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1 Introduction

Due to the large number of assets being traded in the financial markets, the
measure of risk associated with the movements of market prices is crucial in
financial applications. Market risk is measured by volatility which usually is
defined as the conditional variance of returns (relative price changes). How-
ever since volatility of an asset is not observable, the true level of volatility
has to be estimated. The construction of a model for measuring and pre-
dicting future volatility is crucial in areas such as option pricing and risk
management. In risk management, future volatility is needed for estimat-
ing potential future losses of a portfolio. It is well-known that financial
returns satisfies some general characteristics. Mandelbrot(1963) first noted
that volatility is time varying with periods of either large or small movements
in prices referred to as volatility clustering. In order to capture volatility
clusters in financial returns, Engle(1982) introduced the Autoregressive Con-
ditional Heteroscedasticity (ARCH) model. Bollerslev(1986) extended the
ARCH model to the Generelized Autoregressive Conditional Heteroscedas-
ticity (GARCH) model which is able to capture volatility clusters in a larger
degree using fewer parameters for estimation. Mandelbrot(1963) also noted
that the tail distribution of returns often is thick, resulting in a relative high
probability for extreme values. For GARCH models, even if the conditional
distribution of returns is assumed as normally distributed, the unconditional
distribution has thicker tails compared to the normal distribution. However,
GARCH model are usually not able to capture all level of tail thickness in
returns suggesting that the conditional distribution is non-normal. Boller-
slev(1987) suggested the use of student-t distribution for the conditional dis-
tribution. Black(1976) noted that positive and negative price changes tend to
have an asymmetric impact of volatility where a large negative price decrease
tend to increase future volatility. This is referred to as the leverage effect.
Nelson(1991) and Glosten et al.(1993) proposed their extensions known as
Exponential GARCH (EGARCH) and GJR-GARCH in order to capture the
leverage effect evident in financial returns.
The goal of this thesis is to compare the forecasting performance of several
GARCH volatility models. Evaluating the forecasting accuracy of volatil-
ity models is challenging. A proxy for the unobservable true volatility is
used combined with a loss function in order to measure the accuracy of
forecasts. The range-based proxies used include opening, high, low and clos-
ing prices. Bennett,Gil(2012) argues that the Yang,Zhang proxy, defined
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in Yang,Zhang(2000), is theoretically more efficient as a range-based proxy
compared to the Parkinson proxy, defined in Parkinson(1980), which works
better for empirical data according to some studies. Patton(2006) showed
that the MSE and QLIKE loss functions are robust to the choice of an un-
biased proxy in the sense that the ranking of volatility forecasting models
is true even if using an unbiased volatility proxy. GARCH models are also
evaluated in terms of value-at-risk forecasting performance. The forecasting
performance comparison between GARCH models are in focus rather than
their individual forecasting performance.
The rest of the thesis is structured as follows: theory in section 2 defines
all statistics, hypothesis tests and models in order to fully understand the
results. Section 3 describes the methods used for analysis of the data set.
Section 4 describes the results in detail where tables and figures are pre-
sented. Section 5 summarizes the main conclusions of the results and section
6 discusses the results.
The overall conclusions for volatility forecasts using GARCH models suggests
that asymmetric GARCH models are able to capture the leverage effect in
the data set in order to generate more accurate forecasts. The scheme used
for selecting data for estimation clearly affects the accuracy of forecasts.
The forecasting performance of volatility and value-at-risk commbined sug-
gest that GARCH models which tend to overestimate volatility forecasts also
tend to overestimate value-at-risk forecasts.
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2 Theory

Hypothesis tests and statistics are defined in order to describe return data.
GARCH models are defined in terms of the conditional variance, error distri-
butions and methods used for estimation. Proxies for the unobservable true
volatility and robust loss functions are defined in order to evaluate one-day
ahead volatility forecasts. The concept of value-at-risk is introduced and the
loss function used for evaluation of value-at-risk forecasts is defined.

2.1 Empirical properties of returns

Volatility models are constructed in order to capture typical patterns of asset
returns. Engle,Patton(2001) summarized the empirical properties of asset re-
turns as:
a) Volatility fluctuates in a continuous manner over time around its un-
conditional mean and does not diverge to infinity. Volatility models are
constructed such that long-run forecasts of volatility converges to the uncon-
ditional volatility.
b) Periods of either large or small changes in returns tend to come in clusters
which is referred to volatility clustering.
c) Volatility tend to increase after a price decrease compared to a price in-
crease of same size. It is referred to as leverage effect.
d) Return data tend to include relatively high frequencies of large price
changes. The tail distribution of returns is usually thick.

2.2 Hypothesis tests

2.2.1 Skewness

Skewness is defined as a normalized form of the third central moment and
measures the symmetry of a distribution around its mean. Skewness is esti-
mated by:

S =
√
T

∑T
i=1(xi − x̄)3

(
∑T

i=1(xi − x̄)
3
2 )2
∼ N(0, 6/T ). (1)

Under the assuption of normality, S is asymptotically distributed as normal
with zero mean and variance 6/T . To test for negative skewness of a dis-
tribution, consider the null hypothesis H0 : S = 0 versus Ha : S < 0. The
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t-ratio statistic of the sample skewness is

z =
S√
6/T

∼ N(0, 1), (2)

where z is asymptotically standard normal. H0 is rejected at significance
level α if z < Zα where Zα is the lower 100α quantile of the standard normal
distribution. The null hypothesis is also rejected if the p-value of the test
statistic is less than α.

2.2.2 Kurtosis

Kurtosis is defined as a normalized form of the fourth central moment and
measures the peakedness and tail behaviour of a distribution. Excess kurtosis
is defined as K − 3 since a normal distribution has zero excess kurtosis.
Kurtosis is estimated by:

K = T

∑T
i=1(xi − x̄)4

(
∑T

i=1(xi − x̄)2)2
∼ N(3, 24/T ). (3)

Under the normality assumption, K − 3 is asymptotically distributed as
normal with zero mean and variance 24/T . A distribution with positive
excess kurtosis has a higher peak and a heavier tail compared to the normal
distribution and is called leptokurtic. To test for positive excess kurtosis of a
distribution, consider the null hypothesis H0 : K−3 = 0 versus Ha : K−3 >
0. The t-ratio statistic of the sample excess kurtosis is:

z =
K − 3√

24/T
∼ N(0, 1), (4)

where z is asymptotically standard normal. H0 is rejected at significance
level α if z < Z1−α or if the p-value of the test statistic is less than α.

2.2.3 Jarque-Bera test

Jarque, Bera(1987) combines the skewness and kurtosis to test for normality
of a distribution and uses the test statistic:

JB =
S2

6/T
+

(K − 3)2

24/T
∼ χ2

2, (5)

where JB is asymptotically chi-squared distributed with 2 degrees of free-
dom under the null hypothesis that data are i.i.d. normal. The normality
assumption in H0 is rejected if the p-value of the JB-statistic is less than α.
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2.2.4 One-sample t test

The one-sample t test is a parametric test for the location parameter µ when
σ is unknown. The test-statistic is defined as:

t =
x̄− µ
s/
√
T
∼ tT−1, (6)

where s is the sample standard deviation of the sample data. Under the
assumption of the null hypothesis, t is student-t distributed with T-1 degrees
of freedom, t ∼ tT−1. The null hypothesis, x̄ = µ, is rejected at significance
level α if the p-value of the test is less than α.

2.2.5 Chi-Square Variance Test

The chi-square variance test tests if the sample variance is constant. The
test-statistic is defined as:

V = (T − 1)
s2

σ2
∼ χ2

T−1. (7)

Under the assumption of the null hypothesis, V is chi-squared distributed
with T-1 degrees of freedom, V ∼ χ2

T−1. The null hypothesis of constant
variance is rejected at significance level α if the p-value of the test is less
than α.

2.2.6 Modified Q-test

The modified Q-statistic measures the autocorrelation in squared returns and
is defined as:

MQ(l) = T (T + 2)
l∑

j=1

ρ2j
T − j

∼ χ2
l , (8)

where ρj is the j-lag sample autocorrelation of squared returns. If data is
i.i.d. then MQ(l) is asymptotically chi-square distribution with l degrees of
freedom. Tsay(2002) argues that log(T ) is a suitable value for l. To test
for autocorrelation in raw returns given present ARCH effects, Diebold and
Lopez(1996) suggests using the heteroskedasticity robust version of MQ(p):

MQHC(l) = T (T + 2)
l∑

j=1

ρ2j
T − j

(
σ4

σ4 + γj
) ∼ χ2

l , (9)
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where σ4 is the squared sample variance of returns, γj is the sample auto-
covariance of squared returns and ρj is the j-lag sample autocorrelation of
the returns.

2.3 Volatility Models

Let Pt be the closing price at day t and define rt = log(Pt−1)− log(Pt) as the
continuously compounded return, or logarithmic return, over the period t-1
to t. GARCH models are defined as:

rt = µt + εt, µt = E[rt|Ft−1], εt = σtzt, σ2
t = V ar(rt|Ft−1), (10)

where µt is the conditional mean and σ2
t is conditional variance given the

information set Ft−1 at time t − 1. zt is defined as i.i.d. with zero mean
and unit variance and εt is serially uncorrelated but serially dependent. If
zt is standard normal, the conditional distribution of εt is normal with zero
mean and time-varying conditional variance σ2

t . However, GARCH models
are constructed in such a way that the unconditional distribution of zt is
non-normal.

2.4 Conditional Mean

For significant serial correlation in returns, let rt follow a stationary ARMA(p,q)
model with lags p and q:

µt = E[rt|Ft−1] = φ0 +

p∑
i

φirt−i −
q∑
i

θiεt−i, (11)

where p, q are non-negative integers defining the AR and MA orders. For
daily returns, the conditional mean is typically specified as constant or an
autoregressive model with p = 1.

2.5 Conditional Variance

The volatility process, measured by the conditional variance, has strong serial
correlation meaning that future level of variance tomorrow is affected by the
current level of today. Let the conditional variance of today be the average
of the m most recent conditional variances:

σ2
t =

1

m

m∑
i=1

σ2
t−i ≈

1

m

m∑
i=1

r2t−i. (12)
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Note that the forecast for the variance of tomorrow is a proper forecast since
it is available at the end of today. The one-day ahead forecast is defined
by replacing t with t + 1|t. However since it puts equal weights on each
observations, an extreme observation affects future variances for m periods.
The choice of m greatly affects the pattern of the volatility process. Empirical
data suggests a more gradual decline for the effect of past returns on future
conditional variance. The RiskMetricTM model, where the weights of past
squared returns decline exponentially, is defined as:

σ2
t = (1− λ)

∞∑
i=2

λi−1r2t−i, 0 < λ < 1. (13)

The level of variance today can be written as:

σ2
t = λσ2

t−1 + (1− λ)r2t−1, (14)

where λ = 0.94 often is used. The volatility level of today is as a weighted
average of the conditional variance and squared return from yesterday. The
construction of estimation of variance only uses 100 observations (99.8% of
the weights included), which is a huge advantage for large portfolios. The
one-day ahead forecast is defined by replacing t with t + 1|t. However only
one-day ahead forecasts are available using the RiskMetricTM model. In risk
management and option pricing, multiperiod volatility forecasts are usually
needed.

2.5.1 ARCH

Engle(1982) suggested that the serial correlation in squared returns can be
modelled using a linear function of past squared innovations. An autore-
gressive conditional heteroskedasticity (ARCH) model for the conditional
variance is defined as:

σ2
t = a0 +

q∑
i=1

aiε
2
t−i, (15)

where the ARCH(q) process is well-defined and the conditional variance σ2
t

is positive if a0 > 0, ai ≥ 0, i = 1, .., q. If
∑q

i=1 ai < 1 then εt is covariance
stationary, and the unconditional variance of εt is a0/(1 −

∑q
i=1 ai). The

one-day ahead forecast is defined by replacing t with t + 1|t. Also k-ahead
forecasts can be constructed for ARCH models.
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2.5.2 GARCH

In empirical applications, a relatively long lag in the ARCH(q) model is
needed to describe the heavy tails and volatility clustering in the volatil-
ity process of returns. Bollerslev(1986) proposed a generalization of the
ARCH(q) model to allow for past squared innovations but also past condi-
tional variances in the current conditional variance equation. The generalized
ARCH (GARCH) model is defined as:

σ2
t = a0 +

q∑
i=1

aiε
2
t−i +

p∑
j=1

biσ
2
t−i, (16)

where the GARCH(p,q) process is well-defined and the conditional variance
σ2
t is positive if a0 > 0, ai ≥ 0, i = 1, .., q and b0 > 0, bj ≥ 0, j = 1, .., p.

If
∑q

i=1 ai +
∑p

j=1 bj < 1 then εt is covariance stationary, and the uncon-
ditional variance of εt is a0/(1 −

∑q
i=1 ai −

∑p
j=1 bj). It can be shown that

the GARCH(p,q) model is equivalent to an ARCH(∞) model. The one-day
ahead forecast is defined by replacing t with t + 1|t. Also k-ahead forecasts
can be constructed for GARCH models.

2.6 Asymmetric Conditional Variance

Standard GARCH models are able to capture thick tails and volatility clus-
ters in returns, however these models are not able to capture the leverage
effect often evident in returns. Empirical data for stock returns suggests
that there is a negative correlation between the return of today and future
volatility. Asymmetry is built in to the conditional variance functions re-
flecting that a decrease in stock prices tends to larger increase in volatility
compared to the effect of an increase of same size in stock prices.

2.6.1 EGARCH

Nelson(1991) introduced the exponential GARCH (EGARCH) model to al-
low for asymmetric effects in its conditional variance function. The EGARCH
model is defined as:

log(σ2
t ) = a0 +

q∑
i=1

ai
|εt−i|+ γiεt−i

σt−i

p∑
j=1

bjlog(σ2
t−j). (17)
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If γi is negative then bad news will have a larger impact on volatility since
the total effect of εt−i is (1− γi)|εt−i| for bad news and (1 + γi)|εt−i| for good
news. σ2

t is always guaranteed to be positive because the logarithm of σ2
t is

modelled. EGARCH is covariance stationary if
∑p

j=1 bi < 1. The one-day
ahead forecast is defined by replacing t with t + 1|t. Also k-ahead forecasts
can be constructed for EGARCH.

2.6.2 GJR

Glosten et al.(1993) presented the GJR(p,q) model to allow for asymmet-
ric effects in its conditional variance function with the use of an indicator
function. GJR(p,q) is defined as:

σ2
t = a0 +

q∑
i=1

(ai + γiSt−i)ε
2
t−i +

p∑
j=1

bjσ
2
t−j, (18)

where St−i = 1 if εt−i < 0 and St−i = 0 if εt−i ≥ 0. When εt is positive then
the total effects are aiε

2
t−i and (ai + γi)ε

2
t−i if εt is negative. If γi is positive,

bad news will have a larger impact on σ2
t . The one-day ahead forecast is

defined by replacing t with t+1|t. Also k-ahead forecasts can be constructed
for GJR.

2.7 Distributions

For GARCH models, even if the conditional distribution of innovations is nor-
mally distributed, the unconditional distribution of innovations has thicker
tails compared to the normal distribution.

2.7.1 Normal Distribution

The density function of a normal distribution is defined as:

f(z) =
1√
2π
e−

(z−µ)2

2σ2 ,−∞ < z <∞, (19)

where z has standard normal distribution for µ = 0, σ = 1.
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2.7.2 Student’s t-Distribution

Bollerslev(1987) suggested the use of a standardized Student’s t-distribution
in GARCH models. For a random variable ut with t distribution and v
degrees of freedom and scale parameter st, the density function of ut is:

f(ut) =
Γ[(v + 1)/2)]

(vπ)1/2Γ(v/2)

s
−1/2
t

[1 + u2t/(stv)](v+1)/2
, (20)

where Γ is the gamma function, Γ(x) =
∫∞
0
yx−1e−y dy. The t-distribution is

standardized for st = σ2
t (v − 2)/v.

2.8 Maximum Likelihood Estimation

In ARCH models, the most commonly used method for estimating model
parameters is the method of maximum likelihood estimation. The likelihood
function of a GARCH(p,q) model, used for estimation, is defined as:

f(ε1, ..., εT |θ) =
T∏

t=p+q+1

f(εt|Ft−1)f(ε1, ..., εp+q|θ), (21)

where θ is the set of parameters to be estimated in the assumed distribution,
conditional mean and conditional variance. For sufficiently large samples,
f(ε1, ..., εp+q|θ) is usually dropped since its exact form is complicated. Maxi-
mizing the likelihood function is equivalent to maximizing the log-likelihood
function. The conditional log-likelihood function for the tth observation is:

lt(θ) = log(f(zt))−
1

2
log(σ2

t (θ), (22)

where the total conditional log-likelihood is the sum of the conditional log-
likelihoods. Under the normality assumption of zt, the resulting conditional
log-likelihood is:

l(zp+q+1, ..., zT |θ, z1, ..., zp+q) = −1

2

T∑
t=p+q+1

(log(σ2
t ) +

ε2t
σ2
t

), (23)

where log(2π) is dropped and σ2
t is evaluated recursively. For GARCH

models an iterative method is needed to obtain a solution of θ since there is
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no closed-form solution. For initial values of θ0, ε0, σ0, the log-likelihood can
be maximized using a numerical optimization method. Newton-Raphson is
often used, where an iteration is defined as:

θn+1 = θn − λnH(θn)−1s(θn), (24)

where θn is the vector of estimated parameters at iteration n, s(θn) and
H(θn) are the gradient vector and Hessian matrix of the log-likelihood at
iteration n. A scalar λn is chosen such that log(θn+1) ≥ log(θn). The BHHH
algorithm is often used for GARCH models which uses first order derivatives
as an approximation for the Hessian matrix.

H(θ) = −
T∑
t=1

δlt
δθ

δlt
δθ
. (25)

Under suitable regularity conditions, even for conditional non-normality these
estimates are consistent and asymptotically normally distributed. An asymp-
totic covariance matrix of the estimates is constructed using the final Hessian
matrix. In practice, the necessary regularity conditions are usually satisfied.

2.9 Volatility Proxy

Since volatility σ2
t is unobservable, a proxy is needed to estimate the true

volatility. The true volatility is defined as the integrated volatility (IV),

σ
2(IV )
t =

∫ t

t−1
σ2(x)dx, (26)

over time interval t−1 to t. The daily squared innovations ε2t , using close-to-
close prices is an unbiased but noisy proxy of the true volatility. Its variance
can be reduced by using more daily squared innovations for estimation. Time
series are however rarely stationary for longer periods meaning that volatility
could change slowly over time.
Andersen,Bollerslev(1998) introduced the realized volatility (RV) which uses
high-frequency data in order to measure daily volatility more accurate. RV
is the sum of squared intra-day returns observed over small non-overlapping
intervals. Under weak regularity conditions, RV converges in probability to
IV as the sampling frequency increases to infinity.
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2.9.1 Range-based proxies

If high-frequency data is not available, the accuracy of estimated volatility
still can be improved using range-based proxies consisting of opening, high,
low and closing prices. Let Ct be the closing price at trading day t, Ot

be the opening at trading day t, Ht the highest price at trading day t and
Lt the lowest price at trading day t. Define the normalized open as ot =
log(Ot) − log(Ct−1), the normalized high as ut = log(Ht) − log(Ot), the
normalized low as dt = log(Ht) − log(Ot) and the normalized close as ct =
log(Ct) − log(Ot). Assume that log(Pt) follows a continuous random walk
dlog(P (t)) = σ(t)dN(t) where the expected squared range value is E[d2t ] =
4log(2)σ2

t . Parkinson’s(1980) range-based estimate of the daily volatility is
defined as:

σ̂2
t =

d2t
4log(2)

. (27)

The variance of the daily squared innovation estimate is 5.2 larger than the
variance of the Parkinson estimate. Since the closing price of yesterday is
assumed to equal the opening price of today, the volatility estimate of parkin-
son is usually underestimated.
Yang,Zhang(2000) introduces their range-based proxy which is unbiased, in-
dependent of the conditional mean and independent of the difference between
yesterday’s closing price and today’s opening price. The variance of the daily
squared innovation estimate is 14 larger than the variance of the daily volatil-
ity estimate using the Yang,Zhang proxy. Assume that volatility is constant
over n (n > 1) trading days. The Yang,Zhang estimate is defined as:

σ̂2
yz = σ̂2

o + kσ̂2
c + (1− k)σ̂2

rs, (28)

where σ̂2
o is the sample variance of {ot}nt=1, σ̂

2
c is the sample variance of {ct}nt=1,

σ̂2
rs is the mean of {ut(ut − ct) + dt(dt − ct)}nt=1 and k = 0.34

1.34+(n+1)/(n−1) . The
Yang,Zhang volatility estimate is the sum of the over-night volatility, the
open to close volatility and the weighted average of the Rogers-Satchell. The
estimate of the daily volatility is defined using n = 2.

2.9.2 Downward Bias of Volatility Estimators

Volatility estimators, which uses the daily high and low prices, are unbiased
while assuming continuous trading. Garman and Klass(1980) and Rogers
and Satchell(1991) showed that these estimators will have a downward bias
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since prices are only observed at discrete time points. The observed daily
high (low) is likely higher (lower) than the theoretical high (low). Yang,
Zhang(2000) showed that for a correction of the downward bias, the volatil-
ity estimate is dependent on the conditional mean and the variance of the
volatility estimate is too large. Even though the Yang,Zhang proxy is more
accurate than the Parkinson estimate for simulated data, Bennett,Gil(2012)
argues that some studies have shown that the Parkinson estimate is a more
accurate proxy for empirical data.

2.10 Statistical Loss Functions

In order to measure the performance of GARCH models, statistical loss func-
tions are constructed. The Schwarz’s(1978) Bayesian Criterion (SBC) is a
measure for the in-sample performance in order to decide which model that
fits the data set best. SBC is defined as:

SBC = −2 ∗ log(L(θ)) + n ∗ log(T ), (29)

where L(θ) is the optimal log-likelihood value, T is the number of observa-
tions and n is the number of parameters needed for estimation. The model
with the lowest SBC value fits the data set best.
In order to evaluate the forecasting performance of GARCH models, loss
functions are constructed to measure the distance between the one-day fore-
casting variance σ̂2

t and the actual, but unobservable variance σ2
t . The mean

squared error (MSE) measures the squared difference between the forecast
and its proxy of the true volatility,

(σ̂2
t − σ2

t )
2. (30)

But underestimating the true volatility could be costly for a conservative
risk manager compared to overestimation of the same amount. The QLIKE
loss function allows for an asymmetric loss in order to evaluate volatility
forecasts,

σ2
t

σ̂2
t

− log(
σ2
t

σ̂2
t

)− 1. (31)

Patton(2006) showed that the MSE and QLIKE loss functions belong to a
family of robust loss functions. Loss functions are robust in the sense that
the rankings of volatility forecasting models with use of an unbiased volatility
proxy is the same as if using the unobservable true volatility.
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2.11 Value-At-Risk

In the beginning of the 1970s, financial institutions faced an increase of insta-
bility in the financial markets. Measures were created in order to calculate
capital charges given the risk financial institutions were facing. Value-at-Risk
(VaR) measures the worst likely outcome for a specific period and confidence
level. For a long trading position, VaR with probability level 1− p satisfies

p = P (εt ≤ V aR
(1−p)
t )⇒ V aR1−p

t = µt + zpσt, (32)

where zp is the 100pth percentile of the assumed distribution of zt. For
p = 0.05 and rt distributed as standard normal, V aR0.95

t = −1.645 which
refers to the risk at a 95% confidence level. For a capital of 10 million,
the 95% VaR equals 164 500. Combining VaR with GARCH modelling, the
one-step ahead VaR forecast is given by:

V aR
(1−p)
t+1|t = µt+1|t + zpσt+1|t, (33)

where µt+1|t and σt+1|t are one-step ahead conditional mean and conditional
variance forecasts. Lopez(1999) proposed a loss function for measuring the
accuracy of VaR forecasts as the squared distance between the forecasted
VaR and the actual return given that VaR is less than the return. Sarma
et al.(2003) extended the loss function using a penalty for overestimation of
VaR. With inspiration of Sarma et al.(2003), the following loss function is
used for measuring the accuracy of the VaR forecasts on the basis of the
distance between the observed returns and the forecasted VaR values:

Lt+1 =

{
(rt+1 − V aR(1−p)

t+1|t )2 rt+1 < V aR
(1−p)
t+1|t

α(rt+1 − V aR(1−p)
t+1|t )2 rt+1 ≥ V aR

(1−p)
t+1|t ,

where α is the size of the penalty.
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3 Method

The data set used for volatility analysis is the stock index S&P500 and is
collected from Yahoo! Finance[32]. S&P500 is an American stock market
index based on 500 large companies which are all listed on NYSE or NAS-
DAQ. The data set starts at 2003-11-21 and ends at 2015-11-27 where stock
indices are converted into logarithmic returns.
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S&P500 indices: 2003-11-21 to 2015-11-27
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Figure 1: Plot of a) daily closing indices and b) logarithmic returns for
S&P500.

The stylized facts of return data are checked including: a) volatility clus-
ters (returns are serially dependent), b) leverage effect (returns are negatively
skewed), c) heavy-tailed distribution (returns have positive excess kurtosis),
d) weak or no serial correlation (if returns are serially correlated then returns
are modelled as an AR(1) model in order to remove significant autocorrela-
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tion). Three different series from the data set are used in order to check if
properties of returns are changing over time.
Statistical packages are used in MATLAB R©for estimation of model param-
eters and generating forecasting of GARCH models. The in-sample perfor-
mance of GARCH models are compared using the SBC values. The model
with lowest SBC values is regarded as the model which fits the data set best.
An estimated GARCH model is correctly specified if the estimated standard-
ized residuals are i.i.d. and distributed according to the assumed distribu-
tion. The autocorrelation of residuals and squared residuals are plotted for
up to 8 lags in order to verify that residuals are serially uncorrelated and
independent. A quantile-quantile plot compares the empirical distribution of
estimated standardized residuals with the theoretical assumed distribution.
One-day ahead volatility forecasts are computed and evaluated as follows:
a) An initial sample using data from t = 1, ..., T is used to estimate models
and generate the one-day ahead forecasts σ2

t+1|t. For a rolling scheme, data
is moved ahead one period t = 2, ..., T + 1 and for a recursive scheme, data
is increased by one period t = 1, ..., T + 1. The rolling window length T is
set to 1260 (5 years of data) and 1764 forecasts (7 years) are generated for
each model and scheme.
b) Forecasts are evaluated using a proxy of the true volatility (Parkinson,
Yang,Zhang) where the distance between the forecast and proxy is measured
using a loss function (MSE,QLIKE). Models which minimizes the loss func-
tions are most accurate in generating accurate one-day ahead forecasts of
volatility.
c) The forecasting performance of value-at-risk is evaluated using a loss func-
tion which measures the squared distance between the VaR forecast and the
return value if value-at-risk is underestimated. A penalty is used for overes-
timation of value-at-risk where the squared distance is multiplied by a scale
factor α. The use of α = 0.001 and α = 0.1 compares the effect of overesti-
mation compared to underestimation of value-at-risk.
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4 Results

GARCH models are constructed in order to capture the empirical properties
of returns such as volatility clusters and leverage effect. GARCH models
should be able to generate accurate forecasts of future volatility. One-day
ahead volatility forecasts are evaluated using robust loss function which mea-
sures the distance between forecasts and an unbiased proxy of true volatility.
Forecasts are also evaluated in terms of the value-at-risk performance.

4.1 Data Analysis

The empirical properties of returns are measured using statistics and tests
in order to specify the GARCH model correctly.

4.1.1 Conditional Variance

Conditional variance functions are constructed such that volatility forecasts
are a combination of past conditional variances and squared returns meaning
that future volatility is highly correlated with the current level of volatility.
Using the absolute values of returns |rt| as a approximation for volatility σt,
figure 1b suggests that the volatility process σ2

t is varying over time with
periods of either low or high variance. Daily volatility could also be approx-
imated by the sample variance of the last 21 days. For a two-sided 95%
chi-squared variance test, figure 2 confirms that the estimated volatility pro-
cess σ2

t is varying over time. Daily volatility σ2
t could also be approximated

by the daily squared return r2t . Volatility clusters could be detected by mea-
suring the autocorrelation of squared returns. The p-values of the modified
Q-statistic of squared returns with 20 lags, in table 1, confirms that the
volatility process is serially correlated or equivalent that returns are serially
dependent.
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Figure 2: Plot of the a) estimated conditional mean and b) conditional vari-
ance. Estimations are calculated using 21 past observations and are com-
pared to the two-sided 95% confidence bound using the one-sample t-test
and chi-squared variance test.
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Standard GARCH models are able to capture volatility clusters in finan-
cial returns, however these models are not able to capture the leverage effect
usually evident in financial data. The price plot and its returns combined, in
figure 1, suggests that a price drop tend to be followed by an increase in the
absolute return rt. The distribution of returns around its mean is measured
using the skewness statistic. The one-sided 95% test of skewness, in table 1,
confirms that the distribution of returns is negatively skewed. Also by com-
paring the mean and the median of returns, in table 1, large negative return
values affects the mean. Asymmetric GARCH models such as EGARCH and
GJR are therefore likely to capture the leverage effect in returns.

Period (years) 4-8 1-9 7-11
Sample size 1260 2268 1260
Min -9.5 -9.5 -6.9
Mean (%) -1.5 1.3 5.0
Median (%) 8.3 7.4 7.4
Max 11 11 4.6
Std 1.67 1.34 1.01
Skewness -0.26 (1) -0.31 (1) -0.50 (1)
Ex. Kurtosis 6.7 (1) 10 (1) 4.7 (1)
MQHC(r, 8/20) p=0/(3%) p=0/(0.1%) p=0.1%/(17%)
MQ(r2, 20) p=0 p=0 p=0
JB 1 1 1

Table 1: Measurements of statistics for three different series of the returns.
For example the serie 1-9 uses data from the 9 first years of the used data.
The minimum, mean, median, maximum, standard deviation, the value of
the skewness and the excess kurtosis and their outcome given a 95% one-
sided test, p-values of the modified Q-statistic for the returns and squared
returns and the outcome of the JB-statistic are calculated. H0 is rejected for
an outcome of 1.

4.1.2 Conditional Mean

If returns rt are weakly serially correlated, returns rt could be modelled as
an AR(1) in order to remove significant autocorrelation in returns. If returns
are serially uncorrelated but has a non-zero mean, a constant is set for the
conditional mean µt. The plot of returns rt, in figure 1b, suggests that returns
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rt varies around a constant zero mean. The conditional mean µt could be
approximated by the sample mean of the last 21 days. The two-sided 95%
one sample t-test for the estimated conditional mean, in figure 2a, confirms
that the conditional mean µt could be approximated as zero constant since
these are dominated by the conditional variance σ2

t . Serial correlation in
returns could be detected by measuring the autocorrelation of returns. The
p-values of the heteroskedasticity robust version of the modified Q-statistic
of returns with either 8 or 20 lags, in table 1, confirms that the conditional
mean is serially correlated, however the amount of serial correlation is lower
than the serial correlation in squared returns.

4.1.3 Data Distribution

The normality distribution of returns is usually questioned. The return series,
in figure 1b, contains a lot of extreme values (specially during the financial
crisis in 2008). These extreme values suggests that the distribution of re-
turns has thick tails. The one-sided 95% test of the excess kurtosis, in table
1, confirms that returns are non-normal distributed with heavy tails. But
GARCH models are constructed in such a way that even though the con-
ditional distribution of innovations εt is normally distributed, the volatility
process σ2

t is heavy-tailed with positive excess kurtosis. (explain more?)

4.2 Estimation Evaluation

The estimated standardized residuals ẑt = ε̂t/σ̂t of a correctly specified
GARCH model is independent and identically distributed (i.i.d.) according
to the assumed distribution for zt. The in-sample performance of GARCH
models are evaluated using SBC and the model with lowest SBC fits data
best. The specified GARCH models are: a) ARCH(5), b) GARCH(1,1), c)
GARCH(1,2), d) EGARCH(1,1), e) GJR(1,1) where zt is set to the standard
normal distribution or the standardized t-distribution and µt is zero or the
expected value of a AR(1) model for rt. The methods used for selecting data
for estimation are the rolling scheme and the recursive scheme.

4.2.1 In-sample Performance

The in-sample performance of GARCH models is compared using SBC. Table
2, confirms that EGARCH and GJR models fit the data set more accurate
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than standard GARCH models. It is of no surprise since data is negatively
skewed. Table 2, also confirms that the use of a t-distribution fits the data set
more accurate compared to the use of a normal distribution. Data has high
positive excess kurtosis meaning that the student-t distribution is able to
capture the thick tails in data in a larger degree. Table 2, also confirms that
the extension of an AR(1) model does not improve the fit of the data. Neither
that is surprising since the conditional mean could be approximated as zero.
It remains to be seen if the use of asymmetric GARCH models, student-t
distribution and AR(1) model is useful for prediction of future volatility.

SBC/model ARCH(5) GARCH(1,1) GARCH(1,2) EGARCH(1,1) GJR(1,1)
4-8,N (AR) 3.42(3.42) 3.36(3.36) 3.34(3.34) 3.33(3.33) 3.32(3.33)
4-8,t (AR) 3.37(3.36) 3.33(3.32) 3.31(3.30) 3.30(3.30) 3.29(3.29)
1-9,N (AR) 2.90(2.90) 2.83(2.83) 2.82(2.81) 2.80(2.80) 2.78(2.79)
1-9,t (AR) 2.85(2.85) 2.80(2.80) 2.79(2.78) 2.77(2.77) 2.76(2.76)
7-11,N (AR) 2.62(2.62) 2.58(2.58) 2.57(2.57) 2.52(2.53) 2.52(2.53)
7-11,t (AR) 2.58(2.57) 2.55(2.54) 2.55(2.54) 2.49(2.49) 2.50(2.50)

Table 2: The SBC of GARCH models for choices of distribution (N or t)
where the use of an AR(1) is presented in brackets. A model with lowest
SBC value fits the data sets best.

4.2.2 Estimation Validation

GARCH models are correctly specified if the estimated standardized residuals
ẑt are i.i.d. according to the assumed distribution for zt. The autocorrela-
tion of estimated standardized residuals and squared standardized residuals
are plotted, in figure 3, for up to 8 lags using the GJR model with normal
distribution. For 95% two-sided tests for the autocorrelation of estimated
standardized residuals and squared standardized residuals, in figure 3, the
estimated standardized residuals are clearly serially independent but weakly
serially correlated for some GARCH models. EGARCH will generate similar
results.
The distribution of estimated standardized residuals should also match the
initial distribution assumed for zt. The distribution of estimated standard-
ized residuals is compared to the theoretical one using a quantile-quantile
plot. The qq-plot of estimated standardized residuals using GJR, in figure
4, suggests that neither the normal distribution or the student-t distribution
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fits data accurate in the tails. The use of normal distribution seems to fit the
data set well in the right tails however poorly in the left tails. The student-t
distribution seems to fit the data set more accurate in the left tail however
with the loss of fitting the right tail accurate. The question remains which
distribution is most useful for prediction of future volatility.
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Figure 3: The autocorrelation of estimated standardized residuals and
squared standardized residuals using GJR with normal distribution are plot-
ted for up to 8 lags for two different series and compared to the 95% confi-
dence bound ±1.96/

√
(T ).
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Figure 4: QQ-plot which compares the estimated standardized residuals of
GJR assuming standard normal distribution or student-t distribution for
two different series, with the theoretical standardized student-t distribution
where the degrees of freedom is chosen as 6.1 for the first serie and 6.6 for
the second one.
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4.3 Forecasting Performance

GARCH models should be able to generate accurate forecasts of future
volatility. One-day ahead volatility forecasts are evaluated using robust loss
functions which measure the distance between forecasts and an unbiased
proxy of true volatility. Loss functions are robust in the sense that the rank-
ings of volatility models in forecasting are true even though unbiased proxies
are used as the true volatility. The proxies used for true volatility are the
Parkinson proxy and the Yang,Zhang proxy. The loss functions used for eval-
uating the accuracy of volatility forecasts are the mean squared error (MSE)
and the QLIKE function. The mean squared error (MSE) is defined in terms
of squared difference compared to the QLIKE which is defined in terms of
the quote. The definition of MSE suggests that MSE reflects the accuracy
of forecasts in a larger degree in periods of high volatility. The definition of
QLIKE suggests that QLIKE reflects the accuracy of forecasts in a larger de-
gree in periods of low volatility. MSE is symmetric around the true volatility
which means that underestimation and overestimation of volatility forecasts
are equally weighted in terms of forecasting erorrs. However QLIKE is de-
fined in such a way that the forecasting erorrs in terms of underestimation
is considered worse than overestimation.

4.3.1 Volatility Forecasting Performance

Forecasting performance is evaluated in terms of estimation methods, dis-
tributions, conditional means and conditional variances. It is clear that the
asymmetric models EGARCH and GJR outperform standard GARCH mod-
els in terms of one-day ahead volatility forecasts, seen in table 3. This make
sense since there is a significant level of leverage effect in data (verified by the
skewness statistic in table 1). Surprisingly the RiskMetric model performs
better than asymmetric GARCH models during periods of low volatility in
period 5 and 6. However the RiskMetric only uses 100 observations for esti-
mation comparing to GARCH models which uses at least 1260 observations.
This suggest that the estimation of GARCH model parameters are affected
by the extremes during the financial crisis in 2008, seen in figure 1b. Figure
5, verifies that EGARCH overestimates volatility forecasts during period 5
and 6.
The combination of asymmetric GARCH models, error distribution and esti-
mation scheme are kept for further analysis in detail. The conditional mean
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is set to constant zero since it has little impact in forecasting volatility (see
Appendix, table 10-13). Since the conditional mean could be approximated
as zero, it is unsurprising that the adding AR(1) model only has limited ef-
fect on improving forecasting performance. MSE and QLIKE will be used as
loss functions and Parkinson and Yang,Zhang will be used as proxies for es-
timation of true volatility. Two observations are considered outliers, plotted
in figure 6, since the values of proxies for observations 364 and 365 are too
large compared to the forecasting values. The reason for the extreme values
is the extreme daily low in observation 364. Seen in table 3, the removal of
outliers clearly decreases the forecasting errors in period 2.

MSE 1 2 3 4 5 6 7
RiskMetric 22 0.77* (5.2) 2.5 0.59 0.12 0.16 0.76
ARCH(5) 9.5 1.1* (4.9) 3.5 0.68 0.31 0.30 0.70
GARCH(1,1) 14 0.71* (5.0) 2.2 0.47 0.16 0.19 0.65
GARCH(1,2) 13 0.74* (5.1) 2.6 0.46 0.18 0.20 0.68
EGARCH 4.8 0.76* (4.8) 1.7 0.44 0.15 0.18 0.62
GJR 13 0.69* (4.6) 2.9 0.32 0.15 0.20 0.71
QLIKE 1 2 3 4 5 6 7
RiskMetric 0.33 0.29* (0.37) 0.32 0.32 0.35 0.36 0.45
ARCH(5) 0.26 0.31* (0.34) 0.33 0.36 0.45 0.52 0.43
GARCH(1,1) 0.27 0.27* (0.33) 0.32 0.31 0.40 0.42 0.42
GARCH(1,2) 0.25 0.27* (0.34) 0.32 0.31 0.40 0.43 0.42
EGARCH 0.17 0.26* (0.30) 0.28 0.27 0.33 0.38 0.42
GJR 0.22 0.25* (0.29) 0.30 0.24 0.34 0.41 0.38

Table 3: The combination of conditional mean, distribution and data esti-
mation method which generates the lowest one-day ahead forecasting errors
using the Yang,Zhang proxy and the MSE and QLIKE robust loss functions
are compared for each GARCH model. Forecasts are divided into 7 (years)
boxes consiting of 252 forecasts each. GARCH models are compared to the
performance of RiskMetric. The effect of outliers is shown in period 2.
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Figure 5: The difference between the forecasts of EGARCH (using normal
distribution and recursive scheme) and the RiskMetric is plotted for period
5 and 6.
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Figure 6: The forecasts of EGARCH with normal distribution and recursive
scheme are plotted against the Yang,Zhang proxy. It compares a) the abso-
lute difference between the Yang,Zhang proxy and EGARCH forecasts and
b) the quote between the Yang,Zhang proxy and EGARCH forecasts.
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4.3.2 Estimation Scheme

GARCH models requires historical data in order to estimate model param-
eters. The scheme used for selecting data for estimation clearly affects the
one-day ahead forecasting accuracy of volatility, seen in table 5. The recur-
sive scheme outperforms the rolling scheme in period 2 to 6 but the rolling
scheme outperforms the recursive scheme in period 7. Obviously, the rolling
scheme is more sensitive to the choice of historical data for estimation than
the recursive scheme. Seen in figure 1b, data contains the extreme returns
during the financial crisis in 2008. For period 1 to 6, both estimation schemes
include these extremes. However the recursive scheme still contains the calm
period before the crisis which suggests that the rolling scheme is highly dom-
inated by the extremes which leads to overestimation of volatility forecasts,
seen in figure 7. In period 7, however the data for the rolling scheme does
not include these extremes which then results in more accurate volatility
forecasts. Figure 7, suggests that the use of recursive scheme overestimate
volatility forecasts for the last 50 observations.

1 2 3 4 5 6 7
MSE,YZ,rek 4.9 0.69 1.7 0.32 0.15 0.19 0.68
MSE,P,rek 6.0 0.71 2.4 0.41 0.17 0.16 0.58
MSE,YZ,roll 4.8 0.79 2.3 0.39 0.20 0.25 0.62
MSE,P,roll 5.9 0.80 2.5 0.46 0.22 0.20 0.39
QLIKE,YZ,rek 0.17 0.25 0.28 0.24 0.33 0.38 0.40
QLIKE,P,rek 0.25 0.34 0.34 0.34 0.41 0.47 0.44
QLIKE,YZ,roll 0.17 0.26 0.33 0.29 0.39 0.45 0.38
QLIKE,P,roll 0.25 0.35 0.38 0.38 0.46 0.53 0.40

Table 4: The combination of conditional variance and distribution which
generates the lowest one-day ahead forecasting errors, in terms of the MSE
and QLIKE loss functions using the Yang,Zhang and Parkinson proxies, are
compared for the use of recursive and rolling scheme. Forecasts are divided
into 7 (years) boxes consiting of 252 forecasts each.
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Figure 7: The difference between the forecasts of rolling and recursive
schemes for EGARCH with normal distribution are plotted for period 6 and
7.
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4.3.3 Distribution

GARCH models requires historical data in order to model the assumed dis-
tribution. The in-sample performance, in table 2, suggests that the use of
t-distribution fits the data set better. However, seen in figure 4, the tail
distribution of the empirical estimated standardized residuals were not con-
vincing for either the normal distribution or the student-t distribution. The
results in table 5, suggest that the use of normal distribution generates more
accurate volatility forecasts during periods of high volatility. Seen in figure
8, the use of t-distribution overestimates volatility forecasts during periods
of high volatility such as period 7.

1 2 3 4 5 6 7
MSE,YZ,N 4.8 0.69 1.7 0.32 0.15 0.19 0.62
MSE,P,N 5.9 0.71 2.4 0.41 0.17 0.16 0.39
MSE,YZ,t 6.9 0.77 2.1 0.37 0.15 0.19 0.75
MSE,P,t 7.5 0.80 2.7 0.44 0.18 0.17 0.47
QLIKE,YZ,N 0.17 0.25 0.28 0.24 0.34 0.39 0.38
QLIKE,P,N 0.25 0.34 0.34 0.34 0.42 0.48 0.40
QLIKE,YZ,t 0.19 0.26 0.29 0.25 0.33 0.38 0.40
QLIKE,P,t 0.26 0.35 0.35 0.34 0.41 0.47 0.41

Table 5: The combination of conditional variance and estimation scheme
which generates the lowest one-day ahead forecasting errors, in terms of the
MSE and QLIKE loss functions using the Yang,Zhang and Parkinson proxies,
are compared for the use of normal and student-t distribution. Forecasts are
divided into 7 (years) boxes consiting of 252 forecasts each.

34



50 100 150 200 250 300 350 400 450 500
-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Forecasts: normal vs. t distribution

N-t

Figure 8: The difference between the forecasts of normal and t-distribution
for EGARCH with recursive scheme are plotted for period 6 and 7.
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4.3.4 Volatility Model

It is clear that the choice of estimation scheme and distribution assumption
affects the accuracy of forecasts. However it is less clear which of the asym-
metric GARCH models perform best in terms of accurate volatility forecasts.
During periods of high volatility, EGARCH generate more accurate forecasts.
GJR clearly overestimates volatility during periods of high volatility, seen in
figure 9 for period 1 and 3.

1 2 3 4 5 6 7
MSE,YZ,EGARCH 4.8 0.76 1.7 0.32 0.15 0.19 0.62
MSE,P,EGARCH 5.9 0.80 2.4 0.51 0.18 0.16 0.39
MSE,YZ,GJR 13 0.69 2.1 0.37 0.15 0.19 0.75
MSE,P,GJR 13 0.71 3.2 0.41 0.17 0.17 0.51
QLIKE,YZ,EGARCH 0.17 0.26 0.28 0.27 0.33 0.38 0.42
QLIKE,P,EGARCH 0.25 0.35 0.34 0.37 0.41 0.47 0.45
QLIKE,YZ,GJR 0.22 0.25 0.30 0.24 0.34 0.41 0.38
QLIKE,P,GJR 0.29 0.34 0.35 0.34 0.41 0.50 0.40

Table 6: The combination of distribution and estimation scheme which gen-
erates the lowest one-day ahead forecasting errors, in terms of the MSE
and QLIKE loss functions using the Yang,Zhang and Parkinson proxies, are
compared for EGARCH and GJR. Forecasts are divided into 7 (years) boxes
consiting of 252 forecasts each.
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Figure 9: The difference between the forecasts of GJR and EGARCH with
use of normal distribution and recursive scheme are plotted for periods 1 to
3
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4.4 Value-at-Risk

Volatility forecasts are also evaluated in terms of value-at-risk performance.
Value-at-risk performance is evaluated using a loss function which measures
the squared distance of underestimation of value-at-risk. Underestimation
of value-at-risk refers to the scenario that the actual return is less than the
value-at-risk measure. A penalty for overestimation of value-at-risk is used in
order to compare the effect of underestimation and overestimation of value-
at-risk forecasts using α = 0.001 and α = 0.1. The value-at-risk measure is
defined by using p-value of 5%.

4.4.1 Value-at-Risk performance

Comparing the value-at-risk measure with the actual return is equivalent to
comparing the estimated standardized residuals ẑt = ε̂t/σ̂t with the 5th per-
centile of the assumed distribution zp for p = 0.05. An increase in volatility
forecasts σ̂t results in a decrease in absolute value of the estimated stan-
dardized residuals |ẑt|. A decrease of |ẑt| results in less risk of underestima-
tion of the value-at-risk measure. Now assume that volatility models which
fail to generate accurate volatility forecasts overestimates volatility forecasts.
Given the assumption, a larger value of penalty for overestimation of value-
at-risk results in that volatility models, which generates accurate volatility
forecasts, also generate accurate value-at-risk forecasts. For α = 0.001, the
value-at-risk loss function prefers the use of rolling scheme (seen in table 7),
t-distribution (seen in table 8) and GJR for periods of high volatility (seen
in table 9). However for a larger penalty of α = 0.1, the value-at-risk loss
function prefers the use of recursive scheme (seen in table 7), normal distri-
bution (seen in table 8) and EGARCH for periods of high volatility (seen
in table 9). These results suggest that volatility models which generate less
accurate volatility forecasts overestimates one-day ahead volatility forecasts.
But there is one exception: in period 7, the use of a small penalty prefers
the use of rolling scheme, seen in table 7. As seen in figure 7, the high peak
for the rolling scheme results in an accurate volatility forecast but inaccurate
value-at-risk forecast, seen in figure 10.
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L(α = 0.001) 1 2 3 4 5 6 7
rec 0.096 0.051 0.103 0.015 0.016 0.017 0.028
roll 0.094 0.045 0.083 0.012 0.013 0.011 0.014
L(α = 0.1) 1 2 3 4 5 6 7
rec 1.49 0.54 0.79 0.35 0.25 0.24 0.38
roll 1.49 0.55 0.82 0.38 0.27 0.25 0.38

Table 7: Value-at-risk performance in terms of estimation scheme for penalty
α = 0.001, α = 0.1 and p-value p = 0.05. The degrees of freedom for student-
t distribution is 7.5.

L(α = 0.001) 1 2 3 4 5 6 7
N 0.112 0.049 0.095 0.012 0.013 0.012 0.019
t 0.094 0.045 0.083 0.012 0.013 0.011 0.014
L(α = 0.1) 1 2 3 4 5 6 7
N 1.49 0.54 0.79 0.35 0.25 0.24 0.38
t 1.57 0.55 0.82 0.36 0.26 0.24 0.40

Table 8: Value-at-risk performance in terms of distribution for penalty α =
0.001, α = 0.1 and p-value p = 0.05. The degrees of freedom for student-t
distribution is 7.5.

L(α = 0.001) 1 2 3 4 5 6 7
EGARCH 0.138 0.045 0.086 0.012 0.013 0.011 0.014
GJR 0.094 0.045 0.083 0.014 0.014 0.013 0.021
L(α = 0.1) 1 2 3 4 5 6 7
EGARCH 1.49 0.54 0.79 0.38 0.25 0.24 0.38
GJR 1.66 0.54 0.83 0.36 0.25 0.24 0.38

Table 9: Value-at-risk performance in terms of volatility model for penalty
α = 0.001, α = 0.1 and p-value p = 0.05. The degrees of freedom for
student-t distribution is 7.5.
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Figure 10: Compares the forecasting accuracy between the use of rolling and
recursive scheme, using EGARCH and normal distribution, for a) between
the value-at-risk forecasts with the actual return in period 7 and b) between
the volatility forecasts and the Parkinson proxy. The distance is defined in
terms of |z−x|−|y−x|, where z is the rolling forecasts and y is the recursive
forecasts.
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5 Conclusions

The results suggests that asymmetric GARCH models fits the data set better
but also generates more accurate forecasts compared to standard GARCH
models. It seems that the EGARCH model generates more accurate volatil-
ity forecasts in periods of large volatility. The forecasting performance given
the choice of proxy yields the same rankings for volatility forecasting models
in almost all cases. Also the use of different loss functions yields the same
outcome in most cases. For the choice of error distribution, the use of t-
distribution fits data better however the use of normal distribution generates
more accurate forecasts in periods of high volatility. The use of an AR(1)
model for the conditional mean does not improve either the data fit or the
forecasting accuracy. The estimation scheme clearly affects the forecasting
performance. In most cases, the recursive scheme generates more accurate
forecasts suggesting that GARCH models require a large amount of histor-
ical data in order to improve forecasting of volatility. But in period 5 and
6, GARCH models generate less accurate volatilitiy forecasts compared to
the RiskMetric model suggesting that the extremes during the financial cri-
sis in 2008 results in overestimation of forecasts using GARCH models. The
need for selecting useful historical data for estimation of GARCH models is
crucial in order to generate accurate volatility forecasts. The results of the
value-vt-risk performance suggests that there is a strong connection between
overestimation of volatility forecasts and overestimation of value-at-risk fore-
casts. The use of a large value for the penalty of overestimation suggests that
the volatility models which generates more accurate volatility forecasts also
generates more accurate value-at-risk forecasts.
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6 Discussion

The focus of this thesis has been on the one-day ahead volatility forecast-
ing performance of GARCH models using robust loss functions and unbi-
ased range-based proxies for the true volatility. Andersen,Bollerslev(1998)
introduced the realized volatility (RV) which uses high-frequency data in
order to estimate daily volatility more accurate. RV is defined as the sum
of squared intra-day returns over a specific interval length. For small time
intervals, the RV estimate tend to be affected by potential bias due to mar-
ket micro-structure frictions such as the bid-ask spread (transactions at
discrete time points). To avoid potential bias, in studies such as Ander-
sen,Bollerslev(1998), 5 minute intervals were used as sampling frequency. If
forecasts of RV are useful then the log(RV) could often be approximated
as a Gaussian ARIMA(0,1,q) model according to Tsay(2002). Martens,van
Dijk(2007) introduced the realized range volatility (RRV) by replacing each
squared intra-day returns by the high-low range. RRV is a more efficient es-
timator in theory compared to RV but is highly affected by micro-structure
frictions. To account for potential bias, RRV is multiplied by the ratio of the
average daily range and the average daily realized range. Using Monte-Carlo
simulations, the scaled RRV outperformed several RV estimators.
Correct specification of GARCH models is needed in order to capture the
empirical properties of returns such as the amount of thick tails and asym-
metry in data. GARCH models are usually not able to capture all of the
excess kurtosis in daily returns. It seems that the conditional distribution of
innovations is non-normal. Distributions such the GED (see Nelson(1991)),
the skewed student-t (see Fernandez, Steel(1998)) and the skewed GED (see
Theodossiou(2002)) could be used to capture thick tails and asymmetry in
daily returns. For correct specified GARCH models, historical data used
for estimation should be able to model the assumed distribution correctly in
order to estimate accurate model parameters. Diebold(1986) suggested that
structural changes affected the level of the unconditional variance. The struc-
tural change during the financial crisis in 2008 clearly affects the volatility
forecasts of GARCH models. In order to detect structural changes, regime-
switching GARCH models can be constructed where different states, such
as high versus low volatility, is determined by either an observable vari-
able, such as the sign of innovations (see Fornari,Mele(1995,1996)), or an
unobservable Markov process (see Gray(1996)). Also the idea of a smooth
transition in order to gradually change values of parameters were introduced
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by Hagerud(1996) and Gonzalez Rivera(1996).
In this thesis only one-day ahead volatility forecasts have been used which
requires daily re-estimation. In financial applications, the use of multiperiod
volatility forecasts are of interest.
For GARCH models using daily returns, Zivot(2008) stated that the use of
trading volume, macroeconomic news announcements, implied volatility from
option prices (such as VIX) and realized volatility and overnight volatility
are variables which help to predict volatility. The construction of GARCH
models should be specified such that these include variables which all improve
the accuracy of volatility forecasts.
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8 Appendix

MSE, ARCH(5) 1 2 3 4 5 6 7
roll, N 9.71 1.34* 5.47 1.00 0.460 0.325 0.702
roll, N, AR 9.93 1.34* 4.46 1.00 0.450 0.316 0.732
rek, N 9.46 1.07* 4.17 0.693 0.319 0.309 0.938
rek, N, AR 9.73 1.06* 3.50 0.682 0.312 0.299 1.01
roll, t 10.9 1.73* 7.99 1.26 0.539 0.358 0.773
roll, t, AR 11.5 1.84* 7.08 1.26 0.548 0.368 0.869
rek, t 10.5 1.20* 4.99 0.805 0.359 0.337 1.03
rek, t,AR 11.1 1.27* 4.74 0.828 0.365 0.339 1.17
MSE, GARCH(1,1) 1 2 3 4 5 6 7
roll, N 14.6 0.801* 2.96 0.577 0.213 0.207 0.652
roll, N, AR 14.0 0.796* 2.64 0.574 0.206 0.203 0.672
rek, N 14.3 0.712* 2.43 0.477 0.166 0.191 0.733
rek, N, AR 13.8 0.705* 2.23 0.471 0.163 0.189 0.757
roll, t 19.1 0.908* 3.36 0.653 0.217 0.213 0.697
roll, t, AR 18.6 0.903* 3.11 0.647 0.212 0.214 0.769
rek, t 18.7 0.799* 2.76 0.540 0.168 0.192 0.775
rek, t,AR 18.1 0.808* 2.67 0.546 0.166 0.191 0.824
MSE, GARCH(1,2) 1 2 3 4 5 6 7
roll, N 13.6 0.868* 3.60 0.598 0.242 0.223 0.679
roll, N, AR 12.8 0.849* 3.09 0.590 0.232 0.217 0.693
rek, N 13.4 0.758* 2.89 0.470 0.183 0.201 0.796
rek, N, AR 12.5 0.737* 2.55 0.461 0.178 0.197 0.820
roll, t 17.4 1.02* 4.33 0.697 0.251 0.232 0.751
roll, t, AR 16.9 1.02* 3.89 0.676 0.245 0.233 0.817
rek, t 16.9 0.854* 3.34 0.526 0.188 0.204 0.869
rek, t,AR 16.3 0.860* 3.15 0.534 0.186 0.202 0.931

Table 10: The combination of conditional mean, distribution and data esti-
mation method, for each volatility model, are compared in terms of MSE.
Forecasts are divided into 7 (years) boxes consiting of 252 forecasts each.
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MSE, EGARCH 1 2 3 4 5 6 7
roll, N 4.83 0.933* 2.33 0.623 0.241 0.268 0.621
roll, N, AR 4.82 0.922* 2.24 0.646 0.235 0.264 0.617
rek, N 4.93 0.763* 1.74 0.439 0.151 0.185 0.677
rek, N, AR 4.93 0.758* 1.71 0.457 0.147 0.184 0.696
roll, t 6.85 1.17* 3.57 0.739 0.252 0.323 0.757
roll, t, AR 7.34 1.18* 3.86 0.819 0.244 0.317 0.764
rek, t 7.08 0.869* 2.13 0.521 0.149 0.186 0.752
rek, t,AR 7.57 0.870* 2.15 0.553 0.145 0.186 0.788
MSE, GJR 1 2 3 4 5 6 7
roll, N 13.0 0.788* 3.99 0.390 0.203 0.246 0.864
roll, N, AR 12.8 0.812* 3.58 0.401 0.204 0.244 0.857
rek, N 13.0 0.699* 3.12 0.321 0.145 0.201 0.714
rek, N, AR 12.7 0.692* 2.86 0.324 0.145 0.201 0.756
roll, t 16.9 0.973* 5.77 0.453 0.210 0.277 1.08
roll, t, AR 16.1 0.999* 5.41 0.498 0.218 0.282 1.10
rek, t 16.7 0.774* 3.70 0.365 0.150 0.207 0.797
rek, t,AR 15.8 0.786* 3.34 0.378 0.152 0.208 0.848

Table 11: The combination of conditional mean, distribution and data esti-
mation method, for each volatility model, are compared in terms of MSE.
Forecasts are divided into 7 (years) boxes consiting of 252 forecasts each.

47



QLIKE, ARCH(5) 1 2 3 4 5 6 7
roll, N 0.265 0.328* 0.398 0.462 0.544 0.559 0.435
roll, N, AR 0.267 0.323* 0.389 0.459 0.534 0.546 0.430
rek, N 0.256 0.306* 0.341 0.361 0.460 0.528 0.466
rek, N, AR 0.259 0.302* 0.333 0.357 0.449 0.516 0.462
roll, t 0.281 0.356* 0.439 0.486 0.575 0.577 0.451
roll, t, AR 0.286 0.353* 0.424 0.484 0.562 0.564 0.450
rek, t 0.266 0.320* 0.361 0.379 0.481 0.548 0.483
rek, t,AR 0.271 0.318* 0.359 0.380 0.470 0.536 0.484
QLIKE, GARCH(1,1) 1 2 3 4 5 6 7
roll, N 0.276 0.284* 0.350 0.358 0.444 0.451 0.422
roll, N, AR 0.271 0.281* 0.345 0.356 0.432 0.440 0.417
rek, N 0.272 0.275* 0.327 0.313 0.407 0.431 0.450
rek, N, AR 0.266 0.271* 0.321 0.310 0.399 0.423 0.446
roll, t 0.309 0.297* 0.345 0.365 0.452 0.463 0.435
roll, t, AR 0.304 0.292* 0.346 0.359 0.437 0.451 0.435
rek, t 0.301 0.286* 0.336 0.321 0.408 0.427 0.458
rek, t,AR 0.296 0.283* 0.333 0.320 0.400 0.419 0.458
QLIKE, GARCH(1,2) 1 2 3 4 5 6 7
roll, N 0.263 0.281* 0.353 0.355 0.449 0.466 0.422
roll, N, AR 0.255 0.276* 0.345 0.352 0.434 0.453 0.415
rek, N 0.257 0.272* 0.330 0.310 0.411 0.441 0.447
rek, N, AR 0.248 0.266* 0.323 0.307 0.401 0.432 0.443
roll, t 0.289 0.295* 0.363 0.360 0.456 0.477 0.435
roll, t, AR 0.283 0.289* 0.351 0.355 0.438 0.464 0.431
rek, t 0.280 0.280* 0.340 0.316 0.412 0.437 0.455
rek, t,AR 0.273 0.276* 0.336 0.315 0.402 0.427 0.453

Table 12: The combination of conditional mean, distribution and data esti-
mation method, for each volatility model, are compared in terms of QLIKE.
Forecasts are divided into 7 (years) boxes consiting of 252 forecasts each.
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QLIKE, EGARCH 1 2 3 4 5 6 7
roll, N 0.174 0.265* 0.325 0.334 0.412 0.447 0.422
roll, N, AR 0.172 0.266* 0.326 0.340 0.409 0.446 0.421
rek, N 0.170 0.257* 0.282 0.272 0.343 0.391 0.450
rek, N, AR 0.169 0.258* 0.284 0.278 0.342 0.391 0.451
roll, t 0.192 0.284* 0.350 0.338 0.402 0.457 0.446
roll, t, AR 0.192 0.287* 0.358 0.350 0.395 0.458 0.448
rek, t 0.188 0.270* 0.292 0.278 0.330 0.380 0.460
rek, t, AR 0.188 0.271* 0.294 0.286 0.328 0.383 0.466
QLIKE, GJR 1 2 3 4 5 6 7
roll, N 0.225 0.257* 0.328 0.288 0.397 0.445 0.383
roll, N, AR 0.220 0.261* 0.325 0.293 0.397 0.444 0.383
rek, N 0.223 0.252* 0.303 0.244 0.346 0.420 0.402
rek, N, AR 0.217 0.254* 0.299 0.247 0.345 0.420 0.406
roll, t 0.250 0.276* 0.350 0.288 0.392 0.447 0.395
roll, t, AR 0.244 0.281* 0.356 0.298 0.395 0.450 0.402
rek, t 0.246 0.263* 0.314 0.249 0.340 0.411 0.406
rek, t, AR 0.239 0.266* 0.311 0.254 0.342 0.413 0.414

Table 13: The combination of conditional mean, distribution and data es-
timation method, for each volatility model, are compared in terms of the
QLIKE. Forecasts are divided into 7 (years) boxes consiting of 252 forecasts
each.
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MSE, EGARCH, YZ 1 2 3 4 5 6 7
rek, N 4.9 0.76 1.7 0.44 0.15 0.19 0.68(0.62)
roll, N 4.8 0.93 2.3 0.62 0.24 0.27 0.62
rek, t 7.1 0.87 2.1 0.52 0.15 0.19 0.75(0.69)
roll, t 6.9 1.2 3.6 0.74 0.25 0.32 0.76
MSE, GJR, YZ 1 2 3 4 5 6 7
rek, N 13 0.69 3.1 0.32 0.15 0.20 0.71(0.69)
roll, N 13 0.79 4.0 0.39 0.20 0.25 0.86 (0.77*)
rek, t 17 0.77 3.7 0.37 0.15 0.21 0.80(0.77)
roll, t 17 0.97 5.8 0.45 0.21 0.28 1.1 (0.97*)
MSE, EGARCH, P 1 2 3 4 5 6 7
rek, N 6.0 0.80 2.4 0.51 0.18 0.16 0.61(0.57)
roll, N 5.9 0.95 2.5 0.66 0.26 0.23 0.39
rek, t 7.7 0.91 2.7 0.58 0.18 0.17 0.66(0.61)
roll, t 7.5 1.2 3.3 0.75 0.27 0.28 0.47
MSE, GJR, P 1 2 3 4 5 6 7
rek, N 13 0.71 3.2 0.41 0.17 0.17 0.58(0.58)
roll, N 13 0.80 3.6 0.46 0.22 0.20 0.51
rek, t 16 0.80 3.6 0.44 0.18 0.17 0.63(0.62)
roll, t 16 0.97 5.0 0.50 0.22 0.22 0.65

Table 14: Combinations of asymmetric volatility model, distributions and
estimation scheme are compared in terms of MSE using both volatility prox-
ies.
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QLIKE, EGARCH, YZ 1 2 3 4 5 6 7
rek, N 0.17 0.26 0.28 0.27 0.34 0.39 0.45(0.44)
roll, N 0.17 0.27 0.33 0.33 0.41 0.45 0.42
rek, t 0.19 0.27 0.29 0.28 0.33 0.38 0.46(0.45)
roll, t 0.19 0.28 0.35 0.34 0.40 0.46 0.45
QLIKE, GJR, YZ 1 2 3 4 5 6 7
rek, N 0.22 0.25 0.30 0.24 0.35 0.42 0.40(0.40)
roll, N 0.23 0.26 0.33 0.29 0.40 0.45 0.38
rek, t 0.25 0.26 0.31 0.25 0.34 0.41 0.41(0.41)
roll, t 0.25 0.28 0.35 0.29 0.39 0.45 0.40
QLIKE, EGARCH, P 1 2 3 4 5 6 7
rek, N 0.25 0.35 0.34 0.37 0.42 0.48 0.49(0.48)
roll, N 0.25 0.36 0.38 0.43 0.48 0.53 0.45
rek, t 0.26 0.36 0.35 0.38 0.41 0.47 0.50(0.49)
roll, t 0.27 0.37 0.40 0.43 0.47 0.54 0.48
QLIKE, GJR, P 1 2 3 4 5 6 7
rek, N 0.29 0.34 0.35 0.34 0.42 0.51 0.44(0.44)
roll, N 0.29 0.35 0.38 0.38 0.47 0.53 0.40
rek, t 0.32 0.35 0.36 0.34 0.41 0.50 0.44(0.44)
roll, t 0.32 0.36 0.39 0.38 0.46 0.53 0.41

Table 15: Combinations of asymmetric volatility model, distributions and
estimation scheme are compared in terms of QLIKE using both volatility
proxies.
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L(α = 0.001) EGARCH 1 2 3 4 5 6 7
N,rek 0.167 0.055 0.122 0.015 0.016 0.017 0.029
t,rek 0.138 0.054 0.114 0.015 0.017 0.017 0.026
N,roll 0.169 0.049 0.101 0.012 0.013 0.012 0.019
t,roll 0.140 0.045 0.086 0.012 0.013 0.011 0.014
L(α = 0.001) GJR 1 2 3 4 5 6 7
N,rek 0.112 0.054 0.110 0.018 0.017 0.017 0.030
t,rek 0.096 0.051 0.103 0.017 0.017 0.017 0.028
N,roll 0.112 0.051 0.095 0.015 0.014 0.014 0.023
t,roll 0.094 0.045 0.083 0.014 0.014 0.013 0.021
L(α = 0.1) EGARCH 1 2 3 4 5 6 7
N,rek 1.49 0.542 0.787 0.376 0.254 0.236 0.399
t,rek 1.57 0.558 0.819 0.392 0.256 0.240 0.414
N,roll 1.49 0.557 0.821 0.411 0.280 0.252 0.384
t,roll 1.57 0.588 0.897 0.427 0.287 0.268 0.409
L(α = 0.1) GJR 1 2 3 4 5 6 7
N,rek 1.66 0.536 0.830 0.354 0.253 0.237 0.384
t,rek 1.75 0.550 0.862 0.364 0.256 0.241 0.397
N,roll 1.66 0.548 0.853 0.375 0.271 0.245 0.383
t,roll 1.76 0.576 0.930 0.387 0.276 0.255 0.406

Table 16: The ValueAtRisk loss function values, using p = 5%, for α =
0.001 and α = 0.1 are compared for each combination of volatility model,
distribution for residuals and the choice of recursive and rolling method.
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