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Abstract

In this thesis we study the spectral representation of infinitely divisible processes. We give
a description of Musielak-Orlicz spaces relating to certain infinitely divisible independently
scattered random measures. We propose a new method for simulating infinitely divisible
integral processes that holds arbitrarily well in probability under general conditions.
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Introduction

HE preliminary aim with this thesis was to study the area known as representations
of stochastic processes. This is a thoroughly studied field and classical results such
as the Karhunen-Loéve representation or the spectral representation of weakly sta-
tionary processes were developed in the 1960s. The most recent results deal with

infinitely divisible processes, the main topic of this thesis.

The advantage with representing stochastic processes in this manner is that one can
"remove" the randomness of the process by identifying it with a suitable linear space. In the
case of weakly stationary processes this space is a Hilbert space, which makes them very
suitable for various applications. The linear structure of an infinitely divisible process is far
more intricate, but it will nevertheless still constitute a complete metric space.

The thesis is divided into three parts. The first part is an introduction to the basic theory
used in this thesis. In the second part we discuss the spectral representation of infinitely
divisible processes in detail, and we will emphasize the tight connection between a homo-
geneous random measure and its control measure. We also give a full description of linear
spaces relating to certain random measures. The last part is devoted to approximations
of stochastic integral processes using natural assumptions in order to achieve appropriate
simulations.



Preliminaries

N this chapter we introduce the basic theory required for the thesis including some no-
tations that will be used throughout the thesis. They will consist mainly of basic topo-
logical notions, more intricate probability theory such as concepts of infinite divisibility
and random measures, and functional analysis relating to the theory of Musielak-Orlicz

spaces.

2.1 Notation

e Natural numbers N, Integers Z, Rationals , Reals R, Complex C.

The Lebesgue measure is denoted as m.

The law of a random variable X is denoted as £ (X).

R, =[0,00),R=[—00,00],R, =[0, o0].

aV b =max(a,b),a A b =min(a,b)

2.2 Basic probabilistic concepts

In this section we introduce basic concepts and notations, so that the following exposition
will be simpler to understand. Throughout the thesis (£2, #, P) will always mean a probability
space, where & is a c—algebra and PP is a probability measure. The space L? (2, Z,P) is the
space of all random variables with finite p-th moment, and when it is clear what 2, & or P
is they will be omitted in the notation and instead L?(Q, %, P) will be written as L?.

In probability theory different notions of convergence exists. Let {X,} C LP(Q,Z,P),
with p = 0 be understood as random variables and we say that X,, converges to X almost
surely with respect to the probability measure Pif P{w € Q : X,(w) — X} =1, denoted X, —



2.2. Basic probabilistic concepts

X,P—a.s. Moreover a sequence converges in L? if E|X,, —X|P = 0 and is denoted X,, =, X.
There are also weaker notions of convergence, convergence in probability, denoted —p is
defined as P{|X, —X| > €} — 0, Ve > 0 and weak convergence or convergence in distribution

which is denoted 4 . This means that the distribution functions converge. Indeed, there is a
hierarchy between these notions of convergence. The convergence almost surely and in L?
are the strongest and neither imply the other. The weakest is convergence in distribution.

By a stochastic process, &, on a probability space we mean a family of random variables
over some index set T, which in most cases can be understood as a time domain, i.e

E={&,:teT}. 2.1

By a p—th order process we mean that the family of random variables are in L? and by a
separable process we mean that there exists a countable subset Ty = T such that X,, —;, X,
forallt € T and t’ € Ty, and if p = 0 the convergence is understood as convergence in
probability. We define the convolution between two measures as

ux v(A) = J La(x + y)u(dx)v(dy).

A very important concept in more advanced probability theory is the concept of infinite
divisibility, abbreviated ID . This means that if a random variable £ is infinitely divisible then

d
E=Min+tNont -t Npp, VNEN

for some finite sequence of i.i.d. random variables 7). In terms of probability measures this
means that a probability measure P is infinitely divisible if it is the n-fold convolution of
some probability measure P,, :

P=+"P,, «"P =(""'P)xP,

so that the Fourier transform, which in probabilistic terms is called the characteristic func-
tion, of P satisfies

b(z)= J elZp(dt) = (B,(2))" .

Whenever a measure, v on RY satisfies

»({0}) =0, J |x[> A1 v(dx) < oo
Rd

we call this measure a Lévy measure. Now, a remarkable fact, when it comes to infinitely
divisible random variables and distributions, is that they can be completely characterized by
their characteristic function which is known as the Lévy-Khintchine representation and can
be found in [14].

Theorem 2.1. If P is an infinitely divisible probability measure on RY, then:
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P(z) = exp [iw,Z) - %(z,AZ> + J

R4

elEx) _q —i(z,x)T(x)v( dx)] (2.2)

where A is a symmetric positive semi-definite d X d matrix, v is a Lévy measure and T is
a bounded measurable function satisfying

T(x) =1+o0(|x]),[x| = 0, T(x) = 0(1/[x]), [x| — oo.

2. (2.2) is unique.

3. Conversely, if A is a symmetric positive semi-definite d x d—matrix, u € RY, v is a Lévy-
measure and T satisfy the conditions above then there exists an infinitely divisible proba-
bility measure with the characteristic function above.

If X is an infinitely divisible random variable, i.e Z(X) is infinitely divisible, we write,
X €ID(u,A,v).
Remark. The integral with respect to Lévy measure can be written as

f ellwx) 1 i{u, T(x)) v(dx)
Rd

if we take
def X] X2 Xd

T == QT I VT il v

), (2.3)

or some other function that satisfy similar conditions. This function will be of use when
dealing with ID processes.

The class of ID random variables is large, to list a few it contains stable random variables,
the exponential random variables, gamma distributed random variables and many more, see
[12] for a more extensive list.

2.3 Orlicz and Musielak-Orlicz spaces

The Orlicz and Musielak-Orlicz spaces are certain complete metric spaces that arise in dif-
ferent applications. In this thesis they will appear when we discuss the subject of infinitely
divisible processes. A function ® : R — R, is a Young function if it is even, unbounded and
zero at the origin, i.e ®(x) = ®(—x), lim,_, o, ®(x) = 00, ®(0) = 0. In addition,  is called
a nice Young function if ®(x) =0 < x = 0,lim,_,, ®(x)/x = 0,lim, _, ., ®(x)/x = oo while
3(R) CR,.

A Young function is said to satisfy the A, condition, ® € A, if

P(2x) < KP(x), x >x9=>0,K > 0. 2.9

If xy = 0 then the condition is said to hold globally.

4



2.3. Orlicz and Musielak-Orlicz spaces

Let (X, #,u) be an arbitrary measure space, and f : X — R be a measurable function.
If u(X) = oo and @ is a Young function that satisfy (2.4) then the space

Lq,:{f:X—>R:f<I>(f(x)),u(dx)<oo}, (2.5)
X

is a linear space, according to [10]. On this space we can introduce a norm that makes it a
complete normed space if we identify functions as identical yu—a.e,

||f||q,=inf{c>0:f @(M)u(dx)g 1}. (2.6)
X

c

The Musielak-Orlicz spaces are generalized Orlicz spaces introduced by Julian Musielak in
his book Orlicz spaces and Modular spaces [8], and relies heavily on the concept of modulars.
These are a type of functionals on a vector space that satisfy conditions that are similar to
norms.

Definition. Let V be a real or complex vector space. A functional, p : V — [0,00] is either
a pseudomodular, semimodular, or a modular if for any x,y € V the following holds

e p(0y)=0,p(Ax)=0,YA>0= x =0y, p(x) =0= x =0y, respectively
e p(x)=p(—x)if Vis real and p(ei‘x) = p(x),Vt € R if V is complex

e plax+By) < p(x)+p(y),Vx,y € V,a+f =1if p(ax + By) < a’p(x) + B°p(y)
then it is said to be a s-convex pseudo-,semi- or modular.

Indeed, any norm is a modular but the converse is not necessarily true as a modular can
take infinite values. An example of a p-convex modular is for instance

f [f()IPdx,p>0
R
An F-norm, denoted || - || on X is a functional that satisfy
* [x[[=0=x=0,
o llxll=Il—=x|lor [le“x| = llx|,Vt € R, Vx €X,

o lIx+yll<lxll+lyll,vx,y €X,
e If a; — a and ||x; — x]|| — 0 then ||ayx; — ax]|| — O.
For every semimodular,p, and hence for every modular, we can define a F-norm

lxll, =inf{c>o:p(§) SC} 2.7)

that has the following properties.
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Lemma 2.1. ||x||, satisfy the following:
o p(Ax1) < p(Axy), YA>0 = [Ixq]l, < llxall,,
e |lax||, is a non-decreasing function of a > 0,
° lixll, <1=p(x) <lx]l,.

The difference between a Orlicz space and a Musielak-Orlicz space is subtle. Rather than
considering a Young function we consider a function

U(x,t): X xR, - R,. (2.8)

This function satisfy conditions similar to Young functions for fixed x. We let ¥ be an increas-
ing, continuous function of t such that ¥(x,0) =0, ¥(x,t) > 0,t > 0, lim,_,, ¥(x,t) = 00
for almost all x € X. For fixed t € R, we let ¥ be measurable with respect to .# . Then the
functional defined by

p(f) =J W] f (x)Du( dx) (2.9)
X

is a modular. We introduce the Musielak-Orlicz space, denoted Ly (X, ,u), as the functions
that satisfy

J ¥(x, [f(x)Puldx) < oo (2.10)
X

equipped with the F-norm

||f||q,=inf{c>0zj lIJ(x,If(x)I/c)Sc} (2.11D)
X

An important property of Orlicz and Musielak-Orlicz spaces is that they are, under reasonable
assumptions, linear complete metric spaces with the F-norms defined above. Another useful
property is that the simple functions are dense.

Indeed, we can have different notions of convergence in the Musielak-Orlicz spaces, the
two most central are modular and normed convergence. In general the two topologies do
not coincide and the following proposition gives a precise condition of when this happens.
This property will be of use later.

Proposition 2.1. Modular and normed convergence are equivalent if and only if

{xi}tken €V, p(x) > 0= p(2x3) = 0 (2.12)

2.4 Stable processes

In this section we will introduce several important classes of stochastic processes. These will
be characterized either in the sense of their characteristic function or its finite dimensional
distributions. The entire section is an excerpt from [13].



2.4. Stable processes

First we introduce the simplest concept, symmetric random variables. A random variable,X,
is symmetric if
d
X =—X.
Note that this implies that the characteristic function must be real-valued.
The name stable comes from the most elementary definition of stable random variables.
A random variable is stable if for any A,B > 0 there exists a D € R such that

AX; +BX, $CX +D (2.13)

where X;,X, are independent copies of X. If D = 0 we call X a strictly stable random variable.

This definition is not suitable for our purpose, and we will use the following equivalent
definition.

Definition. To require that a random variable, X, has a stable distribution we ask that there
exists parameters 0 < a < 2, 0 > 0, || < 1,u € R such that its characteristic function is of
the form:

B[] = {exp {o®lel*(1-ipsgn(t)tan 5) +int}, a#1 (2.14)

exp {—aItI (1 +i/5%sgn(t)log|t|) +i,ut}, a=1.
We write this as X € S,(o,,u)

Remark. An alternative definition of stable random variables, which is also useful when it
comes to dealing with stable random vectors, is that a random variable is stable if there exists
a sequence of i.i.d.random variables {Y;}, positive numbers {d, } and real numbers {a,,} such

that

Y1+, +...4+7 d
1- 2 ~+a,—>X.
d,

Remark. The parameters, o, 8 and u are unique. The parameter a is commonly called the
index of stability whereas u is the shift parameter, 3 the skewness parameter and o is the
scale parameter. The reason for the names is due the following result that can be found in
Samorodnitsky and Taqqu [13].

Lemma 2.2. Let X; € S, (0}, Bi,ui), 1 = 1,2 then:

Brof+Br0]

o X1 +X5€8,(0,B,u), 0 =(0f+0) B = Bt el R
® X;+a€S,(o,Bi,u; +a)

d aXi € Sa(|a|ai> Sgn(a)ﬂiaalu‘i)J l:fa # land aXi € Sl(lalo-i: Sgn(a)ﬂizaou’i_% 10g|a|0‘[3),
ifa=1

e X €S,(0,pB,u) is symmetric about u if and only if f =0
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Now what this lemma yields is that we can characterize the symmetric a-stable random
variables, denoted SasS.
A random variable, X, is SaS if

FeltX — a—0tl"

For a random vector to be stable the description of the characteristic function is too
complicated to be useful but we may define it as in the remark above about the definition of
stable random variables.

We call a stochastic process X = {X, : t € T} stable or SasS stable if for all tq,t,,...,t; €
T,a,as,...,a; € R the linear combination

k

D> aX,, (2.15)

1

is stable or SaS stable.

2.5 Infinitely divisible processes

The most inclusive class of stochastic processes is the infinitely divisible processes. It contains
all stable as well as all Lévy processes.

Definition. A stochatic process L = {L, : t € T} is a Lévy process if:

1. The process has independent increments, i.e for any finite strictly increasing sequence
t1,to,...,t, the random variables L, ,L, —Lq,...,.L;, — L, , are independent

2. Xg=0a.s

. . d . . .
3. The process has stationary increments, L,—L, = L, —L,4, this property is sometimes
called temporal homogeneity,

4. The process is continuous is probability, i.e P(|L, — L,| > €) = 0,t — s,
5. The sample paths of the process are cddlag a.s.

Indeed a Lévy process is an infinitely divisible process and its characteristic function
satisfy
Eei@L[ — Eei@le

The definition of a infinitely divisible stochastic process is according to Maruyama [7]. A
stochastic process X = {X, : t € T} is an infinitely divisible process if ty,ts,...,t; € T the
random vector

(X XX, (2.16)

is infinitely divisible. In the same article Maruyama proves that every infinitely divisible pro-
cess admits to a Lévy-Khintchine representation. Below we will, on the other hand, present
a simpler construction due to Rosinski [12], but first we need to fix some notations.



2.5. Infinitely divisible processes

For every nonempty set T and S C T we define (RS, °)as

(RS:%S) = l_[(Rt) ‘%t)) (Rtw%t) = (R,%’R);

tes

and let py g : RY — RS,S c U c T denote the canonical projection and for simplicity we
write pg for prg. By Og we mean the origin of RS that is Og = [],c50,,0, = 0 € R, and
let 2¢(T) denote the family of finite subsets of T. Moreover we say that a measure v on
(RT, 93]17&’ ) does not charge the origin if for all A€ 87T there exists a countable subset S of T
such that

¥(A) = »(A\ pg " (05)). (2.17)

This construction allows us to properly define what a Lévy measure on the cylindrical o-
algebra A7 is.

Definition. A measure v defined on (RT,%87) is a Path Lévy measure if it does not charge

the origin and forevery t € T

J (I, A1) v(dx) < oo. (2.18)
RT

This definition ensures the uniqueness of a Lévy path measure.

Theorem 2.2. Let X = {X : t € T} be an infinitely divisible stochastic process. Then there
exists a unique triplet (b,X, v) consisting of

1. beRT",
2. a nonnegative symmetric operator 3. : R - RT,
3. a Lévy measure v on R7,

such that for any y € R(T

Fei 2eer YeXe = exp {i(y,b) - %(y, %y) +J (ei(y”‘> —1—i(y, [[x]])) »( dx)} (2.19)

RT

where [[x]] € RT, and is defined as

def Xx;
= ,teT
[[x]]e V1
and
R(D = {x € R” : x, = 0 for all but countably many t} , (2.20)
(v,x) =D yx,, y eRD, x R’ (2.21)

teT



Representation of infinitely divisible
processes

N this chapter we discuss the theory of spectral representations of infinitely divisible
stochastic processes. The main parts include representations of ID stochastic processes,
identification of Musilak-Orlicz spaces related to certain ID processes and a discussion
about the control measure of a homogeneous ID random measure.

3.1 Random measures and stochastic integration

This section deals with the concept of stochastic integration and more specifically integrals
of Wiener type. We define the random measures as stochastic processes over some properly
chosen index-set. Let S be a set and & be a §-ring on S with the additional property that
there exists a sequence of increasing sets converging to S. A 6-ring is similar to the concept
of a o-algebra with the only difference that . does not necessarily contain the universal set
S.

Let A = {A(A) : A € &} be a stochastic process on (2, Z,P). We call A an indepen-
dently scattered random measure if, for every sequence {A, } of disjoint sets in #, the random
variables A(A,) are independent and if | J A, € & then

A(JA) =D AA,), P-as.

assuming that the series converges almost surely. The term random measure is somewhat
misleading since for fixed w this will not necessarily be a proper measure. We can for in-
stance construct a random measure by taking a Wiener process, W, on [0,1] and define the
independently scattered random measures as: A[a,b] = W(b)— W (a). This is not a proper
measure because W is not of bounded variation.

10



3.1. Random measures and stochastic integration

Moreover let A = {A(A) : A € &} be an independently scattered infinitely divisible
random measure, or ID random measure for short. This means that A(A) € ID,VA € &
Throughout this thesis we will use the following centering function (2.3). Since A(A),A€ &
the law of A(A), Z(A(A))(t), is of infinitely divisible kind, which means that by (2.2)

L(AA))(t) = E[eW] = exp {itvo(A) - %tz v, (A) + J el™ —1 —it7(x) Fa( dx)} . (3.1)

R

We write A € ID(v,,v;,F,). This means that, as in the case of Lévy processes, we may de-
compose A as an independent sum of a Gaussian random measure and a Poissonian type
random measure, that is

A ) + ea),

where

PIT(A)(t) = exp {—%tz vl(A)} , L(T(A)(t) = exp {itvO(A) + J el — 1 —itr(x)F( dx)} .

R

The following proposition is due to Rajput and Rosinski and is basically a Levy-Khintchines
representation for ID random measures:

Proposition 3.1. Let A be an ID random measure with characterized by (3.1), then:

1. vq is a a signed measure on &, Vg is a positive measure on & and F, is a Lévy measure
on R for A€ .o/ and for every B € 3By & A — F4(B) is a measure on &

2. If vy, v, and F. satisfy the conditions above there exists a unique ID random measure in
the sense of fdd’s with characteristic function (3.1).

3. The set function defined as

AA) = | vol(A) + v1(A) +J 1Ax2F,(dx),Ae &
R

is a measure with the property that A(A,) | 0 implies A(A,)) —p O for {A,} and if
A(A)) —p 0 for A, C Ay, then A(A,) = 0

The measure A is vital to the construction below. We will from now on call it the control
measure, which is, by the additional assumption on the 6-ring, a o-finite measure defined
on o(&). Before moving on it should be noted that vy << A,v; << A, which means
that the Radon-Nikodym derivatives with respect to A exists. Some more vital facts on the
corresponding measures will be summarized in the following proposition

Proposition 3.2. Let A be an ID random measure with characteristic function (3.1) then:
1. There exists a unique o-finite measure on (&) x 9By such that

F(AXB)=F4(B),YA€ &,B € By.

11



3. REPRESENTATION OF INFINITELY DIVISIBLE PROCESSES

Moreover, there exists a function p : S x Br — [0,00] such that p(s,-) is a Lévy measure
on By and p(-,B) is a Borel measurable function for B € By and for every (o(S), Br)-
measurable functionh: S xR —= R

f h(s,x)F(ds, dx) =J f h(s,x)p(s,dx)A(ds)
SxR SJR

2. The characteristic function of A(A), Z(A(A))(t), may be rewritten as

L(AM)(1) = eXp{f K(t,s)A(ds)},
A

where

K(t,s) =ita(s)— %tzaz(s) + f el™ —1—it7(x) p(s,dx),
R

and
_dVo Z_dvl
“a? T

For a simple function we define the integration with respect to A in the sense of Rosinski
and Balram [9]. Let

N
f :ZCj]lAj,Aj ﬂAl 2@,
1

and define the integral in the same manner as with the Lebesgue integral:

N
Jf dA =" c;A(A).
1

For an arbitrary measurable function f : (S,0(<)) — (R, %g), the integral f Af dA is defined
as a sequence of simple functions {f,,} satisfying f,, — f,A —a.e and the limit lim,, fA fndA
exists in probability for all A € o(<). We then define the integral as the limit in probability
f A fndA and call f A-measurable.

Remark. Whenever K is independent of s, K(t,s) = K(t), the ID random measure is said to
be homogeneous. This is a property that appears as soon as the ID random measure given by
the increments of a Lévy process which is due to the temporal homogeneity. Whenever this
occurs the characteristic function of A simplifies and now reads

Ee'™® = exp{K()A(A)}, K(t) = ity — %tzoz + f el™ —1 —it[[x]]v(dx).
R

12
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3.2 Representations of infinite divisible processes

The representation of infinite divisible processes as integrals of some corresponding infinite
divisible noice was developed by Jan Rosinski and Balram Rajput, [9]. Let S be a set and ¥
be a §-ring on S with the additional property that there exists a sequence of increasing sets
converging to S. Moreover let A = {A(A) : A € &} be an independently scattered infinitely
divisible random measure, or ID random measure for short. Throughout this section we will
use the centering function defined in chapter 1 (2.3):

T(x) = [[x]]. (3.2)
Here we will discuss questions relating to the integrability of a function f : S — R. We

introduce three auxiliary functions that will provide sufficient and necessary information on
the existence of fA fdA. Let p€[0,00):

U(y,s) = ya(s)+ [, T(xy)—yz(x) p(s, dx),
V,(r.8) = [ollyxPLyyxsny + 1y xP1yx<1} ps, dx), (3.3)
®,(y,8) = [U.$)+ y20%(s) + V, (1,9),

and with p = 0 we set

Vo(y,8)=f 1/\|xy|2P(s,dX)=f T(xy)* p(s, dx). (3.4
R R

We can then express the characteristic function of f fdA, £( f ¢ f dA)(¢t) in terms of K(¢t,s)
which is given in 3.2.

Lemma 3.1. If f is A-measurable then:

f [K(tf(s),s)| A(ds) < o0, .?(J fdA)(t) =exp {f K(tf(s),s) A( ds)} , (3.5)
s s s

and ff dA € ID(ay,0,Ff) where

as =J U(f (s).5) A(ds), 0% =J |f ()P0 ®(s) AL ds), (3.6)
S S

F(B)=F({s,x} €S xR: f(s) €B\{0}), B € By. 3.7)

In addition we have the following result that gives sufficient and necessary conditions
on the A-integrability of a function.

13
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Lemma 3.2. Let L be the space of all A-integrable functions. Then any measurable f : S —» R
is A-integrable if and only if:

f [U(f (s),s)| A(ds) < oo, (3.8)
S
Jlf(s)lzoz(s)l(ds)< oo, (3.9)
S
f Vo(f (s),s) A(ds) < oo. (3.10)
S

What is good news about the functions &, is that they can be used to construct a modular
so that we may introduce a suitable Musielak-Orlicz space.

Proposition 3.3. The functions ¢, satisfy:
1. fordls €S, ®,(,s) is a continuous non-decreasing function in R, with ®,(0,s) =0,
2. {s :2,(y8) =0,y =y(s) # 0} is a A nullset,
3. 3C>0:9,(2u,s) < CP,(u,s).

The last condition implies that all ¢, satisfy the A,-condition globally, for all s, and
that modular convergence is equivalent to normed convergence by 2.1. Following Rosinski
Rajput we introduce the Musielak-Orlicz space associated with the ID random measure

Ly (S,A) = {f € Lo(S,A) : J‘ @, (1f (s)l,s) A(ds) < oo} , (3.11)
s

with Lg = Lo equipped with the following norm:

||f||q>p = inf{c >0: J @, (1f ()l/c,s) A(ds) < c} . (3.12)
s

Looking back at 3.2 we see that the Musielak-Orlicz space can be written as an intersection
of an L2 space and a Musielak-Orlicz space without Gaussian component, that is:

Lg,(S,2) = L%(S,02%(s)A(ds)) N Lg,(5,4)

where
®,(¥,8) = [U(y,8) + V,(¥.8).

A useful theorem, that will be used in the coming chapter, found in [9] describes some
properties of the stochastic integral as a mapping from Ly, to LP.

Theorem 3.1. If A is a g-th order ID random measure then for 0 < p < q we have:
{f € Ly(S,A): ]Elf FdAPP < oo} =Ly (S,1), (3.13)
s
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3.2. Representations of infinite divisible processes

and the linear map,
LQP(S))') > f - f f dA € LP(QJ]P)))
s

is continuous.

If p = 0 in the previous theorem the topology in L° should be be understood as the
topology generated by the metric

do(X,Y)=inf{e > 0:P(X —Y|>¢€) <e€},or dy(X,Y) =E|X —Y| A1 (3.14)

Moreover under additional assumptions this is actually an isomorphism between the spaces.
The suggested isomorphism condition by [9] is as follows:

Definition. Let U(y,s),V,(,5),®,(y,s) be defined as in (3.3) (3.4) and let A be a g-th order
ID random measure. We say that the isomorphism condition IC is fulfilled if there exists a
constant C = C(q,p),0 < p < q such that for allu > 0

[U(ys)|<C {yzaz(s) + Vp(y,s)}. (3.15)

This condition holds trivially if A is symmetric, and it can be shown, as in [9], that it also
holds true if A is centered and L'. A theorem that will be very useful in the coming chapter
is on the behavior of this isomorphism.

Theorem 3.2. Assume that the IC is satisfied for some 0 < p < q. Then the mapping f —
fsf dA is an isomorphism from L¢p (8,A) into LP(Q,Z ,IP). Moreover

{J fdA: f e L,pp} =Span{A(A):Ac F}.
s
Before we present the main result we must separate three cases, let ¢ > 0 and let X =
{X, :t € T} be a q-th order, L4(Q,Z,P)-separable ID process:
Assumption 1 X is symmetric and g > 0,
Assumption 2 X arbitrary and q > 1,

Assumption 3 X is a centered stable process of index a or centered semi-stable of index

(a,r)

For each of these three classes of ID processes we associate a corresponding ID random
measure. This is the main reason for this spectral representation. The ID measure inherits
the majority of the distributional properties retained by the process. That is, if X is symmetric
the random measure,A, will be symmetric:

E[eitA(A)] = exp {2f
0

and if X is a-stable then A will be a-stable and so on. If X is an infinitely divisible sequence,
that is T = N or Z, then the following representation holds regardless of assumptions on X.

oo

cos(tx)—lFA(dx)}, (3.16)
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3. REPRESENTATION OF INFINITELY DIVISIBLE PROCESSES

Theorem 3.3. Let ¢ = 0 and X = {X, : t € T} be a Li-separable ID process satisfying either
of the assumptions and let A be the corresponding associated ID random measure with control
measure A. Then there exists f, € Ly ,teT such that

Xg{fftdA:teT}. (3.17)

Remark. An immediate consequence of the previous theorem is that if T has a notion of
distance, say that T is a metric space with metric d, then if the map

t_)fteLq)pa

[on

will, at least, be stochastically continuous. This follows immediately from the dominated
convergence theorem.
Remark. Now this integral is taken over some uncountable subset of a complete metric
space, in the article from Rosinski and Rajput it is taken over the boundary of the closed unit
ball in 2, but as given in remark 4.12 in the same article we can just map this through some
Borel isomorphism and take this over say [0,1] and then the ID random measure can be
taken as a stochastic process with independent increments defined as X[a,b] = X(b)—X(a),
see for instance [15].

The equality in the previous theorem can be strengthened to hold almost surely under
additional assumptions on the spaces T and S, see [9].

Let us simplify the setting, let S = R and let A = {A(A) : A € By} be an ID random
measure induced by a Lévy process L = {L, : t € R} that is :

is continuous then

Ala,b]=L,—L,.
Then we have that the characteristic function of A(a,b) can be written as

]Eeit/\(A) — ]Eeit(Lb—La) —
1 .
= exp {itam(A) — Etzm(A) + m(A)f '™ —1—itt(x)n( dx)}
R

where m is the Lebesgue measure. This means that whenever the ID measure is given by
a Lévy process the control measure can be taken as the Lebesgue measure. Another conse-
quence is that the kernel K(t,s) in 3.2 will only depend on t, K(t,s) = K(t) so forany f € Ly,

we have that the characteristic function of fR f dA can be written as

]Eeieffd/\:exp{f (i@uf(s)—%@zazfz(s)+J
R

R

e0f X _ 1 —i0f(s)r(x)w( dx)) ds}
(3.18)
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3.3. The control measure

Consider an stochastic integral process of this form, that is

Xy =J f(t,s)dL(s)
R

then the characteristic function is given, analogously with the argument above, by:

EelfXe — exp {f (iu@f(t,s) — %QZUZfZ(t,s) + f
R

R

el0F ()X 1 _i0 £ (t,9)7(x)n( dx)) ds} .

It is to no ones surprise that reverse engineering of a spectral representation of a given
infinitely divisible process is a terribly difficult task. It is even more difficult whenever the
process is Gaussian because then the regularity of the process is not only dependent on the
kernel but rather on the Gaussian ID random measure [11].

3.3 The control measure

The reason for this section is to emphasize the tight connection that exists between a homo-
geneous ID random measure and its control measure. Let T : (S,a()) — (S,0(&)) be a
measurable map. If

MT(A) = MA),VAe o(&), (3.19)

then T is said to be measure preserving. This implies that

AT hher S AW pesr (3.20)

since
ReitAT@) exp{AM(T(A)K(t)} = exp{A(AK (1)} = EeltA® va e ().

The converse also holds, that is if T satisfies (3.20) then
exp{(A(T(A) —A(A)K(t)} = 1= A(T(A) = MA),VAe 7,

and as & generates o(%) it follows that A(T(A)) = A(A). To phrase this in a more familiar
setting; consider the case when (S,0(%)) = (R,%Bg), T(x) = 74(x) = x+h,h € R and the ID
random measure is the increments of a Lévy process, L. Now, by the temporal homogeneity
of L we have that

Feifl — Faiftl

so that defining the ID random measure as A(a,b) = L, — L, we must necessarily have

ACta(a,b)) S Ala,b),

which by the preceding argument means that 7, must be a measure preserving map with
respect to the control measure. Now consider the integral process

X, :J f(s+t)dL(s),
R

17



3. REPRESENTATION OF INFINITELY DIVISIBLE PROCESSES

then this is simply a random variable, provided that supp f =R, because

Eeio%: — exp { f K(Of (s + ) A( ds)} =
R

= exp {J K(Gf(ft(S)))l(dS)} = exp {J K(Gf(S))l(dS)}
R R

This behavior is not easily observed through simulation as there is no simple way of dealing
with unbounded support.

Another important property is that if A is a finite measure, A(S) < oo, the random
variable A(S) will be well-defined since the characteristic function will be well-defined. If,
in addition, we assume that A is a second-order random measure, the stochastic integral
process

X, = f eStdA(s),
R

will actually be a weakly stationary stochastic process.

Another interesting property is that if A is regular then A will be regular, in distribution.
This means that if S is equipped with a topology and the following holds

A(A) = sup{A(C) : C C A, C compact } =inf{A(0) : O D A,O open }, (3.21)

and this imply that

A(A) g sup A(C). (3.22)
CcA
C compact

This will be proven in the coming chapter and is central to our simulation approach.

3.4 Musielak-Orlicz spaces related to certain infinitely divisible
random measures

Let S be a set and & be a §-ring on S with the property that there exists a sequence of
increasing sets converging to S.

Poisson random measure

Let IT be a Poisson random measure, IT € ID(7t(-),0, 7t(-)6,), where 7 is the control measure.
First of all it should be noted that IT is a homogeneous ID measure so that ®,(x,s) = ®,(x)

18



3.4. Musielak-Orlicz spaces related to certain infinitely divisible random measures

and we have

K(t)=e"—1,

U(x)=x +J [Lxy ] =x[[¥1]61(dy) = x +[[x]]—x = [[x]],
R
Vo(x) =f [[xy11?6:(dy) = [[x]P%,
R

V,(x) = f XY P Ly o1y + 10 Y P Ly <13 81(dY) = [x P Ljjes1y + X 1<)
R

Observe that [[x]] = Mﬁ Now we begin with the space of all IT-integrable functions which
is defined as

LY(s,m) = {f 'SR f (If ©)Dn(ds) < oo},
5
and moreover we have
|x| x? x?
® = UQ)| + Vo(x) = + 2= + =1A x|+ ——.
n(x) = UG + Vo(x) = |[[x ][ + [[x]] v T ITViRE |x]| TVIxP
Clearly the following holds:
(IA]x]) <Py <2(1A|x]),
so that all TT-integrable functions satisfy
Lg(S,ﬂ:)z{f:S—ﬂR:J|f(s)|/\17t(ds)<oo}. (3.23)
S

The Lg -space is slightly more involved as the modular, ¢, is more involved:
p

@,(x) = 1A x|+ XPL{jym1y + 1X[P L1y <1y

First we observe that
2
[T gx)<1y < TA X,

and by definition we have that
Ly (S,m)= {f €Ly (S,m): f @,(If ()N m(ds) < 00},
S

so we have for f € L{(S,n) that
f @,(1f (D) ZJ LALF @I+ IF P Lypsys1y + 1 P L) <1y m(ds) = (3.24)
s s

=C+C’+f If ()IP (ds), (3.25)
{If()>1}
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3. REPRESENTATION OF INFINITELY DIVISIBLE PROCESSES

since
C =J If ($)IA1m(ds) < oo, C’ =f |f ()IPLyf(s)<1y m(ds) < C < o0,
S S
which yields
f |f (I m(ds) < J ®,(If(s))=2C +f If ()IP m(ds),
If(s)>1 S If (s)I>1
and hence
Lg (S,m)= {f S L(r)[(S,rt) : If ()P m(ds) < oo} . (3.26)
' f)>1
Finally for f € L, we have that
.E?(J fdin)(z) =exp {f elZf () _ 1 ( dx)} . (3.27)
s

It should be observed that f € Lg does not imply |f| < oo a.e. Let, for instance f(s) =
00,s €A, n(A) < oo and f(s)=0,s e A

Gamma random measure

The Gamma random measure, T, is defined as the homogeneous random measure
e ™ * e ™
T € ID(v(A)k, 0,v(A)n(dx)), n(dx) = H[O’OO)T dx, k= J [[X]JT dx.
0

Moreover we have

1 1
K(t)= log(ﬁ) =—3 log(1 + t2) +iarctan(t),
—i

U(X)=kX+J ([[Xy]]—y[[X]])—dy=|X|(1—€_1/|x|)+f —dy
0 y 1/lx| Y
_ 1 ey
Vo(x) = [x*(1—e 1/lxl(—+1))+f —dy,
x| 1/Ix|

1 oo
Vp(x) = |lx|? (1—e_1/|x|(ﬁ+1))+|x|pf yP~le™V dy.
X 1/Ix|

Straightforward one-variable calculus provides the following estimates when |x| < 1, note
that |U(x)| = U(x) and we have

1 ey
&1 (x) = U(x) + Vp(x) = |x|(1 —e /) + |x|? (1 —e—l/lxl(m + 1)) + 2J e7 dy.
1/lx|
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3.4. Musielak-Orlicz spaces related to certain infinitely divisible random measures

Then we have the following estimates for each term
(1—e Mlx| < Jxl(1—e VM) < |x,

0< |x? (1 —e—l/'X'(ﬁ n 1)) <Ix| sup FCO, £ = el —e (1 + Jx]),

x€(0,1)

oo e_y
0< —dy <e Yx|.
il Y

Hence for |x| < 1 there exists constants 0 < ¢ < C < oo such that
clx| £ ®(x) < Clx|.
Similarly for |x| > 1 we have the following estimates
1—e'<xj(1—e Yy <1,

1
1—2¢71< |x|2(1—e—1/"“|(ﬂ + 1)) <1/2,
X

e log|x| SJ —dy <log|x|+e7},
x| Y

which yields
c’log(elx|) < @5 (x) < C’log(elx|), 0 < ¢’ < C’ < o0.

Letting

W(x) = { Il X< (3.28)
log(elx]) [|x|>1

we finally obtain

Lg(S,U)z{f:S—)R:J

S

U(|f(s)Dv(ds) < oo} (3.29)

To characterize the space Lg it suffices to estimate the integral
p

-y
f el_ dx
x| Y P

for p € (0,00). For |x| < 1 we obtain the same estimates as before. For |x| > 1 we find that

c’|x|P < ®(x) < C”|xP,

and we have

Lg (S,U)z{fELg:J |f(s)|pv(ds)<oo}. (3.30)
! F&)I>1
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3. REPRESENTATION OF INFINITELY DIVISIBLE PROCESSES

Moreover, for an arbitrary f that is T-integrable we have:

Q(J f£dY)(2) =exp {f —% log(1 + f(s)?) +iarctan(f (s)) m( ds)} . (3.31)
S

Remark. It should be noted here that neither the Poisson random measure nor the Gamma
random measure satisfy the isomorphism condition, but for p = 1 both Lgl, Lgl are in fact

LY(S,m). Moreover for p > 1 we actually have that

Ly (S,0)=L1(S,v)NLY(S,v),

f |f|+J IfIP < oo,
Ifl<1 F1>1

11l < o0, lIf Il < o0,

since |[f| < 1= |f|P <|f|land |f| > 1 = |f|? > |f]. Hence L;I,p C LP(S,v) N L1(S,v).
Conversely, if ||f ||, and [|f[|; are both finite the other inclusion follows immediately, as the
modular is finite. This is in fact good news as these actually are Banach spaces with norm
lf 1l = llfll1 +Ifll, and we have the following inclusion L? N L' ¢ L9,1 < q < p. See for
instance [4] for more details concerning the basic theory of LP-spaces. Finally the metrics
are actually equivalent since modular convergence is equivalent to convergence in F-norm,
by 3.3 and 2.1.

since if f € Ly (S,v) then
p

which implies

SaS random measure

Now consider a SaS random measure with a € (0,1) U (1,2), =, that is:
Ee'™®) = exp{—|t|*0(E)} & T € ID(0,0,0(-)0(dx)), 0(dx) =c|x[*'dx, (3.32)

which is once again a homogeneous random measure and as before we begin with charac-
terizing the space of all Z-integrable functions. We have

K(t) =—|t]?,

U(x) = Cf [[xy 11— x[[y]lyl™**dy,
R

Vo(x) = Cf [[xy]Plyl*tdy,
R

Vp(x) = Cf |xy|p]l{|xy|>1} + |x.)’|211{|xy|<1}|y|_m_1 dy.
R

22



3.4. Musielak-Orlicz spaces related to certain infinitely divisible random measures

Indeed U(x) = 0 as the integrand is odd, moreover it is an easy exercise in integration to
see that

2 —a—1 _ 4c a
CJR[[X}/]] lyI™* " dy = mIXI ,
and hence
By (x) = V() = ——o— [,
a(2—a)
which simply means that
L)(S,0) = L%(S,0). (3.33)

The spaces qu) are actually simpler than expected because p < a must hold for V,(x) to be
p

finite and it is once again an easy exercise in integration to see that ¢, actually reduces to
C’'®,,C’ > 0, which means that
% _ %
Ly =L3.p<a

Moreover we have for f € Lg :

9(ffd2)(2)=eXp {—IZI“I If(X)I“U(dX)}, (3.34)

so that the random variable, f f dx, is itself SaS with scale parameter, s,

s = f |f (e)|* o(dx).
This result exists in a more general form in [9] concerning spectral representations of stable

and semi-stable random integrals. For a more complete structure of the stable integrals we
refer to [13].

Gaussian random measure

A special case of the stable random measures is the Gaussian random measure defined as:
itT(A) L
Ee = exp _Et r(A)¢.

It follows immediately that

o,(y)=y?
so that
Lg = {f :R->R: f If ($)2y(ds) < oo} =L%(S,y). (3.35)
R
Moreover we obtain for f € L,
f(ffdf)(z)=exp{—|zlzf |f(x)|2Y(dX)}, (3.36)
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3. REPRESENTATION OF INFINITELY DIVISIBLE PROCESSES

which means that f f dr' is a Gaussian random variable with variance

02:2‘[|f(XN2Y(dX)

So in the case of Gaussian random measures the linear structure of the I'-integrable functions
is in fact that of a Hilbert space, which means that we have notions of orthogonality. More-
over, the behavior of the orthogonality of the subspace { f fdr:fe LZ(S,}/)} c L2(Q,7,P)
is inherited from the orthogonality structure of L2(S,y). This is really due to an isometry or
unitary map between the two. To prove this fairly simple statement let, ¢ and 1 be simple

functions
N M
¢ = Zai]lAi: P = Z bilg,
1 1

and without loss of generality we may rewrite either, 1) or ¢ in terms of the partition A; or
B; respectively. Hence we may without loss of generality consider two simple functions of
equal number of terms and partition,

N
= bll,.
1

We get for simple functions

N N

(¢,4) = EJ $dr f $dr = 3 aBEMUINA) = D aibir(A) = J ¥ 7(dx).

j=1 i=1

This means is that if we have an orthonormal basis {¢,} then it will be represented as un-
correlated and hence independent random variables in L?(Q,%,P). From this it follows that
the problem of finding a suitable approximation of a stochastic integral

Jgdn

reduces to finding a orthonormal basis, {¢,}, for the space L2(S, y), and approximating the

integrals
f ¢,dr.

This is possible in the Gaussian case, since we know that the random variables f ¢, dA arein
fact Gaussian by (3.36) with variance o2 = f ¢,(x)y(dx). Now for an arbitrary I'-integrable

function f set
N

f(N) = Z<f’ ¢n>F¢n: (f: ¢n>F = Jf(x)¢n(x)Y( d.X'),

n=1
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3.4. Musielak-Orlicz spaces related to certain infinitely divisible random measures

we have (with obvious notation)

[ f fdr— J fF®ar|, <clf —FMp,

by theorem 3.1. So any Gaussian stochastic integral process can be approximated by a sum

of the form
N

> ap(t)Em an(t) = (fr, ), £ € A(0,1).

1

This conclusion is, on the other hand, not true for the stable integral-processes or the Poisson
integral-processes. In the next chapter we will discuss a general method for simulating other
integral processes under sufficiently inclusive conditions on the space and control measure.
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Simulation of processes using
representations

NE of the most important parts of the theory of stochastic processes is to be able
to simulate sample paths. This is due to the fact that understanding a stochastic
process requires a full description of the finite dimensional distributions, fdd’s.
The spectral representations allow us to control the error of the simulation in a

precise way. Take for instance the stationary processes, we know that these are in a one
to one correspondence with a separable L2 space with a finite measure. This implies that
we can approximate the stochastic process arbitrarily well in the L? sense. For the infinite
divisible processes this is not true, but we still know that the simple functions are dense in
the Musielak Orlicz space and converge in probability. What we prove in this chapter is a
confirmation of the idea that

N
Zf(t;nj)ALj’ AL; =L(s;)—L(sj—1),m; € (5j-1,5;)
j=1

is a suitable approximation of
J f(t,s)dL(s),
S

where L is a Lévy process. This is proven for general ID random measures under some
conditions.

We will not discuss how to properly simulate Lévy processes, or simulating from infinitely
divisible distributions. We refeer to [2], among others for further discussions.

4.1 Infinite divisible processes

Simulation of infinitely divisible processes has been done to some extent by Wolfgang Karcher
et al. in [6], but they restrict their attention to functions with compact support on R? and
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4.1. Infinite divisible processes

assume that the collection of functions {f;};cr are in L?,p > 1. In general there are error
bounds in terms of L” estimates and in the almost surely sense, see [3].

Our approach is far more general. We aim with this section to propose a method of
simulating infinitely divisible integral processes driven by a ID random measure and to verify
that the approximation holds in a suitable sense. Let

x| fydncer, 4.1

S

where A = {A(A) : A € &} is a ID random measure with control measure A, where & is
a 6-ring of a set S, and A(A) € ID(vy, v1,F,). We will assume that the set S actually is a
topological space so that notions of compact and open sets make sense. We will moreover
assume that either of the following conditions hold.

Condition 1. The space Ly, is a normed space or satisfy at least, ||Af ||q>p < |AlIlf ||q>p, VA <1

This condition might seem restrictive, but it is actually satisfied for Poisson and Gamma
random measure whenever p > 1 and for SaS-stable measures if a € (0,1) U (1,2].

Condition 2. The IC condition is satisfied

4.1.1 Homogeneous case

Let A = {A(A) : A€ #Z} be homogeneous, that is
A(-) € ID(A( ), A()o, A()F) < Eelr™ = exp{A(A)K (1)}, A€ &

where

K(t)=iut— 1tzoz +J el™ —1 —it[[x]]F(dx).
2 R

To separate the cases might seem strange at first but the reason becomes clear if one considers
an integral process,

J f(t,s)dL(s),
R

that is driven by a Lévy process, L = {L(s) : s € R}. Then due to the temporal homogeneity
of Lévy processes one may take the control measure as the Lebesgue measure.

In the homogeneous case it should be noted that the Musielak-Orlicz space, Ly, es-
sentially reduces to a Orlicz space with the only difference being that the norm is still of
Musielak-Orlicz kind. Let us recall the related functions and modular that constitute the
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4. SIMULATION OF PROCESSES USING REPRESENTATIONS

Musielak Orlicz space,
Vo(X)=f [[xy1?F(dy), Vp(X)=J ey 1P Ly p>1) + XY P Ly <1y F(dY),
R R

U(x) = xa +f [[xy11=x[[y]IF(dy), ®,(x) = [UG)| + x*0% +V,(x),
R

Lo={f¢5—>RIJ<I>o(|f($)|)7t(d8)<°0},L¢p={f6L01J‘1>p(|f(8)|)l(d8)<00},
S S

1flle, = inf{c >0: J @, (f1()l/e) < C} :
S

What will be the key observation in the proposed simulation method is that the simple func-
tions are dense in Le, and that the sets will be of finite measure.

Lemma 4.1. Let
N

P(s) =D cila (5), A;NA; =0,

j=1

then ¢(s) is A-integrable if and only if A(A;) < 00, j = 1,2,...N. Moreover the simple functions
are dense in Ly,

Proof. The proof is simply to compute the modular of the function,

N
f ®,(|@(s)) Alds) = > @, (Ic;DA(A)).
S

j=1

Now as &, is a continuous Young function we know that &,(|c;|) < 00, Vj and we are done.
The proof that the simple functions are dense in Ly, can be found in either [8] or [10]. O

Remark. We may add the conclusion that the set of all continuous functions with compact
support, denoted Cy(R"), is dense in Ly . The argument is the same as in the theory of L?
spaces. Consider first R. Let A = [a,b],—00 < a < b < 0o be A-finite, then it suffices to
find a continuous function, f, that is 1 on A and vanishes outside [a—e€,b+€],e > 0 and is
linear on [a —e€,a],[b,b + €] then we have

p(f —14) < @,(DA(la—e,a]Ulb, b +e)),

and by the continuity of measure we may choose € so small that A([a —e,a]U[b,b+¢€]) <
€/®,(1). For R" one lets A be a rectangle and the same result holds.

This is the first step towards our goal, because now we know that for every fixed t € T we
can find a simple function ¢, such that

Il fe — Wt”% <e.
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4.1. Infinite divisible processes

What is lacking however is that we do not know how well this approximation holds in prob-
abilistic terms. Now if the control measure, A, is regular that is

A(A) =inf{A(0O) : O 2 A, O open} = sup{A(K) : K € A,K compact}, 4.2)

we may approximate the distribution of A(A) arbitrarily well by a compact set in the Musielak-
Orlicz norm. The assumption that A is regular is motivated once again by considering an
integral process driven by a Lévy process as the control measure is regular.

Lemma 4.2. Let A be a ID random measure and let A be its control measure. Set
() = Eel™™@ = exp{A(A)K(t)},A€ &, (4.3)

and assume that A is regular. Then for € > 0 there exists a compact set K or open set O such
that

|pa(t) — Ppx(t) <€, and [|1,— ﬂKllcbp <§¢,
or
|pa(t) — po(t)| < e€,and [[1,— I[o||<1>p <e€.
holds.
Proof. By (4.2) there exists a sequence {K, },en, K, € Ky, < m of compact sets such that

A(K,) T A(A) or equivalently A(A\ K,,) | 0. This means that there exists an integer N € N
such that A(A\ Ky) < € for some € > 0. Now set K = K, and we have

¢A(t) — EeitA(A) = exp {A(A)K(t)} — eA(A\K)K(t)eA(K)K(t) — eA(A\K)K(t)(pK(t)’
which evidently yields
|pa(t) = pic(O)] = [ (£)|[1 — AHNOKO| < 1 — HAVOKD) < ¢

since ¢ is a characteristic function and hence |¢px(t)| < 1. The proof for open sets is iden-
tical but instead of taking a sequence of increasing compact set one takes a sequence of
decreasing open sets. As for the statement about the Musielak Orlicz norm we know that
norm convergence and modular convergence are equivalent by 2.1 and 3.3,

f ®,(1,— T1x) A(ds) = &,(DAA\ K) < &,(1)e,
S

which completes the proof. O

Now as simple functions consists of disjoint sets these results imply is that any simple
function is arbitrarily well approximated, in distribution and Musielak Orlicz sense, by a
different simple function that consist of compact disjoint sets. Before we begin with the last
part denote

d,(x,Y) = (EIX —YIP)'P, X,Y € LP(Q,Z,P),
dfbp(f)g) = ”f - g”(I)p, f:g € L@p(A,S).

Before we prove our main result we must prove a certain property on the continuity of
the mappings from the space Ly, to any normed space.
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4. SIMULATION OF PROCESSES USING REPRESENTATIONS

Lemma 4.3. The following are equivalent for a linear mapping
T: Lq;.p —Y,
where (Y, | - ||) is a normed space and Ly, satisfy Condition 1.
1. T is continuous,
2. T is continuous at O,
3. T is bounded.

Proof. Indeed the following implications hold: (1) = (2) and (3) = (1). So to complete our
argument we only need to prove that (2) = (3) holds. Assume T continuous at 0. Then by
definition of continuity we have:

Ve>0,36>0, :Vx e L¢p||x||¢,p <6=||Tx|| <e,
so that for € = 1 there exists 6 > 0 such that for x € Ly, ||x||q>p < & implies | Tx|| < €. Let

, o
x' = X,
2llxly,

for some arbitrary x € Ly, . For simpler notation let a = ,and let |a] = sup{n € Z :

5
2MxTl,
n < a}. Then we have by 2.1 and Condition 1 that

Ix'llg, = llaxlle, = llLalx — (a—LaDxlls, < Lallixllg, +(a—LaDllxlls, < &
and hence we obtain

ITx| =T

2
xll <16 [ Tx] < ZlIxll
2llxla, 5

O

This result is only a slight modification of the same result concerning linear continuous
maps between normed spaces and can be found in any book on functional analysis. It should
be noted that the condition ||Af ||q,p < |Alllf ”q,p is essential. We are now ready to prove our
main result.

Proposition 4.1. Let {f;},er C Lg (S,A) and

X, =fftdA.
S

Assume that A is regular and assume that either condition 1 or condition 2 holds.

Then there exists a family of simple functions

N(t)

{e(heers e = D, %014,

j=1
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4.1. Infinite divisible processes

such that
N(t)

d, (X, > x(DAA) < e

j=1

where A; can be taken compact.

Proof. If condition 1 holds, then by 3.1 we know that

.ﬁ»ffdmfeL%
S

is a linear continuous map. This is equivalent to it being bounded that is

dp(I(f),1(8)) < Cdy (f.8), I(h) =f h(s)dA, C >0
S

by the previous lemma 4.3. For 0 < p <1 the same holds due to the homogeneity of d,,. For
p = 0 we need that the IC holds. Then for every fixed t we have that there exists a simple
A-integrable function depending on t,p; such that

dy, (fope) < €.

By 4.2 we know that for ¢, there exists a corresponding simple function, ¢, consisting of
disjoint compact sets such that

d¢p(¢t7 $¢) <e€.

Then by the continuity and linearity of fs - dA we have

dp(Xt: I((ﬁt)) S dp(I((pt)aI(()bt) + dp(XUI(SOt))
< C(dtbp(gotﬂ (ﬁt) + dQP(LPt)ft)) <2Ce

and we are done. If the IC holds then the result follows immediately by 3.2 O

The advantage with condition 1 is that it provides a tool for measuring the error of our
approximation. This will be discussed in the coming section.

Now lets restrict ourselves to a more familiar setting. Let S = R and T € R. What
this theorem tells us is that given a integral process driven by a homogeneous ID random
measure all we need to know is the structure of our Musielak Orlicz space in order for the
approximation to make sense. A concrete example is to consider an integral process driven
by an SaS Levy motion L = {L, : t € R} € Sa$§, that is our independently scattered ID
random measure is defined as A[a,b] = L, — L, and is distributed accordingly to (3.32) with
control measure as the Lebesgue measure. This means that the compact sets are just closed
and bounded intervals and we may take the intervals to be of same size so that

N

FEs)m D X (O, 1905)

j=N
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4. SIMULATION OF PROCESSES USING REPRESENTATIONS

where the approximation is in L*-sense and the integral is approximated by

al 1 1
JRf(t,s)dA N Z xj(0)8,€; €ID(0,0,-0(dx)) & &; € ol 57-.0,0).

1 3
=N Ny

In a more general sense this means that the approximation

[ $5(2)o(512)-+)

makes sense for an arbitrary Lévy process, assuming of course that f is L-integrable and that
either condition 1 or 2 holds.

4.1.2 Inhomogeneous case

Now the inhomogeneous case is, and should be, somewhat more difficult as we must now
investigate the regularity of the measures

v(A) = J K(t,s)A(ds), 4.9
A
K(t,s)=itu(s)— %tzaz(s) + f el™ —1—it[[x]] p(s,dx), (4.5)
R
up(A) = f ®,(1,5) A(ds). (4.6)
A

We restrict ourselves to the case when S is a o-compact space, which means that S can be
written as a countable union of compact sets. Consider for example the sets K, = [—n,n] on
R. A general result on regular measures can then be proven.

Lemma 4.4. Let X be a o-compact topological spaces and let 9By denote the Borel o-algebra.
Let u be a inner-regular o-finite measure on X, and let f € Llloc(u). Then the measure

v(A) = J fdu, 4.7)
A

is a o-finite inner-regular measure.

Proof. The o-finiteness is clear by the assumption of a o-compact space and the locally
integrability of f :

f f du < 00, VK compact.
K

Now define v,,(A) = v(ANA,),n € N where UfoAn =X,A,NA, =0,v(A,) < co,Vn. Then
v, is finite for all n and v, << u, Vn which is equivalent to:

Ve>0,36>0:uA)<é=>r,A)<e (4.8)
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4.2. Convergence analysis

Now recall the definition of inner regularity:
w(A) = sup {u(K) : K C A, K compact },

and by the o-compactness let K be a compact set such that u(A\K) < 6 = v,(A\K) < e2™.
Then we have
v, (A) < €27+ v, (K)

and hence for
oo

W(A) =D v,(A) < €+ »(K)

1
taking the supremum on the left hand side we obtain the result. O

What this general result means is that we essentially have arrived at the same result as
in the homogeneous case, with the additional assumption on the space S and as long as the
functions K(t,-), and ®(1,-) are locally integrable. Now indeed the function K(t,-) is locally
integrable as it merely consists of the three o-finite measures, v, v;, and F,, and moreover
we know by 3.2 that 1, is A-integrable whenever A € &, so that ®(1,-) is locally integrable
as well. Hence the same argument goes through for the inhomogeneous case and we have
the same result.

Proposition 4.2. Let {f;};cr C Ly, (S,A) and

X, =fftdA.
S

Assume that A is regular; S is a o-compact space and that either Condition 1 or Condition 2
holds.

Then there exists a family of simple functions

N(t)

{ohers 9= D, x;(O14)

j=1

such that
N(t)

d,(X, > x;(OAA)) < e

j=1
where A; can be taken compact.
4.2 Convergence analysis
Before we begin with our discussion on the convergence of the approximation we must

make some assumptions. We will begin with considering the case S = R. Assume first that
®(x),®(x,5) T 00, x > 00,Vs €8, sothat f € Lq,p implies that |f| < oo, A-a.e. Moreover
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4. SIMULATION OF PROCESSES USING REPRESENTATIONS

assume that A € LI(Q,Z,P) for some g > 0 and that Condition 1 holds. What propositions
4.1 and 4.2 imply is that the modulars:

p1(fe) =J (1 f:()) A(ds), (4.9)
R

p2(fe) =J (| f:(s)l,s) A(ds), (4.10)
R

are suitable for measuring the error in the approximations of

f fe(s)dA.
S

The case of ®(x) = x* has already been discussed to great extent in, for example, [3] and

[6].
Let us consider the homogeneous case first. For every t € T there exists a simple function
¢, such that ||f, — qbtllq,p < € and we have

IIth dA—J ¢ dAll, < Clife = dclls, -

Rewrite f,(x) as
N(t) N(t)

Fi0) = D F g + £ ()L, A = | Ay,
i=1 i=1
then we have
N(t)

1fe = @elle, < 1 fella, + 11 D G ()= £y lls, < (4.11)
i=1
N(t)
<c’ (pi(ﬂAgft) +pi(Q (D) —ft(x))nAi)). (4.12)
i=1

Indeed we may assume that A is contained in some large compact set C and that each A; =
[a;,b;] which, simply put, means that we must estimate the integrals

f &(|f:(x)) A(dx), (4.13)
|x|>K,
N(t)
f (] > (i) — () q, b)) Aldx0), (4.14)
|x|<K, i=1

for some large K > 0. The second integral is fairly simple as we may estimate this as

N(t) N(t)
f (Y (ei(8) = F 0N g 5D dx < D esssup @ (1x,(6) = f (D ALx : x| < K.
|x|<K,

i=1 i=1 x€[ay,b;]

(4.15)
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4.3. Simulation of some processes and a simple error estimate

What this really means is that we are interested in the behavior of & close at the origin,
which describes the error of f outside some large compact set, since ® is a continuous non-
decreasing function by 3.3. Moreover, if the family {f,},cr has compact support, we obtain
a similar estimate provided by [6]. Of course this is not necessarily the best approximation,
there are several better approximations if we know what the functional is, see [6] for a
proper discussion in the case of L". One might attempt to use various interpolation methods
such as wavelet approximations, provided that the kernel f, is regular enough.

4.3 Simulation of some processes and a simple error estimate

This section is devoted to discuss the proposed simulation and convergence analysis. We will
for simplicity only consider the Gaussian case and we will consider the Brownian motion
B = {B, : t € T}, the fractional Brownian motion B¥ = {B : t € T}, and the Ornstein-
Uhlenbeck process X = {X, : t € T} (OU-process for short). We define them in terms of their
covariance structure, assuming that all are centered and have unit variance:

Is| + |t] — [t —s|

cg(t,s) =EB,B; = min(s,t) = 2 , (4.16)
2H 2H 2H
+ [t —|t—
cpu(t,s) = EBBH = s + 1l : =5 pe(o) (4.17)
cx(t,8) =EX, X, = eIt (4.18)

As all of the processes are Gaussian so will their ID random measure be. Moreover the
control measure can be defined in terms of the variance of the ID random measure. Let
M,MH and A be the ID random measures associated with the Brownian motion, the frac-
tional Brownian motion and the OU-process respectively. As the ID measures are Gaussian
the linear structure of the Musielak-Orlicz space reduces to a Hilbert space, and more im-
portantly we can define the control measures in terms of the variance

m(A) = EIM(A)1%, m"(A) = EIM7 (A)1%, A(A) = E|A(A).

To obtain the spectral representation of the processes we observe that the OU-process is
stationary whereas Brownian motion and fractional Brownian motion are processes with
stationary increments. This means that we can consider the kernel functions:

its

Fi(t,s) =€, fo(t,s) = ——

-1 eits_l
—, f3'(ts) =
is

is

2

so that we may apply techniques from the theory of distributions, see for instance [5] for a
detailed discussion on the subject.
We obtain the following control measures

2 1 1
Ads) = T3s2 ds, m(ds) = oy ds, m"’(ds) = ﬂl"(l + 2H) sin(Hn)|s|*2H ds.
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4. SIMULATION OF PROCESSES USING REPRESENTATIONS

Our ID random measures are therefore distributed as

N(0,m(ds)), N(0,m'(ds)), N(0,A(ds)),

respectively. We consider the approximation suggested in the previous section:

N(t)

[ .
) e'“A(ds) ~ Z eI A(s},5541),

R =

(‘ eitS -1 N(1) itSj -1
] —M(ds) ~ ——M(s,5741);

R = j

r eits -1 N() its; _ 1

- H(ds) ~ - MH(Sj:Sj+1)-

J R 1S =

Moreover we have
A(sj,5j41) € N(0,A(s,5541))s
M(sj,sj41) € N(0,m(s;,8541)),

MH(sj,st) e N(O,mH(sj,st)),

and

A(sj,5j41) = 2(arctan(s;,,) — arctan(s;)),

|(3j:5j+1)|
m(sj:sj+1) = T ox
1
h _ 2-2H __ 2-2H
m (Sj’sj+1)—m[sj+1 % ]

so that we may write the approximations as

N(t)

Z eitsjo'fgj, 0;=4/A(s),8541), €5 €N(0,1),

=1
N(t) eitSj — 1 B B

o7&, 07 =4/msj.sj41), € €N(0,1),
=1
N(t) eits] _ 1 BH

o g]: mH(Sj,st), §€N(O)1)
j=1

This may not the best method for simulating Gaussian processes, especially when simulating
Brownian motion, but it provides some insight on how well the approximation scheme works.
Now we may apply the suggested error estimate from the previous section. Here we consider
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4.3. Simulation of some processes and a simple error estimate

the OU-process on the interval t € [0,1]. Let g,h : N — N be increasing functions with
h(n),g(n) T oo, n — oo and let

g(N)
¢ (x) = Z 10, .07 K = 8N, I(55,8541)1 < C/R(N).
j=1
We have:
.19 2 g(N) . o
p(lft_¢t|)SJ |e1tx~ dX+A{|X| <g(N)}Z sup |e1tX_e1t51
1+ x2
|X|>g(N) j=1 x€[5j7sj+1]
g(N) . -
S——=+m Z sup |e1“‘ —eltSi |7

~ g(N) = xelsisinl
and Taylor expanding around s; yields
el —elt5i|% = |(x —s;)ite!™ +R(x,s;)(x —s;)?|?,
where R(x,s;) is bounded. We obtain

C , §(N) » &(N)
) T T ey

plfi—¢) <

In general, estimates of this type are fairly simple when the control measure is finite. The
case of infinite control measure is far more intricate and relies on knowledge about the decay
of the kernel at infinity (see [3] and references therein for a more conclusive discussion). A
different approach might be to consider polynomial interpolation to obtain a higher degree
of convergence, this can be done as we know that the continuous functions with compact
support are dense whenever the ID random measure is homogeneous.
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Figure 4.3: Several realizations of fractional Brownian motion.
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Conclusions and future work

HERE are still a lot of questions to be answered relating to infinitely divisible pro-
cesses. The most pressing issues are found in the field of inference. For example,
how do we, given a stochastic integral process and assuming only knowledge about
the noise, estimate the kernel function? Conversely, if we assume knowledge about

the kernel how do we estimate the noise? If we know that the process is of a SaS-type we
know that for every such process there exists a kernel and noise. Linear and non-linear re-
gression for a-stable random variables have been developed to some extent, see [13], but
the result are unattractive because the given regression formulae are described in terms of
integrals. They are not analytically nor numerically tractable and therefore difficult to use
in applications. Another problem is found in the field of simulation. There are seldom any
good tools to measure the error of an approximation, and the most pressing issue is that the
approximation theory on Musielak-Orlicz spaces have not been developed beyond the case
of a finite measure space ( see [8] for a very short discussion on this matter). Hopefully
the discussion on simulation and convergence provided by us will shed some light on this
subject. Some more theoretical questions relating to path properties of ID processes are still
left unanswered but are being studied intensely by Talagrand and Rosinski among others.
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