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Motivation

Imagine to own a portfolio P with only two constituents, say stock S1 and
stock S2

1, then the risk associated to P is directly related to the dependence
between S1 and S2.
For that reason, selecting an appropriate model for dependence is of key im-
portance for portfolio managment and portfolio selection.
Traditionally, the Pearson correlation coeffcient is used to describe depen-
dence between two random variables X and Y with nonzero finite variances.
The coefficient is defined as2

ρXY :=
cov(X, Y )√

var(X)
√
var(Y )

and it measures the strength and the direction of a linear relationship be-
tween X and Y.
Although profusely used because of the ease of which it can be calculated,
the Pearson coefficient is neither a satisfactory nor a complete measure of the
dependence among different securities an it is often a misunderstood measure
of dependence for several reasons:

1. When the variance of returns tends to be infinite, that is, when extreme
events are frequently observed, the linear correlation between these
securities is undefined.

2. The correlation is a measure for linear dependence only.

3. The linear correlation is not invariant under nonlinear strictly increasing
transformations, implying that returns might be uncorrelated whereas
prices are correlated or vice versa.

4. Linear correlation only measures the degree of dependence but does not
clearly discover the structure of dependence.

1S1 and S2 are random variables representing the two stock returns.
2cov(V, Y ) = E(XY ) − E(X)E(Y ) is the covariance of (X,Y ) whereas V ar(X) and

V ar(Y ) are the variances of X and Y .
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5. It has been widely observed that market crashes or financial crises often
occur in different markets and countries at about the same time period
even when the correlation amog those markets is fairly low.

6. It is a natural scalar measure fully describing the dependence of (X, Y )
when they are elliptical jointly distributed (such as bivariate normal),
but it is totally wrong outside that case. Unfortunately, securities
(S1, S2) often fail in being jointly elliptical distributed, thus using linear
correlation as the only measure of dependence in such situations might
yield misleading conclusions.

The latter point is related to the fact that correlation coefficient does not
tell anything about dependence in the tails (that is when the two random
variables reaches their extreme values), likely the Gaussian distribution, but
in the real market instead securities often have strong tail dependence.
A more prelevant approach that overcomes the disadvantages of linear cor-
relation is to model dependence by using copulas. With copula method the
nature of dependence that can be modelled is more general as copulas offer
much more flexibility then the correlation approach, in particular the depen-
dence of extreme events can be considered.
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Chapter 1

Bivariate copulas

The standard “operational” definition of a bivariate copula (briefely copula)
is a bivariate distribution function defined on the unit square [0, 1]×[0, 1] with
margins distributed as uniform on [0, 1]. This definition however masks some
of the problems one faces when costructing copulas using other techniques.
For that reason, we start with a slightly more abstract definition and then
prove that the “operational” one holds true.
Chapter 1 is therefore an introductory chapter to copulas and it is mainly
organized in three parts: the first one defines the concept of bivariate copulas
and points out first remarks; in the second part a bridge between copulas and
distribution functions is built, so that the “operational” definition of copulas
makes sense; finally, the third and last part of the chapter links bivariate
copula with random variates by defining the copula associated with two given
random variates.

1.1 Definitions

In order to define copulas, notions of grounded and 2-increasing functions
need to be introduced.
Let A1 and A2 be two nonempty subsets of R and f : A1 × A2 −→ R a real
function.

Definition 1.1. If A1 has a least element a1 and A2 has a least element a2,
the function f is said to be grounded if and only if

f(x, a2) = f(a1, y) = 0 ∀(x, y) ∈ A1 × A2.

In other words, a two-place function f is grounded if it vanishes on the
left and on the bottom boundary of its domain, i.e. on the set {a1}×A2 and

1



A1 × {a2} .

Definition 1.2. f is said to be 2-increasing if and only if
∀ x1, x2 ∈ S1 and ∀ y1, y2 ∈ S1 × S2 with x1 ≤ x2, y1 ≤ y2

f(x1, y1) + f(x2, y2)− f(x1, y2)− f(x2, y1) ≥ 0.

Unlike groundedness, it is not so easy to recognize a 2-increasing function
f just looking at its graph, but it can be proved that any 2-increasing and
grounded function f is both nondecreasing in each argument and uniformely
continous on its domain.
We are now ready to define copulas.

Definition 1.3 (bivariate copulas). A bivariate copula (or briefly copula)
C is any real function C defined on the unit square I2 := [0, 1]× [0, 1]

C : I2 −→ R

fulfilling the following properties

i. C is grounded;

ii. ∀u, v ∈ I C(u, 1) = u and C(1, v) = v;

iii C is 2-increasing.

According to Definition 1.3 and the previous remark about grounded and
2-increasing functions, the graph of any copula is a continous surface within
the unit cube I3 i.e. 0 ≤ C(u, v) ≤ 1 ∀(u, v) ∈ I whose boundary is the
skew quadrilater with vertices (0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 1) and it is a
nondecreasing function in each place.
Theorem 1.1 guarantees that each copula C has is own graph liying between
two main surfaces z = max(u + v − 1, 0) and z = min(u, v) called Frchet-
Hoeffding bounds.

Theorem 1.1 (Frecht- Hoeffding bounds inequality). Let C be a copula.
Then for every (u, v) ∈ I2

max(u+ v − 1, 0) ≤ C(u, v) ≤ min(u, v).
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Proof. From the nondecreasing property of C in both argument it follows
that ∀(u, v) ∈ I2 either C(u, v) ≤ C(u, 1) = u and C(u, v) ≤ C(1, v) = v,
and so the second inequality yields C(u, v) ≤ min(u, v).
Now, from the 2-increasing property yields ∀(u, v) ∈ I2 0 ≤ C(u, v) +
C(1, 1)−C(u, 1)−C(1, v) = C(u, v) + 1− u− v and so C(u, v) ≥ u+ v − 1
which, combined with C(u, v) ≥ 0 becomes C(u, v) ≥ max(u+ v− 1, 0).

It is tedious but not hard at all to prove that the two boundary functions

M(u, v) := min(u, v)

W (u, v) := max(u+ v − 1, 0)

fulfill properties from i. to iii. in Definition 1.3 hence they are copulas. In
particular, M is well known as Frecht-Hoeffing upper bound or shortly the
maximum copula, whereas W is well known as Frecht-Hoeffing lower bound
or the minimum copula.
Figures 1.1 and 1.2 report the Frecht-Hoeffing bounds graphs toghether with
their level sets.

Note that, ∀t ∈ I the points (t, 1) and (1, t) are each members of the level
set corresponding to the constant t. Hence we do not need to label the level
sets in the diagram, as the boundary conditions C(1, t) = t = C(t, 1) readily
provide the constant for each level set.
As a consequence of Theorem 1.1, the graph of the level set{

(u, v) ∈ I2 s.t. C(u, v) = t
}

of any copula C at level t ∈ I must lie in the shaded triangle drawn in Figure
1.3. Its hypotenuse is the level set W (u, v) = t, and the other two sides are
the level set M(u, v) = t.

A third important copula frequently encountered is the product copula

Π(u, v) := uv ∀(u, v) ∈ I. (1.1)

whose plot is drawn in Figure 1.4.

Chapeter 2 will clarify the reason why M, W and Π play an important
role when studying the dependence of two random variates.
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(a)

(b)

Figure 1.1: M copula and its level sets.
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(a)

(b)

Figure 1.2: W copula and its level sets.
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Figure 1.3: The region containing the level set {(u, v) ∈ I2 s.t. C(u, v) = t} .

1.2 Copulas and distribution functions

At the very beginning of the chapter copulas have been alternatively defined
as distribution functions with margins distributed as uniform on [0, 1]. The
followig section aims at proving this equivalence.
The Easy implication part shows why copulas are particular distribution
functions with uniform margins on [0, 1] and the easy denotation stems from
the fact that it trivially holds true.
The Hard implication part instead proves the converse, that each distribution
functions with margins distributed as uniform on [0,1] can be viewed as
copulas. The hard denotation underlines the non-triviality of the proof which
needs instead the Sklar’s theorem statement.

Easy implication

Let’s recall first the definition of bivariate distribution function.

Definition 1.4. A bivariate distribution function is any function two-place
and real function

H : R2 −→ R

such that1

i. ∀(x, y) ∈ R2 H(−∞, y) = H(x,−∞) = 0 i.e. H is grounded;

ii. H(∞,∞) = 1;

iii. H is 2-increasing.

1H(∞,∞) := limx,y→∞H(x, y).
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(a)

(b)

Figure 1.4: Π copula and its level sets.
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The margins of H are defined as

F (x) := H(x,∞) ∀x ∈ R

G(y) := H(∞, y) ∀y ∈ R

and it can be easily checked that they are univariate distribution functions.
If C is a copula and we extend its domain to R2 as follows
∀(x, y) ∈ R2

HC(x, y) :=



0 if x ≤ 0 or y ≤ 0

C(x, y) if (x, y) ∈ [0, 1]

x if y ≥ 1 and x ∈ [0, 1]

y if x ≥ 1 and y ∈ [0, 1]

1 if x ≥ 1 and y ≥ 1,

then HC satisfies conditions from i. to iii. in Definition 1.4, hence HC is a
distribution function and by definition its margins

F (x) = HC(x,∞) =


0 if x ≤ 0

x if x ∈ [0, 1]

1 if x ≥ 1

G(y) = HC(∞, y) =


0 if y ≤ 0

y if y ∈ [0, 1]

1 if y ≥ 1

are distributed as uniform on [0, 1]. Thus, copulas are particular distribution
functions with uniform margins in the sense that they are restrictions on I2

of those ones.

Hard implication

Theorem 1.2 (Sklar’s theorem). Suppose F and G are two univariate
and continous cdfs.
Let C denote the entire class of copulas and H that one of joint cdfs with
margins F and G.
Then the corrispondence f : C −→ H : C 7→ f(C) =: H defined as

H(x, y) = C(F (x), G(y)) ∀(x, y) ∈ R2 (1.2)

is a bijective function, i.e.

8



1. f is well posed, that is H in (1.2) is a distribution function with margins
F and G;

2. f is bijective, equivalently ∀H ∈ H ∃! C ∈ C s.t. (1.2) holds.

Hence, given any couple of continous margins, the above theorem states
that there exists a one to one correspondence between copulas and cummu-
lative distribution functions. In other words, given two continous margins F
and G, each copula C univocally identifies a cdf HC and viceversa each cdf
H can be associated to only one copula CH .
In particular, when F and G are ∼ U([0, 1]) Slar’s theorem states exactly
the result we were aiming at.
Notice that, being F and G continous, their inverse F−1 and G−1 make sense
and equation (1.2) can be equivalently written as

C(u, v) = C(F−1(u), G−1(v)) ∀(u, v) ∈ [0, 1]2 (1.3)

by setting u := F (x) and v := G(y).

Since copulas are distributions, they admit the notion of density. Pre-
cisely, if C(u, v) is a copula, the density c(u, v) associated with C is

c(u, v) :=
∂2C(u, v)

∂u∂v
∀(u, v) ∈ I2. (1.4)

Hence, c is a non negative function on the unit square with zero value else-
where on R2. As an example, Figure 1.5 illustrates the densities of M and
W together with their level sets.

The name copula was choosen to emphasize the manner in which a copula
couples a distribution function H to its univariate margins F and G. Indeed,
while writing H(x, y) = C(F (x), G(y)) one splits the H into the margins
and a copula, so that the latter only represents the “association” between F
and G. Copulas separate margins behaviour from their association: at the
opposite, the two cannot be disentagled in the usual representation of joint
probabilities via distribution functions.
For that reasion, copulas are also called dependence functions.

A function closely related to a given copula is its survival copula.

Definition 1.5. The survival copula C associate with the copula C is

C(u, v) := u+ v − 1 + C(1− u, 1− v) ∀(u, v) ∈ I2. (1.5)
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(a) M copula density

(b) W copula density

Figure 1.5: Copula densities.
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It is easy to prove that C verifies conditions from i. to iii. in Definition
1.3, hence it is a copula, and it therefore admits density

c(u, v) :=
∂2C(u, v)

∂u∂v
=
∂2[u+ v − 1 + C(1− u, 1− v)]

∂u∂v
= c(1− u, 1− v),

thus c(u, v) = c(1− u, 1− v).
Last equivalence clarifies - better than the expression of C in (1.5) did -
the connection between a copula and its survival version: they are one the
rotation of the other, or better said one the simmetrical of the other one.
Next chapter will give few examples of copulas and survival copulas so to
better notice the high symmetry from their plots.

Again, since copulas are special distribution functions it is true that con-
vex combination of two orcopulas are still copulas. Formally speaking, if
C1, C2 . . . Cn are n copulas and α1, α2 . . . αn are real numebers in [0, 1] such
that

∑
αi = 1, then the convex combination

C(u, v) :=
n∑
i=1

αiCi(u, v)

is still a copula.

1.3 Copulas and random variables

Thanks to Skorohod representation there exsist a bijection between the cdfs
H with margins F and G and the joint cdfs of X ∼ F and Y ∼ G that is

H(x, y) = P(X ≤ x, Y ≤ y).

In the light of what has just been said, a new version of Sklar’s theorem can
be restated with random variables.

Theorem 1.3 (Sklar’s theorem). Suppose X and Y are two random vari-
ates with continous distributions F and G respectively. Let C denote the class
of all copulas and H that one of all possible joint distribution functions of X
and Y.
Then the corrispondence f : C −→ H : C 7→ f(C) = H defined as follows,

H(x, y) = C(F (x), G(y)) ∀(x, y) ∈ R2 (1.6)

is a bijective function.
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The copula C just claimed is usually called copula of X and Y and de-
noted by CXY .
Since (1.2) can be equivalently written as (1.3), CXY is exactly the cdf
of (F (X), G(Y )) where F (X) and G(Y ) are uniform because of the con-
tinouity of X and Y. In conclusion, the bijective function f assignes to
each H of (X, Y ), the distribution function of the uniform coupled variates
(F (X), G(Y )).

Much of the usefulness of copulas comes from the fact that for strictly
monotone transformations of the random variables, copulas either are invari-
ant or change in predictable ways, and that is what basically next theorem
states2.

Theorem 1.4. Let X and Y be continous random variables with copula
CXY . If α and β are strictly increasing function on Ran(X) and Ran(Y )
respectively, then

Cα(X)β(Y ) = CXY (1.7)

When at least one of α and β is strictly decreasing we obtain results
in which the copula of the random variables α(X) and β(Y ) is a simple
transformation of CXY . Specifically, we have

Theorem 1.5. Let X and Y be continous random variables with copula CXY .
Let α and β be strictly monotone on Ran(X) and Ran(Y ), respectively.

1. If α is strictly increasing and β is strictly decreasing, then

Cα(X)β(Y )(u, v) = u− CXY (u, 1− v)

2. If α is strictly decreasing and β is strictly increasing, then

Cα(X)β(Y )(u, v) = v − CXY (1− u, v)

3. If α and β are both strictly decreasing, then

Cα(X)β(Y ) = u+ v − 1 + CXY (1− u, 1− v).

2Recall that if X is a continous random variable with distribution function F and if
α is a strictly monotone function whose domain contains Ran(X), then α(X) is still a
continous random variable.
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It should be now more clear the reason why “... it is precisely the copula
which captures those properties of the joint distribution function which are
invariant under almost surely strictly increasing transformations” (Scheizer
and Wolff, 1981).
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Chapter 2

Copulas and dependence

Copulas play an important role when studying the relationship between two
continous random variables X and Y and the following chapter helps in un-
derstanding how a copula can capture a particular dependence structure.
Precisely, the study starts with analyzing the independence case, considered
the easiest one, and then it moves to the dependence case, much more com-
plex because of the huge variety of dependence structures existing. In his
last part, the chapter introduces some of the most important copula families.
From now on X and Y will be assumed continous throughout the work.

2.1 Independence

Let’s recall the usual definition of independence.

Definition 2.1. Suppose X and Y have joint distribution function H.
The variables X and Y are said to be independent if and only if

H(x, y) = F (x)G(y) ∀(x, y) ∈ R2

The Sklar’s theorem version (1.1) and the definition of product copula Π
trivially yield

Corollary 2.1. Suppose X and Y have joint distribution function H.
The variables X and Y are independent if and only if

CXY (u, v) = Π(u, v) ∀(u, v) ∈ I2.

The Corollary states that the independent random variables are all and
only those having as their copula the product copula CXY = Π, hence the Π
copula completely characterizes the independence structure.
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2.2 Dependence

When X and Y are not independent, they are said to be associated or de-
pendent.
Two random variates can be associated in several ways, each of them cap-
turing a different meaning of dependence. Three examples of three different
kinds of dependence structure are:

linear dependence which answers to the question “is Y a linear function
of X?”;

monotone dependence -or concordance- which answers to “is Y a mono-
tone function of X?”;

tail dependence which answers to “is there any relatioship between X and
Y when they assume their extreme values?”.

Not every dependence structure are “scale-invariant”, in the sense that
they remain unchanged under strictly increasing transformations of X and Y,
for istance the linear dependence is one of those. All the other ones which are
instead scale-invariant, thanks to Theorem (1.4), can be expressed in terms
of CXY .
The present work limits the study only to the scale-invariant dependence
structures, in particular the concordance and the tail dependence, and it
defines the indices common used to measure them.

2.2.1 Concordance

Informally, X and Y are said to be concordant if “large values” of one tend
to occur with “large values” of the other, and viceversa “small values” of one
with “small values” of the other. On the other hand, X and Y are said to be
discordant if “large values” of one tend to occur with “small values” of the
other, and viceversa “small values” of one with “large values” of the other.
In other words, concordance aims at capturing the probability of having large
(or small) values of both X and Y is high, while the probability of having
large values ofX together with small values of Y is low -or viceversa-. Shortly,
concordance is otherwise known as monotonicity.
To measure the degree of concordance between X and Y many indices can
be defined but the two most known are the Kendall’s tau and the Spearman’s
rho.

15



Kendall’s tau

Let (X1, Y1) and (X2, Y2) be two iid copies of (X, Y ).
The Kendall’s tau coefficient of X and Y is defined as

τXY = P((X1−X2)(Y1−Y2) > 0)−P((X1−X2)(Y1−Y2) < 0) ∈ [−1, 1] (2.1)

By defining two couples (a, b) and (c, d) concordand if and only if a < c and
b < d - or a > c and b > d - and discordant if and only if a < c and b > d -
or a > c and b < d -, the expression (2.1) is exactly the difference between
the probability of concordance and the probability of discordance for (X1, Y1)
and (X2, Y2).
Theorem 2.2 states how Kendall’s tau coefficient ofX and Y can be computed
by CXY

Theorem 2.2. If X and Y have copula CXY , then

τC = 4

∫ ∫
I2
C(u, v)dC(u, v)− 1.

By applying the previous theorem to M(u, v) = min(u, v), W (u, v) =
max(u+ v − 1, 0) and Π(u, v) = uv copulas we find that

τM = 1 τW = −1 τΠ = 0.

To be more precise

τXY = 1 if and only if CXY = M

τXY = −1 if and only if CXY = W

Definition 2.2. X and Y are said to be comonotone ( countermonotone) if
and only if CXY = M (CXY = W )

What does the above concepts mean in terms of dependence structure?
What does it mean that two variets have M or W copula?
CXY = M if and only if Y is a.s. an increasing function of X, and CXY = W
if and only if Y is a.s. a decreasing function of X. Thus, while we have pre-
viousely seen how Π copula characterizes the independence structure, here
we have seen how M and W copulas characterize the perfect dependence
structures, comonotonicity and countermonotonicity.
The two cases above are the only ones such that τ reaches its bounds (1 and
-1), in all the other ones τ ∈ (−1, 1). We have now two equivalent ways to
characterize perfect dependence, either by checking that the copula is one
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of Frchet-Hoeffding bounds, or by checking that Kendall’s tau reaches the
bounds.
Moreover it is not true that τ = 0 only in case in independence, indeed it
might vanishes even though X and Y are dependent.

As for the survival copula, Theorem 2.3 proves that the Kendall’s tau co-
efficient remain unchanged when considering the survival version of a copula

Theorem 2.3. If C is a copula and τC represents its Kedall’s tau coefficient,
then

τC = τC .

Spearman’s rho

Let (X1, Y1) (X2, Y2) and (X3, Y3) be three iid copies of (X, Y ).
The Spearman’s rho coefficient related to X and Y is defined as

ρXYS = 3(P[(X1 −X2)(Y1 − Y3) > 0]− P[(X1 −X2)(Y1 − Y3) < 0]). (2.2)

From (2.2), Spearman’s coefficient measures (up to a multiplicative constant)
the difference between the probability of concordance and the probability of
discordance for the random couples (X1, Y1) and (X2, Y3).
Also for Spearman’s coefficient ρS ∈ [−1, 1] and it reached the bounds if and
only if X and Y are respectively counetrmonotonic and comonotonic random
variates

ρXYS = 1 if and only if CXY = M

ρXYS = −1 if and only if CXY = W

The following theorem states how Spearman’s rho coefficient of X and Y can
be computed by CXY

Theorem 2.4. If X and Y have copula CXY , then

ρXYS = 12

∫ ∫
I2
C(u, v)dudv − 3.

As for the survival copula, a risult similar to the Kendall’s tau holds true
also in this case: the Spearman parameter associated to a copula remain
unchanged when considering the survival copula.
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Theorem 2.5. If C is a copula and ρCS represents its Spearman’s rho coeffi-
cient, then

ρCS = ρCS .

PQD/NQD

Given CXY , is there any graphical tip suggesting the sign of Kendall’s tau or
Spearman’s rho for the couple (X, Y )?
In this section we partially answer to that question introducing the concept
of positive and negative quadrant dependence.
The random variables X and Y are said to be positive quadrant dependent -
shortly PQD - and negative quadrant dependent - shortly NQD - if and only
if respectively ∀(u, v) ∈ I2

CXY (u, v) ≥ uv

CXY (u, v) ≤ uv

that is if the graph of CXY lies completely above or below the Π one.
PQD implies the non-negativity of Kendall’s tau and Spearman’s rho coef-
ficients, and NQD implies their non-positivity. In other words, if the graph
of CXY lies above the Π one, then X is likely an increasing function of Y ; if
the graph of CXY lies instead below the Π one, then X is likely an increasing
function of Y.

2.2.2 Tail dependence

Tail dependence looks at concordance in tail, or extreme values, of X and
Y. To be more precise, while concordance describes how large (or small)
values of one random variable appear with large (or small) of the other, tail
dependence describes instead how extreme (either large or small) values of
one tends to occur with extreme values (again either large or small) of the
other.
In order to measure the degree of tail dependence of two random variates X
and Y, two indices will be introduced, the Upper tail dependence coefficient
λU and the Lower tail dependence coefficient λL.
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Upper and Lower tail coefficients

The upper tail dependence function associated to X and Y is defined as
the conditional probability that the distribution function of X exceeds the
threshold v given that the distribution function of Y does, in symbols,

ΛXY
U (v) := P(Y ≥ G−1(v)|X ≥ F−1(v)) ∈ [0, 1] ∀v ∈ [0, 1].

From the definition follows that ΛXY
U is a decreasing function on [0, 1] reaching

its maximum value on the boundary point v = 0 where ΛXY
U (v) = 1.

The upper tail dependence parameter is defined to be the limit (if it exists)
of ΛXY

U (v) when v tends to one,

λXYU := lim
v→1−

ΛXY
U . (2.3)

X and Y are said to have no upper tail dependence if and only if λXYU = 0,
in all other cases they are said to have and the larger λXYU , the stronger the
dependence.
Analogousely, the lower tail dependence function associated to X and Y is
defined as the conditional probability that the distribution function of X
falls below the threshold v given that the distribution function of Y does, in
symbols, ∀v ∈ [0, 1]

ΛXY
L (v) := P(Y ≤ G−1(v)|X ≤ F−1(v)) ∈ [0, 1].

Here ΛXY
U is an increasing function on [0, 1] reaching its maximum value on

the boundary point v = 1 where ΛXY
L (v) = 1. The lower tail dependence

parameter instead, is the limit (if it exists) of ΛXY
L (v) when v tends to zero,

λXYL := lim
v→0+

ΛXY
L ∈ [0, 1]. (2.4)

X and Y are said to have no lower tail dependence if and only if λXYL = 0,,
in all other cases they are said to have and the larger λXYL , the stronger the
dependence.
Intuitively, the more X and Y are comonotone (τXY , ρXYS → 1) and so Y
tends to be an increasing function of X, the more they are upper and lower
tail dependent (λXYU , λXYL → 1); similarly, the more they are countermono-
tone (τXY , ρXYS → −1) and so Y tends to be a decreasing function of X,
the less they are upper and lower tail dependent (λXYU , λXYL → 0).
However, the converse of the previuos remarks could not hold true because,
indeed X and Y might have tail dependence and at the same time not be
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comonotone or they might not have tail dependence and at the same time
be not countermonotone.
Let’s now formally check that for the limit cases of perfect comonotonicity
and countermonotonicity upper and lower tail dependence behave as intu-
ition suggests. To that end λXYU and λXYL needed to be expressed as function
of CXY .

Theorem 2.6. If X and Y have copula CXY and the two limits in (2.3)
(2.4) exist, then

λXYU = 2− lim
v→1−

1− CXY (v, v)

1− v
=: λCXYU

λL = lim
v→0

CXY (v, v)

v
=: λCXYL .

Now, if X and Y are comonotone, equivalently CXY (u, v) = M(u, v) then,
by applying the previous theorem to that case, we find λMU = λML = 1 that
is M copula has perfect upper and lower tail depencence; if X and Y are
countermonotone instead, equivaleently CXY (u, v) = W (u, v), by applying
the same procedure we find λWU = λWL = 0. that is the W copula has no tail
dependence at all.
Furthermore, if X and Y are independent, CXY (u, v) = Π(u, v), then λWU =
λWL = 0 that is, if the two tail coefficient vanish it does not mean that the
two random variates are necessarely countermonotone, they might be also
independent.

Being a special copula, we can introduce the coefficients of tail depen-
dency also for the survival copula C :

λCU := lim
v→1−

1− 2v + C(v, v)

1− v

λCL := lim
v→0+

C(v, v)

v

if these limits exist and are finite. The following property holds trivially:

Theorem 2.7. If C is the survival copula associated with C, then:

λCU = λCL

λCL = λCU
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Proof. From the definition of λCU

λCU := lim
v→1−

1− 2v + C(v, v)

1− v

= lim
v→1−

C(1− v, 1− v)

1− v

= lim
v→0+

C(v, v)

v
:= λCL .

Similarly,

λCL := lim
v→0+

C(v, v)

v
= lim

v→0+

2v − 1 + C(1− v, 1− v)

v

= lim
v→1−

1− 2v + C(v, v)

1− v
=: λCL .

This result ensures that if a copula C has upper tail, then its survival
version has lower tail and viceversa.

Moreover, if C is a convex combination of two copulas one having upper
tail and the other having lower tail, then C has upper and lower tail pro-
portionally to the combination coefficients. Formally, simple computations
prove that the following theorem holds true:

Theorem 2.8. If C =
∑n

i=1 αiCi is a convex combination of n copulas each
of whom having upper and lower tail parameters λiU and λiL, then

λCU =
n∑
i=1

αiλ
i
U

λCL =
n∑
i=1

αiλ
i
L.

A very interesting consequence of the last two results is that if a copula
C has upper tail, its survival version C has lower tail, hence any convex
combination of the two give rise to a copula having both upper and lower
tail.
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2.3 Copula families

Previousely we have seen that Π copula and Frchet-Hoeffding copulas can
completely characterize some specific dependence structures, in particular X
and Y have copula CXY = Π iff they are independent and CXY = M (W ) iff
they are perfectly positive (negative) dependent.
But what if CXY is not among the previous ones? If X and Y are neither
independent nor perfectly dependent, how does CXY look like and which
dependence structure does it identify?
The answer of that questions is not trivial. In this section the most commonly
used copulas will be described and their properties will be presented. The
presentation is far from complete, but covers the copulas that are considered
in most application on the litterature.For exhaustive lists of copula functions
and various methods for constructing copulas the books by Joe (1997) and
Nelson (1999) may be consulted.

Definition 2.3. A k-parameters copula family {Cα1...αk(u, v)}α1...αk
is said to

be comprehensive when it encompasses the minimum, product and maximum
copulas.

An example of comprehensive families is built as convex combination of
M, W and Π and it is known as the two-parameters Frchet family

F := {pW (u, v) + (1− p− q)Π(u, v) + qM(u, v) | p, q ∈ [0, 1]}

The definition obviousely yield

C01 = M C10 = W C00 = Π.

2.3.1 Elliptical copula class

Elliptical copulas are simply the copulas defined starting from elliptical dis-
tributions. The two most important families included in the class are the
Gaussian family and the Student’s t family.

Gaussian family

Let F and G be two univariate standard normal distribution functions, i.e.
∀x ∈ R

F (x) = G(x) =
1√
2π

∫ x

−∞
exp−

y2

2 dy
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and suppose their joint distribution function Hρ is a bivariate normal with
correlation coefficient ρ ∈ [−1, 1], i.e. ∀(x, y) ∈ R2

Hρ(x, y) =
1

2π
√

1− ρ2

∫ x

−∞

∫ y

−∞
exp

[
− 1

2(1−ρ2)
(s2+t2−2ρst)

]
dsdt.

By Sklar’s theorem 1.2, Gaussian copula with parameter ρ is simply defined
as ∀(u, v) ∈ [0, 1]2

CGA
ρ (u, v) = H(F−1(u), G−1(v))

=
1

2π
√

1− ρ2

∫ F−1(u)

−∞

∫ G−1(v)

−∞
exp

[
− 1

2(1−ρ2)
(s2+t2−2ρst)

]
dsdt

It is a one-parameter (depending only on ρ) and comprehensive family, indeed

CGA
−1 = W CGA

0 = Π CGA
1 = M.

As for Kendall tau and Spearman’s rho coefficients, from Theorems 2.2 and
2.4 applied to a Gaussian copula CGA

ρ we find that ∀ρ ∈ [−1, 1]

τ ρ =
2

π
arcsin(ρ)

ρρS =
6

π
arcsin(

ρ

2
)

meaning that the larger the correlation ρ the more concordant F and G are.
Moreover F and G are PQD if and only if ρ ≥ 0.
As for tail dependence, from Theorem 2.6 applied to the same Gaussian
copula CGA

ρ we find that, unless ρ = 1 in which case

λ1
U = λ1

L = 1

in all other cases ρ 6= 1
λρU = λρL = 0.

Thus, exeptionally for the trivial case of comonotonicity, in all other cases
Gaussian copula has neither upper noe lower tail dependence.
If two random variables X and Y have Gaussian copula with a “non trivial”
correlation coefficient ρ they do not have dependence in extreme values but,
according to how large is ρ they can be more or less comonotonic. In this
case we the correlation coefficient is enough to describe their dependence.
Figure 2.1 illustrates an example of Gaussian copula obtained by setting
ρ = 0.5.
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(a) Gaussian copula density ρ = 0.5

(b) Scatter plot

Figure 2.1: Gaussian family: an example.
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t Student family

Let F and G be two univariate Student’s t distribution function both with
n degrees of freedom, i.e. ∀x ∈ R

Fn(x) = Gn(x) =

∫ x

−∞

Γ(n+1
2

)
√
πnΓ(n

2
)

(
1 +

s2

n

)−n+1
2

ds

where Γ is the Euler function. Furthermore, suppose that their joint distri-
bution function Hn,ρ is a bivariate Student’s t with parameter ρ ∈ [−1, 1]
and n ∈ N, i.e. ∀(x, y) ∈ R2.

Hn,ρ(x, y) =
1

2π
√

1− ρ2

∫ −∞
x

∫ y

−∞

(
1 +

s2 + t2 − 2ρst

n(1− ρ2)

)−n+2
2

dsdt

By Sklar’s theorem 1.2, Student’s t copula with parameters (ρ, n) is simply
defined as ∀(u, v) ∈ [0, 1]2

Cρ,n(u, v) = Hn,ρ(F
−1
n (u), G−1

n (v))

=
1

2π
√

1− ρ2

∫ F−1
n (u)

−∞

∫ G−1
n (v)

−∞

(
1 +

s2 + t2 − 2ρst

n(1− ρ2)

)−n+2
2

dsdt.

When the number of degrees of freedom diverges n −→ ∞, the Student’s t
copula converges to the Gaussian one Cρ,n −→ CGA

ρ . Moreover, n > 2 each
margin admits a (finite) variance, n/(n − 2) and ρ can be interpreted as a
linear correlation coefficient.
Unlikely the Gaussian family, the Student’s t is a two-parameters family and
contains the Frchet-Hoeffding bound copulas

C−1,n(u, v) = W (u, v) C1,n(u, v) = M(u, v)

whatever fixed n, but the it does not contain the product copula (C0,n 6= Π
for finite n), thus it is not a comprehensive family.
As for Kendall tau and Spearman’s rho coefficients, from Theorems (2.2) and
(2.4) applied to a Student’s t copula Cρ,n we find the same results as for the
Gaussian copula: ∀ρ ∈ [−1, 1] and ∀n ∈ N

τ ρ =
2

π
arcsin(ρ)

ρρS =
6

π
arcsin(

ρ

2
)
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meaning that independently from the degrees of freedom, the larger the cor-
relation ρ the more concordant F and G are.
Similarly outcomes hold true for the PQD in the sense that F and G are
PQD if and only if ρ ≥ 0. As for the tail dependence, instead, from Theorem
2.6 we find that unless ρ = 1,−1 where

λ
(1,n)
U = λ

(1,n)
L = 1

λ
(−1,n)
U = λ

(−1,n)
L = 0

as expected, whatever n, in all other cases ρ 6= 1,−1, whatever n

λ
(ρ,n)
U = λ

(ρ,n)
L > 0.

Thus, exeptionally for the trivial cases of comonotonicity and countermono-
tonicity, in all other cases Student’s t copula has both upper and lower tail
dependence and the strength of that dependence decreases as the d.o.f. in-
creases. The equality of the two parameters depends on the symmetry of the
copula.
Figure 2.2 shows an example of Student’s t copula obtained by setting the
parameters ρ = 0.5 and ν = 3. It is rather clear the similarity with the Gaus-
sian case in the previous subsection in Figure 2.1 but the Student’s t express
more dependence in the tails than in the central part of the distribution.

2.3.2 Archimedean copula class

In this section we discuss an important class of copulas known as Archimedean
copulas. What makes those copula interesting in applications is:

1. the ease with which they can be constructed;

2. the great variety of copulas belonging to that class;

3. the many nice properties owned by members of this class.

In order to define an Archimedean copula we need to introduce the concept
of generator and pseudo-inverse of a generator. Recall that I = [0, 1].

Definition 2.4 (Generator). A function ϕ : I −→ R+ is said to be a gener-
ator if and only if it is continous, strictly decreasing and such that ϕ(1) = 0.

A strict generatore is a generator ϕ such that ϕ(0) = +∞.
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(a) Student’s t copula density (ν, ρ) = (3, 0.5)

(b) Scatter plot

Figure 2.2: Student’s t family: an example.
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Definition 2.5 (Pseudo-inverse). If ϕ is a generator, its pseudo-inverse is
defined as follows: ∀v ∈ R+

ϕ−1(v) :=

{
ϕ−1(v) if 0 ≤ v ≤ ϕ(0)

0 if ϕ(0) ≤ v ≤ ∞.

Notice that by definition whenever ϕ is a generator, its pseudo-inverse
satisfies ϕ−1(ϕ(v)) = v ∀v ∈ I and, when ϕ is a strict generator, it coincides
with the usual inverse.

Definition 2.6 (Archimedean copulas). Let ϕ be a convex generator and
ϕ−1 its pseudo-inverse. An Archimedean copula with generator ϕ is a map
Cϕ defined as follows ∀(u, v) ∈ I

Cϕ(u, v) = ϕ−1(ϕ(u) + ϕ(v)). (2.5)

In order to be sure that the previous definition is well posed, i.e. the map
Cϕ satisfies properties from i. to iii. in Definition 1.3, next result turns out
to be useful.

Theorem 2.9. Let ϕ : I −→ R+ be a continous, strictly decreasing function
such that ϕ(1) = 0, and let ϕ−1 its pseudo-inverse.
The map Cϕ given in (2.5) is a copula if and only if ϕ is convex.

It can be shown that the density of an Archimedean copula Cϕ or briefly
C is computed as function of its generator, ∀(u, v) ∈ [0, 1]

cϕ(u, v) = −ϕ
′′
(Cϕ(u, v))ϕ

′
(u)ϕ

′
(v)

(ϕ′(Cϕ(u, v))3)
(2.6)

where ϕ
′

exists a.e. since the generator is convex.
As for the concordance measures, Genest and Mackay (1986) demonstrated
that

τϕ = 4

∫
I

ϕ(v)

ϕ′(v)
dv + 1 (2.7)

while, as for tail dependence parameters, they can be expressed in terms of
limit involving the generator and its inverse (Joe, 1997)

Theorem 2.10. Let Cϕ be an Archimedean copula. Then

λϕU = 2− lim
v→0+

1− ϕ−1(2v)

1− ϕ−1(v)

λϕL = lim
v→+∞

ϕ−1(2v)

ϕ−1(v)
.
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Among the popular Archimedean families we find the Gumbel, the Clay-
ton and the Frank families. We will now introdce each of them, singularly,
focusing on the dependence structure they model.

Gumbel family

For all α ∈ [1,∞) we define the family of generators ϕα as follows, ∀t ∈ I

ϕα(t) := (− ln t)α.

The Archimedean copula family associated to the previous generators is
called Gumbel copula family or Gumbel-Hougaard copula family and it is
given by

Cα(u, v) = exp−[(− lnu)α+(− ln v)α]1/α .

Following (2.6), its density is given by

cα(u, v) =
[− ln(u)]α−1[− ln(v)]α−1

uv exp(−A1/α)

(
1

A2−2/α
+

α− 1

A2−1/α

)
(2.8)

where
A := [− ln(u)]α + [− ln(v)]α

For α = 1 we discover the independence copula, i.e. C1(u, v) = Π(u, v)
while for α → ∞ the Gumbel copula tends to the comonotone copula, i.e.
Cα(u, v) → M(u, v) so that the Gumbel copula interpolates between inde-
pendence and perfect positive dependence.
Gumbel family comes as an example of a simple copula which has tail de-
pendence in the up-right corner of the unit square I2, indeed, from (2.7) and
Theorem 2.10 it follows that ∀α ∈ [1,∞)

τα = 1− α−1 ≥ 0

λαU = 2− 21/α > 0

λαL = 0.

In other words, Gumbel family seems to model only positive dependence to-
gether with upper tail dependence - because of the non negativity of all the
parameters- and in particular the larger α, the more Cα models a positive
dependence (notice that τα and λαU are both increasing function of α).
Figure 2.3 illustrates an example of Gumbel copula with parameter α = 1.12.

Furthermore, Figure 2.4 plot the survival copula of Figure 2.3 and it
clearly show how the upper tail dependence turns into the lower tail depen-
dence.
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(a) Gumbel copula density α = 1.2

(b) Scatter plot

Figure 2.3: Gumbel family: an example.
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(a) Survival Gumbel copula density α = 1.2

(b) Scatter plot

Figure 2.4: Survival Gumbel family: an example.
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Clayton copula

For all α ∈ [−1, 0) ∪ (0,∞) =: Ω we define the family of generators ϕα as
follows, ∀t ∈ I

ϕα(t) :=
1

α
(t−α − 1).

The Archimedean copula family associated to the previous generators is
called Clayton family and it is given by

Cα(u, v) = (max((u−α + v−α − 1)−
1
α , 0)).

Following (2.6), its density is given by

cα(u, v) = [−1 + u−α + v−α]−2− 1
α ∗ u−α−1 ∗ v−α−1 ∗ (1 + α) (2.9)

For α = −1 we obtain the countermonotone copula, i.e. C−1(u, v) = W (u, v)
while, for the limits α → 0 we obtain Cα(u, v) → Π(u, v), and for α → ∞
we obtain Cα(u, v)→M(u, v).
Thus, as the Gumbel family, the Clayton one interpolates between two de-
pendency structures, in this case from the countermonotonicity up to the
monotonicity, passing through the independence.
Unlike th Gumbel family, the Clayton one comes as an example of a simple
copula which has tail dependence in the low-left corner of the unit square I2,
indeed, from (2.7) and Theorem 2.10 it follows that ∀α ∈ Ω

τα =
α

α + 2

λαU = 0

λαL = 2−1/α

Clayton family seems to model both positive and negative dependence to-
gether with lower tail dependence and as in the previous case, the larger α
the more Cα describes a positive dependence (notice that also here τα is an
increasing function of α while λαL reaches his largest values when α→ 0−).
Figure 2.5 shows an example of Clayton copula with parameter α = 0.31

Furthermore, in Figure 2.6 the survival copula of Figure 2.5 is reported,
and it clearly shows how the lower tail dependence turns into the upper tail
dependence.

It should be noted that both for Gumbel and Clayton families the pa-
rameter do not need to be very far from 0 to model the tail dependence. In
other words there are no values close to independence which model also the
central part of the distribution.
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(a) Clayton copula density α = 0.31

(b) Scatter plot

Figure 2.5: Clayton family: an example.
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(a) Survival Clayton copula density α = 0.31

(b) Scatter plot

Figure 2.6: Survival Clayton family: an example.
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Frank copula

For all α ∈ (−∞, 0)∪ (0,∞) we define the family of generators ϕα as follows,
∀t ∈ I

ϕα(t) := ln(exp−α−1)− ln(exp−αt− 1).

The Archimedean copula family associated to the previous generators is
called Frank family and it is given by

Cα(u, v) = − 1

α
ln

(
1 +

(exp−αu−1)(exp−αv−1)

exp−α−1

)
.

Its density is given by formula (2.10)

cα(u, v) =
−α exp−αu exp−αv(exp−α−1)

[exp−α−1 + (exp−αu−1)(expαv − 1)]2
(2.10)

We obtain the perfect dependent copulas W (u, v) and M(u, v) when α →
−∞ and α → ∞ respectively, and the independent copula Π when α = 0
thus, similarly to Clayton family, it interpolates between comonotonicity
and countermonotonicity passing through independence. As for parameters
of dependence we have ∀α ∈ R 0

τα = 1 +
4[D1(α)− 1]

α

λαU = 0

λαL = 0

meaning that Frank copula models from perfect negative to perfect positive
dependence as α increases, without any dependence in extreme values.
Figure2.7 shows an example of Frank copula with parameter α = −8.
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(a) Frank copula density α = −8

(b) Scatter plot

Figure 2.7: Frank family: an example.
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Chapter 3

Modelling dependence with
copulas

This work aims at studying the dependence structure of two stock returns
S1 and S2 through a copula approach: starting from an iid sample of (S1, S2)
we look for the copula model which best fit CS1S2 .
The following chapter is meant firstly to better describe the problem in math-
ematical terms and in a general framework (X and Y are continous r.v), and
secondly to point out the main steps of the analysis towards the solution of
that problem.

3.1 The mathematical problem

Let X ∼ F and Y ∼ G be two continous random variates and let {(xi, yi)}ni=1

be an iid sample from the joint vector (X, Y ).
How to trace back to CXY from the sample?
Sklar’s theorem states that

CXY (u, v) = H(u, v) ∀(u, v) ∈ I2,

with
H(u, v) = P(F (X) ≤ u, G(Y ) ≤ v)

and F (X), G(Y ) ∼ U [0, 1] being X and Y continous random variables.
Thus, since CXY corresponds to the cumulative distribution function of
(F (X), G(Y )), a good model for CXY is a good model for H and to find a
good model forH we need an iid sample from (F (X), G(Y )), say {(ui, vi)}ni=1 .
In case F and G are completely specified (parametric case) it suffices to set{

ui := F (xi)

vi := G(yi),
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but when F and G are continous and not fully known or not known at all
(non-parametric case), an approximate iid sample can be obtained by setting{

ui := F̂ (xi)

vi := Ĝ(yi),

where F̂ and Ĝ are the empirical versions of F and G, i.e.

F̂ (xi) =
1

n

n∑
j=1

1(xj ≤ xi)

and similarly

Ĝ(yi) =
1

n

n∑
j=1

1(yj ≤ yi).

Finally, the mathematical problem of modelling CXY when X and Y are two
continous random variates and {(xi, yi)}ni=1 is an iid sample consists in fitting
the joint distribution H through {(ui, vi)}ni=1 .

3.2 The analysis

In order to obtain a reasonable model for H the analysis has been divided in
three main steps:

1. Estimation of H: the empirical copula of (X, Y );

2. Estimation of ΛXY
U , λXYU and ΛXY

L , λXYL - upper and lower tail functions
with their limits ;

3. Model selection and goodness of fit test.

Step 1: Empirical copula

We define empirical copula ofX and Y to be the empirical cdf of (F (X), G(Y )),
which will be denoted by ĈXY ,
∀(u, v) ∈ [0, 1]2

ĈXY (u, v) :=
1

n

n∑
i=1

1(F (xi) ≤ u,G(yi) ≤ v) =
1

n

n∑
i=1

1(ui ≤ u, vi ≤ v).

Since ĈXY is an empirical cdf on the unit square, its graph is a step function
on [0, 1]2 jumping both in the ‘sample points’ (ui, vi)

n
i=1 and in the so called
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intersection points.
An intersection point is any point (ui, vj) such that

ui > uj and vi < vj.

For n = 3 an example is given in Figure 3.1-(a) where the black dots rep-
resent a possible configuration of the sample {(ui, vi)}ni=1 while the red ones
the related intersection points; 3.1-(b) displays instead the related empirical
copula surface jumping exactly in those points.

(a) Intersection points.

(b) Empirical copula

Figure 3.1: Example of empirical copula.

The Glivenko - Cantelli theorem ensures that ĈXY is a good estimator of
CXY -the larger n the better the estimate- and it gives initial tips about the
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dependence between X and Y : according to whether ĈXY lies above or below
the product copula Π a positive or negative dependence can be deduced -
contour plots are generally the best way to notice it -.
However, you may face situations in which ĈXY neither is completely below
nor even completely above Π which means that you cannot deduce a complete
positive or negative dependence.
Estimating CXY with its empirical version is a good way to start with, but
far it is from giving detailed information about symmetry, tails behaviour so
to figure out a possible model.
For that reason it could be much more helpful estimating its pdf cXY with a
bivariate kernel density estimator
∀(u, v) ∈ [0, 1]2

ĉXY (u, v) =
1

n

n∑
i=1

1

h1, h2

K

(
u− ui
h1

,
v − vi
h2

)
where K is a bivariate kernel function and (h1, h2) is the bandwidth vector.
It is rather common, and that is what we will actually do, to choose K(u, v)
as the gaussian kernel function KGA(u, v)

KGA(u, v) :=
1

2π
exp

−1
2

(u2+v2) ∀(u, v) ∈ [0, 1]2

and (h1, h2) as the optimal bandwidth (h∗1, h
∗
2) in the sense that

(h∗1, h
∗
2) = arg min

(h1,h2)
E
[∫ 1

0

∫ 1

0

[ĉXY (u, v)− cXY (u, v)]2dudv

]
.

Step 2: Tail dependence functions

Although ĉXY is a qualitative aid in finding out what happens in the tails
of H, more accurate clues are obtained by estimating upper and lower tail
functions ΛXY

U and ΛXY
L .

According to Theorem 2.6 reasonable estimators are:

Λ̂XY
U (q) = 2− 1− ĈXY (q, q)

1− q
∀q ∈ [0, 1] (3.1)

Λ̂XY
L (q) =

ĈXY (q, q)

q
∀q ∈ [0, 1]. (3.2)
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Estimators (3.1) and (3.2) are expected to be respectively a decreasing and
an increasing function from [0, 1] to [0, 1], reaching the maximum value 1 in
v = 0 for (3.1) and in v = 1 for (3.2).
If their trend looks symmetrical, i.e Λ̂XY

U (q) = Λ̂XY
L (1 − q), a symmetry in

the tails could be hypotized and their limits λXYU and λXYL can reasonably
thought equal.
However, when (3.1) and (3.2) do not give evidence of symmetry at all,
equality in the the tails can still hold true. A great estimate of λXYU and λXYL
comes from the followiong procedure:
simulate N times from a fully known copula Cθ with upper and lower tail
parameters λU and λL;
for each simulation k define Λ̂k

U and Λ̂k
L as in (3.1)-(3.2) and compute the

two optimal points

ukU = arg min
q∈I(1−)

{
|Λ̂k

U − λU |
}

(3.3)

vkL = arg min
q∈I(0+)

{
|Λ̂k

L − λL|
}

(3.4)

where I(1−) is a left neighbourhood of 1 and I(0+) a right neighbourhood of
0;
Finally, if vU := 1

N

∑N
k=1 v

k
U and vL := 1

N

∑N
k=1 v

k
L are the mean value of (3.3)

and (3.4) then we can estimate as follows:

λ̂XYU := Λ̂XY
U (vU)

λ̂XYL = Λ̂XY
L (vL).

Step 3: Goodness of fit

The previous two steps are a rough descriptive analysis to point at a family
model Cθ the underlying copula CXY might belong to. The model Cθ can be
either a single family - e.g. the Gaussian one, an Archimedean one - or a
convex combination of different families - e.g. Gumbel and Clayton, Frank
and t Student -.
Once a family model Cθ has been selected, the third and last step focuses on
testing the statistical hypotesis{

H0 : CXY ∈ Cθ

H1 : CXY /∈ Cθ.

The test will be performed in three different stages:

• Parameter estimation
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• Distance computation

• P-value approximation.

In the parameter estimation stage CXY is assumed to belong to Cθ, so
we estimate θ with Θ̂ML, the Maximum Log-Likelyhood estimator defined in
(3.5),

Θ̂ML = argmax
θ∈Ω

n∑
i=1

ln(cθ(ui, vi)) (3.5)

where cθ(u, v) is the pdf of Cθ(u, v).
If the model is a one-parameter copula family, the parameter θ is a scalar
value (Ω ⊂ R) so (3.5) gives back the scalar value θ̂ML; in case of a convex
combination Cθ = pCα + (1 − p)Cβ, the parameter θ = (p, α, β) is a triple

(Ω ⊂ R3) so (3.5) gives back the triple θ̂ML = (p̂, α̂, β̂).

Once θ has been estimated we have found the best model for CXY in Cθ,
say Cθ̂ML . Next step consists in testing the hypotesis{

H0 : CXY = Cθ̂ML

H1 : CXY 6= Cθ̂ML .

The literature offers several methods to test such a goodness of fit hypotesis,
and almost all of them agree on rejecting H0 if ĈXY distances “a lot” from
the fitted one Cθ̂ML . In other words, if we define a distance D between the
two copulas, the rejection region RR will be defined

RR := {D > k}

where k is a real parameter whose value depends on the test significance
level. In this work D has been selected as the Kolmogorov-Smirnov distance

KS := sup
(u,v)∈[0,1]2

{
|ĈXY (u, v)− Cθ̂ML(u, v)|

}
and the distance computation stage takes care of computing it.
Similarly to the one dimentional framework, a numerical method to compute
the right (and not approximated) K-S distance consists in computing that
distance exactly in the “jumping points” and then take the max.
In symbols, if by changing notation Cθ̂ := Cθ̂ML and if {(uj, vj)}mj=1 represents
the intersection points, then

KS1 = max
i=1...n

( |Ĉ(ui, vi)− Cθ̂(ui, vi)|, |Ĉ(u−i , vi)− Cθ̂(u
−
i , vi)|

|Ĉ(u−i , v
−
i )− Cθ̂(u

−
i , v

−
i )|, |Ĉ(ui, v

−
i )− Cθ̂(ui, v

−
i )| )
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KS2 = max
j=1...m

( |Ĉ(uj, vj)− Cθ̂(uj, vj)|, |Ĉ(u−j , vj)− Cθ̂(u
−
j , vj)|

|Ĉ(u−j , v
−
j )− Cθ̂(u

−
j , v

−
j )|, |Ĉ(uj, v

−
j )− Cθ̂(uj, v

−
j )| )

KS3 = max
i=i...n

( |Ĉ(1, vi)− Cθ̂(1, vi)|, |Ĉ(ui, 1)− Cθ̂(ui, 1)| )

and finally
KS = max {KS1, KS2, KS3} .

To visulaise where the max value is reached and generally speaking where the
two functions mainly differs, it is rather useful to plot the objective function
|Ĉ(u, v)− Cθ̂(u, v)| on [0, 1]2 on the unit square [0, 1]× [0, 1].

How to establish now whether to reject H0 or not? The P-value ap-
proximation stage aims at approximating P-value and comparing it with the
most common significance levels α. Two are the limit cases: if the P-value is
smaller than any values of α, H0 is rejected and conversely, if it is larger than
any α, H0 cannot be rejected and we use to say that there is no statistical
evidence of rejecting null hypotesis.
In our case to decide whether the value KS is “too big” or not the bootstrap
method has been performed to approximate the P-value defined as

P − value := P(K − S > KS|H0 true)

where KS is the K-S distance evaluated in {(ui, vi)}ni=1, while K − S is the
statistic.. The bootstrap method is an iterative method which performs in
each iteration k = (1, 2 . . . N) - with N “large enough” - the following steps

1. Generate a sample of size n from Cθ̂, say (uki , v
k
i )
n

i=1;

2. Supposing that (uki , v
k
i )
n

i=1 comes from the copula family Cθ, estimate the

parameter θ as in the estimation part, so to have θ̂ML
k and then Cθ̂ML

k
;

3. Define Ĉk as the empirical cdf of (uki , v
k
i )
n

i=1 and compute the KS distance
as previousely done, so to have KSk.

The entire procedure gives back as output an N dimensional vector of dis-
tances (KS1, KS2, . . . KSN) each of them computed in each iteration.
Recalling that large values of K-S statistic lead to a rejection of H0 Stute
showed that under appropriate regularity conditions an approximate P-value
for the test is given by

P − value =
1

N

N∑
k=1

1(KSk > KS).
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The validity of that procedure stems from the fact that under H0 and as
n → ∞, the sequence (KS,KS1, KS2 . . . KSN) converges weakly to a vec-
tor (KS∗, KS∗1 , KS

∗
2 . . . KS

∗
N) of mutually independent and identically dis-

tributed random variables, thus (KS,KS1, KS2 . . . KSN) can approximately
be viewed ad an iid sample from K-S.

Motivation of choices.
In the Parameter estimation stage we have decided to estimate the parameter
θ with the MLE because it is a powerful estimator for all its nice properties,
but any other estimation could have been used instead.
As for the Distance computation there are pros and cons in choosing the
Kolmogorov distance. The KS statistic is known to be most sensitive around
the median of the distribution and relatively insensitive to deviations in the
tails, and as we are above all interested in the tails behaviour, that one seems
to be the main drawback. However, it can be shown that KS distance is a
distribution-free statistc, so no matter which copula model we are testing,
under H0 the KS distribution does not change. This is actually a optimal
property from a numerical point of view when computing P-value because
we can approximate P-value only for those models Cθ̂ML performing the least
distance.
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Chapter 4

Data analysis and results

As roughed out at the beginning of the previous chapter, we wish to study
the dependence of two stock returns S1 and S2 by looking for a good copula
model of (S1, S2).
The method developped in Chapter 3 is applicable only when dealing with
continous random variables and stock returns are generally supposed to be
stochastic processes - S1 = {S1(t)}t∈T and S2 = {S2(t)}t∈T -.
For that reason, a rather common way to bypass this problem is working
with the so called log-returns X and Y associated to S1 and S2. In fact,
under a specific assumption made on stocks dynamic - and we will see in a
while which is -, X and Y are continous random variables and CXY can be
modelled exactly as the method in Chapter 3 suggests.
The following Chapter is firstly ment to introduce the concept of log-returns
and to show how the assumptions let them be continous random variates,
and secondly to perform the analysis on log-returns of real data.

4.1 The assumption

The only assumption made is that S1(t) and S2(t) are two geometric brownian
motions, that is
∃ µ1, µ2 ∈ R (drifts) and σ1, σ2 ∈ R+ (volatilities) such that

dS1(t) = S1(t) (µ1dt+ σ1dW1(t)) (4.1)

dS2(t) = S2(t) (µ2dt+ σ1dW2(t)) , (4.2)

where W1(t) and W2(t) are two Wiener processes.
By applying Ito formula it can be easily checked that

S1(t) = S1(0)e(µ1− 1
2
σ2
1)t+σ1W1(t)
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S2(t) = S2(0)e(µ2− 1
2
σ2
2)t+σ2W2(t)

are solutions of equations (4.1) and (4.2).
Fixed a time amplitude δt, the log-returns of S1(t) and S2(t) are defined as

X := ln

(
S1(t+ δt)

S1(t)

)
=

(
µ1 −

1

2
σ1

)
δt+ σ1 (W1(t+ δt)−W1(t))

Y := ln

(
S2(t+ δt)

S2(t)

)
=

(
µ2 −

1

2
σ2

)
δt+ σ2 (W2(t+ δt)−W1(t)) .

Being (Wi(t+ δt)−Wi(t)) Wiener process increments for i = 1, 2
(Wi(t+ δt)−Wi(t)) ∼ N(0, δt), thus

X ∼ N

((
µ1 −

1

2
σ1

)
δt, σ2

1δt

)

Y ∼ N

((
µ2 −

1

2
σ2

)
δt, σ2

2δt

)
.

Therefore, if {(s1(i), s2(i))}ni=1 is a time series from (S1, S2) of amplitude δt,
i.e. ti − ti−1 = δt, the set {(xi, yi)}n−1

i=1 defined as follows

xi := ln

(
s1(i)

s1(i− 1)

)
=

(
µ1 −

1

2
σ1

)
+ σ1 (W1(i)−W1(i− 1))

yi := ln

(
s2(i)

s2(i− 1)

)
=

(
µ2 −

1

2
σ2

)
+ σ2 (W2(i)−W2(i− 1))

is an iid sample from (X, Y ), where X ∼N ((µ1− 1
2
σ1)δt, δt) and equivalently

Y ∼N ((µ2 − 1
2
σ2)δt, δt).

In concluision: just assuming the stock prices S1 and S2 to be geometric
brownian motions, the associated log-returns X and Y are both gaussian
random variates of which an joint iid sample is available once a joint time
series of the two prices is given.
Furthermore, since the purpose of the work is far from estimating the drifts
(µ1, µ2) and the volatilities (σ1, σ2) in equations (4.1)-(4.2), X and Y will
be thought as continous and not fully specified random variables. By doing
that we are supposed to treat the non-parametric framework according to
the notations in Chapter 3.
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4.2 Data analysis

The two stocks aim of the study are both traded in the Italian market: S1 is
issued by the insurance company Azimut (AZM.MI) whereas S2 is issued by
the bank Banca Generali (BGN.MI).
The whole analysis is based on a daily time series {(s1(i), s2(i))}ni=1 which
spans 5 years starting from the 1st of January 2008 up to the 1st of January
2013 (n = 1295)1. Red and blue lines in Figure 4.1 represent Azimut and
Banca Generali price trajectories all over the 5 years.

Figure 4.1: AZM returns VS BGN returns.

The returns trend clearly hints a positive dependence between the stocks
in the sense that whenever one of the two prices goes up or down, so does
the other one.
When computing log-returns {(xi, yi)}n−1

i=1 , the same positive dependence can
be observed from their plot in Figure 4.2 - still red and blue lines forX =AZM
log-returns and Y =BGN log-returns respectively-.

According to the notations previousely introduced, the analysis will be
now addressed to find a good model forH, the joint distribution of (F (X), G(Y )).
Dealing with a non parametric case, the samples {ui}ni=1 and {vi}ni=1 of (U, V )
should only approximately be distributed as a uniform on [0, 1]. In fact their
empirical cfd plotted in Figure 4.3 look like a uniform cdf except for a par-
ticularly marked jump in the middle of the interval.

1The time series has been downloaded from the website www.yahoofinance.it.
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Figure 4.2: AZM log-returns VS BGN log-returns.

(a) Empirical cdf of U. (b) Empirical cdf of V.

Figure 4.3: Empirical distribution.

A formal proof of non uniformity of the two samples is given by small
P-values returned by the Kolmogorv-Smirnov test.
The reason why the uniform hypotesis is missing comes from the fact that
log-returns X and Y are not continous random variates. There is indeed
a great amount of zero log-returns meaning that in the five analysed years
time there are groups of at least two consecutive days in which returns are
stationairy for both stocks.
However, despite the lack of uniformity, the analysis has been carried on
without modifying the dataset.

Step 1: Empirical copula

Figure 4.4 displays the level curves of the empirical copula ĈXY compared
with the Frchet-bounds copulas ones, M and W, and product copula ones Π.
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Figure 4.4: Empirical copula VS main copulas contours.

As expected, contour plots gives evidence that ĈXY is bounded by M
and W and that ĈXY completely lies above Π which confirms the positive
dependence already glimpsed in the previous graphs.
To have a more clear and complete overview, Figure 4.5 shows the surface
of ĈXY in (a) and the normal kernel density estimator ĉXY with its level
curves in (b)-(c). The latter two graphs point out a clear symmetry of the
distribution and marked spikes in the tails.

Step 2: Upper-Lower tail

In order to have more detailed clues on the tails, Figure (4.6) illustrates em-
pirical upper and lower tail functions estimated as in (3.1)-(3.2).

The green curves are average curves which are smoother than Λ̂U and Λ̂L

and they are obtained by a bootstrap method: After s bootstrap resampling
from {(ui, vi)}ni=1 , say

{
(uki , v

k
i )
}n
i=1

, we obtain s different couple of trajec-

tories, Λ̂k
U and Λ̂k

L from which we derive the average curves.
Smoothing the estimated functions Λ̂U and Λ̂L is a great way to better see
possible symmetries in the tails and to better understand the limit behaviour.
Upper and lower tail parametes have been estimated from those curves ac-
cording to Chapter 3

λ̂U = 0.3570

λ̂L = 0.3503.
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(a) Empirical copula surface

(b) Kernel density estimator.

(c) Kernel density estimator contours.

Figure 4.550



(a) Empirical lower tail function.

(b) Empirical upper tail function.

Figure 4.6: Empirical tail functions
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Both plots and estimates agree on a possible symmetry in tails with a rea-
sonably chance of equality for upper and lower tail parameters.

4.2.1 Step 3: Goodness of fit

ML analysis
Among all the copula families introduced in Chapter 2, five reasonable mod-
els matching the features come up, like symmetry of the distribution and
symmetry in the tails with equal limits, have been selected and four out of
those are convex combinations:

1. Cθ = Student(ρ, n) - with θ = (ρ, n);

2. Cθ = pStudent(ρ, n) + (1− p)Frank(α) - with θ = (p, ρ, n, α);

3. Cθ = pClayton(α) + (1− p)SurvivalClayton(β) - with θ = (p, α, β);

4. Cθ = pClayton(α) + (1− p)Gumbel(β) - with θ = (p, α, β);

5. Cθ = pGumbel(α) + (1− p)SurvivalGumbel(β) - with θ = (p, α, β).

For each model Cθ the parameter θ has been estimated with the MLE and
the related upper and lower tail coefficients have been computed.
All the results are reported in Table 4.1.

Family model θ̂ML λU λL

1. Student (0.5926, 5.5327) 0.2399 0.2399
2. Student+ Frank (0.7567, 0.5016, 5.2650, 10) 0.1493 0.1493
3. Clayton+ SurvClayton (0.4608, 2.0031, 0.8855) 0.2465 0.326
4. Clayton+Gumbel (0.3347, 2.3869, 1.5173) 0.2801 0.2503
5. Gumbel + SurvGumbel (0.4968, 1.3835, 2.1932) 0.1737 0.3162

Table 4.1: ML parameter estimation

To compare the estimated models with the dataset, Figure 4.7 shows the
kernel density estimator against all the fitted models,

and Figure 4.8 plots Λ̂U and Λ̂L against upper and lower tail functions of
each model.

From the level curves the first two models, the Student t one and the
convex combination of Student t and Frank, seem to fit quite well the data
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Figure 4.7: Kernel density VS MLE models contours.

either in the central part and on the tails of the pdf, whereas the last three
estimates lack the fit in the central part of the distribution.
As for the tails, the firts two estimated models have upper and lower tail
functions rather close to the empirical ones, despite the limits are a bit lower;
the other estimated models are instead a bit far from the empirical curves
and for that reason we are pushed to discard them at this step.
However, to decide which model to test Table 4.2 reports the Kolmogorov-
Smirnov distances for each model

Fitted copula model KS distance

1. Student 0.0539
2. Student+ Frank 0.0589
3. Clayton+ SurvClayton 0.0539
4. Clayton+Gumbel 0.0546
5. Gumbel + SurvGumbel 0.0541

Table 4.2: K-S distance

and the five 3D-plots on the unit square in Figure 4.9 represent the dif-

ferences
∣∣∣ĈXY (u, v)− Cθ̂ML(u, v)

∣∣∣ for each model.

All the fitted cdfs distance almost the same from the empirical copula
and the order of that distance is about 0.5 which is rather high. The models
performing the least distance KS = 0.0539 are the Student t and the convex
combination between the Clayton and the survival Clayton with, whereas the
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(a)

(b)

(c)

Figure 4.8: Empirical VS ML upper and lower tail functions.
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(a) ML estimated Student

(b) ML estimated Student+Frank

(c) ML estimated Clayton+SurvClayton

Figure 4.9: Kolmogorv-Smirnov distances.
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(a) ML estimated Clayton+Gumbel

(b) ML estimated Gumbel+SurvGumbel

Figure 4.10: Kolmogorv-Smirnov distances.
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one performing the largest distance KS = 0.0589 is the convex combination
between Student t and Frank which was on the contrary a possible good fit.
Anyway, since the approximated P-value is zero in the least distance case -
the Student t -, all the five models are rejected.
It can be said more, the 3-D plots reveal that each model reaches the highest
distance exactly where the empirical copula shows the discontinouity because
X and Y are not continous: the lack of uniformity is the reason of a falsified
analysis.

K-S minimizing analysis
A possible way to circumvent the problem of too large KS values could

be estimating the parameter θ by minimizing the K-S distance.
In other words, assuming CXY ∈ Cθ, the K-S distance between CXY and the
generic element of Cθ, say Cθ, is

KS(θ) := max
(u,v)∈[0,1]2

∣∣∣ĈXY (u, v)− Cθ(u, v)
∣∣∣ .

We estimate θ with the value performing the least K-S distance, i.e.

θ̂ = argmin
θ∈Ω

KS(θ),

where Ω is the domain of θ.
Table 4.3 summarize the new estimates

Family model θ̂ λU λL

1. Student (0.4999, 2.5) 0.3488 0.3488
2. Student+ Frank (0.4672, 0.2, 7.5001, 7.492) 0.0031 0.0031
3. Clayton+ SurvClayton (0.4116, 3.7154, 0.01) 0 0.3415
4. Clayton+Gumbel (0.8140, 0.3685, 3.4410) 0.1445 0.1241
5. Gumbel + SurvGumbel (0.3164, 3.9808, 1.01) 0.2562 0.009

Table 4.3: K-S minimizing parameter estimation.

whereas Figure 4.11 compares the kernel density level with the fitted
densities,

and Figure 4.12 compares the empirical tail curves with the fitted ones.
Despite the new fitted models perform the least K-S distances -see Table

4.4- they are further from the data than the ML ones, both in middle of the
distribution and in the tails, except model 2.
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Figure 4.11: Kernel density VS minKS models contours.

Fitted copula model KS distance

1. Student 0.0534
2. Student+ Frank 0.0419
3. Clayton+ SurvClayton 0.0505
4. Clayton+Gumbel 0.0514
5. Gumbel + SurvGumbel 0.0520

Table 4.4: least K-S distance

Smaller distances and worse fitting are easily justified if we take a look
at Figures 4.13-4.14.

where each model actually performs lower distances than the ML case but
to the detriment of tails. Thus, since we are more interested in modelling the
tails than the central part of the distribution, the KS minimizing estimation
method will not be taken into account in the rest of the work.

As the analysis is falsified because of too many zero log-returns, two
possible options to better study the problem are:

1. Perturbing the return dataset with a noise distributed as uniform on
[−0.005, 0.005];

2. Removing the jointly zero couples from the log-returns dataset.
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(a)

(b)

(c)

Figure 4.12: Empirical VS minKS upper and lower tail functions.
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(a) minKS estimated Student

(b) minKS estimated Student+Frank

(c) minKS estimated Clayton+SurvClayton

Figure 4.13: Kolmogorv-Smirnov distances.
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(a) minKS estimated Clayton+Gumbel

(b) minKS estimated Gumbel+SurvGumbel

Figure 4.14: Kolmogorv-Smirnov distances.

61



The final part of the work consists in studying the two cases and in comparing
the risults.

4.2.2 Uniform noise - dataset

Since the downloaded stock returns are rounded to two decimals, they could
be stationary in days because of rounding errors. It is therefore reasonable to
perturb the dataset with a noise distributed as a uniform on [−0.005, 0.005]
and then re-perform the analysis.
Empirical distributions of the new datasets {ui}n−1

i=1 and {vi}n−1
i=1 are reported

in Figure (4.15). From the graph they look like cdfs of a uniforms on [0, 1],
and the Kolmogorov Smirnov test confirms it indeed.

(a) Empirical cdf of U (b) Empirical cdf of V

Figure 4.15: Empirical distribution -
uniform noise.

Step 1: Empirical copula

The little perturbations have just “regualirezed” the dataset - in the sense
that the empirical copula is now smoother then before - without changing
the dependence structure. In fact, the contour plot in Figure 4.16 suggests
the same positive dependence we had before

and Figure 4.17 confirms that there is still symmetry also in the tails.

Step 2: Upper-Lower tail

To be more meticulous in the tail bahaviour, Figure 4.18
and limit estimates

λ̂U = 0.3575

λ̂L = 0.3646
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Figure 4.16: Empirical copula VS main copulas contours -
uniform noise.

confirm again the hypotesis of symmetry in tails funtions, hence equality in
their limits.

Step 3: Goodness of fit

Taking into account the same family models as before, Table 4.5 reports their
ML estimated parameters.

Family model θ̂ML λU λL

1. Student (0.5913, 5.4225) 0.2434 0.2434
2. Student+ Frank (0.7603, 0.5013, 5.1580, 10) 0.2014 0.2014
3. Clayton+ SurvClayton (0.4639, 1.9888, 0.8777) 0.2438 0.3274
4. Clayton+Gumbel (0.3418, 2.3292, 1.5143) 0.2761 0.2538
5. Gumbel + SurvGumbel (0.4923, 1.3777, 2.1855) 0.1704 0.3182

Table 4.5: ML parameter estimation -
uniform noise.

From Figure 4.19 and Figure 4.20, again the first two models are the
candidate ones to be the best fit, but before concluding the analysis we first
need to have a look at the KS distances reported in Table 4.6.

Distances are manifestly smaller than the first dataset and the least ones
are reached by the Student t copula (KS = 0.0126) and the two Archimedean
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(a) Empirical copula surface

(b) Kernel density estimator

(c) Kernel density estimator contours

Figure 4.17: Empirical copula -
uniform noise.
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(a) Empirical lower tail function

(b) Empirical upper tail function

Figure 4.18: Empirical tail functions -
uniform noise.
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Figure 4.19: Kernel density VS MLE models contours -
uniform noise.

Fitted copula model KS distance

1. Student 0.0126
2. Student+ Frank 0.0170
3. Clayton+ SurvClayton 0.0139
4. Clayton+Gumbel 0.0144
5. Gumbel + SurvGumbel 0.0136

Table 4.6: K-S distances -
uniform noise

convex combination Gumbel+SurvivalGumbel and Clyton+SurvivalClayton
(KS = 0.0136 and KS = 0.0139); the largest distance is instead reached
by the Frank+Student copula (KS = 0.017) and this fact is discordant with
what deduced in the estimated contour plots.
Anyway, to decide which model to test and which p value to compute, let’s
take a look at Figures 4.21-4.22.

Contrary to what we were expecting, the Frank+Student estimate seems
to be the best model to test because it performs the best fit in the tails (the
maximum distance is actually reached in the middle of the distribution) then
any other model do.
However it should be notice that if testing the Frank+Student copula the
related pvalue is sufficiently high to not reject the model, then all the other
one could not be rejected, being KS = 0.017 the maximum distance, but all
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(a)

(b)

(c)

Figure 4.20: Empirical VS ML Upper and lower tail functions -
uniform noise.
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(a) ML estimated Student

(b) ML estimated Student+Frank

(c) ML estimated Clayton+SurvClayton

Figure 4.21: Kolmogorv-Smirnov distances -
uniform noise.
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(a) ML estimated Clayton+Gumbel

(b) ML estimated Gumbel+SurvGumbel

Figure 4.22: Kolmogorv-Smirnov distances -
uniform noise.
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the analysis done motivates anyway the choice of Frank+Student.

4.2.3 No joint zeros - dataset

An alternative way to bypass the problem of too many zero log-returns con-
sists trivially in removing them from the dataset. By doing that we are
essentially interpreting the stationary days as days in which there have been
no trading of the two stocks, hence negligible days for the analysis.
Similarly to the uniform noise case, the no joint zeros dataset {(ui, vi)}n−1

i=1

has margins manifestly uniform on [0, 1] - see their empirical cdfs in 4.23-,

(a) Empirical cdf of U -
no joint zeros.

(b) Empirical cdf of V -
no joint zeros.

Figure 4.23

and the Kolmogorov-Smirnov test confirms it.

Step 1: Empirical copula

The new “regularized” dataset, again, keeps the same dependence structure
as the original one but with a smoother empirical copula. In fact, Figures
4.24-4.25 still suggest positive dependence and symmetry.

Up to now there are no valuable differences between the two alternative
approaches -uniform noise approach and no joint zeros approach-, which are
simply two different ways to regularize the dataset.

Step 2: Upper-Lower tail

Same remarks hold true for the tails behaviour: in Figure 4.26 the empirical
tail functions are of course slightly smoother than the first two datasets, but
the trend is basically equal.
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Figure 4.24: Empirical copula VS main copulas contours -
no joint zeros.

As a consequence, also the estimated limits should not be far from the
previous estimates, actually

λ̂U = 0.333

λ̂L = 0.3411.

Hence, there is still symmetry in the tails and equality in the limits.

Step 3: Goodness of fit

In Table 4.7, the ML estimated parameters for the five models are reported.

Family model θ̂ML λU λL

1. Student (0.6113, 5.7687) 0.2434 0.2434
2. Student+ Frank (0.7010, 0.5086, 5.0633, 9.3314) 0.1465 0.1465
3. Clayton+ SurvClayton (0.4941, 2.0577, 0.9285) 0.2658 0.3528
4. Clayton+Gumbel (0.3703, 2.3979, 1.5459) 0.2734 0.2773
5. Gumbel + SurvGumbel (0.4471, 1.3973, 2.1763) 0.16 0.3455

Table 4.7: ML parameter estimation -
no joint zeros.

Figure 4.27 shows as usual their densities against the kernel estimator,
whereas 4.28 shows the fitted tail functions against the empirical ones.
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(a) Empirical copula surface

(b) Kernel density estimator -
no joint zeros.

(c) Kernel density estimator contours -
no joint zeros.

Figure 4.25
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(a) Empirical lower tail function -
no joint zeros.

(b) Empirical upper tail function -
no joint zeros.

Figure 4.26
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Figure 4.27: Kernel density VS MLE models contours -
no joint zeros.

The first two models fit better the whole distribution in the contour plot,
but in the tails ones the last three are closer to data, in particulas model
3 and 4. The latter two are also the ones performing the least KS distance
as it can be seen from Table 4.8 and precisely, if we sort the five models by
their KS distance we find that model 4 performs the least one KS = 0.0132
then model 5 and 2 with KS = 0.0137 and KS = 0.0138 while the greatest
distances are reached by model 3 and 1 with KS = 0.0161 and KS = 0.0166.

Fitted copula model KS distance

1. Student 0.0166
2. Student+ Frank 0.0138
3. Clayton+ SurvClayton 0.0161
4. Clayton+Gumbel 0.0132
5. Gumbel + SurvGumbel 0.0137

Table 4.8: K-S distances -
no joint zeros.

Notice that there is not such a difference between the closest and the
furthest model in terms of KS order 0.0132 → 0.0166 and for that rea-
son it is more valuable have a look at the regions where the maximum dis-
tance is reached. In fact, Figures 4.29-4.30 give evidence that the three
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(a)

(b)

(c)

Figure 4.28: Empirical VS ML upper and lower tail functions -
no joint zeros.
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Archimedean convex combinations distances most in the down-right corner
of the square where the highest spikes are located. The same holds true for
the Frank+Student copula, but not for the Student copula which, despite
the highest KS distance, distances most in the up-left corner of the square.
In practical terms, if we accept to model data with one among the previous
copulas but not the Student one we consciusely underestimating probabili-
ties of default, whereas if we model with the Student we areunderestimating
probabilites of booming, which is reasonably less risky.
For that reason, again we convey to compute the pvalue in the greatest KS
distance, which is the Student copula.
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(a) ML estimated Student

(b) ML estimated Student+Frank

(c) ML estimated Clayton+SurvClayton

Figure 4.29: Kolmogorv-Smirnov distances -
no joint zeros.
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(a) ML estimated Clayton+Gumbel

(b) ML estimated Gumbel+SurvGumbel

Figure 4.30: Kolmogorv-Smirnov distances -
no joint zeros.
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