.,

satisfying ∫ ∞
−∞

∣∣f(x)
∣∣dx <∞. (5.2)

The previous condition is also required for the existence of the inverse transform (5.1). Considering
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the tools developed in this section, we may move to the next section, which will provide details on

the Carr-Madan option pricing approach.

5.2 Carr-Madan Approach (1999)

In the paper, ”Option valuation using the Fast Fourier Transform,” Peter Carr and Dilip B. Madan

(1999) shows how the Fast Fourier transform algorithm can be used to value European options when

the characteristic function of the return is known analytically. This method involves generating a

Fourier transformation for different values of the underlying asset. This a two step approach, which

start with performing a Fourier transformation on the payoff-function with respect to the strike price

K. Second, changing the order of the integration enables one to compute the fair price of the option

as an inverse Fourier transformation and therefore applying the appropriate characteristic function.

A detailed demonstration of this pricing technique starts with the familiar risk-neutral valuation,

which for a European call option with strike price K and maturity T as CT (K) = max[ST −K, 0]

satisfies

CT (k) = e−rTEQ
T [(es − ek)+] = e−rt

∫ ∞
k

(es − ek)+q(s)ds

where s = logST , k = logK, and q(s) is the risk-neutral density of ST . When determining the

price of an option, one has to take into consideration the two cases of the option being In-the-Money

(ITM) or Out-of-the-Money (OTM), which for a European call option mean that k < logS0 or

k > logS0 respectively.

In-the-Money Options

It is obvious that when k → −∞

CT (k) = e−rT
∫ ∞
−∞

esq(s)ds = e−rTEQ[es] = S0, (5.3)

which is a martingale. Since (5.3) does not converge to zero, the condition (5.2) is unfulfilled and
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thus CT (k) /∈ L1. To ensure integrability of CT (k) Carr and Madan introduced a damping factor

eαk (α > 0). Consequently, the call price is modified into

cT (k) = eαkCT (k)

and assures that ∫ ∞
−∞

∣∣eαkCT (k)
∣∣dk <∞.

Assuming that the previous condition is fulfilled, the Fourier transform of a European call at

time T is

ψT (ω) =

∫ ∞
−∞

eiωkcT (k)dk.

Acknowledging the symmetry of the characteristic function, taking the inverse transform will yield

the price of the European call as

cT (k) =
e−αk

π
R

[∫ ∞
0

e−iωkψT (ω)dω

]
. (5.4)

Carr and Madan define the Fourier transform of an ITM European call as

ψITM
T (ω) =

e−rTφ(ω − (α+ 1)i)

α2 + α− ω2 + i(2α+ 1)ω
(5.5)

where φ is the characteristic function φ(x) = EQ
T [eixsT ] and sT = logST [1].

Out-of-the-Money Option

To ensure integrability for OTM options Carr and Madan introduced a different damping factor

sin(αk), which provides the Fourier transform

ψOTM
T (ω) =

∫ ∞
−∞

eiωk sinh(αk)cT (k)dk =
ξ(ω − iα)− ξ(ω + iα)

2

where

ξ(ω) = e−rT
[

1

1 + iω
− erT

iω
− φ(ω − i)
ω2 − iω

]
(5.6)
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which can be derived in a similar fashion as (5.5). By taking the inverse Fourier transform, the value

of the European call becomes

cT (k) =
1

2π sinh(αk)

∫ ∞
−∞

e−iωkψOTM
T dω. (5.7)

As the intrinsic value of (5.7) is zero the only value embedded in the option will be the time value [1].

The characteristic function for the Merton Jump-Diffusion dynamics is the well-established function

φMJD(x) = exp
((
ixβ − x2σ2

2
+ λ(eixµj−x

2δ2/2 − 1)
)
T
)

(5.8)

where β is the risk neutral drift

β = r − σ2

2
− λκ

where κ is the same as in (3.6). Hence, valuating the European call essentially becomes a matter of

inserting (5.8) into (5.5) or (5.6) and apply the Fast Fourier Transform algorithm.

5.3 Fast Fourier Transform (FFT)

Introduced by Cooley and Tuckey (1965), the Fast Fourier Transform (FFT) is a powerful algorithm

to compute sums of the form

w(υ) =

N∑
j=1

e−i
2π
N (j−1)(υ−1)x(j), υ = 1, . . . , N (5.9)

in a fast and accurate fashion [4]. Hence, the integral (5.4) can be numerically approximated by the

sum

CT (k) ≈ e−αk

π
R

[
N∑
j=1

e−iωjkΨ(ωj)η

]
, (5.10)

where ωj = η(j − 1), j = 1, . . . , N and η > 0 denotes the distance between the points in the

integration grid. We consider strike prices close to S0 as those options are usually the most liquid.

Next, we define an array consisting of log-strikes as

kυ = −z + ε(υ − 1) (5.11)
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where υ = 1, . . . , N and where ε > 0 is considered the spacing parameter for the log-strikes [1]. This

spacing will yield N number of log-strikes bounded between −z and z where z = 0.5ε. Substituting

k for (5.11) in (5.10) yields

CT (kυ) ≈ e−αkυ

π
R

[
N∑
j=1

e−iωj(−z+ε(υ−1))Ψ(ωj)η

]
. (5.12)

Recalling that ωj = ω(j − 1), (5.12) can be rewritten as

CT (kυ) ≈ e−αkυ

π
R

[
N∑
j=1

e−iεη(j−1)(υ−1)izωjΨ(ωj)η

]
. (5.13)

Provided that εη = 2π
N , (5.13) is of the form (5.9), the FFT can be applied. Nonetheless, the

limitation around the term εη results in a trade-off. A small η will provide a fine grid to integrate

over, but will contribute with strike prices further away from the S0. This issue was solved by using

weightings based on Simpson’s rule. The approximated call price (5.13) takes on the form

CT (kυ) ≈ e−αkυ

π
R

[
N∑
j=1

e−iεη(j−1)(υ−1)izωjΨ(ωj)
η

3

(
3 + (−1)j − δj−1

)]

where δn is the Kroenecker delta function, which
δn = 1 if n = 0

δn = 0 if n 6= 0.

This modification allows us to maintain a fine grid while increasing the size of η [4].

5.4 Model Calibration

Given the options in table 8, 9, and 10, the chosen subset of options was based on strike prices ±10%

around the current VIX index level S0 = 20.95 as we found them to be the most liquid ones. The

objective of the model calibration is to find model parameters of the Merton Jump-Diffusion model

such that the chosen VIX call option quotes are imitated as closely as possible. The calibration was

achieved by applying a Root Mean Square Error (RMSE) function of the following form

min
σ,λ,µj ,δ

√√√√ 1

N

N∑
n=1

(
Cn − Ĉn(σ, λ, µj , δ)

)2
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where Cn is the observed market quotes and Ĉn the MJD model prices. As there might exist multiple

local minima, the minimization procedure started with a brute force method, which required an

arbitrarily initial guess x0 for each parameter. It uses a global minimization method, which roughly

scans the multidimensional error grid to find a local and more promising area. Subsequently, the

yielded result is used as an initial guess for a minimization method based on a simplex algorithm,

which scans the suggested local area more thoroughly.

5.5 The Risk-Free Interest Rate

Regarding the risk-free interest rate, the convention for pricing CBOE VIX options is U.S. Treasury

bills. The calibration is performed for three maturities and therefore interest rates corresponding

to these periods are required. The U.S. Treasury bill rates have been collected from the United

States Treasury’s website [11]. As the date of these rates did not match the expiration date of the

options, a linear interpolation on these rates was necessary. The interpolated rates corresponding

to the three maturities are displayed in the table below.

Table 3: U.S. Treasury Rates and Interpolated Rates

Treasury Rates 4 Weeks (28 days) 13 Weeks (91 days) 26 Weeks (182 days)

2008-06-16 1.88% 2.08% 2.42%

Interpolated Rates 30 days 93 days 157 days

2008-06-16 1.8863% 2.0875% 2.3266%
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6 Results and Discussion

Judging by the results listed in table 4, the Merton Jump-Diffusion model is far from perfect as it

yields prices that are inconsistent with the observed market prices. However, the results suggest that

the Merton Jump-Diffusion model improves for longer maturities, while its predecessor, the Black-

Scholes model deteriorates at the same maturities. Illustrations of these results are displayed in figure

9. Following the news surrounding the insolvency of the insurance giant American International

Group, Inc, and the bankruptcy of the investment bank, Lehman Brothers on September 15, 2008,

there was a dramatic increase in market volatility and jumps, which explains why the MJD model

dominates the Black-Scholes model during such a market climate. The latter might also explain why

the Merton Jump-Diffusion model is closer to replicate the option prices for options with maturity

date September 17, 2008. Nevertheless, when markets are smooth, and jumps are absent, the MJD

model will price closer to the Black-Scholes model. In other words, the residual of the market price

and MJD price should always be equal or greater than the residual of the market price and the

Black-Scholes price.

Even though the MJD model seems to have better captured the features of a turbulent market

environment, the extended jump parameter has not been enough to capture the real volatility surface

as the volatility smile changes with strike price and maturity. Being a simple modification of the

original Black-Scholes, the MJD offers a higher degree of freedom (i.e. more parameters) that makes

its calibration less challenging than in the BSM case. However, in a survey conducted by Peter

Tankov and Ekaterina Voltchkova (2009), Tankov and Voltchkova claim that the inclusion of a jump

component to the traditional BSM is insufficient to accommodate for different maturities and strike

levels [10]. The previous statement suggests that the real world financial markets are far more

complex than the MJD market dynamics.

Summaries of the parameter estimations are displayed in tables 6 and 7. The poor results are

likely a consequence of the unrealistic assumption of constant volatility in the Merton Jump-Diffusion
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model. Also, important to keep in mind is that the MJD and the BSM model are being tested at

exceptional circumstances. Either way, in the paper ”Implied Calibration and Moments Asymptotics

in Stochastic Volatility Jump-Diffusion Models,” Stefano Galluccio and Yann Le Cam (2008), p. 9,

argues that either a pure jump or stochastic volatility in isolation cannot fit the volatility smile

because of the simultaneous presence of both jump and stochastic volatility in the market [5].

Today, there exist models which can cope with several sources of risk such as, risk in the un-

derlying asset, volatility risk, jump risk, and interest rate risk, which all affects the price of equity

derivatives. The difficult task is to find ways that are both efficient and accurate regarding time and

valuation. Despite the positive development seen in the past 40 years in option theory, the quest in

finding the ”perfect” model continuous.

Table 4: Calibration Result

Date Maturity Trade Vol. Rate (%) Strike Market Price MJD Price BS Price

2008-06-16 2008-07-16 70 1.8863 19.0 4.10 3.20 2.07

2008-06-16 2008-07-16 638 1.8863 20.0 3.46 2.63 1.08

2008-06-16 2008-07-16 7280 1.8863 22.5 2.35 1.52 0

2008-06-16 2008-09-17 25 2.0875 19.0 5 4.76 2.33

2008-06-16 2008-09-17 100 2.0875 20.0 4.40 4.27 1.35

2008-06-16 2008-09-17 108 2.0875 22.5 3 3.23 0

2008-06-16 2008-11-19 2 2.3266 19.0 5.40 5.84 2.59

2008-06-16 2008-11-19 290 2.3266 20.0 4.66 5.40 1.62

2008-06-16 2008-11-19 10 2.3266 22.0 3.60 4.60 0
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Table 5: Error Result

Date Maturity Trade Vol. Market Price Diff: MJD/Market Diff: BSM/Market

2008-06-16 2008-07-16 70 4.10 -0.90 -2.03

2008-06-16 2008-07-16 638 3.46 -0.83 -2.38

2008-06-16 2008-07-16 7280 2.35 -0.83 -2.35

2008-06-16 2008-09-17 25 5 -0.24 -2.67

2008-06-16 2008-09-17 100 4.40 -0.13 -3.05

2008-06-16 2008-09-17 108 3 0.23 -3

2008-06-16 2008-11-19 2 5.40 0.44 -2.81

2008-06-16 2008-11-19 290 4.66 0.74 -3.04

2008-06-16 2008-11-19 10 3.60 1 -3.60

Table 6: Parameter Summary Merton’s Jump-Diffusion.

σ̂ λ̂ µ̂ δ̂ RMSE

0.817 4.434 -0.157 0 0.639

Table 7: Parameter Summary Black-Scholes.

σ̂ RMSE

0.004 2.804
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Figure 8: Results of the 3 maturity calibration of the MJD model.
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Figure 9: Results of the 3 maturity calibration of the BSM model.
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Table 8: VIX Option Quotes for 1 Month Maturity.

Date Maturity Strike Call Trade Volume

2008-06-16 2008-07-16 10 12.60 50

2008-06-16 2008-07-16 15 7.80 154

2008-06-16 2008-07-16 17 0 0

2008-06-16 2008-07-16 18 5.10 80

2008-06-16 2008-07-16 19 4.10 70

2008-06-16 2008-07-16 20 3.46 638

2008-06-16 2008-07-16 22.50 2.35 7280

2008-06-16 2008-07-16 25 1.40 14669

2008-06-16 2008-07-16 27.50 0.85 12603

2008-06-16 2008-07-16 30 0.55 6847

2008-06-16 2008-07-16 32.50 0.35 21311

2008-06-16 2008-07-16 35 0.25 242

2008-06-16 2008-07-16 37.50 0.18 167

2008-06-16 2008-07-16 40 0 0

2008-06-16 2008-07-16 42.50 0 0

2008-06-16 2008-07-16 45 0.05 151

2008-06-16 2008-07-16 50 0 0
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Table 9: VIX Option Quotes for 3 Month Maturity.

Date Maturity Strike Call Trade Volume

2008-06-16 2008-09-17 10 0 0

2008-06-16 2008-09-17 15 8.80 2

2008-06-16 2008-09-17 17 0 0

2008-06-16 2008-09-17 18 0 0

2008-06-16 2008-09-17 19 5 25

2008-06-16 2008-09-17 20 4.40 100

2008-06-16 2008-09-17 22.50 3 108

2008-06-16 2008-09-17 25 0 0

2008-0616 2008-09-17 27.50 1.50 210

2008-06-16 2008-09-17 30 1 1120

2008-06-16 2008-09-17 32.50 0 0

2008-06-16 2008-09-17 35 0 0

2008-06-16 2008-09-17 37.50 0 0

2008-06-16 2008-09-17 40 0 0

2008-06-16 2008-09-17 42.50 0 0

2008-06-16 2008-09-17 45 0 0

2008-06-16 2008-09-17 50 0 0
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Table 10: VIX Option Quotes for 5 Month Maturity.

Date Maturity Strike Call Trade Volume

2008-06-16 2008-11-19 10 0 0

2008-06-16 2008-11-19 15 8.80 3

2008-06-16 2008-11-19 17 0 0

2008-06-16 2008-11-19 18 0 0

2008-06-16 2008-11-19 19 5.40 2

2008-06-16 2008-11-19 20 4.66 290

2008-06-16 2008-11-19 22 3.60 10

2008-06-16 2008-11-19 24 2.55 10

2008-06-16 2008-11-19 26 0 0

2008-06-16 2008-11-19 28 0 0

2008-06-16 2008-11-19 30 1.30 613

2008-06-16 2008-11-19 32.50 0.90 3

2008-06-16 2008-11-19 35 0.80 20

2008-06-16 2008-11-19 37.50 0 0

2008-06-16 2008-11-19 40 0 0

2008-06-16 2008-11-19 42.50 0 0

2008-06-16 2008-11-19 45 0 0

2008-06-16 2008-11-19 50 0.10 100
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