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1 Lecture 1, Wednesday March 18

1.1 Stochastic processes

Definition 1.1. A stochastic process X = {X(t)}ser with parameter set T is a
function X : QxT — R (or possibly to some other measurable space than R) such
that X (-,t) : Q@ — R (or some other space ...) is a random variable for each t€T.

The dependence of w € €2 for a stochastic process X is often suppressed in the
notation (as we did already in the definition), so that we write X (t) or {X (¢) }ser
instead of X (w,?) or {X(w,?)}(w,necaxr-

Definition 1.2. The finite dimensional distributions (fidi’s) {Fx,),...x(t.)
t1,...,tn € T,n €N} of a stochastic process { X (t) }rer are given by

FX(tl),...,X(tn)(mla e ,.’,En) = P{X(tl) S Ti1y.-- ,X(tn) S .fl','n} fO’I" X1,...,%p € R.

It is natural to belive that a stochastic process is more or less “determined” by its
univariate marginal distributions Fix(z) = P{X(t) <z} for z € R, for each t € T'.
But this is not true at all, see Exercise 1 below. In fact, in general, not even all the
fidi’s of a process are sufficient for that purpose, see Exercise 2 below. However, for

“decent” processes, such as the ones we will encounter, the latter does not happen.

Exercise 1. Consider the stochastic process X (t) =& for t € R, where £ is a single
standard normal N(0,1) distributed random variable. Let Y (¢) be a stochastic
process that is N(0, 1) distributed at each ¢ € R, but with all random values of the
process at different times independent of each other. Find the univariate marginal
distributions Fx(; and Fyq). Pick a “typical” w €  and, for that choice of w,

plot a likely appearance of the graphs, the so called realisations,

RatnX(t)=X(w,t)eR and R3tnY(t)=Y(w,t) eR

Definition 1.3. Two stochastic processes { X (t)}er and {Y (t) her defined on a
common probability space are said to be versions of each other if P{X(t) = Y (¢)}
=1 for eachteT.

Some authors make the stronger requirement that P{X(¢) =Y (¢) for all t € T'}

=1 to call X and Y versions of each other. Albeit this is a stronger requirement in




general, these two definitions will coincide for the processes we will encounter.
Probabilities of events for processes X and Y that are versions of each other need

not be equal, see Exercise 2 below. However, usually there is no need to regard

processes that are versions of each other, but not equal, as really different, but rather

as different expressions one single process can take.

Exercise 2. Find two stochastic processes {X(t)}:c0,1) and {Y'(Z)}¢epo,1) that

have common fidi’s, and that are versions of each other, but that satisfy

P{X(t) #Y(t) for some t€[0,1]} = 1.
There exists a rather difficult theory of separability for stochastic processes, that
adresses the issue of what probailities for a process are determined by the fidi’s. This

theory is very important in stochastic process theory in general, but we will not need

it as our processes will be sufficiently nice to be understood by more direct methods.

1.2 Gaussian processes

Definition 1.4. A stochastic process {X (t)her is Gaussian (normal) if all fidi’s
are multivariate Gaussian (normal) distributed, that is, if for each choice of constants

ai,--.,0, € R parameters ti,...,t, €T and n € N the linear combination

n
S a; X (t;) is univariate Gaussian (normal) distributed
i=1

Exercise 3. Prove that an R"-valued random variable (X, ..., X,) is multi-

variate Gaussian distributed if and only if {X,-}ie{l,___,n} is a Gaussian process.

Definition 1.5. The mean function m : T'— R and covariance function r : T'xT —
R for a stochastic process {X (t) }er are defined as m(t) = E{X ()} and r(s,t) =
Cov{X(s), X (t)}, respectively (whenever the right-hand sides make sense).

Exercise 4. Show that the fidi’s of a Gaussian process {X (t)}tcr with mean

function m and covariance function r have characteristic functions given by

E{ei(le(t1)+...+snX(tn)) }

m(tl) S1
:exp{i(81 sn)< : ) —%(31 ... Sp) (T(tiatj))i,j( : )}
m(t,) Sn




Theorem 1.6. The fidi’s of a Gaussian process are determined by the mean function

m and the covariance function r of the process.

Proof. By Exercise 4 m and r determine the characteristic functions of the fidi’s. O

Corollary 1.7. If {X(t)}er is a Gaussian process and R and S are subsets
of T, then the processes {X (t)}er and {X(t)hes are independent if and only if
Cov{X(r),X(s)} =0 forallr € R and s€ S.

Proof. The implication to the right is immediate. For the implication to the left,
assume that Cov{X(r), X(s)} = 0 for r € R and s € S. Note that X takes non-
random values on RN S, as variances there are zero. Hence it is enough to prove that
{X(t) }ser\s and {X (t) }ses\r are independent. For this, in turn (by the very definition
of what that independence amounts to), it is enough to prove that {X(r;)}icq1,...m}
and {X(s;)}jeq1,...ny are independent for every choice of r,...,7, € R\ S and
S1y.--y8, € S\ R. Using Theorem 1.6, this in turn follows from the fact that
the process {X (%) }tciry,...rm}Ufs1,.s,} Das the same fidi’s as when composed by two
components {X (i) }ief1,..,m} and {X(s;)}jeq,...ny With the requested independence

properties, as the latter two then also have zero covariances between them. 0O

Example 1.8. Let {X(¢)}+>0 be a Gaussian process that is continuous for each

w. Then the process Y (t) = ft

o X(8)ds, s> 0, is also a Gaussian process, since

n

D oaY(t) <D ai Y X(s5m1) (55— 55-1)

i=1 =1 s;<t;

as we consider finer and finer grids 0 =5y < 51 < ... < 8 = maXj<;<n t; such that
maxi<j<k S;—Sj—1 4 0 (Riemann sum). Now, the sum on the right-hand side can
be rewritten as a linear combination of process values of X, and is thus Gaussian
distributed. As Gaussian random variables can only converge to Gaussian limits,
see Exercise 5 below, it follows that every linear combination Y. , a;Y(t;) of

process values of Y is Gaussian distributed. Hence Y is a Gaussian process.

Exercise 5. Show that if a sequence of Gaussian random variables converges to
a limit random variable (in distribution, in probability, in mean-square, or almost

surely), then the limit random variable is Gaussian.

Exercise 6. Find an example of a stochastic process that has Gaussian univariate

marginal distributions, but that is not Gaussian.




Exercise 7. Let the Gaussian process X in Example 1.8 have mean function m
and covariance function r. Find the mean function and the covariance function

of the process Y.

1.3 Brownian motion (BM)

Definition 1.9. A stochastic process { B(t)}i>o with B(0) = 0 is a Brownian motion
(BM), which is the same thing as a Wiener process, if it has the following properties:

o (CONTINUITY) [0,00) 2 t ~ B(w,t) € R is continuous for all (or almost all)
w €

o (INDEPENDENT INCREMENTS) B(t) — B(s) is independent of {B(r)},e[o,s) for 0 <
s <ty

o (STATIONARY NORMAL INCREMENTS) B(t) — B(s) is N(0,t— s)-distributed for
0<s<t.

Exercise 8. Show that B is a zero-mean Gaussian process with covariance
function Cov{B(s), B(t)} = s At = min{s, t}.

Exercise 9. It is customary to use B® as notation for a process which has the
properties of BM, with the only exception that B*(0) = x for a (non-random)
constant x € R: Show that {B*(t)};>o has the same fidi’s as {B(t) + }i>o0.

Exercise 10. Prove the following elementary formulas E{B(t) — B(s)} = 0,
E{(B(t) — B(s))*} =t—s and Var{(B(t) — B(s))?} =2 (t — s)*.

Exercise 11. Plot a few sample paths of BM in a computer.

Theorem 1.10. In the sense of convergence in mean-square, BM has quadratic

variation over the interval [s,t] C [0,00) given by

n

lim D (B(t;) = B(t;1))* =t—s,

maxi<i<n ti—ti—140 =1

where s =tg <t; < ... <t, =t are finer and finer partitions of [s,t].

Exercise 12. Prove Theorem 1.10 by means of considering expectations and

variances.




Note that the quadratic variation of any “nice” function over a finite interval

is zero. For example, any continuously differentiable function has zero quadratic

variation, see Exercise 95 below.

Theorem 1.11. BM has infinite variation over any interval [s,t] C [0,00) with

length t —s > 0, that 1s,
n

lim |B(t;) — B(t;_1)| = oo with probability 1,
1

maxi<i<n ti—ti—140 £

where s =tg <t; < ... <t, =t are finer and finer partitions of [s,t].

Exercise 13. Prove Theorem 1.11 by means of considering expectations and

variances.

Note that the variation of any “nice” function over a finite interval is finite. For

example, any continuously differentiable function has finite variation, see Exercise 95

below.







2 Lecture 2, Monday March 23

2.1 Non-differentiability of BM

Theorem 2.1. Let {X(t)}i>0 be a stochastic process with independent increments

such that, for some constant € >0, it holds that

lim n°sup P{|X(t+1/n) - X ()] < K/n} =0 for each K >0. (2.1)

n—oQ t>0

Then the process X is not differentiable anywhere with probability 1.

Proof. Pick an N € N such that Ne > 2. Notice that if X is differentiable at some

s >0, then we have
I X(t)—X(s)| <Ll(t—s) <L(N+2)/n for te (s,s+(N+2)/n),

for all sufficiently large ¢,n € N. Choosing k£ € N such that k/n,...,(k+N)/n €
(s,s+ (N+2)/n), this gives

(X ((+1)/n) = X(i/n)| < [X(((+1)/n) = X(s)| + | X (s) = X(i/n)| < 2((N +2)/n

fori=k,...,k+N—1. Hence the event that X is differentiable somewhere is contain-

ed in the event

JUNU N {rnm-xem < 2821

Therefore it is enough to prove that

{ﬂ U N {x@som- (i/n)\s@}}ﬂ, (2

n=m k=1 1i=k

which in turn holds if

{UHﬁ 1{|X i+1)/n)— X (i/n)| < w}} —0 as n—oo, (2.3)

n
k=1 1=k

as the probability on the left-hand side in (2.2) is bounded by that on the left-hand
side in (2.3) for n > m. However, by Boole’s inequality together with independence

of increments and (2.1), the probability on the left-hand side in (2.3) is at most

n? k+N-1

> TT P{ixcnm - xim) < #5321

- < p2Ne (ns SupP{|X(t+1/n)_X(t)| s MDN

>0 n

—0 as n— oo. O




Corollary 2.2. BM is not differentiable anywhere with probability 1.

Proof. The definition of BM gives the hypothesis of the previous theorem except
(2.1). However, we get (2.1) for ¢ € (0,1/2) from observing that

2K
V2T ’

P{|X(t+1/n)— X (t)| < K/n} = P{{|N(0,1/n)| < K/n} <

Exercise 14. Plot the approximative derivative process {(B(t+h) — B(t))/h}t>o

in a computer for a small h > 0 to illustrate the non-differentiability of BM.

Exercise 15. The (non-existing) derivative process {B’'(t)}:>o of BM is what
electrical engineering people use as “white noise” through out their science, more

or less: Can you say anything about why that is so?

*2.2 Existence of BM!

*Theorem 2.3. BM ezists.

*Proof. We prove the existence of BM {B(t)}cjo,;}- To that end it is sufficient
show that there exists a zero-mean Gaussian process B with covariance function
Cov{B(s), B(t)} = sAt that is continuous with probability 1, because then we have
Cov{B(r),B(t)—B(s)} =0 for 0 <r <s<t, so that increments are independent
by Corollary 1.7. Further, this gives Var{B(0)} = 0, so that B(0) = 0, as well as
Var{B(t) — B(s)} =t — s, so that B(t) — B(s) is N(0, ¢t —s)-distributed.

Let &, &, ... be independent N(0, 1)-distributed random variables, and set

B(t):Z‘/§ 2 '((%H)”)@c for ¢ € [0,1], (2.4)

w2kl 2

where the convergence is in the mean-square sense. Note that, by the Cauchy crite-
rion, this limit is well-defined if and only if

E{[mﬂ 2 in((2k+1)wt)§k_ " V22 in((%—i-l)wt)&r}_)o

-— S -— S
— 2k+1 2 . 20+1 2

as m,n — oo. This in turn holds as the expression on the left-hand side is equal to

E{[ ‘mzvi‘) V22 'n<(2k+1)”)gk]2}= ‘mzvi‘) 8sin((2k+1)7rt/2)2'

—_— S1
2 2
S ™ 2+ 2 o, kD

!Material that is marked * is non-mandatory. In particular, examination procedures of the course will

not assume that you have read *-marked material.




By symmetry in (2.4) we have E{B(¢)} = 0. To find the covariance function of

B we use the fact that covariances commute with mean-square limits to obtain

()} = Z 8 sin((2k+1)7s/2) sm((2k+1)7rt/2)

CoviB(s), 72 (2k11)2

By the elementary identity 2sin(x)sin(y) = cos(z —y) — cos(x +y) together with
*Exercise 16 below, the right-hand side of this identity in turn is equal to

i o Qk - [OS<(2k+1)27r(s—t)) _COS<(2k+1)27r(s+t)>]

k=0
_1—|t=s| 1—|t+s]
T2 2
=sAt for s,t€]0,1],

M

which is the covariance function desired.
As the process B quite obviously is Gaussian, recall Exercise 5, it only remains

to prove that B is continuous with probability 1. To that end we notice that

P{Z @ i sin (M) & is continuous for ¢ € |0, 1]}

2

© Y2 B 9 [(2k+1)nt ,
>P Z Z — —— sin{ ————— | & converges uniformly for ¢ € [0, 1]

0
>1- P{ sup | X, (t)] >2 "% for infinitely many n}
t€[0,1]

(2.5)

(see also Exercise 47 below), where X, is the zero-mean Gaussian process given by

Xn(t) = Z_ @ 2 sin(w>§k for ¢t €[0,1].

piam T 2k+1

Now, by the elementary identity sin(z) — sin(y) = 2cos((z+y)/2) sin((z—y)/2) tog-
ether with the elementary inequality |sin(xz)| < |z|*/*, we readily get

ontl_2 2 . 2
32 cos((2k+1)m (t+s)/4)" sin((2k+1)7 (t—s)/4
E{(Xa(t)=Xu(s))} = D ( 7r2(213:+1)2( )
k=2n—1
<2"§:2 16|t —s|1/2
> S 3/2 (2k+1)3/2
1627 [t —s|'/?

= m3/2 (2t —1)3/2°
(2.6)

As X, is continuous and symmetrically distributed with X,,(0) = 0, we therefore get

Sy, = P{SUpte[o,u | X5 (1) >2’"/8}



<9 {OC]{X kg >9- "/8}}
k=0¢=1
<2 {GD{ 27> (1 (- R 2_”8)}}

ZQP{XR(O)>2*"/8*1(1 +(1-2" 1/8)
+2;P{H{ 97kf) > 2" n/8— 1(1+ (1-2- 1/8 02,]-/8)}’
k—1 2m
QOQ{XRQW) <2 /el (1 +(1-278y T 2—j/8) }}

P{Xn(Qk(QK—{—l)) > 2*%/871 (1 + (1 _2*1/8)2?20 2—j/8> ’

k=1 =0
Xn(27FH ) <27/8! (1 +(1-2718)30 2*9'/8) }
oo 2k-1-1
<23 % P{Xn(2_’“(2€+1))—Xn(2"“2£)>2‘”/8‘1(1—2‘1/8)2_’“/8}
k=1 =0
2k—1_1
o 9—n/8-1(1 _9-1/8)9—k/8
-2 3 PO S
k=1 £=0 \/E{ n(27F(20+1)) = X, (27%24))?}
* an/Sfl(l_271/8)2716/87.‘.3/4 (2n+1_1)3/4
k
< ;2 P{N(O, 1) > Ton/igh ,

where we used (2.6) for the last inequality. Hence ) >° s, < oo (see *Exercise 17
below), so that the right-hand side of (2.5) is 1 by the Borel-Cantelli lemma. O

*Exercise 16. Show the indentity

o0

4 Qk+1)mt\ 11—t
= f 2
§7T2(2k+1)2 cos( 5 ) 5 or t €10,2],

for example, by means of calculating the one-sided Laplace tranform on both sides.

*Exercise 17. Why is Y 7 s, < co at the end of the proof of Theorem 2.37

2.3 Introduction to martingales

We will learn a lot of martingale theory in this course. Here are the first few steps:

Definition 2.4. A family {F; }ier, T C [0,00), of o-algebras on a probability space
(Q,F,P), F, C F, that is increasing, Fs C F; forT > s <t €T, is called a filtration.

10




Definition 2.5. A stochastic process {X (t) her is adapted to a filtration {F;}ier
if X(t) is Fi-measurable for each t € T.

Definition 2.6. Let {X(t) }ser be a stochastic process that is adapted to a filtration
{Fi}ter and that is integrable, E{| X (t)|} < oo fort € T. We say that {(X (), F:) her

s a martingale if
E{X(t)|Fs} = X(s) for Tos<teT.
We say that {(X(t), F) }ter is a submartingale if
E{X(t)|Fs} > X(s) for Tos<teT.
We say that {(X(t), F) her is a supermartingale if

E{X(t)|Fs} < X(s) for Tos<teT.

Exercise 18. If {;}°, are independent random variables with finite and zero/
positive/negative expected values, then the process {d . | &}nen is a martin-

gale/submartingale/supermartingale with respect to itself.
Exercise 19. Show that BM is a martingal with respect to itself.

Exercise 20. Show that the process {B(t)? —t};>¢ is a martingale with respect
to the filtration {o(B(s) : 0 <5 <1)}s0.

Exercise 21. Show that the process {e‘? (1)=ct/2 }>0 is a martingale with respect
to the filtration {o(B(s) : 0 < s <t)}4>0 for any constant c € R.

Exercise 22. Show that if X is a martingale and ¢ : R — R a convex function

such that the process ¢g(X) is integrable, then g(X) is a submartingale.

Exercise 23. Show that if X is a submartingale and ¢ : R — R a convex
non-decreasing function such that the process ¢g(X) is integrable, then g(X) is a

submartingale.

Definition 2.7. A martingale/submartingale/supermartingale { X (t) her that is a
martingale/submartingale/supermartingale with respect to the filtration {o(X(s)) :
T > s <t)}ier is called a martingale/submartingale/supermartingale with respect to
itself.

11




Exercise 24. Prove that every martingale/submartingale/supermartingale is a

martingale/submartingale/supermartingale with respect to itself.

12



3 Lecture 3, Wednesday March 25

3.1 Doob-Kolmogorov inequality

The following powerful inequality will be used to derive two more inequalities, that

in turn will be crucial for the build up of the theory.

Theorem 3.1. (DOOB INEQUALITY) For a non-negative right-continuous sub-

martingale {Y (t)}scpo,r, we have

E{Y(T) I,
P{ sup Y (t) > )\} < ) Towocrcrviozn § for A>0, (3.1)
0<t<T A
Proof. By Exercise 25 below, it is sufficient to prove that
E{Y(T) I,
P{ sup Y (t) > )\} < Y@ TStSTY(t)M}} for A >0. (3.2)

0<t<T

By Exercise 26 below and the right-contiuity of Y, (3.2) holds if

E{Y(T) Iimaxe - vis
P{max Y (¢ )>/\} V) Hmsosisavooon g A> 0, (3.3)

0<i<n A
for every partition 0 =1ty <t; < ... <t, =T of [0,T]. However, writing 7 = min{¢; :
Y (t;) > A} and noting that {7 =t¢;} € F;,, (3.3) in turn follows as

E{Y I{max0<,<n Y (t;) >)\}} Z/ —t:}
_Z/ E{Y (T)|F.)} dP
’T' tl

> Z / Y (t;) dP

= E{Y(T) I{max0<i<n Y(ti)>)\}}
zx\P{maxY( )>/\} =

0<i<n

Corollary 3.2. (Do0B-KOLMOGOROV INEQUALITY) Pick a constant p > 1. For
a right-continuous martingale {X (t)}com such that the process {|X(t)[P}icpo.r) is
integrable, we have

P{ sup |X(t)| > /\} B{X ()P} for A>0.

0<t<T AP

Proof. As the function |- |? is convex the corollary follows from applying Doob’s ine-

quality to the submartingale Y = | X|P (recall Exercise 22), see Exercise 28 below. 0O
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Exercise 25. Show that the inequality (3.1) follows from the inequality (3.2).

Exercise 26. Explain in detail how (3.2) follows from (3.3). Also, explain how

we can conclude that supy.,<p Y (¢) really is a well-defined random variable.

Exercise 27. Let {Y(Z)}cjo,r) be a right-continuous process. Explain why we

cannot in general deduce that

P{ sup Y (¢) 2/\} < E{Y(T)} for A >0,

0<t<T A
if
E{Y (T
P{max Y(t;) > )\} < BY(T)) for A>0
0<i<n A

for every partition 0=ty <t; < ... <t, =T of [0,T].
Exercise 28. Show that Corollary 3.2 follows from Theorem 3.1.

Exercise 29. Find a (non-rightcontinuous) martingale that does not obey the

Doob-Kolmogorov inequality.

3.2 Augmented filtrations

Definition 3.3. A filtration {F;}ier on a complete probability space (Q, F,P) is

called augmented if each member F; of the filtration contains all P-null-sets of F.

Exercise 30. Show that every filtration can be enlarged to a unique smallest
possible augmented filtration. In what sense is the latter filtration the “smallest

possible”?

Exercise 31. Show that a martingale/submartingale/supermartingale with re-
spect to a certain filtration is a martingale/submartingale/supermartingale also

with respect to the smallest possible enlarged augmented version of the filtration.

Definition 3.4. Let {B(t)};>0 be a BM that is adapted to an augmented filtration
{Fi}i>0 on a complete probability space, and that is such that B(t)—B(s) is indepen-
dent of F, for 0 < s <t. This we call the usual setup or the usual conditions.

Exercise 32. Let B be BM and X a random variable that is independent of B
defined on a common complete probability space (€2, F,P) with P-null sets .
Show that the ususal conditions holds for F; = o(X) VN V o(B(s) : s <t).
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Exercise 33. Prove that Fj is independent of B under the usual conditions.

3.3 Measurable processes

Definition 3.5. A stochastic process {X (t)her, T C [0,00), is measurable if the
map X : QXxXT — R is measurable.

Exercise 34. What does the second “measurable” mean in Definition 3.57

Theorem 3.6. A right-continuous/left-continuous process {X (t)}r>0/{X (t) }refo,17

18 measurable.

Proof. For {X (t)}+>o right-continuous, we have

2
o k—1
X(w;t) ZX(w; T) Iik—1y/mge/m)(t) as n — oo.
k=1
Here each term in the sum on the right-hand side measurable, since

k—1
{(w, t) € 2x[0,00) : X(w; T> L=1)ne/m)(t) < w}

_ ({weszzx(w;$) §m}ﬂ[%%)) U ({w@O@}ﬂ[%,%)C).

Hence the sum is measurable for each n, as is then the limit as n — oco. O

Exercise 35. Can you give an example of a non-measurable stochastic process?

Theorem 3.7. If {X(t)her, T C[0,00), is a measurable stochastic process and T

a T-valued random variable, then X (1) is a random variable.

Proof. Recall that compositions of measurable functions are measurable, and note
that X (7(w)) = X(w,7(w)) = (X oh)(w), where

Q3w hw) =(w,7(w)) € 2xT.
Hence it is sufficient to show that A is measurable. This in turn is so because
{we: hw)e AxB}=AN{weQ:7(w)eB} e F for A€ F and B e B(T),

where B(T) denotes the Borel-sets of 7. As the family {C € FxB(T) : h~}(C) € F}
is a o-algebra, we conclude that this o-algebra must be F x B(T), see Exercise 36

below. And so h is measurable, as required. O
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Exercise 36. Explain the details of the last part of the proof of Theorem 3.7.

Theorem 3.8. A measurable stochastic process {X (t)}i>0 has measurable sample

paths, that is, the map [0,00) 3t ~ X (w,t) € R is measurable for each w € Q.

Lemma 3.9. Let (6,G) and (9,H) be measurable spaces. For the so called sections
E®) and E(y of a set E in the product o-algebra G X H, we have

Ev={zec®:(z,y)€eE}€G foryeHh
E.,={ye$H:(z,y) €eE}Y€H for T€G

*Proof. It is enough to prove the statement for EY, see *Execise 37 below. Note that

{FeGxH:EYeg forall yeH} (3.4)
is a o-algebra, see *Execise 37 below. Moreover, we have
G ifyeH
(G x H) = PYSET cg for yes, for GxH e GxH. (3.5)
0 ify¢H

This proves the lemma, see *Execise 37 below. O

*Exercise 37. Why is it enough to prove Lemma 3.9 for E¥? Why is the family

(3.4) a o-algebra? Why does Lemma 3.9 follow from (3.4) together with (3.5).
Proof of Theorem 3.8. Pick an w € Q) and a C € B(R). By Lemma 3.9, we have

{te]0,00): X(w,t)eC} = {(w,t) € 2x[0,00) : X(w,t) € C}_ € B([0,00)),

since {(w,t) : X(w,t) € C} € F x B([0,00)) by the measurability of X. O

*3.4 Progressively measurable processes

We have selected not to use the concept of progressive measurability (see Definition
3.10 below) in these notes as it introduces additional unproven building elements,
and as it is only one proof — that of Theorem 4.4 below — that could have been
significantly simplified using progressive measurability. However, as many authors

use progressive measurability, let us say just a little about it.

*Definition 3.10. A stochastic process { X (t)}+cjo,r is called progressively measur-
able with respect to a filtration {F,}i>o if the map X : (Q, F;) x ([0,¢], B([0,t])) —
(R, B(R)) is measurable for each t € [0,T].
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It is not too hard to see that a progressively measurable process is measurable
and adapted, see *Exercise 38 below. It might seem clear that the converse that
a measurable and adapted process is progressively measurable should hold as well,
but this turns out to not necessarily be the case. However, the weaker statement
that a measurable and adapted process has a progressively measurable version is an
important theorem famed for its difficult proof.

To see what progressive measurability can be used for, let us assume the usual
conditions and that {X(t)}:co,m is a measurable and adapted process such that
fo | X (s)|ds < oo (almost surely), so that the process {fo s) ds}tiepo,r) is well-
defined (with probability 1). It might seem immediate that thls process is adapted,
but the proof of this fact is difficult without using progressive measurability. However,
if we pick a progressively measurable version {Y (t)}icjo,r; of X (supported by the

above mentioned difficult to prove theorem), then Fubini’s theorem shows that

o[ v}

= [ Bl (X6 =Y ()} + [ BT ()~ X (6D} ds
=0.

Hence we have fot s)ds = fo s) ds with probability 1, and as { fo s) ds}tieqo ]
is adapted (as an immedlate consequence of progressive measurability and Fubini’s

theorem), it follows that { fo 5) ds }iefo,r) is adapted (as the filtration is augmented).

*Exercise 38. Show that a progressively measurable process {X(t)}sepor is

measurable and adapted.

3.5 Introduction to stochastic integration

A substantial part of our work in this course will be devoted to construct stochastic

integrals. Here comes the first few steps on that journey:

Definition 3.11. A stochastic process { X () }sejo,r] belongs to the class St of simple

processes on [0,T], if for some constants 0 = to < t; < ... < t, = T and for
some random variables X (0), Xy, ..., Xy,_, that are adapted to Fo, Figy... Fr,_,,
respectively, and that satisfy | X (0)|, | X, -y | Xt,_,| < C for some (non-random)

constant C' >0, it holds that

X(t) = X (0)I0y(t +ZXM (tia ) () for te[0,T). (3.6)
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Definition 3.12. A stochastic process {X (t)}iepo,m belongs to the class Er, if X is
measurable and adapted to {F,}i>o with

E{/OTX(T)er} < 0.

Definition 3.13. A stochastic process {X (t)}ico,r) belongs to the class Pr of pre-
dictable processes on [0, T, if X is measurable and adapted to {F;}i>o with

P{/OTX(T)Zdr < oo} ~1.

We will define the so called Ito integral fot X dB, t € [0,T], of processes X € Pr
with respect to BM B. This will be done by means of first defining the integral for
X € St, and then extend that integral, first to X € Ep, and then finally to X € Pr.

Exercise 39. Prove that Sy C Er C Pp. In particular, explain why processes
in St are measurable and adapted, and why the Lebesgue integral fOT X(r)?dris

a well-defined random variable for X € Pr.

Example 3.14. As BM B does not have finite variation, we cannot hope to use
the usual Stieltjes integral theory to define fOT X dB. Indeed, as B is continuous,
if fOT B dB were well-defined as a Stieltjes integral, then we would have (see also
*Example 3.15 below)

maxi<i<n ti—ti—140

/TBdB = lim iB(tH) (B(t:) = B(ti-1))

= lim ZB(ti) (B(t;) — B(ti-1)),

maxi<i<n ti—ti—140

=1
where 0 =tg <t; < ... <t, =T are finer and finer partitions of [0, 7]. However,
by Theorem 1.10 the two limits above are not equal, as their difference

lim (Z B(L) (B() ~ B(ti) = 3 Btir) (B(t) - B(ti_n)) -

maxi<i<n ti—ti—140

Exercise 40. Prove that a function has finite variation over an interval if and
only if it can be written as the difference between two non-decreasing functions.
(It is thus integrals with respect to finite variation functions that have a well-
defined signed Stieltjes’ signed integration theory, and BM does not fit into this
context by Theorem 1.10. This explains the things that happen in Example 3.14.)
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*Example 3.15. (RIEMANN-STIELTJES INTEGRAL) If f:[0,7] — R is contin-
uous and ¢:[0,7] — R has finite variation, then the Riemann-Stieltjes integral

/Ofdg= im S () (ot — o(tin) (3.7)

maxi<i<n ti—ti—110 £
<i< i

is well-defined, where 0 =t5 <t < ... <t, =T are finer and finer partitions of
[0,T) and s; € [t;_1,t;]. To see this we note that if we pick two different such grids
in[0,7,0=t<s$1<t1 < ... <$p<tp=Tand 0=t <s) <t < ... < <
t,=T,andif 0=ty <t/ < ... <t ., =T is a refinement of the first two grids

that contains all members of them, then we readily get

S 759 (e — Zf s m\
=1
5( sup ()= F0)] + sup |f(s>—f(t>|)
s,t€[0,T7]: |sft|§11<nia&xmt¢ft¢,1 5,t€[0,T7): \s—t|§1r<nia<x ti—ti_,
m+n—1
X Z (") —g(t! )| (3.7)
— 0 as maxi<i<m ti—ti1 J, 0 and max1<,<n 1 \l, 0,

by uniform continuity of f and finite variation of g. From this we see that

{> s (g(to—g(til))}

is a Cauchy sequence when 0 =ty <t < . =T satisfy max;<i<m ti—ti—1 1 0.
This Cauchy sequence converges to some limit fo fdg as maxi<j<mti—1;1 1 0.
Moreover, by another application of (3.7), it follows that any sum of the type

(3.7) must converge to that same limit fo fdg as maxi<j<m ti—t;1 1 0.
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4 Lecture 4, Monday March 30

Henceforth we always assume the usual conditions!

4.1 TIt6 integrals for the space Sr

Note that a simple process X in St
X(t) I{O} + ZXM 1 L (ti—1,ti] t) for t € [07 T]7

0=ty <t; < ... <t, =T, is not the same thing as a simple function in Lebesgue

integration, but rather a step functions of the kind employed in Riemann integration.

Definition 4.1. The It0 integral process {fot X dB}icjo,r of a simple process X € Sy
is defined by fOOXdB =0 and

t m
/ XdB =YX, , (B(t) = B(ti 1)) + Xo, (B() = B(tn)) for t€ (tm, tmps],
0 —
form =0,...,n—1. Further, we define

t t s
/XdB:/XdB—/ XdB for s,t€[0,T].
s 0 0

Exercise 41. (CONSISTENCY) Let an X € Sy have two representations

X(t) = X(0) Iy (t +Zth i) = X (0) 0y (2 +ZXt’ e (@)

for ¢t € [0, 7). By means of introducing a third grid that contains all times of the
grids 0=ty <t; < ... <tp, =T and 0=ty <t) < ... <t =T, show that the Ito

integral process { fot X dB}4cpo,r coincides for the two representations of X.

Exercise 42. (CONTINUITY) Show that { fot X dB}cpo,1 is a continuous stoch-

astic process for X € St.
Exercise 43. (NADA) Show that for an X € St we have

t s
/XdB_ /XdB and /I[T,S]XdB:/XdB for 0<r<s<t<T.
0 r

Exercise 44. (LINEARITY) Show that for X,Y € Sy (not necessarily with the

same grids) and constants a,b € R, we have
t t t
/(aX+bY)dB:a XdB—H)/ YdB for te€0,T].
0 0 0
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Exercise 45. (ADAPTEDNESS) Show that {f(f X dB}cpo, is an adapted stoch-

astic process for X € Sr.

Theorem 4.2. (MARTINGALE) For X € Sy, {ngdB}te[O,T] is @ martingale.

Proof. By Exercise 45, [ X dB is adapted. Further, we have E{| [} X dB|} < oo
by inspection of the definition of fot X dB together with the boundedness of the X
process. To show that E{f()thB|.7:s} = [ X dB for 0 <s<t<T we can assume
that s =t; < t,4+1 =1 for some members ¢; and ¢,,4; of the grid 0 =¢y <t; < ... <
tn, =T (cf. Definition 3.11), as otherwise the grid can be enriched to that end without
affecting the values of the process X or its [t0 integral process, see Exercise 41. Now,
as B(t;) — B(t;—1) is independent of F;, |, and all BM-values {B(t)}i<,_, as well as

X,_, are F;,_,-measurable, we have (by the basic rules for conditional expectations)

([l

= E{ZXti_l(B(ti) B(t;_1) ‘ F, } + E{ > X, (B(t:) - B(ti-)) ‘F}

B iXti—l(B(ti” —Blt) + mZ E{E{X,,(B(t) - Bt )| 7.} | 7} (@4D)
/ X dB + mf E{Xt VE{B(t)— B(t:1)|F .} ‘f}
= / XdB+0. -

Exercise 46. (ZERO-MEAN) Show that E{fOtX dB}=0for X €Sy and t€[0,T].

Theorem 4.3. (ISOMETRY) For X,Y € Sy and t € [0,T], we have

([ ) [ )} = s ns=n{ [ xeos).

Proof. We can without loss assume that X and Y have a common grid 0 = ¢, <
t1 < ... <t, =T and that ¢t = t,,,1 belongs to that grid (see Exercise 41 and the
proof of Theorem 4.2). Now, since Xy, Vi, (B(t;)—B(ti-1)) is Fi,_,-measurable and
independent of B(t;) — B(t;_1) for i < j, we have

o{ ([ xe)([voe)}
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E{ (:ij;l X, (B(t;) - B(ti1))> (Tni;l Y, (B() —B(tjl))> }

E{ti X, Y (B(t;) - B(ti—l))Q}

+E{1<. .;1 ‘i-Xti_ly;fj—l(B(ti) _B(tzfl)) (B(t]) _B(tjl))}

= Z E{Xti_ly;:i_l } E{(B(tz) — B(ti_l))Q}
+ Z E{B(tj) - B(tjfl)} E{Xtiflyij,l(B(ti) _ B(ti—1))}

1<i<j<m+1

+ Z E{B(ti) - B(ti1) } E{X,,_,Y,_, (B(t;) — B(t;-1))}

- Z E{X; Y, ,} (ti—ti1) +0+0
i=1

_ /0 B{X(")Y(r)} dr

- {/OtX(r)Y(r) dr},

using Fubini’s theorem in the last step (recall that X, Y € Sp are measurable by
Exercise 39). Note that all expectations are finite by boundedness of X, Y € Sy. O

4.2 TIt6 integrals for the space Erp

The next Theorem 4.4 is crucial to construct the [t6 integrals for the space Er. We

will return to the rather difficult proof of this theorem later.

Theorem 4.4. For X € Er there ezists a sequence {X,,}5°, C St such that

lim E{/OT (X (r) —X(r))Zdr} = 0. (4.2)

n—00

Definition and Theorem 4.5. The It6 integral process { fot X dB}iepor) for X €
Er is well-defined as the unique up to version and continuous with probability 1 stoch-

astic process that is given as the limit in the sense of convergence in mean-square by
t t
/XdB<—/XndB as n— oo for t€[0,T], (4.3)
0 0

where {X,}22, C Sr satisfies (4.2). Further, we define

t t s
/XdB:/XdB—/ XdB for s,t € [0,T).
s 0 0
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Proof. The mean-square limit (4.3) exists as { fot X, dB} | is a mean-square Cauchy
sequence. This is so since by linearity and isometry for the integral on S7 together

with the elementary inequality (z +vy)% < 222+ 2y? for 2,y € R and (4.2), we have

E{(/OtdeB—/otXndB>2}

- E{/t(Xm(r) —Xo(r))? dr}

< QE{O/OT (Xom(r) = X(r))? dr} +2 E{/OT (X (r) = X (r))? dr}

—0 as m,n — oo.

(4.4)

Further, in the sense of uniqueness up to version, the limit in (4.3) does not depend
on which sequence {X,,}5°, we choose that satisfies (4.2), because if {X]}>°, C Sr
also satisfies (4.2) and converges to the limit fot X dB in (4.3), then the fact that

mean-square limits and second moments commute gives by inspection of (4.4)

E{(/OiXdBfthBf}?
:Ji_g;E{(/o XTndB—/O X,QdB) }

< 21imsupE{/0 (Xn(r)—X(r))er} +2limsupE{/0T (X(r)—X;(r))er}

n—oQ n—0o0

=0.

As for the existence of a continuous version of the limit process in (4.3), use
Theorem 4.4 to pick a sequence {X,}>°, C St such that

E{/OT (X(r)—Xn(r))Zdr} < ? for neN.
From this together with the inequality (z+1)? < 222 + 212 we get
E{ /0 (X () —Xn(r>)2dr}
<2m{ [ (a)-x0)arf 428 [ (x) -} 09

<2™ for neN.

By Definition and Theorem 4.5 together with a telescope sum argument, we have
t N ot t

/ X,dB + Z/ (Xps1—Xp)dB — / X dB in mean-square as N — 00.
0 /o 0

Since each term in the sum on the left-hand side is continuous (cf. Exercise 42), we

get the claimed existence of a continuous version of fot X dB if the sum converges
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uniformly for ¢ € [0, 7] with probability one. This in turn holds if

ofS

n—1 t€[0,T]

t
/ (Xpni1—X,)dB converges} =1, (4.6)
0

see Exercise 47 below. To prove (4.6) it is sufficient to show that

P{ sup
t€[0,T]

By the Borel-Cantelli Lemma, (4.7) in turn will follow if

iP{ sup
1

t€[0,T]

: 1
/ (Xnt1—Xn) dB‘ > for infinitely many n € N} =0. (4.7)
0

n2

¢
1

/ (X1 — X,0) dB‘ > —} < 0. (4.8)

- 0

However, since fot (Xn+1— X,)dB is a continuous martingale (by Exercise 42 and

Theorem 4.2), the Doob-Kolmogorov inequality (Corollary 3.2) together with isome-

try for the space Sy and (4.5) show that the sum in (4.8) is at most

Sor{([ o)} - S -

4

< 0. O

Exercise 47. Prove the following fact used in the proofs of *Theorem 2.3 and
Definition and Theorem 4.5, that if {a, : [0,7] — R}, are continuous functions

such that Y% | sup,cpo 7y [an(t)| < 0o, then Y77 | a, : [0, 7] — R is continuous.

We will verify several properties for It6 integral processes below. Many of those
verifications consist of checking that two continuous with probability 1 stochastic
processes {Y;(t) }eo,r) and {Y2(t) }ieo,r) are versions of each other, that is, they agree
with probability 1 for each ¢ € [0,T]. (It6 integral process values will be defined in
the sense of convergence in mean-square or convegence in probability, so that two 1t
integral process values agree means that they are equal with probability 1.) However,
as the processes Y] and Y, are continuous with probability 1, they are versions of each
other if and only if P{Y](t) = Y5(¢) for all ¢t € [0,T]} = 1, see Exercise 48 below.
So when we verify several properties for It6 integral processes in the sense that the
property holds with probability 1 for each ¢ € [0, 7] below, it does in fact follow that
the property holds simultaneuously for all ¢ € [0, T').

Exercise 48. Show that two continuous with probability 1 processes {Y:(t) }+cjo,r
and {Y5(?) }sc[o,r] defined on a common complete probability space are versions of
each other if and only if it holds that P{Y;(¢) =Y;5(¢) for all t€[0,T]} = 1.
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Exercise 49. (NADA) Show that for an X € Er we have

t r t ]
/XdB:—/XdB and /I[T,S]XdB:/XdB for 0<r<s<t<T.
r t 0 T

Exercise 50. (LINEARITY) Show that for X,Y € Er and constants a,b € R,

we have

t t t
/(aX-l—bY)dB:a/ XdB+b/ YdB for te0,T).
0 0 0

Exercise 51. (ADAPTEDNESS) Show that {f(f X dB}cpo, is an adapted stoch-

astic process for X € Er.

Exercise 52. (MARTINGALE) Using Exercise 53 below, show that { fot X dB

}eejo,) is a square-integrable martingale for X € Er.

Exercise 53. Let G be a o-algebra (contained in F) and let Z, 7, Z,,... be

random variables. Show that as n — co we have

Zy— 7 in L' (/mean-square) = E{Z,|G} - E{Z|G} in L' (/mean-square).
Exercise 54. (ZERO-MEAN) Show that E{fOtX dB}=0for X € Ey and t€[0,T).

Exercise 55. (ISOMETRY) Show that for X,Y € Er and t € [0, 7], we have

([ o) [rs0)} = [ svemoner = [ emors}

Exercise 56. (CONVERGENCE) Show that if X € Ep and {X,,}32, C Er satisfy

lim E{/OT (X (r) —X(r))Zdr} =0,

n—oo

then we have in the sense of convergence in mean-square

t t
/XndB—>/XdB as n— oo for t€[0,T].
0 0

Exercise 57. (Z1pP) Show that [} Ij,4(r)Y X (r)dB(r) = Y [' X(r) dB(r) for
0<s<t<T and X € Er, when Y is an F,-measurable random variable that is

bounded by a (non-random) constant.

Exercise 58. Let f:[0,7] — R be a non-random function belonging to Er,
which is to say that f € L?([0, T]). Show that { [, f dB}.cjo,r is a zero mean Gaus-
sian process with covariance function Cov{[; f dB, f(f fdB} = fomin{s’t} f(r)2dr

26



5 Lecture 5, Wednesday April 1

5.1 Proof of Theorem 4.4.

Given an X € Er and a constant € > 0, we need to prove that

E{/OT(Y(T)—X(T))MT} <c forsome Y €Sy

To that end truncate X as

-N if X(r)<-
XMy ={ X)) if | X(r)| <N . (5.1)

N if X(r)>N
Since XM (r) = X(r) as N — oo with (X (r) = X(r))? < X(r)?, we then have
E{/T (X(N)(r)—X(r))er}—)O as N — o0 (5.2)

(by dominated convergence as X € Er). Using the inequality (z+v)? < 22%2+2¢?% it
follows that it is enough to prove that, given X € Ep, £ >0 and N € N, we have

T
E{/ (Y(r) —X(N)(r))er} <e¢e forsome Y € Sr. (5.3)
0
That this is so in the particular case when X is continuous is Exercise 59 below.

*In the general case of an X € Ey that is not necessarily continuous, the proof of (5.3)
is much more difficult than when X is continuous. It goes like this: Given constants
7€[0,1] and n €N, define a discrete approximation {X$""" (t) heo,r of XV

I-n(krry2-n(esr+nn o (XN (27" (k+7))  for t € [0,T].

[M]8

X (1) =

=~
Il

0

As it is immediate that X" € Sy, the sufficiency criterion (5.3) holds if

T
liminfE{/ (X0 (r) —X(N)(r))zdr} =0 for some 7€ [0,1]. (5.4)
0

n—oo

Now, if (5.4) does not hold, then Fubini’s theorem and Fatou’s lemma show that

T=1 r=T
lim infE{/ / (XN (r) —X(N)(r))erdT}
n—0o 7=0 r=0

T7=1 r=T
> / lim infE{ / (XN () — x W) (r))Zdr} dr
7=0 r

n—oo -0

> 0.

Hence it is sufficient to prove that

=1 r=T
lim E{ / / (X () = X (r))erdT} _o. (5.5)
n—oo 7=0 Jr=0
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The next step of the proof is to obeserve that it is sufficient to prove

limE{/hT (XM(r) —X<N)(r—h))2dr} = 0. (5.6)

hl0

This is so because if (5.6) holds, then we get (5.5) by elementary calculations as

E{/ / NT) X(N)(T))2d7‘d7'}
T7=1 OO
{ / > / (X(N)(Q_”(kJrT))—X(N)(r))ZdrdT}
=0 3o Jre@ m(k+7),27"(k+7+1]N[0,T]

o0 r=T
= ZE{/ / (XM (27" (k+T)) —X(N)(r))Zder}
r=0 Jre[2rr—(k+1),2nr—k)N[0,1]
00 r=T p#=0 )
= Z E{Qn/ I[Z_"k—r,Z_"(k—{—l)—T} (7~') (X(N) (7"+7~:) — X(N) (7')) d’%d?"}
r=0 T=—2""7

I
=

< (2N)2/0 dr+E{2”/_2 n/r . X(N)(r—i-r) X(N)(r))erd%}
< (2N)2/02_ndr+ sup E{/hT (XM (r—h) —X(N)(r))er}

he[0,2—7]

—0 as n—oo.

To prove (5.6) in turn it is sufficient to prove that, given any € > 0, we have

E{ /0 " (x ) — Z(r))Zdr} <e (5.7)

for some continuous process {Z(r)}repo,r) With sup,¢pr|Z(r)| < N. This is so be-

cause then we may use the inequality (z+y+2)* < 32%+3y?+3 2% to deduce that

T T
E{/ (XM (r) —X<N>(r—h,))2dr} < 3E{/ (XM (r) —Z(r))er}
h h
T
+3E{/ (Z(r)—Z(r—h))er}
h
T
+3E{/ (Z(r—h)—XW)(r—h))?dr}
h
T
<3e+ 3E{ sup (Z(T‘)—Z(T—h))2/ dr} + 3¢
re[h,T) 0
— 6 as h{0
by uniform continuity of Z together with the bounded convergence theorem.
Define Y () = [ XV (s) ds for ¢ € [0,T] and
tHAT
Zn(t) = n(Y(t+AT) — Y((t—l/n)+/\T)) = n/ X (s)ds (5.8)
(t—1/n)*AT
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for t € [0, T]. Notice that |Z,(¢)| < N since the integral is over an interval of length
at most 1/n and | X™)(r)| < N. Further, Z, is continuous because Y is absolutely
continuous. As absolutely continuous functions are differentiable almost everywhere,
it follows that Y'(t) = lim, e Zn(t) = XM (¢) for almost all ¢ € [0,7]. Since
(XM () = Z,(t))? < (2N)?, the dominated convergence theorem now gives

lim E{/OT (XM (r) —Zn(r))er} =0. (5.9)

n—00

Picking n sufficiently large we conclude that (5.7) holds. O

Exercise 59. Give a direct proof of (5.3) in the particular case when X is cont-

inuous [so that X(™) is continuous and bounded).

*Exercise 60. It is tempting to conclude (5.3) directly from (5.9) together with
Exercise 59. Explain why this is not possible (unless we use the fact that every

measurable and adapted process has a progressively measurable version).

5.2 Ito integrals for the space Pr

The construction of 1t integrals for the space Pr will require the following two help

Theorems 5.1 and 5.2, the proofs of which are given later:

Theorem 5.1. For X € Pr, we have in the sense of convergence in probability

T
/ (X (r)=X(r))?dr — 0 as n—o00 for some sequence {X,}>>, C Ep. (5.10)
0

Theorem 5.2. For X € Er and a constant C' >0, we have

P{ sup
t€[0,T]

t T
/XdB‘>)\}§%+P{/ X(T)2d7“20} for A>0. (5.11)
0 0

Definition and Theorem 5.3. The It6 integral process { fot X dB}icpor for X €
Pr is well-defined as the unique up to version and continuous with probability 1 stoch-

astic process that is given as the limit in the sense of convergence in probability by
t t
/ X dB <—/ X,dB as n— oo for t€[0,T), (5.12)
0 0

where {X,}22, C Er satisfies (5.10). Further, we define

t t s
/XdB:/XdB—/ XdB for s,t €[0,T].
] 0 0
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Proof. To prove that the limit in probability exists it is sufficient to check the Cauchy

criterion for convergence in probability, which is to say that

lim P{
M, 1— 00

However, by (5.10) and (5.11), given any ¢ > 0, the left-hand side of (5.13) is at most

t t
/deB—/XndB‘>s}
0 0
2

T
< 56% + lim supP{/ (X (r) — Xy (r)) 2 dr > (562}
0

m,n—00

t t
/ X, dB —/ Xn dB‘ > s} =0 for each > 0. (5.13)
0 0

limsup P { sup

m,n—00 t€[0,T7]

<6+ lim supP{2/0T(Xm(7“) _X(r)2dr+ Q/OT(X(T) X, (r)2dr > 552}

m,n—00

T 52
<0+ 21imsupP{/ (X, (r)=X(r))*dr > —}
n—00 0 4
=9
(5.14)
(using Boole’s inequality for the last inequality). This shows that (5.13) holds.
In the sense of uniqueness up to version, the limit in (5.12) does not depend on
which sequence {X,,}° ; we choose that satisfies (5.10), because if { X] }>° | C Er also
satisfies (5.10) and converges to the limit fot X dB in (5.12), then the limits f(f X dB

and fotX dB must agree. This is so since (5.11) gives [cf. (5.14)]

t t
P{/XdB—j{XdB‘>6}
0 0

t t
§limsupP{ /XndB—/X;LdB‘ >6}
n—00 0 0
T
< 40+ lim supP{/ (X (r) =X (r)? dr > 562}
n—o0
’ T 2 T 2
) 9 de , 9 de
< 6+ limsup|P (Xn(r)—X(r))"dr > Ve +P (X, (r)—X(r))*dr > e
n—00 0 0

= ¢ for any choice of £, > 0.

As for the existence of a continuous version of the limit process in (5.12), use
(5.10) to pick a sequence {X,}22, C Er such that

T _
2 1 27"

From this together with the inequality (z+y)* < 222+ 2y? we get [cf. (4.5)]

P{/OT (Xpy1 (r) — Xn(r))* dr > i}

nb

) P{Q/OT (Xois(r) = X (1)) dr > QL} +P{2/0T (X(r) = Xa(r)) dr > %}

nb
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<2 for neN (5.15)

By Definition and Theorem 5.3 together with a telescope sum argument, we have

t N t t
/ X1dB+) / (Xpi1—X,) dB — / X dB in probability as N — co.
0 =170 0

Since each term in the sum on the left-hand side is continuous (by Definition and
Theorem 4.5), we get the claimed existence of a continuous version of fot X dB if the
sum converges uniformly for ¢ € [0, 7] with probability 1. Recall from the proof of
Definition and Theorem 4.5 that this in turn will hold if

00 ¢
ZP{ sup /(Xn-l-l_Xn) dB
0

t€[0,T]

1
> ?} < 0. (5.16)

n=1

However, (5.16) holds as it follows from Theorem 5.2 together with (5.15) that

t 1 1 T 1
P{ sup / (Xns1—Xn) dB‘ > —2} < —1—P{/ (Xn+1(r)—Xn(r))2dr > —6}
teo,7]|J o n n 0 n
1
§—2+2_” for neN. O
n

The convergence property in Exercise 56 for the space E; has the following natural

analogue for the space Pr:

Theorem 5.4. If X € Pr and {X,}2, C Pr satisfy
T 2 . .
/ (Xn(r)—X(r)) dr — 0 in probability as n— oo,
0
then we have in the sense of convergence in probability

¢ t
/ X,dB —)/ XdB as n—oo for te€l0,T]. (5.17)
0 0

Proof. Use Theorem 5.1 to find sequences {Xi(”)};’il C E7 such that

T
/ (Xi(n) (r) —Xn(r))2 dr — 0 in probability as i — oo for each n€N. (5.18)
0

By Boole’s inequality and the inequality (z +y)? < 2z% + 292 together with (5.17)
and (5.18) we have

T
lim sup lim supP{/ (Xz-(n)(r) —X(T))2 dr > (5}
0

n—o0 72— 00

T
< limsuplimsupP{/ (Xi(n)(r) —Xn(T‘))ZdT > g}
0

n—00 1—00 4

+limsupP{/0T (Xn(r) = X (r))* dr > %}

n—oo

=0 for each choice of § > 0.
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It follows readily that we can find sequences {n(j)}32,,{i(j)}32, € N such that
") 2 1] 1 :
P i (X (r) =X (r))"dr > 7 < i for jeN.
This implies that in the sense of convergence in probability
4 2
/ (XD (1) = X ()2 dr 0 as j - oo. (5.19)
0

Now, given any constant ¢ > 0, in the presence of (5.18) and (5.19), it follows from
Boole’s inequality and the inequality (z +y+2)? < 3z® + 3y? + 32?2 together with
Theorem 5.2 and Definition and Theorem 5.3 that

t t
limsupP{ / XdB - / XndB‘ > 6}
n—00 0 0
t t _ c
< limsupP{ / X dB - / X dB‘ > —}
J—00 0 0 3
+ lim sup lim sup lim sup P{ ) dB — / X; () dB‘ }
n—00 1—00 j—o0
+limsuplimsupP{ ”) dB — Xn dB‘ > —}
n—00 1—00 0 3

T . 6 2
< 0+ 4 + lim sup lim sup lim supP{/ (X.("(m(r) —Xi(n)(r))er > %} +0
0

i(J -
n—00 1—00 j—o0 ()

T - 2 de?
<6+ limsupP{/O (Xz.(g.()]))(r) —X(r)) dr > —}

+ limsupP{/OT(X(r) — X, (r))* dr > 5—52}

n—o0 - 81

n—00 1—00

. . T (n) 2 de?
+ limsuplimsup P (Xn(r) = X" (r)) dr > —
0

=¢ for t€[0,T], for each choice of ¢ > 0. O
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6 Lecture 6, Monday April 27

6.1 Stopping times

Definition 6.1. A random variable T with values in [0, 00] is called a stopping time
with respect to a filtration {F;}i>o if it holds that {T <t} € F; for t > 0.

Exercise 61. Discuss the topic of random variables that can take infinite values.

Exercise 62. Let 7 be a stopping time. Show that the events {T > t}, {7 < t},
{7 >t} and {7 =t} all are F;-measurable.

Exercise 63. Show that every non-negative real number is a stopping time.

Exercise 64. Show that if 7, and 7, are stopping times, then 7 ATy, 71 V75 and

T + 7o are also stopping times.

Example 6.2. If {X(¢)}:>0 is a continuous adapted stochastic process, then the
hitting time 7, = inf{s > 0 : X(s) > n} of any level n € R is a stopping time

(recall that inf{()} = oc), because (see Exercise 65 below)
{rn >t} ={inf{s>0: X(s) >n} >t}
= {sup,epog X(s) <n}

= GI{SUPse[O,t]X(S) Sn—l/m} (6.1)

=U N {X(s)<n—1/m},

m=1s€[0,t]NQ

where the event on the right-hand side belongs to F; as X is adapted.
Exercise 65. Prove the second equality in (6.1).

Exercise 66. Show that inf{s € [0,7]: X(s) >n} is a stopping time for a cont-
inuous adapted process {X (%) }scp0,77-

Exercise 67. If {X(t)};>0 is a continuous adapted stochastic process, show that

inf{s>0: X (s) >n or X(s) <m} is a stopping time for R>m <neR.

Exercise 68. On page 52 in his book? Klebaner claims that NsepniX(s) €
D} = Nyep,gnfX (s) € D} for an open D C R and a continuous X: Is this true?

Here is one very important result about stopped It6 integral processes:

’Fima C. Klebaner: “Introduction to Stochastic Calculus with Applications”.
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Theorem 6.3. (STOPPING) For X € Er and a stopping time T we have {Ij (1)

X () heor) € Br and [,"" X dB = [} Ijp.,1 X dB for t € [0,T].

Proof. By Exercise 62 the process Ijp ;) X is measurable and adapted, see Exercise 69

below. Consider the following discrete approximation of 7:
T =2"2"7T+1| =2"(k+1) for 7€ [2 "k, 2 "(k+1)), for keN.  (6.2)

Then 7, is a stopping time for n € N and 7, | 7 as n — 00, see Exercise 70 below.
Hence the continuity of the It0 integral for Er gives fot " X dB — fot " X dB almost

surely as n — 0o, while dominated convergence gives

E{ /0 Ty (M) X () — T (N X ()? dr} - E{ /0 o ()X () dr} 0,

so that fot Ior X dB — fot Ijy;1 X dB in mean-square as n — co by Exercise 56.
Therefore it is sufficient to prove the theorem for each one of the processes Ijp 5, X.

However, the proof for Iy ,,; X is done as follows using Exercises 49 and 57:

tATh t t
XdB = / XdB - X dB
0 0 tATh
t 0 t
- / XdB = I —a-npy / X dB
0 el tA2~"k

t o t
— / XdB =) / Iino-nk Irymo-niy X dB
0 1 Y0
t t

- / I[O,t]X dB - / I[t/\Tn,t]XdB

0 0
t
=/ Iginr,) X dB
0

t
- / I[O,t] I[O,Tn]X dB
0

t
= / Io.71 X dB. O
0

Exercise 69. Show that the process Ijp ;X in Theorem 6.3 is measurable and

adapted.

Exercise 70. Show that the discrete approximation 7, of the stopping time 7

in (6.2) is a stopping time for each n € N and that 7, | 7 as n — oc.

6.2 Proof of Theorem 5.1

Given an integer n > 0, let X,, = Ijp .1 X, where
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Tn :T/\inf{te (0,7 : /OtX(r)szZn}. (6.3)

As the process fo )2dr is adapted by Lemma 6.4 below, 7, is a stopping time
by Exercise 64 together with Example 6.2. Hence Exercise 69 shows that X, is

measurable and adapted. Further, we have

/0 U X, (1) dr = /0 " X(r)2dr < n (6.4)

as an immediate consequence of the fact that { fot X (r)2dr}iep,r is a continuous
stochastic process (see Exercise 71 below). Hence we have X,, € Er. Now, given
any constants 6, > 0, since X € Pr, we have P{f0 Y2dr > n} < ¢ for some

n =n(e) € N. For n=n(e) we therefore have

P{/OT(Xn(r)— (r)*dr > 5} < P{X,(r)# X(r) for some r€[0,7]}

< P{/OTX(r)Zdr > n}

<e. O
Exercise 71. Show that the process { fo $)? ds}ieqo,r) is continuous for X € Pr.
Lemma 6.4. For X € Pr the process {fo )2 dr}iep,n is adapted.

Proof. By dominated convergence, with the notation (5.1), we have that [, X (r)?
dr — fo )2dr almost surely as N — oo (since X € Pr). Hence it is enough to
prove the lemma for X € Er (since XN) € Er). However, for X € Er the lemma is

a consequence of Theorem 4.4, see Exercise 72 below. O

Exercise 72. Show that Lemma 6.4 for X € Er follows from Theorem 4.4.

6.3 Proof of Theorem 5.2

With the notation (6.3), on the event { fo )2dr < C} we have 7¢ =T while Theo-
rem 6.3 gives fo XdB = f(f/wc XdB = fo Xc dB for t € [0, 7). Hence the Doob-Kol-

mogorov inequality together with isometry for the It6 integral on E7 and (6.4) give

t
P{ sup /XdB‘>)\}§P{ sup /Xch‘>)\}+P{/ X(r dr>C’}
tefo,1|Jo t€[0,T]




Exercise 73. Show that if (5.11) holds for X € Er and C =1, then (5.11) holds
for X € Er and all C > 0.

6.4 Properties of It6 integrals for the space Pr
Exercise 74. (NADA) Show that for an X € Pr we have

t ]
/XdB— /XdB and /I[T,S]XdB:/XdB for 0<r<s<t<T.
0 T

Exercise 75. (LINEARITY) Show that for X,Y € Pr and a,b € R, we have

t t t
/(aX+bY)dB:a/ XdB—l-b/ YdB for t€|0,T].
0 0 0

Exercise 76. (ADAPTEDNESS) Show that for X € Pr the It6 integral process
{fot X dB}te[O,T] is adapted.

Exercise 77. (Z1pp) Show that [} I;,4(r)Y X (r)dB(r) = Y [’ X(r)dB(r) for
0<s<t<T and X € Pr, when Y is an F,;-measurable random variable that is

bounded by a (non-random) constant.

As Exercises 74 and 77 extend the results of Exercises 49 and 57 from Er to Pr,
and as Theorem 5.4 gives a version for Pr of the convegence result in Exercise 56 for

E7r, it is straightforward to modify the proof of Theorem 6.3 to work for Pr:

Theorem 6.5. (STOPPING) For X € Pr and a stopping time 7 we have {Ij (1)
X()heor € Proand [ X dB = [ Lo, X dB for t €[0,T).

Exercise 78. Prove Theorem 6.5.

Exercise 79. Discuss the stopping property for the space Srt.

6.5 Approximation of It6 integrals
Exercise 80. Show that for an X € Pr we have
T
/ (X,(r)—X(r))>’dr -0 as n—oo for some sequence {X,}2, C Sr
0

in the sense of convergence in probability. Conclusions?

With the stopping property available for the space Pr in Theorem 6.5, the proof

of Theorem 5.2 for the space Er carries over to work also for the space Pr:
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Theorem 6.6. For X € Py and a constant C > 0, we have

t T
P{ sup /XdB‘>)\}<%+P{/ X(’I“)QdTZC} for A>0.
tefo,7]1J o A 0

Exercise 81. Prove Theorem 6.6.

The next approximation result is a key ingredient to prove so called It6 formulas:

Theorem 6.7. A continuous adapted process { X (t) }scpo,r] belongs to Pr and satisfies

sup
t€[0,T]

/XdB /ZX RNV dB‘—)O in probability

for partitions 0=ty <t < ... <t, =T of [0,T] such that maxi<j<nt; — ti—1 1 0.

Proof. Clearly, we have X € Pr. Further, Theorem 6.6 shows that

{t?épT / XdB - / X;X(ti_l)l(ti_l,ti] dB‘ > g}
<5+ P{E/:I(X(r) C X ()2 dr > 552}
<o+ P{ sup (X(s)—X(t))Q/OTdr > 552}

5,t€[0,T7, \s—t|glrélzaé(n ti—ti—1

— 0 as 11£1a<xt—tz1¢0 for each choice of §,& >0,
7

by uniform continutity of X. 0O

Exercise 82. Explain why the conclusion of Theorem 6.7 cannot hold for a

general (not necessarily continuous) X € Py.
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7 Lecture 7, Wednesday April 29

7.1 1t6 processes and stochastic differentials

Definition 7.1. If {1(t) }sco,1) is an adapted measurable stochastic process such that

el [ lar <o} =1,

if 0 € Pr, and if X(0) is an Fy-measurable random variable, then we call

X(t):X(0)+/t,u(r)dr+/tadB, te0,T],

an Itd process and
dX (t) = p(t) dt + o(t) dB(t)

the corresponding stochastic differential.

Observe that the the stochastic differential only is a convenient short-hand nota-
tion for the corresponding It6 process, from which it earns its mathematical meaning.

Note the difference between the concepts of It6 integral process and Itd process!

Example 7.2. The two most basic examples of stochastic differentials are d.X ()
= dt and dX (t) = dB(t).

Exercise 83. Explain why Ito processes are continuous with probability 1.

Exercise 84. Show that the Lebesgue integral part {fot (7) dr}sepo,m of an It
process is adapted, e.g., by applying Lemma 6.4 to /u*,/ut € Pr.

Definition 7.3. If dX(t) = p(t)dt + o(t)dB(t) is a stochastic differential and
{Y (t) }+eo,r) an adapted measurable process such that

T
P{/ Y ()] |a(r)| dr < oo} —1
0
and Yo € Pr, then we define the Ité process {fot Y dX }iepom by

t t t
/OYdX:/o Y(r)u(r)dr+/0 YodB for te€l0,T].

In order to make sure that the above definition of fot Y dX is consistent, in the

sense of not being multi-valued, we must check that if two It6 processes agree

P{/Otpl(r)dr—i-/otaldB:/Otug(r)dr—i-/otade for tE[O,T]}:l, (7.1)
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then

P{/OtY(r),ul(r) dr—i—/OtYol iB = /OtY(r)ug(r) dr+/0tY02 dB for te [O,T]} _1.
(72)

However, this follows from Corollary 8.7 below, according to which (7.1) implies
P{o.(t) =02(t) ae. for t€[0,T]} = P{u1(t) = po(t) a.e. for t€[0,7T]} =1,

which in turn implies the required (7.2) (recall Definition and Theorem 5.3).

Exercise 85. Explain why the It6 process fot Y dX is well-defined when X is an
It6 process and Y is a continuous adapted process. Conclude that the It6 process
f(f Y dX is well-defined when X and Y are both Ito processes.

The following generalization of Theorem 6.7 will be a crucial tool in the sequel:

Theorem 7.4. For an It6 process {X(t)}efo,r) and a continuous adapted process
{Y(t)}tE[O,T], we have

sup
t€[0,T]

/YdX /ZY i) (ti_1 4] dX‘—)O in probability

for partitions 0 =ty <t; < .. =T of [0,T] such that maxi<j<nt; —t;_1 0.

Proof. First note the obvious fact that

t t_n
sup /YdX— ZY(ti—l)fti_l,ti dX‘
< sup / dT—/ ZY i)ty e (r)p(r) dr
t€[0,7]
+ o | [ Voan- /zy )l o dB|
t€[0,T

Here the first term on the righ-hand side is at most

sup s)| / r)| dr — 0 almost surely as n — oo
7,8€[0,T], |r—s|< max t;—t;—1
1<i<n

by uniform continuity of Y (see Exercise 83). To prove that the second term on the
right hand goes to 0 in probability we just need the following slight adjustment of
the argument employed in the proof of Theorem 6.7 based on Theorem 6.6:

P{ sup /YodB /ZY i) s, l,tlo—dB‘>s}
t€[0,T]
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<5+ P{zn:/;(Y(r) Y () o () dr > 552}

i=1

<6+ P{ sup (Y (r)—Y(s))? /OT o(r)?dr > 552}

r,s€[0,T7, \r—s|§1ré1iasxn ti—ti—1

— ¢ as maxt; —t;_ 1] 0 for each choice of §,&>0. a
1<i<n

7.2 1It0 formula

Here is a first version of the immensly important It6 formula (It6 lemma):

Theorem 7.5. (ITO FORMULA) For a function f € C*(R)? we have

df (B(t)) = f'(B(1)) dB(t) + % f(B(t)) dt. (7.3)

Note that what (7.3) really means is that (recall Definition 7.1)
FBO) = FBO) + [ FBE)aBC)+5 [ FBE)a (1)
0 0

Proof of Theorem 7.5. Consider partitions 0 =t; <t; < ... <t, =t of the interval

[0,t] such that maxj<;<n t; — t;—1 | 0. By Taylor expansion, we have

— Zf’(B(ti_l)) (B(t;) — B(ti-1))
+ % Zf"(B(tz'—l)) (B(t:) — B(ti-1))*

" B)
+3° [ (B) -) (70) - £(Bei-1)

i=1 Y B(ti—1)

see also Exercise 86 below. The first term on the right-hand side converges to f(f f'(B)
dB in probability by Theorem 6.7, as f(B) is a continuous and adapted process. Re-
calling from Theorem 1.10 that the quadratic variation of BM over an interval is the
length of that interval (in the sense of convergence in mean-square), see also Example
7.9 and Theorem 8.6 below, the second term on the right-hand side of (7.5) converges
to % fot f"(B(r))dr in probability by uniform continuity of f”(B), see Exercise 87
below. Moreover, the third term on the right-hand side of (7.5) is bounded by

B(t;)

sup [F"(B(r) = f"(B))] Y / (B(t) —r)dr,  (7.6)

T’SE[O’TL|T_S‘S1I§nia§(nti_ti_l i=1 Y B(ti-1)

3The class of two times continuously differentiable functions f:R — R.
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which goes to 0 with probability 1, see Exercise 83 below. This establishes (7.4). O
Exercise 86. Prove the Taylor expansion (7.5).

Exercise 87. Prove that the second term on the right-hand side of (7.5) con-
verges to %fot f"(B(r)) dr in probability, e.g., by means of introducing a second
cruder grid {#}}72,, approximating the value of f"(B(t;_1)) by f"(B(t;_,)) for an
appropriate j, and sending first max,<j<, t;—%; 1 | 0 and then max;<j<,n t;—1;_; |
0 afterwards, the idea being that this makes it possible to replace (B(t;)—B(t;_1))?
with ¢; —?;_; in the first limit as max;<j<, t; — t;—1 } 0, and that the approxima-
tion of f"(B(t;1))-values by f"(B(t;_,))-values is accurate in the second limit as

maxXi<j<mtj — tj_; 4 0, by the continuity of f”(B).

Exercise 88. Explain why the third term on the right-hand side of (7.5) is
bounded by the expression (7.6), and why that expression goes to 0.

Theorem 7.6. (ITO FORMULA) For a function f € C*(R) and an Ité processes X
with stochastic differential dX (t) = p(t) dt + o(t) dB(t), we have

df (X(t)) = f1(X (1) dX(t) + % F'(X () o(t)* dt. (7.7)

Proof. Replace B with X everywhere in (7.5). From an inspection of the resulting
equation and the proof of Theorem 7.5, we readily conclude that it is sufficient to
prove that, in the sense of convergence if probability, X has quadratic variation

n

t
i ) — 1)) = 2 <s< )
mawslirgt“w;()((t,) X(ti1) / o(r)2dr for 0<s<t,  (7.)

where s =ty <1, < ... <t, =t are finer and finer partitions of the interval [s, ].

However, (7.8) in turn coincides with Corollary 8.8 below. 0O.

Exercise 89. Elaborate on those details of the proof of Theorem 7.6 that was
left out above. In particular, explain in detail how Theorem 7.6 follows from (7.8).
(See also the proof of Theorem 9.10 in Section 11.2 below.)

7.3 Introduction to quadratic variation and variation

We will now start to investigate in greater depth the topics of quadratic variation

and variation that were introduced in Theorems 1.10-1.11 and Exercises 12-13.
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Definition 7.7. The quadratic variation [f]([s,t]) over an interval [s,t] C[0,T] of
a function f:[0,T] — R is defined as the limit

[f1([s,1]) = lim > (f(t) = fltize))

maxi<i<n ti—t;—140

where s =ty <t; < ... <t, =t are finer and finer partitions of [s,t], whenever these
limits have well-defined values in [0,00] for all intervals [s,t] C [0,T] (which they a
priori need not have). We use [f](t) as short-hand notation for [f]([0,1]).
The quadratic covariation [f, g]([s,t]) over an interval [s,t] C [0,T] between two
functions f,g:]0,T] = R is defined as the limit
[ 9]([s,1]) = lim D (F(t) = F(timn) (9(t:) — 9(tin)),

maxi<i<n ti—t;—140 —

where s =ty <t1 < ... <t, =t, whenever these limits have well-defined values in R
for all intervals [s,t] C[0,T]. We use [f, g](t) as short-hand notation for [f, g]([0,t]).

Definition 7.8. The variation V([s,t]) over an interval [s,t] C [0,T] of a function
f:10,T] =R is defined as the limit
Vil )= tm S5 - Flti)|
T =1

maxi<i<n b

where s =ty <t; < ... <t, =t are finer and finer partitions of [s,t], whenever these
limits have well-defined values in [0, 00] for all intervals [s,t] C [0,T]. We use V(1)
as short-hand notation for V;([0,1]).

Note the obvious facts that Vy([s,]) and [f]([s, t]) are non-increasing functions of
s and non-decreasing functions of ¢, and that [f, f] = [f].

We will use the concepts of quadratic variation, quadratic covariation and vari-
ation for stochastic processes rather than just ordinary functions. In doing so the
questions arises in what sense we should understand the convergences in Definitions

7.7 and 7.8. The answer to that in turn is in the sense of convergence in probability.

Example 7.9. Recall from Theorems 1.10 and 1.11 that BM has quadratic
variation [B]([s,t]) = t — s and infinite variation Vz([s,t]) = oo with probability
lfor0<s<t<oo.

When a stochastic process {X () }+cjo,r) has a quadratic variation process {[X](?)

}eeo,r (obtained as a limit in probability for each ¢ € [0, 7]) which possesses a version
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that is continuous (with probability 1), then we will always select such a continuous
(with probability 1) version of the quadratic variation. (All quadratic variation pro-
cesses that we will encounter possess continuous versions.) Besides ruling out some
uninteresting pathological versions of quadratic variations, see Exercise 90 below, the
importance of this convention lies in that it ensures that (continuous with probability
1) quadratic variation processes that are versions of each other do agree (along the
whole trajectory of the process) with probability 1, see the discussion after Definition
and Theorem 4.5 and Exercise 48.

Exercise 90. Albeit we know that BM B has qudratic variation process [B](t) =
t for t > 0, which obviuously is an example of a continuous quadratic varation
process, show that if we had not yielded to the above convention to always select
a continuous quadratic variation whenever possible, then, for example, BM would
also have had quadratic variation process [B|(t) = t Ijy4¢) for ¢ > 0, where £ is
a unit mean exponentially distributed random variable that is independent of B.

(Just to make life complicated, that is!)

Even if we only accept continuous (with probability 1) versions of quadratic varia-
tion processes, when such continuous versions exist, the fact that we are dealing with
stochastic processes that are defined as limits in probability (such as, for example,
It6 integral processes or quadratic variation processes) still allows some pathologies

to occur, as is illustrated by the next exercise:

Exercise 91. Show that BM B has qudratic variation process [B](w, t) =t Iy (w)

for ¢t > 0, whenever U is a null event.
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8 Lecture 8, Monday May 4

8.1 Introduction to stochastic differential equations

Equipped with It6’s formula for 1td processes Theorem 7.6, we can consider a first
introductory example of a stochastic differential equation (SDE): An SDE of diffusion
type (there are other more general types of SDE as well) takes the form

dX (1) = p(t, X () dt + o(t, X (1)) dB(t) for t€[0,T], X(0) = Xo,

where p,0 1 [0,7] xR — R are measurable functions and X, is an Fp-measurable

random variable. A solution to this SDE is any process { X () };c[o,7] that satisfies

X(t) :X0+A w(s, X(s)) ds—{-/o o(s,X(s))dB(s) for t€[0,T)].

Note that in particular, to make the integrals on the right-hand side well-defined, X

has to be measurable and adapted with

P{/OT It X ()] dt < oo} - P{/OTa(t,X(t))th < oo} —1

Starting next lecture, our focus will be more or less exclusively on such SDE’s.

Example 8.1. (STOCHASTIC EXPONENTIAL) Take u(t,z) =0 and o(t,z) =ox
for a constant o > 0 to obtain the SDE

dX(t) =0 X(t)dB(t) for t€[0,T], X(0)= X, (8.1)

where X, is a strictly positive initial value. Apply the It6 formula to obtain an
SDE for the transformed process Y (t) = f(X(¢)) with f(z) = In(z), as

Ay (1) = F'(X (1) dX (1) + % FUXE) ot X(0)2dt = ... = o dB(t) — %02 dt.

From this we conclude that
! 1 [ 1
Y(t) =Y(0) —i—/ odB(s) — 5/ o’ ds = In(Xy) + 0 B(t) — 502 t.
0 0

Now a bit of care is called for as f is only two times continuously differentiable
on the interval (0, 00) rather than on whole R as required in Theorem 7.6. How-
ever, clearly Y (t) = In(X,) + 0 dB(t) — 3 0? dt satisfies the equation dY (¢) =
odB(t) — %02 dt. Hence we may apply the two times continuously differentiable
function g(z) = e® to the Itd process Y to obtain an SDE for X (t) = ¢¥® as

AX (1) = ¢/ (Y (1) dY (t) + %g"(Y(t)) o2dt = ... = o X(t) dB(1).

Observing that X (0) = (@ = X0} = X; we conclude that X (t) = ' =

en(Xo)+odB(t)—3 0% dt — X 00 dB(1)~5 0" di golyes the SDE (8.1).
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8.2 (Quadratic variation and variation

The time has come to study quadratic variation and variation of It0 processes.

Theorem 8.2. A continuous function f:[0,T] — R with non-zero quadratic varia-
tion [f]([s,t]) > 0 for some [s,t] C[0,T] has infinite variation V([s,t]) = oo.

Exercise 92. Prove Theorem 8.2.

Exercise 93. Exemplify that the statement of Theorem 8.2 need not be true

for non-continuous functions.
Exercise 94. Find the quadratic variation and the variation of a Poisson process.

Exercise 95. Show that a continuously differentiable function f : [0, 7] — R has
zero quadratic variation [f](7T") =0 and finite variation V;(T') < oc.

Theorem 8.3. The quadratic covariation between a continuous function f:[0,T] —
R and a function g:[0,T] — R with finite variation Vy([s,t]) < oo over [s,t] C [0,T]
is zero [f, g]([s,t]) = 0.

Exercise 96. Prove Theorem 8.3.

Exercise 97. Find the quadratic covariation between Brownian motion and a

Poisson process (defined on a mutual probability space).

In Exercise 40 we found the following characterization of finite variation functions:

Theorem 8.4. A function f:[0,7T] =R has finite variation V;(T) < oo if and only

if [ can be written as the diffrerence between two non-decreasing functions.

Unsuprisingly by inspection of the definition, quadratic variations have several
properties in common with covariances. Such properties include symmetry, linearity

in each of the arguments, as well as the so called polarization identity:

Exercise 98. Make statements about symmetry and linearity of quadratic co-

variations and prove them.
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Theorem 8.5. (POLARIZATION) For functions f,g:[0,T] — R with well-defined

quadratic variations and a well-defined mutual quadratic covariation, we have

ool = (1 + 0]~ 1)~ [a) = 5 (F + 9]~ [/ — ).

Exercise 99. Prove Theorem 8.5.

Theorems 8.2-8.5 carry over with only obvious modifications from ordinary func-
tions to stochastic process. The statements should then be understood to hold with
probability 1, and conditions on the processes involved (such as continuity, finite
variation, etc.) should be satisfied probability 1.

The following result is an absolutely crucial part of the build up of the theory:

Theorem 8.6. The quadratic variation of an It6 integral process {X (t)}sepo,m with
stochastic differential dX (t) = o(t) dB(t) is given (with probability 1) by

[M@m=/omwrﬁMMMMH.

Proof. Tt is sufficient to prove the theorem for the interval [s,t] = [0, T], see Exercise
100 below. We begin with the case when o € St, so that for some constants 0 = sy <
$1 < ... < sy =T and some square-integrable random variables ¢(0), 05, ..., 05, ,

that are adapted to Fo, Fy,, ..., Ft,,_,, respectively, we have

o(t) = o(0) I (t —I—Z(ISz sy ,s(t) for te[0,T7.

Now, any given grid 0 =t5 < t; < ... <t, =T may be refined to a grid 0 = ¢{ <

th < ... <t, =T with at most n+m — 1 members that also includes the times
0<s1< ... <8y <T. Writing s; :t;.(j) for j=1,...,m—1, we then have
n k
D (X () = X (1) = Y (X(H) — X (ty)°
=1 i=1
m—1
2 2 2
< (X i) = X (tigy-)) "+ (X ) = X (Ei) "+ (X (tiy) = X (Fiyy-))
j=1
m—1 ) )
<33 (X (i) = X (1)" + (X (tiy) = Xty 1))

1 113 , i I < . — .
— 0 with probability 1 as 52% t, —t,_4 lnsllzgl ti—ti_110
(8.2)
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by the continuity of X, see also Exercise 101 below. To prove the theorem for o € St
it is therefore sufficient to prove that, in the sense of convergence in probability,

n

m SO (t) — X () = /0 o(r)? dr (8.3)

maxi<i<n ti—ti—140 i1

for grids 0=ty <t; < ... <t, =T that include 0 < s; < ... < $p_1 <T. That this
is so in turn follows from the fact that [B]([s,t]) =t —s, see Exercise 101 below.

Now assume that we have extended the theorem from Sp to any o € Er. For
a stochastic differential dX(t) = o(t) dB(t) with ¢ € Pp we may then approxi-
mate the processes o and X with the processes o,(t) = o(t)Ij,,(t) and X, (t) =
[ 0a(r) dB(r), respectively, where

t
Tn:T/\inf{tG[O,T]I/ a(s)stzn},
0

cf. the proofs of Theorems 5.1 and 5.2. Since ¢ and o,, € Ep trivially coincide when
7, =T, as do X and X, by Theorem 6.5, we have

[X](T)<—[Xn](T):/ an(r)er—>/O o(r)2dr as n— oo

> 6}
< P{x)) £ )} v p{ [ Do) dr # / To<r>2dr}

<P{r, <T}

in the sense of convergence in probability. This in turn is so because

P{|[X)(T) - [X.)(T)| > 6} v P{‘/OT%(T)W _ /OT o(r)? dr

—0 as n—oo forany 0 >0,

since o0 € Pr. As for the assumed extension of the theorem from St to Er, which is

the most difficult part of the proof, we will return to in Section 11.1 below. O

Exercise 100. Explain why it is sufficient to prove Theorem 8.6 for the interval
[s,t] =1[0,T].

Exercise 101. Explain the details of equations (8.2) and (8.3).

Corollary 8.7. IfP{X(t)=Y(t) for t€[0,T]} =1 for two Ité processes {X(t)}
tefo,r] and {Y (t) }seo,m with stochastic differentials dX () = px(t) dt + ox(t) dB(t)
and dY (t) = py (t) dt + oy (t) dB(t), respectively, then we have

P{ox(t)=oy(t) a.e. for t€[0,T]} = P{ux(t) = puy(t) a.e. for t€[0,T]} =1.
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Proof. From P{X (t)=Y(t) for t € [0,T]} =1 we get by rearrangement that

/0 (0x —oy)dB = /0 (uy () — px () dr for £€[0,T] (8.4)

with probability 1. As the processes on both sides in (8.4) are continuous and have
finite variation, see also Exercise 102 below, Theorem 8.3 shows that these processes
have zero quadratic variation over the interval [0,7"] with probability 1. From this
in turn we get fOT(UX(r) —oy(r))?dr = 0 with probability 1 by Theorem 8.6. Hence
fOt(O'X—O'y) dB = 0 for t € [0, T] with probability 1, so that the process on both sides
in (8.4) are zero with probability 1. Now we have established that

P{/Ot(ax(r)—ay(r))2d7“ - /Ot(uy(r) — ux(r))dr =0 for te [o,:r]} ~1.

This in turn happens if and only if the conclusion of the theorem holds. O

Exercise 102. Prove that the stochastic process [0,7] > ¢ ~ fot w(r) dr € R has
finite variation over any interval [s,¢] C [0,7] when P{fOT lp(r)| dr < oo} =1 for

a measurable and adapted process {1(t) }tcjo,17-

Corollary 8.8. The quadratic variation of an It6 process { X (t) }+cjo,r) with stochas-
tic differential dX (t) = p(t) dt + o(t) dB(t) is given (with probability 1) by

X ([s, 1]) = / o(r2dr  for 5.4 C [0,7].

Exercise 103. Prove Corollary 8.8.

Exercise 104. Show that an It6 process has zero quadratic variation if and only

if it has finite variation.

Corollary 8.9. The quadratic covariation between two Ito processes {X(t)}sepo,m
and {Y (t) }iejor) with stochastic differentials dX(t) = pux(t)dt + ox(t)dB(t) and
dY (t) = uy (t) dt + oy (t) dB(t), respectively, is given (with probability 1) by

(X, Y]([s,1]) =/ ox(r)oy(r)dr for [s,t] C[0,T].

Exercise 105. Prove Corollary 8.9.

For future needs, we also adress the topic of quadratic covariation between Ito

processes driven by different independent Brownian motions.
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Exercise 106. Show that the quadratic covariation between two independent

Brownian motions (defined on a mutual probability space) is zero.

Theorem 8.10. The quadratic covariation between two Ité processes driven by in-

dependent Brownian motions is zero.

Exercise 107. Prove Theorem 8.10.
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9 Lecture 9, Wednesday May 6

9.1 Stochastic differential equations (SDE)

Definition 9.1. A stochastic differential equation (SDE) of diffusion type is given
by
dX(t) = p(t, X (t))dt + o(t, X (t))dB(t) for t€[0,T], X(0)= X, (9.1)

where p,o: [0, T]xR — R are measurable so called coefficient functions and Xy is an

Fo-measurable random variable called the initial value.

As SDE of diffusion type are by far the most common type of SDE, it is customary
to call them just SDE, with the understanding that when other types of SDE are

considered we point that out explicitly. This is a custom that also we will adopt.

Definition 9.2. A time-homogeneous SDE (of diffusion type) is given by
dX(t) = p(X () dt +o(X(t))dB(t) for te[0,T], X(0)= X,

where p,0 : R — R are measurable functions and Xy is an Fy-measurable random

variable.

In other words, a time-homogeneous SDE is the special case of an SDE with
coefficients u(t,xz) = p(z) and o(t,xz) = o(z) that do not depend on t € [0, T].

Exercise 108. Show that the equation dX (t) = X (¢)?dt for t € [0,T], X(0) =1,

has no solution for 7" > 1.

Definition 9.3. An SDE of non-diffusion type is given by
dX(t) = p(t, X (t))dt +o(t,X(t))dB(t) for t€[0,T], X(0)= X, (9.2)

where {p(t, ©) }tz)eprxr and {o(t, ) }ezepmxr are stochastic processes and X is

an Fy-measurable random variable.

A solution to an SDE is any process {X (t)};co,r) that satisfies

t t
X(t) = X +/ wu(s, X(s))ds +/ o(s,X(s))dB(s) for tel0,T]. (9.3)

0 0
This means that X is an adapted process that is continuous with probability 1 such
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that {y(t, X (t)) }tepo,r) and {o(t, X (t)) }sefo,r] are adapted and measurable stochastic

processes that satisfies

P{/OT It X ()] dt < oo} - P{/OTa(t,X(t))th < oo} ~1.

For a diffusion type SDE, the adaptedness and measurability of {u(t, X (%)) }sefo,17
and {o(t, X (t))}ieo,r follow from the adaptedness and continuity of X, as y and o

are measurable functions, see Exercise 109 below.

Exercise 109. Show that the processes {/(t, X (t))}iepo,r and {o(t, X (t)) }reo,n
are adapted and measurable when p, o : [0,7] xR — R are measurable functions

and {X(¢) }+cjo,r) is an adapted process that is continuous with probability 1.

It turns ot that it is fruitful to consider two kinds of solutions to SDE, the theories

of which, perhaps somewhat surprisingly, turns out to be quite different:

Definition 9.4. A process { X (t)}sc[o,r] is a strong solution to the SDE (9.1) [(9.2)]
for a given BM B, given coefficients i and o, and a given initial value Xy, if X
satisfies (9.3) for these choices of B, p and o with X (0) = Xy with probability 1.

Definition 9.5. A process {X(t)}ieor) is a weak solution to the SDE (9.1) if
there exists a BM B such that X satisfies (9.3) with X (0) =p Xo (where =p denotes
equality of probability distributions).

Definition 9.6. Solutions to the SDE (9.1) have strong uniqueness® if whenever
{X1(t) }repo,my and {Xo(t) hepor are strong solutions for a common given BM B and

a common given initial value Xy, it holds that

P{X(t)=X5(t) for all t[0,T]} =1. (9.4)

Note that if {X;(t)}seo,r) and {Xs (%) }sepo,r] are strong solutions to (9.1), then as
X; and X, are continuous with probability 1 (being It6 processes), Exercise 48 shows
that (9.4) holds if and only if X; and X, are versions of each other.

Definition 9.7. Solutions to the SDE (9.1) have weak uniqueness if whenever
{X1(t) hepo,r) and {Xo(t) hepo,r) are weak solutions they have common fidi’s.

4In fact our definition of strong uniqueness is what some authors call pathwise uniqueness.
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Note that the above uniqueness concepts do not require existence of solutions
(albeit uniqueness in the absence of existence argubly becomes a rather philosophical

property), as is illustrated by the following exercise:

Exercise 110. Show that SDE which lack solutions have uniquness of solutions.

9.2 Stochastic exponential
We now return to a more complete treatment of the SDE considered in Example 8.1
dX(t) =0 X(t)dB(t) for t€[0,T], X(0)= X,>0.
We generalize this equation to the (not necessarily diffusion type) SDE
dX(t) =o(t) X(t)dB(t) for t€[0,T], X(0)= Xy>0, (9.5)
where o € Pr. By application of It6’s formula to Y (¢) = In(X (¢)) we get

vy - X0 X0

X 2xqp  cWIB0 - %a(t)th

(recall Theorem 8.6), so that [noting that ¥ (0) = In(X)]
¢ 1t
Y (t) = In(Xp) +/ odB — 5/ o(r)*dr for t€]0,T].
0 0

As the function In is not really two times continuously differentiable on the whole
of R, we must check that our solutiuon really works. To that end we note that an

application of 1t6’s formula to X (t) = e¥® with Y (¢) as above gives
1
dX (t) = YO dy (t) + 3 YO dY)(t) =... = o(t) X(t) dB(2).

And so

t 1 t
X(t) =e"® = X, exp{/ ocdB — 5/ a(r)? dr} for t€[0,T]
0 0

is a strong solution to the SDE (9.5).

In fact, Example 8.1 may be generalized even further than to (9.5) as follows:

Definition 9.8. The stochastic exponential {€(X)() }+co,r of an Ité process { X (1)
Yeeo,m s a solution to the (not necessarily diffusion type) SDE

dE(X)(t) = E(X)()dX(t) for te]0,T], E£X(0)=L1. (9.6)

Theorem 9.9. The stochastic exponential of an It6 process { X (t)}scpo s given by

E(X)(t) = XO-XO5XI0 fop ¢ e [0, T]. (9.7)
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Exercise 111. Prove that the process £(X) given by (9.7) is a strong solution
to the equation (9.6).

9.3 Langevin equation and Ornstein-Uhlenbeck process

The so called Langevin equation is the (not necessarily diffusion type) SDE given by
dX(t) =—-8(t) X(t)dt +o(t)dB(t) for t€[0,T], X(0)= X, (9.8)

where {5(t) }sepo,r] and {o(t)}sepo,r) are measurable and adpated stochastic processes

such that . .
P{/O |B(t)| dt < oo} = P{/0 o(t)?dt < oo} =1

We will need a new Ité6 formula for functions f (¢, X (¢)) of time ¢ and an It6 process
{X(#)}ejo,r) where f: [0, T]xR — R is continuously differentiable in its first argument
and two times continuously differentiable in its second argument. That formula is

given in Theorem 9.10 below and says that
df (X (t)) = f1(t, X (1)) dt + fo(t, X (t)) dX () + % oo, X (1)) d[X](2).  (9.9)
To solve (9.8) we note that Y (t) = elo B(s) ds X(t) by Itd’s formula (9.9) satisfies
dY (t) = B(t) Y (t) dt + el POV 4 X (1) = ... = eJo B 5(1) dB(2).
It follows that

t t
Y(t) = Y (0) + / &3 BV o (5) dB(s) = X, + / 3 BO I () dB(s) for 1€ [0, T].
0 0

Transforming back we conclude that the equation (9.8) has strong solution
t
X(t) =e Jopls)ds (XO +/ elo B dr 5 (5) dB(s)) for t € [0,7). (9.10)
0

In our application of the It6 formula (9.9) above, the function f(¢,z) = elo B(s)ds
is a stochastic process, which is not permitted in (9.9). Further, f need not be contin-
uously differentiable in its first argument (without additional regularity assumptions
for the 8 process). Hence we have not really proved that the It6 process X in (9.10)
satisfies (9.8). To check that this is the case we need yet another It6 formula given
in Theorem 9.12 below, which asserts that for two Ito processes X and Y and a two

times continuously differentiable (in both arguments) function f:R? — R, we have
df (X,Y)
1 1
(9.11)
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Exercise 112. Use the It6 formula (9.11) to check that the Ité process X in
(9.10) really satisfies (9.8).

In the particular case when the coefficient processes of the Langevin equation (9.8)

are constants 3(t) = 8 > 0 and o(t) = o > 0, the solution

¢
X(t)=e P Xy + O'G’Bt/ e’ dB(r) for t€[0,T] (9.12)

0
is called an Ornstein-Uhlenbeck process. If we take Xy =0 it follows from Exercise 58

that the Ornstein-Uhlenbeck process is zero-mean Gaussian with covariance function
min{s,t} o2
Cov{X(s), X(t)} = o%e PG+ / ePds=... = 25 (e_mt_s‘ - e_ﬂ(s“Lt)).
0

Whatever you do, don’t miss the next exercise:

Exercise 113. Consider the so called Euler (Euler-Maruyama) numerical ap-
proximation scheme of the Ornstein-Uhlenbeck process (9.12) given by X (t) =
X(tz) for t e [ti, ti+1), where

X(tz’—i—l) = X(tz) — 5X(tz) (ti—}-l —ti) +0o (B(tz—i—l) — B(tz)) for ¢ = O, 1, e .

Take t; = T'(i/n) for i =0,...,n. Show by means of direct calculations that the

Euler scheme converges in mean-square to the solution (9.12) of (9.8) as n — cc.

9.4 General linear equation

The stochastic exponential equation for BM (9.5) and the Langevin equation (9.8)

both are special cases of the so called general linear equation given by

dX(t) = (a(t)+B(t) X (t))dt + (v(t) +5(t) X (t))dB(t) for te[0,T], X(0)= X,

(9.13)
where {a(t)}iepo, ), {B(E) beepo,rs {7(2) beepo,r) and {6(2)}ecpo,rp are measurable and
adapted stochastic processes that satisfy suitable integrability conditions. It turns
out that also this equation has a strong solution that can be given in explicit form
and that can be derived in the same fashion as we dealt with the equations (9.5) and
(9.8). The details are left to the very interested reader.

Exercise 114. Solve the general linear equation (9.13).

9.5 It6 formula

The time has come to discuss the two new Ito formulas that we employed in the study

of the Langevin equation in Section 9.3.
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Theorem 9.10. (ITO FORMULA) For an Ité process {X (t) }e,m and a function
F€CY([0,T]xR)®, we have

df (t, X (t)) = f{(t, X (1)) dt + f,(t, X (2)) dX (t) + %f;lv,w(t7X(t)) diX](t).  (9.14)

We defer the proof of Theorem 9.10 to Section 11.2 below.

Example 9.11. If X is an It6 processes and if f(t,z) = ¢(¢t) v where ¢: [0,T] —

R is continuously differentiable, then Theorem 9.10 gives
df (t, X (t)) = ¢'(t) X (t) dt + g(t) dX (¢). (9.15)

We used (9.15) in Section 9.3 with ¢(¢t) = elo B(8)ds ¢4 derive (9.10). Note that this

usage (9.15) is rigorous only if 5: R — R is a continuous (non-random) function.

Here is yet another useful Ito formula:

Theorem 9.12. (ITO FORMULA) For two Ito processes X and Y and a function
f € C*(R*)®, we have

df (X,Y)

vy

= FLOCY)AX + XY )Y + L L0 Y )X+ L [ (XY )dIY]+ (XY ) dIX. Y],

Exercise 115. Prove Theorem 9.12.

Exercise 116. Explain how Theorem 9.10 in a way (but not in full generality)
follows from Theorem 9.12. (See also the proof of Theorem 9.10 in Section 11.2.)

Corollary 9.13. (INTEGRATION BY PARTS) For It processes X and Y we have

XY (1) = X (1) dY (t) + Y (£) dX (£) + d[X, Y](2).

Proof. Take f(x,y) = xy in Theorem 9.12. O

Example 9.14. For an It6 process { X (t) }sco,r) We have

/thX = %(X(t)Q — [X](¢)) for te[0,T).

5The class of functions f : [0, 7] x R — R that are continuously differentiable in the first argument and
two times continuously differentiable in the second argument.

5The class of functions f:R? — R for which all second order derivatives exist and are continuous.
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10 Lecture 10, Monday May 11

10.1 Paul Lévy’s characterization of BM

The implication to the right of the following famous result we encountered already in
Theorem 1.10 during the first lecture. It has been a vital tool in our build up of the
theory. However, the converse implication to the left, which we are now equipped to

prove, is almost as important as that to the right:

Theorem 10.1. (PAUL LEVY’S CHARACTERIZATION OF BM) An [Ité integral pro-
cess {X (1) }repor) @5 BM if and only if it has quadratic variation process [X|(t) =t
for t €[0,T] with probability 1.

Proof. Consider an It6 integral process X (t) = f; o dB for t € [0,T], for some
o € Pr, such that [X](t) = ¢ for ¢ € [0,T] with probability 1. From Theorem 8.6 it

follows that, given any 6 € R, the processes
o1 (t) = o(t) cos(0X (1)) e2”t and  oy(t) = o(t) sin(6X (£)) e2?t  for t€[0,T]
belong to Er, since
T T T T
/0 (01(t)? +0a(t)?) dt = /0 o(t)? et dt = /0 Pt d[X|(t) = /0 e tdt < Te?T.
Hence the It6 integral processes
Yi(t) = /tal dB and Y(t) = /OtO'Q dB for t€[0,T]
0
are martingales. Next note that the processes
Z1(t) = cos(0X (t)) e2?t and Zy(t) = sin(0X (1)) et for te [0, 7]

are Itd processes, which by It6’s formula Theorem 9.10 satisfy

_ @) dt P2 dIX]()

47, (1) L 07,1 ax (1) : — —00y(t) dB(t) = —0dYa(2),
A7 (t) = w +0Z,(t) dX () — QQZQ“);[X I®) _ g @ydB) = 0dvi(e).

Hence Z; and Z, are martingales (as Y; and Y, are martingales). It follows that
E{eieX(t)+%62t|Fs} — E{Zl(t)\]-"s} + iE{ZQ(t)|.7-"S} = 7,(8) +1i Zo(s) = if X (5)+567s
for 0 <s<tand # € R, which in turn (as X is adapted) by rearrangement gives
E{e?XO-XO)|F Y = e 30°(t=5)  and E{e?XO-X()] - o 30%(t=s) (10.1)
for 0 <s<tand § € R. In particular, X (¢) — X (s) is N(0, t—s)-distributed. Further,
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X (t) — X (s) is independent of F; for 0 < s <1, as for any event A € F, we get
E{eie(X(t)—X(s))+z‘<pIA} — E{{eiH(X(t)—X(s))—l—inIA ‘fs}ewlA} _ e_%gza_s) E{eicpIA}
(10.2)

for 6, p € R. In particular, this shows that X has independent increments, see Exer-
cise 117 below. As X(0) =0 and X is continuous, we have shown that X is BM. O

Exercise 117. Explain why (10.2) implies that X has independent increments.

10.2 Tanaka’s equation

The following rather famous example is intended to give a perspective on the topic
of existence and uniqueness of solutions to SDE: Let sign (z) = Ijp c) () — (—00,0)()

for x € R and consider the so called Tanaka equation
dX(t) =sign(X(t))dB(t) for t€[0,T], X(0)=0. (10.3)

As Theorem 8.6 shows that any solution to (10.3) satisfies

¢ t
(X](t) = / sign (X (r))?dr = / dr =t for te€[0,T] (with probability 1),
0 0

any solution to (10.3) is BM by Theorem 10.1. Hence we have weak uniqueness.
Further, setting dW (t) = sign (B(t)) dB(t) we see as above from Theorem 8.6 that
[W](t) = t. Hence W is also BM by Theorem 10.1. As we have

dB(t) = sign (B(1))2 dB(t) = sign(B(t)) dW (t) for te[0,T], B(0) =0,

it follows that any given BM B is a weak solution to (10.3) when we select W as gi-
ven above to be the driving BM of the SDE. Hence we have weak existence.
It can be shown that (10.3) does not have a strong solution, but that requires qui-
te difficult rather special new techniques which we do not want to spend time on”.
However, it easy to see that if (10.3) has a strong solution X, then that solution

is not unique in the strong sense. This is so because Y = —X satisfies

dY = d(—X) = —dX = —sign(X) dB = sign(—X) dB =sign(Y)dB, Y(0)=0.
Here the equality —sign(X)dB = sign(—X)dB is not obvious, as —sign(z) =
sign(—x) holds only for z # 0. However, note that —sign(X)dB = sign(—X)dB

means that fot —sign(X)dB = fot sign(—X) dB for t € [0,T], which in turn holds if
—sign (X (t)) = sign(—X(t)) a.e. for t € [0, 7] with probability 1. That this is so in

"The proof requires Tanaka’s formula — a special case of a more general extension of Ité’s formula to
convex functions, see e.g., Karatzas and Shreve: “Brownian Motion and Stochastic Calculus”, Example
5.3.5 - according to which |X|(t) —|X|(0) = [ sign(X)dX +limeyo & [ Ijo..(|X|(r)) dr for an It6 process
X. If that It6 process solves (10.3) it follows that | X|(t) = fot sign (X)*dB + lim. o o= f(f Iio,1(|1 X|(r)) dr,
so that B(t) = |X(t)| — limeyo 5= fot Ij0,¢1(|X|(r)) dr. This in turn implies that o(X(s):s<t) C o(B(s):s<
t) C (| X (s)]: s<t), which cannot be true as X is BM.
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turn follows from the fact that X is BM, see Exercise 118 below.
Exercise 118. Show that BM B satisfies P{B(t) #0 a.e. for t >0} = 1.

Example 10.2. The non-random ODE version of the Tanaka SDE
dX(t) =sign(X(¢t))dt for t€[0,T], X(0)=0, (10.4)

has the strong solution X (t) =t, see also Exercise 119 below.

Exercise 119. Explain why the solution X (¢) =t to (10.4) is unique in the ord-
inary ODE sense, that is, when we require X'(t) = sign(X (¢)) for all ¢ € [0, 7.

It is not always possible to carry over intuition from ODE to SDE and vice versa:
Solutions to some SDE simply behave more or less like randomly perturbed versions
of solutions to the corresponding ODE (with o coefficient zero), as is argubly the case,
for example, with the stochastic exponential equation (9.6) and its solution (9.7). On
the other hand, some other SDE does not behave like randomly perturbed versions
of the corresponding ODE (with o = 0) at all, as is argubly the case, for example,
with the Langevin equation (9.8) and its solution (9.10).

10.3 Strong uniqueness

Although Tanaka’s SDE does not have a unique strong solution if a strong solution ex-
ists, as a strong solution to this SDE does not exist it is interesting to find an example

of an SDE that has a strong solutions that is not unique (recall Exercise 110):

Exercise 120. Show that the ODE version of Tanaka’s SDE (10.4) does not have
a unique strong solution in the SDE sense, that is, when we only require X () =
fot sign (X (s)) ds for all t € [0, T, as both X (¢) =t and X (t) = —t solve this SDE.

We are now going to state and prove a standard type of uniqueness result. To

that end we need the following simple inequality:

Theorem 10.3. (GRONWALL’S LEMMA) If u,v : [0,T] — [0,00) are continuous

functions such that
t
v(t) < C +/ u(r)v(r)dr for t€][0,T],
0

for some constant C > 0, then we have

v(t) < C+ /Otu(r)v(r) dr < C’exp{/ﬂtu(r) dr} for t€0,T].
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Proof. Given any constant € > 0, we have
t
v(t) < (C+e) +/ u(r)v(r)dr = V.(t) for te]0,T].
0

Since V is strictly positive it follows that

d V) ultp()
@ V-0 =5 =0

<wu(t) for te(0,7).

This in turn gives

In(V.(t)) = In(V.(0)) + /t% In(V.(r)dr < In(C+e¢) + /tu(r) dr for t€]0,T],
so that
v(t) < Vi(t) < exp{ln(C+€)—|—/()tu(r) dr} = (C+e¢) exp{/0 u(r) dr} for t€[0,T).

O

Definition 10.4. The coefficients p,o : [0,T] xR — R of the diffusion type SDE
(9.1) are said to satisfy a local Lipschitz condition if to each n € N there exists a

constant K, > 0 such that

\p(t, ) — u(t,y)| + |lo(t, ) —o(t,y)| < Kn|lz—y| for t€[0,T] and z,y € [-n,n].

Theorem 10.5. If the coefficients of the diffusion type SDE (9.1) satisfy a local
Lipschitz condition, then we have strong uniqueness for solutions to the SDE (but not

necessarily ezistence).

See Theorem 11.3 below for a useful improvement of the above uniqueness result.

Proof of Theorem 10.5. Consider two strong solutions X; and X, to (9.1). To prove

uniqeness it is enough to prove that
P{Xi(t)=X3(t)} =1 for each t€[0,T]
(recall Exercise 48). Consider the stopping time
T =inf {t € [0,T]: |X1(t)] >n} Ainf {t€[0,T] : [ X5(t)| > n}.

Then the process XZ-(") (t) = X;(tAT,) satisfies |Xi(") (t)] < n for t € [0,T] by the

continuity of X; for i = 1, 2. Further, we have

t t
X0 = [0 XD T e+ [0 X) ToydB for te0.7)
0 0
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for 1 = 1,2 by Theorem 6.5. Since 7, T 00 as n — co by the continuity of X; and X,
it suffices to prove that P{X"(¢) = X{"(t)} = 1 for t € [0, T] and n € N, see Exer-
cise 121 below. However, by the inequality (z+y)? < 2z2%+2%? and isometry together

with the Cauchy-Schwarz inequality and the local Lipschitz condition, we have

E{(X{"(t) - X" (1)?}

+2E{</Ot(a(-,X1)—a( Tio,m] dB) }

< 2(T+1) Kﬁ/tE{(Xl(")(r)—Xé")(r))Q}dr for t e [0,T).

Hence an application of Gronwall’s lemma with C' =0, u(t) = 2 (T+1) K2 and v(t)
= E{(X™ ()= X{"(t))?} (which is continuous by continuity of X" and X{" toge-

ther with the bounded convergence theorem) gives v(t) =0. O

Exercise 121. Why is it sufficient to prove that P{X\"(t) = X{" ()} = 1 for
t€[0,7] and n € N in the proof of Theorem 10.5.

Remark 10.6. Recall from Exercise 108 that the equation (10.7) does not have
a strong solution if 7' > 1 although it satisfies a local Lipschitz condition, which
in turn illustrates the fact that it is only uniqueness that is adressed in Theorem

10.5, but not existence. See also Example 12.1 below for more information.
Example 10.7. The following equation has uniqueness for strong solutions
dX(t) = X(t)*dt for t€[0,T],  X(0)=1,
by Theorem 10.5, since the drift u(z) = x? satisfies the local Lipschitz condition
2 =2 = |z +y|lr—y| < 2n|z—y| for |z, |y| < n.
Exercise 122. Show that a genereal linear SDE of the type
dX(t) = (a+BX(t))dt + (v+d X(t)) dB(t)

where «, 3,7,6 € R are real constants have strong uniqueness.

Exercise 123. Does strong uniqueness trivially imply weak uniqueness? Does

weak uniqueness trivially imply strong uniqueness?
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11 Lecture 11, Wednesday May 13

11.1 Conclusion of the proof of Theorem 8.6

It remains to extend the range of the theorem from Sr to Ep. To that end, take

o € Er and use Theorem 4.4 to find a sequence {o,,}>°_, C St such that

lim E{/OT (o(r)—am(r))er} = 0. (11.1)

m— 00

By the elementary inequality (z+y)? < (1+€) 2*+ (1+1/e) y* for z,y € Rand ¢ > 0

together with Boole’s inequality, we have, given any constants J,¢ >0 and m € N,

P{zn:(X(ti) CX(t ) — /OTU(T)2dr > 5}

=1

< P{(l—i—e)i(/:lamdB)Q-i— (1+1/€)i(/jl(a—am) dB)Q—/OTa(r)Zdr > 5}

1=1 =1
n

< P{(HE)Z(/:I Om dB)2 — (14¢) /OTom(r)er > g}

=1

+P{(1+1/e)2n:(/:1(“_"m) dB)2 g %}

i=1

(11.2)

+ P{(1+e) /OT (Om(r)* =0 (r)") dr > g}

+P{g/0To(r)2dr > %}

Here the first term on the right-hand side goes to zero as maxi<j<,t; — ;-1 4 0 by
application of what we have proved already for o, € Sr. By Tjebysjev’s inequality
and isometry, the second term on the right-hand side of (11.2) is bounded by

WE{/{)T (a(r)—am(r))zdr}a

which goes to 0 as m — oo by (11.1). As 02, —0?% = (6—0,)* +2 (0,,—0) 0, Markov’s
inequality together with the Cauchy-Schwarz inequality show that the third term on
the right-hand side of (11.2) is bounded by

4(15+6) (E{ /0 T(a(r)-om(r))2dr}+2\/E{ /0 T(am(r)—o(r))er}E{ /0 To(r)2dT}>a

which goes to 0 as m — oo by (11.1). Finally, by Markov’s inequality the fourth term
on the right-hand side of (11.2) is bounded by

%E{/OTU(T)W}.

Hence, given any d,¢ > 0, we may first select ¢ > 0 sufficiently small to make the
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fourth term on the right-hand side smaller than €/3. With that choice of € > 0 we
may then select m € N sufficiently large to make each of the second term and the third
term on the right-hand side smaller than €/3. It follows that the limit (superior) as
maxXi<i<p t; — ti—1 4 0 of the left-hand side of (11.2) is at most € for any € > 0, so
that the limit must be zero. Using the elementary inequality (z +y)? > (1—¢) 2% —

(1/e—1)y? for z,y € R and € € (0, 1), we can in an entirely similar way show that

P{i(X(ti)—X(ti_l))2 - /OTJ(T)2 dr < —(5} —0 as maxt; —t,_1 0. 0

- 1<i<n
=1

Exercise 124. Prove Theorem 8.10.

11.2 TIt6 formula

Proof of Theorem 9.10. Consider partitions 0 =ty <ty < ... <t, =t of the interval

[0,t] such that maxj<;<n t; — t;_1 1 0. By Taylor expansion with remainder, we have
f(t, X (t)) — f(0,X(0))
_Z (ti, X(t:)) — f(tim1, X +Z ticy, X () = ftior, X (1))

- z filts, X (1)) (t i)
+ Z / (F1(s, X (1) — Fl(t:, X (1)) ds
+ i fo(tio, X (tim1)) (X (8) — X (ti-1))
Z i X (1)) (X (8) = X (t1))?

N aX(t)

+ Z /X(t )(X(ti) —8) (f"(ti1,8) = f'(ti 1, X (i 1)) ds

_>/ftsX)ds+0+/st )) dX (s / s)) d[X](s) + 0
(11.3)

in probability as maxi<;<nt; —t;—1 1 0 by more or less precisely the same reasons that

we invoked to complete the proofs of Theorems 7.5 and 7.6. O

We have already seen four different 1t6 formulas. The requirement in It6’s for-
mula that the function we apply to an Ité process has to be two times continuously
differentiable over the whole world of values of the It6 process can in fact be weak-
ened to exactly that requirement, resulting in the following improved versions of our

previously considered It6 formulas in Theorems 9.10 and 9.12:
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Theorem 11.1. (ITO FORMULA) For an Ité process X all values of which belong
to an open interval I C R with probability 1 and a function f € CY2([0,T]x )8, we

have

df (t, X (1)) = fi(t, X (1)) dt + f,(t, X(¢)) dX(¢t) + % fre(t, X (1)) d[X](2).

Proof. Let X have stochastic differential dX (t) = u(t) dt + o(t) dB(t). Consider the
stopped process X (t) = X (tAr,) for t € [0,T], where (with obvious notation)

=inf{t€[0,T]: |X(t)—I°| < 1/n}.
Then the almost sure continuity of X gives |X ™ (¢) — I¢| > 1/n for t € [0,T] with
probability 1, while the stopping property Theorem 6.5 gives

t t
XM (1) = / oy (T)p(r) dr + / oo dB  for te[0,T). (11.4)
0 0

Now the Itd formula in Theorem 9.10 applies to the It process X by Exercise 125
below. Using this together with (11.4) and the stopping property Theorem 6.5 we get

= f(t, X™(0) - £, X™(0))

t
- / £(r, X () dr + / £ XY dx™ 4 / ., x ) gx ) (11.5)
0

tATh tATh

:/Otf;(r,X(")(T))d” 0 70, )dX+2 i £ (-, X™) d[X]

for ¢t € [0,T]. As the values of X belong to I with probability 1 and X is continuous
with probability 1, there exists a null event E such that {7, =T} 1 Q\ E as n — cc.
For w € Q\ E we may therefore select n sufficiently large to ensure that 7, = T in
order to conclude from (11.5) that

f@t, X () -

1 t
/f (r, X (r dr+/f X ™) dX+§/0f;'m(-,X)d[X] fort €10, 7],

for n sufficiently large, for w € Q\ E. Hence it is sufficient to prove that

/Otf;(-, ) dx = /f (r, X dr—i—/f o dB
—>/ falr, X (1)) dr+/ fi(-,X)odB

/f X)dX as n—oo for tel0,T]

8The class of functions f :[0,T]xI — R that are continuously differentiable in the first argument and

two times continuously differentiable in the second argument.
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in the sense of convergence in probability. Here the Lebesgue integrals fot fiir, X™
(r))u(r) dr and fg fi(r, X (r))u(r) dr agree for ¢t € [0,T], for n sufficiently large, for
w € Q\ F, by what we have proved already, so that it is sufficient to prove that

t t
/ f;(-,X(”))odB%/ fi(-,X)odB as n— oo for t€0,T] (11.6)
0 0
in the sense of convergence in probability. By Theorem 5.4, (11.6) in turn holds if
T
/ (fa(r, X™(r))o(r) = fi(r, X(r))o(r))2 dr -0 as n— oo (11.7)
0

in the sense of convergence in probability. However, (11.7) does in fact hold with
almost sure convergence since the integral on the left-hand side is equal to zero for n

sufficiently large, for w € Q\ E, by what we have proved already. O

Exercise 125. Show that the Ito formula in Theorem 9.10 applies to the Ito
process X (™ in the proof of Theorem 11.1.

Theorem 11.2. (ITO FORMULA) For two Ité processes X andY all values of which
belong to two open intervals Ix CR and Iy C R, respectively, with probability 1 and

a function f € C*(Ix xIy)°, we have
df (X,Y)

= FLOGY)AX4 Y)Y 4o f (XY VX 5 (XY )Y ]+ £, (X V) X, V]

Yy Y

Exercise 126. Prove Theorem 11.2.

11.3 Strong uniqueness

By inspection of the proof of Theorem 11.1 we readily get the following improvement

of the strong uniqueness result Theorem 10.5:

Theorem 11.3. Let I C R be an open interval and let {X(t)}icpor) be an Ito
process that takes values in I and solves the diffusion type SDE (9.1) with coefficients
i, 00, T]x 1 — R that satisfy the local Lipschitz condition

|t ) = p(t,y) |+ lo(t, ) —o(t,y)| < Kaplz -yl for t€[0,T] and x,y € a, b],

for some constant K, > 0 for every closed interval [a,b] C I. Then every other

solution to the SDE must agree with X with probability 1.

9The class of functions f: Ix x Iy — R for which all second order derivatives exist and are continuous.
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Exercise 127. Prove Theorem 11.3.

11.4 Stochastic logarithm

Here we give a star application of our new It6 formula Theorem 11.1.

Definition 11.4. The stochastic logarithm {L£(X)(?)}tcjo,r; of an Ité process
{X () }tejo,r) that is strictly positive with probability 1 is a solution to the (not neces-
sarily diffusion type) SDE

dX(t) = X (t) dL(X)(t) for t€[0,T], L(X)(0)=0.

Theorem 11.5. The stochastic logarithm of an Ité process {X(t)}iepor) that is
strictly positive with probability 1 is given by

L(X)(t) = log(X(t)) — log(X(0)) + %/0 d)[()ilgz) for t€[0,T). (11.8)

Proof. By 1t6’s formula Theorem 11.1 the process Y (t) = log(X (t)) satisfies
dX(t)

1 d[X](t)
YO=%u ~3 X0

so that

see also Exercise 128 below. O
Exercise 128. Why is the integral in (11.8) well-defined?

Exercise 129. Show that £(£(X)) = X for any It6 process X. Is it also true
that £(L(X)) = X?
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12 Lecture 12, Monday May 18

12.1 Strong existence

Let us examplify that the local Lipschitz condition for the coefficients that is sufficient

for strong uniqueness by Theorem 10.5 is not sufficient for strong existence:

Example 12.1. Recall from Exercise 108 the equation
dX(t) = X(t)?dt for t€0,T], X(0)=1,

where now 7" = 1. We will give this exercise a completely rigorous treatment:
Assume that the equation has a strong solution {X()}cjo,1] when T = 1. This
solution X must satisfy with probability 1 that
1 1 1
/ \u(t, X (1)) dt+/ o(t, X (t))?dt = / X(t)*dt < 0. (12.1)
0 0 0
As the coefficient p(t,z) = z? and o(t,x) = 0 are locally Lipschitz, the solution
X is unique by Theorem 10.5. In particular we have a unique strong solution
{ X1 (t) }sefo,r) for every T < 1 that coincides with {X(¢)}sep,1) for t € [0,T]. By
solving the SDE we see that this solution is X (t) = Xr(t) = 1/(1—t) fort <T < 1,
for each T'=1. Hence we have X (t) = 1/(1—1t) for ¢t < 1. But this contradicts

(12.1), so that our initial assumption that the solution X exists is false.

It turns out that it is the iiber-linear growth of the coefficient of the equation in

Example 12.1 that makes impossible the existence. And here is what to do about it:

Definition 12.2. The coefficients p, 0 :[0,T]xR — R of the SDE (9.1) are said to

satisfy a global linear growth condition if there exists a constant C' >0 such that

p(t,2)? +o(t,2)> <C(1+2?) for t€[0,T] and z €R.

Theorem 12.3. If the coefficients of the SDE (9.1) satisfy a local Lipschitz condition
and a global linear growth condition, then there exists a strong solution to the SDE

for every given BM B and any given initial value Xy that is strongly unique.

Definition 12.4. The coefficients p,0: [0, T| xR — R of the SDE (9.1) are said to
satisfy a global Lipschitz condition if there exists a constant K >0 such that

u(t, z) — pt,y)| + o, 2) —o(t,y)| < K|z —y| for t€0,T] and z,y €R.
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Corollary 12.5. If the coefficients of the SDE (9.1) satisfy a global Lipschitz condi-
tion, then there exists a strong solution to the SDE for every given BM B and initial

value Xy that is strongly unique.

Exercise 130. Derive Corollary 12.5 from Theorem 12.3.

Proof of Theorem 12.3. As we have uniqueness by Theorem 10.5 it is sufficient to
prove existence. Further, it is sufficient to prove existence for any square-integrable

initial value E{X2} < oo. This is so because with the notation (5.1) there then

exists a unique strong solution {, X (t)}scp,r for every truncation Xén), n € N, of

Xo. By the strong uniqueness of solutions, on the almost sure event | J,-,{Xo < n}
we may define a solution {X(¢)}e077 to (9.1) by X (t) =, X(¢) for ¢ E_[O,T] when
w € {Xo < n}, see Exercise 131 below.

Consider a so called Picard-Lindelof iteration where Xo(t) = Xy for t € [0, T] and

X1 (1) =Xo—i—/tu(r,Xk(r))dr—i-/ta(-,Xk)dB for t€[0,7],  (12.2)

for £ > 0. To establish that the process X;;1 on the left-hand side of (12.2) is well-
defined it is sufficient to show that the process X on the right-hand side satisfies

E{ sup Xk(t)Q} < 00, (12.3)

te€[0,T]

because by Fubini’s theorem together with global linear growth this shows that

t t t
E{/ o(r, Xk(r))2d7"} < E{/ C (1+Xk(r)?) dr} = / C(1+E{Xk(r)’}) dr < o0
0 0 0
(12.4)
for t € [0,T], so that o( -, Xy) € Er, and similarly, by Cauchy-Schwarz’ inequality,

B{ [ 'l X)) arb < [e{( . Xk<r>>|dr)2}}1/2
B o)

<VT [E{ /0 tc (1+ X5 (r)?) drH v (12.5)

Ny [ /O ‘CO B2 dr] v
< oo for t€[0,T],

so that fOT |pu(r, Xi(r)|dr < oo with probability 1. Now, (12.3) holds trivially for
k = 0 since E{X2} < oco. Further, if (12.3) holds for a certain k € N, then by the
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elementary inequality (z+y+2)% < 32%2+3y*+3 2% and Doob’s maximal inequality
Theorem 13.1 below together with (12.2), isometry and (12.4)-(12.5), we have
E{ sup Xk+1(3)2}

s€[0,t]

<ontisn{ g [ w6 38 g 20
< 3E{X(}+ 3T/tc(1 +E{X(r)*}) dr + 12 E{/Ota(r, Xi(r))? dr}

<D+D/ sup X )}ds for ¢ € (0,7,
7"605

(12.6)

where D = max{3E{XZ} + 3T?C + 12T C, 3TC + 12C}. This gives (12.3) for k+1,
and thus (12.3) holds for all £ € N by induction. In fact, from (12.6) we may readily
deduce by means of iteration the following stronger version of (12.3)
E{ sup Xk(s)Q} < (Dv1)eP? for t€[0,T] and k>0, (12.7)
s€[0,t]
see Exercise 132 below. (Also compare with Gronwall’s lemmal)

Now assume that the global Lipschitz condition in Definition 12.4 holds — an
assumption that we will relax to a local Lipschitz condition later. By application of
the arguments used to obtain (12.6) [this time using the inequality (z+y)? < 2 22+2 y?
instead of (z+y+2)? < 312+ 392+ 3 22|, we then readily obtain

t
2 2
E{ 51[1p] (X11(s) — Xi(s)) } < L/ E{ Sl[lp] (Xk(r) — Xg_1(r)) }ds (12.8)
s€ Oat 0 re O,S

for t € [0,T] and k € N, where L = 2T K?+8K?, see Exercise 133 below. By induction

this in turn gives

B g, (Gt 500"} < B (100 =X} B 2w
(12.9)

for t € [0, 7] and k € N, for some constant M < oo [recall (12.3)], see Exercise 134
below. By Tjebysjev’s inequality, (12.9) implies that

ZP{ sup ‘XIH—I — Xk (2) }

te[0,T

LT M 4LT
Do

k=0
And so the Borel-Cantelli lemma shows that

1 o
P{ sup | Xiy1(t) — Xi(t)| > o for infinitely many & € N} =
t€[0,T]

From this in turn we obtain by summation that

mVn—1 00 1 2
Xn(t) — Xa(t)] < X (t) — Xp(t)] < — =
e Xnl) = X0) < 35 sup X=X € 3 = o
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for mAn sufficiently large with probability 1. Hence the processes { X} }52, constitute
a Cauchy sequence with respect to uniform convergence of continuous functions on
the interval [0, 7] with probability 1. It follows that there exists a stochastic process
{X () }sefo,r) that is continuous with probability 1 such that sup,eo 7 | Xk (t)=X (t)] —
0 as kK — oo with probability 1.

Using the convergence established in the previous paragraph and Fatou’s lemma
together with the elementary inequality (>, ;)* < Y, 2'z2 and (12.9), we obtain

E{ sup (X(t) _Xk(t))Z} — E{ sup (limiang(t)—Xk(t))Q}

te[0,T] telo,r] \ £

- E{liminf sup (X,(t) —Xk(t))2}

£—00 tE[O,T]

< lim infE{ sup (X,(t) — Xk(t))Z}

£—00 tE[O,T]

-1
< lim supz2"k+1E{ sup (Xp41(2) —Xn(t))Q}

{—00 ek te[0,T]

< ZMzHc (2LT)

n!
n==k

2M eZLT
< -

< o for ke N.

(12.10)

In particular we have

E{ sup X(t)z} < QE{ sup (X (¢) —Xo(t))z} +2E{X}]} < o0,

t€[0,T te[0,T]

so that the Ito process
t t
Y(t)zXo—i—/ ,u(r,X(r))dr—!—/ (-, X)dB for t€[0,T]
0 0

is well-defined [by the argument employed to show that the left-hand of (12.2) is well-
define when (12.3) holds]. Hence it is enough to show that X =Y with probability
1 to establish the existence of a solution. However, by an obvious version of (12.8)
together with (12.10), we have

2k

E{ sup (Y (t) —Xk+1(t))2} < L/OTE{ sup (X (s) —ch(S))2

} QM LT e*'™
dt < ————
t€[0,T] s€[0,4]

for k € N, so that by another application of (12.10)

E{(Y(t) - X(t))?} < QE{ sup (Y (t) —Xk+1(t))2} + 2E{ sup (Xg11(2) —X(t))Q}

te[0,T] t€[0,T)
2 M LT 2LT 2 M 2LT
< le Qkil for ke N,
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which gives X (t) =Y (¢) with probability 1 by sending k& — oc.
It remains to show how to relax the global Lipschitz condition to a local Lipschitz

condition. To that end we consider the truncated coefficients [recall (5.1)]

u(t,—n) for x<-—n o(t,—n) for z<-—n
p(t,x) =4 p(t,z) for |z|<n and oM(t,z) =1 o(t,z) for |z|<n .
u(t,n) for x>n o(t,n) for xz>n

It is easy to see that the truncated coefficients u(™ and (™ satisfy a global linear
growth condition with the same global growth constant C' as the non-truncated co-
efficients for each n, and that they satisfy a global Lipschitz condition with global
Lipschitz constant K, for each n, where K, comes from the local Lipschitz condition
Definition 10.4 for the non-truncated coefficients, see Exercise 135 below. Hence it

follows from what we have proved already that the SDE
dX (t) = p™(t, X (t)) dt + o™ (t, X (t))dB(t) for t€[0,T], X(0)=X,,

has a unique strong solution , X for each n € N. By the strong uniqueness we may
define a solution X to (9.1) on the event £ = [, 5, {supycor [n X (¢)| <n} by X =, X
when w € {sup;co 7 [nX(t)| < n}. Note that this is in essence the same argument
as the one we employed to justify the truncation of Xy, see also Exercise 131 below.
Hence it is sufficient to show that the event £ is almost sure. However, as all processes
»X are almost sure limits of processes (,X)g [given by (12.2) with p and o replaced
with the truncated coefficients|, that in turn all satisfy the inequality (12.7) with a
constant D that does not depend on n, Tjebysjev’s inequality and (12.7) give

o] 00 o DT
;P{ SUP]|nX(t)|>n}§Zli,?_l)glfP{ sup |(nX)k(t)|>n}§Z% < 00.

te[0,T n—1 t€[0,T] p—

Hence the Borel-Cantelli lemms shows that

P{ sup |,X(t)| >n for infinitely many n € N} = 0. O
t€[0,T1]

Exercise 131. The argument in the first paragraph of the proof of Theorem 12.3
that it is sufficient to prove the theorem for X, square-integrable relies on the fact
that two strong solutions ,,, X and , X with truncated initial values Xém) and Xé”),
respectively, must coincide on the event &5, = {Xo < mAn}. Recalling that X,
is independent of the BM B, show how this uniqueness follows by applying the
unigeness Theorem 10.5 to the SDE (9.1) on the modified probability space

(2N Emnns FNEman, P{ + |Eman})  with filtration {F; N Emanteso

(on which the given BM B is still a BM by independence of X, and B).
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Exercise 132. Prove that (12.6) gives (12.7).
Exercise 133. Prove (12.8) by means of modification of the proof of (12.6).
Exercise 134. Prove that (12.8) gives (12.9).

Exercise 135. Show that the truncated coefficients x(™ and ¢™ in the proof of
Theorem 12.3 satisfy a global linear growth condition with the same global growth
constant C' as the non-truncated coefficients for each n, and that they satisfy a
global Lipschitz condition with global Lipschitz constant K, for each n, where K,

is the local Lipschitz constant for the non-truncated coefficients.

Corollary 12.6. If the coefficients of the SDE (9.1) satisfy a global Lipschitz con-
dition and if the initial value is square-integrable E{X?} < oo, then there erists a
strong solution {X (t)}sepo,m to the SDE for any given BM B that is strongly unique.
This solution is square-integrable sup,epo 7 E{X (t)*} < E{sup;cjor X (t)*} < oc.

Exercise 136. Prove Corollary 12.6 by inspection of the proofs of Theorem 12.3
and Corollary 12.5.
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13 Lecture 13, Wednesday May 20

13.1 Doob’s maximal inequality

Here is another important consequence of Doob’s inequality Theorem 3.1:

Theorem 13.1. (DOOB’S MAXIMAL INEQUALITY) Pick a constant p > 1. For a
right-continuous martingale or a non-negative submartingale {X (t)}sco,17 such that
the process {| X (t)|P}1eo,r) is integrable, we have

1 1
E{ sup \X(t)|p} <@ E{X(T)P} where - +5 =1.
p

0<t<T

Proof. From Exercises 22 and 23 we know that |X| is a submartingale. Hence we may

apply Doob’s inequality Theorem 3.1 to | X| as well as Holder’s inequality to obtain

p suPo<i<1 [ X ()| Ak
E{(sup |X(t)|/\k) }:E{/ pAp—ld/\}
0<t<T 0
E{ / PN Nsupoe,er 1X ()20 d/\}

:/ p ¥ P sup [X(0)]> A} dA

0<t<T
</ L E{IX (D) Tsupg,er 1x0)120) } o
= )

pA
SuPo< i<t | X (t)|AK
= { T)| / AP~ d)\}
0

—oB{lx(@) (s IX0IAE) ]

0<t<T
y oy (=1)/p
< qE{|X(T)"} pE{(sup |X(t)\/\k> } :
0<t<T

so that by rearrangement together with Fatou’s lemma

E{ sup |X(t)|”} < 11553;@{( sup |X(t)|/\k)p} < PE{X(T)]}. 0

0<t<T 0<t<T

13.2 Uniform integrability

Definition 13.2. A family {Y, }aca of random variables (not necessarily defined on

a common probability space) is uniformly integrable if

lim Sup E{]{\Ya|>y} ‘Y ‘} =0.

yﬂoo
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Theorem 13.3. Each member Y, of a family {Y,}aca of uniformly integrable ran-

dom variables is integrable.

Exercise 137. Prove Theorem 13.3.

Theorem 13.4. A family {Ya}aca of random variables is uniformly integrable if

supyeo E{|YalP} < 0o for some constant p > 1.

Exercise 138. Derive Theorem 13.4 from the Holder and Tjebysjev inequalities.

Theorem 13.5. A family {Y,}aca of random variables defined on a common prob-
ability space is uniformly integrable if |Y,| < Z almost surely for each oo € A, for some

integrable random variable Z.

Exercise 139. Prove Theorem 13.5.

Theorem 13.6. If {Y,}>° is an uniformly integrable sequence of random variables

such that Y, — Y weakly as n — oo for some random variable Y, then Y is integrable.

Exercise 140. Use Fatou’s lemma to prove Theorem 13.6.

The next two theorems are deeper than the rather immediate Theorems 13.3-13.6:

Theorem 13.7. For a sequence of integrable random variables {Y,}22 | defined on a
common probability space such that'Y,, —Y in probability as n — oo for some random
variable Y, the following statements are equivalent:

(1) Y, > Y in L' as n— oo;

(2) Y is integrable and lim,_, ., E{|Y,|} = E{|Y|};

(3) {Yn}2, is uniformly integrable.

Theorem 13.8. For a sequence of integrable random variables {Y,}°, such that
Y, =Y weakly as n — oo for some random variable Y, we have that 'Y is integrable
and lim, o E{|Y,|} = E{|Y|} if and only if {Yn}22, is uniformly integrable. In
either case we have lim,_,,, E{Y,} = E{Y'}.
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In other words, uniform integrability is what you should replace dominated con-
vergence with to get a sharp condition for convergence of your means!
We will not prove Theorems 13.7 and 13.8, although we make some use of them,

because we consider them to belong to basic graduate probability theory courses.

13.3 Local martingales

We know that It6 integral processes { f(f 0 dB}cp0,17 are square-integrable continuous
martingales when o € Er. We have made crucial use of this fact in several proofs,
e.g., to be able to use the Doob inequalities. However, we have not investigated what
happens with the martingale property if o € Pr\ E7. It turns out that for such o the
It0 intergal process is no longer necessarily a martingale. However, an It6 intergal pro-
cess is always a continuous so called local martingale, see Definition 13.9 below. In
fact, even the converse holds, that is, continuous local martingales are It6 intergal
processes (although we will not make explicit use of that fact). As it turns out that it
is possible to develop a rather rich theory for (continuous) local martingales on their
own, it is not surprising that this theory is important in the study of It6 processes. In

particular, local martingale theory is crucial for the study of weak solutions to SDE.

Definition 13.9. An adapted stochastic process {M(t)}icior) s a local martin-
gale/submartingale/supermartingale if there ezrists a so called localizing sequence of
stopping times 0 < 11 < 1 < ... such that 7,, — oo almost surely as n — oo and
{M (tAT,) bepo,r is a uniformly integrable martingale/submartingale/supermartingale

for each n € N.

Surprisinlgy, the uniform integrability requirement in Definition 13.9 often is void:

Theorem 13.10. A right-continuous martingale/non-negative submartingale/non-

positive supermartingale { M (t)}icpo,m s uniformly integrable.

Proof. For a martingale M Jensen’s inequality gives

sup E{I{m@)>9y 1M (1)} = sup E{I{ae)>yy [E{M(T) | F}|}

t€[0,T) te[0,7]

< sup E{I{mq >y E{|IM(T)||F}}

t€[0,T]

= sup E{I{|M(t)|>y} |M(T)|}

t€[0,T]
< E{Lfsup,c oz M) 593 [ M(T)]}-

As |M(T)| is integrable the right-hand side goes to zero as y — oo by so called absolute

7




continuity of the integral, if P{sup,cor [M(t)| >y} — 0 as y — co. However, the
latter fact follows from the Doob-Kolmogorov inequality. The proof for non-negative

submartingales/non-positive supermartingales is Exercise 141 below. O

Exercise 141. Prove Theorem 13.10 for non-negative submartingales and non-

positive supermartingales. (Now you need to use Doob’s inequality Theorem 3.1
instead of the Doob-Kolmogorov inequality.)

Corollary 13.11. A right-continuous martingale/non-negative submartingale/non-

positive supermartingale { M (t) }cj0,17 @5 a local martingale/submartingale/supermart-

ingale.

Exercise 142. Prove Corollary 13.11.

Albeit not easy to exemplify, integrable local martingales need not be martingales.
In fact, not even uniformly integrable local martingales have to be martingales. Also,

local martingales may have non-constant means. (Just to not give you any ideas ...)

Theorem 13.12. A local martingale/submartingale/supermartingale { M (t) }1efo,1]
such that |M(t)| < Z for each t € [0,T] almost surely, for some integrable random

variable Z is a martingale/submartingale/supermartingale.

Proof. 1t is enough to prove the theorem for local submartingales. To that end pick
a localizing sequence {7,}22 ;. As the random variables { M (tA7,)}22, are uniformly
integrable by Theorem 13.5, and as M(tA7,) — M(t) almost surely as n — oo, we
have M (tA1,) — M(t) in L' as n — oo by Theorem 13.7. Hence it follows that

E{M(t)|Fs} «+ E{M(tA1,)| Fs} > E{M(sA1,)} = E{M(s)} as n— oo
for 0 < s <t in the sense of convergence in ! (recall Exercise 53). O

Here is one simple but crucially important result:

Theorem 13.13. (LOCAL MARTINGALE) For o € Pr the Ité intergal process

{ fot o dB}ycpo,m s a continuous local martingale.

Proof. We know that the It0 intergal process is continuous. Now define
t
Tn =1 A inf{t €[0,7]: / o(r)’dr> n}
0
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[cf. (6.3)]. Then we have ["™odB = [} ol dB for t € [0,T] by Theorem 6.5.
Recalling from the proof of Theorem 5.1 that o Ijp .| € Er [as fOT 0(5)*Ijo,51(s)? ds
< n] it follows that f(f/w” o dB is a square-integrable martingale, which is uniformly
integrable by Theorem 13.10. O

13.4 Doob-Meyer decomposition

Now it is time for one of the most important results of martingale theory. The proof

of this result is easy in dicrete time, but painfully difficult in continuous time:

Theorem 13.14. (D0oOB-MEYER DECOMPOSITION'?) For a continuous non-nega-
tive submartingale {X (t)}icio,r there exists a unique continuous adapted integrable
and non-decreasing process { A(t) }tejo,r) with A(0) = 0 and a unique continuous mar-

tingale { M (t) }sepo,r with M(0) =Y (0) such that X (t) = M(t)+ A(t) for t €[0,T].

Example 13.15. The compensator of the submartingale B(t)? (recall Exercise
22) is A(t) = t, because B(t)> —t = 2 [] B(s)dB(s) (by Ito’s formula for BM),
where the process on the right-hand side is a martingale.

Exercise 143. In what sense is the uniqueness in Theorem 13.147

Proof of Theorem 13.1/ for a discrete time submartingale {X,}Y_,. We have

Xns1 = Xo+ Y (Xip1—E{Xina| F}) +)_ (B{Xia| F}—X;) for n=0,...,N—1,
=0

i=0
where

n

My = Xo + Z (Xz'—l—l_ E{Xi+1|-7:i}) and Apqq = Z (E{Xi+1|-7:i} _Xi)
i=0

i=0
is a martingale and an adapted integrable non-decreasing process, respectively, see
Exercise 144 below. O

Exercise 144. Explain why the processes M and A in the above proof is a

martingale and an adapted integrable non-decreasing process, respectively.

Definition 13.16. The process A in the Doob-Meyer decomposition Theorem 13.14

15 called the compensator of the continuous submartingale X .

10See e.g., Karatzas and Shreve: “Brownian Motion and Stochastic Calculus”, Section 1.4. This is the

one and only result essential for the build up of the theory that we do not prove in these notes.
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The reason for the crucial importance of the Doob-Meyer decomposition in the
study of SDE is the next result:

Theorem 13.17. A continuous square-integrable martingale {M(t)}icro,r) has a
well-defined continuous, adapted and integrable quadratic variation process {[M](t)
}eepo,m (in the sense of convergence in probability) which is given by the compensator

of the continuous submartingale {M (t)*}iefo.17-

Sketch of proof. We want to prove that M?—[M] is a martingale, which is to say that
E{(M(t)2 — M(5)?) — ([M](t) — [M](s)) |]-'S} =0 for 0<s<t. (13.1)

However, for a partition s =ty <t; < ... <t, =t of the interval [s,t] we have

n

E{(M(t)? M) — (M (t) — M(ti1))?

i=1

.7-"5} =0 (13.2)
by basic arguments (towering etc ...), see Exercise 145 below. O

Exercise 145. Prove (13.2).

Example 13.18. The process {(fot odB)*— fot o(s)? ds}iep,r] is a martingale for
S ET.

Corollary 13.19. A pair of continuous square-integrable martingales { M (t) }sep0,17
and {N(t) }seo;r) has a well-defined continuous, adapted and integrable quadratic co-
variation process {[M, N](t) }ico,r) (in the sense of convergence in probability) which

has the property that {M(t)N(t) — [M, N|(t) }sco,1] is a continuous martingale.

Exercise 146. Prove Corollary 13.19.
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Written exam on Lectures 1-13, Thursday May 28

Exam Thursday May 28 2009, 8.30 am - 1.30 pm

HJALPMEDEL/AIDS: Inga/None.

LARARE/TEACHER: Patrik Albin 070 6945 709.

BETYG/GRADES: 12 poéng for godként/12 credits to pass the exam.
RESULTAT/RESULTS: Meddelas via email/Communicated by means of email.

A. Stratonovich Stochastic Calculus. (a) Let f: R— R be a two times contin-
uously differentiable function and let {X(t)}co,r7 be an It process. Show that

df'(X), X](t) = f"(X)d[X](t) for te[0,T]. (1 credit) (A.1)

(b) Let {X(¢)}eo,r) and {Y () }ico,r) be 1t6 processes. The Stratonovich integral
process { fot Y 0X }iepo,r is defined as the limit

[reoxe=  im ST (), (a2

maxi<i<n ti - 2
- =1

where 0 =ty <t; < ... <t, =t are partitions of the interval [0, ¢] that becomes finer
and finer. Make the definition (A.2) rigorous by means of proving that

/0 V() 0X (s) = /O Y (s) dX (s) + % v, X](f) for te[0,T],
which is to say that
V() OX(£) = V() dX (1) + % dY,X](t) for te[0,T]. (1 credit) (A.3)

(c) Let the It6 processes {X (t)}iejo,ry and {Y(2) }eejo,r be given as

X(t):/ot,ux(s) ds—i—/otax(s)dB(s) and Y(t):/otuy(s) ds-l—/otay(s)dB(s)

for t € [0,T] [where {px(t)}icpo,r) and {py (¢) }iejor) are measurable and adpated
processes such that P{fOT lpx(t)|dt < oo} = P{fOT \py (t)] dt < oo} = 1, and where
ox,0y € Pr|. Use (A.3) to find sharp conditions on the processes ux, py,ox and oy

for the It6 and Stratonovich integral processes of Y with respect to X to agree
t t
P{/ Y(s)dX(s) = / Y (s)0X(s) for te [O,T]} =1. (1 credit)
0 0

(d) Let f:R— R be a two times continuously differentiable function and let {X ()
}tepo,r) be an Itd process. Use (A.1) and (A.3) to prove the Stratonovich chain rule

of (X(t)) = f/(X(t))0X(t) for te]0,T]. (1.5 credits) (A.4)

(e) Use (A.4) to solve the Stratonovich stochastic exponential equation

dX(t) = X(t)0B(t) for te[0,T], X(0)=1. (0.5 credits)
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B. Linear and Quadratic Equations. We shall solve the general linear equation

dX(t) = (a(t)+B8()X () dt+ (v(t)+ ()X (t))dB(t) for t€[0,7], X(0)= X,

(B.1)
where {a(t)}eort, {81}, {10} and {5(t)}er) are measurable and
adapted stochastic processes that satisfy certain integrability conditions to be speci-

fied later. We shall look for a solution to (B.1) of the type X (t) = U(t)V(t), where
dU(t) = B()U(t) dt + 6()U(t)dB(t) for t€[0,T], U(0)= 1, (B.2)
dV(t) = a(t) dt + b(t) dB(t) for t€[0,T], V(0)=X,. (B.3)

(a) Show that the equation (B.2) has solution
U(t) = exp{ /0 ()~ %5(8)2) ds + /O 5(s) dB(s)} for t€[0,T]. (1 credit)
(b) Show that a(t) = (a(t)—v(¢)d(t))/U(t) and b(t) = (t)/U(t) in (B.3). (1 credit)

(c) Which integrability conditions on the coefficient processes «, 3, v and § makes
" a(s) —(5)d(s) " (s)
Xt:Ut(X—i-/ ds—i—/—st}) for t€|0,T
( ) ( ) 0 o U(S) 0 U(S) ( ) [ ]
[with U as in Task a] a well-defined solution to (B.1)? (1 credit)

We now consider quadratic equations. Recall that we have seen that the equation
dX(t) = X(t)*dt for t€[0,T], X(0)= X,
has no solution for 7"Xy > 1. But how about an equation with a quadratic o-coefficient

dX(t) = X(t)*dB(t) for t€[0,T], X(0)=X,? (B.4)

(d) Show that {X(t)}scpo,m is a strictly positive solution to (B.4) if and only if

Y = 1/X? is a strictly positive solution to the equation

dY (t) = 3dt —2/Y (t)dB(t) for t€[0,T], Y(0)=1/XZ. (0.5 credits) (B.5)

(e) Show that Y (t) = By (t)®+ By (t)?>+ Bs(t)? for t € [0, T] is a weak solution to (B.5)
with Y (0) =0 when By, By and B; are independent BM’s. (1.5 credits)

Of course, X = 1/V/Y with Y from Task e does not solve (B.4) as Y(0) =0. But

) 1
X = JY@+1)  /Bilt+ )2+ By(t+1)2 + By(t+1)?

will be a weak solution to (B.4) with Xo=1/4/Y (1), see also Task C ¢ below.

To complete Task e you might want to find the quadratic variation of the process

:Z/tZBi(s)dBi(s) for ¢ €0, 7],

and make use of the fact (to be proven in Lecture 14) that if a martingale {M () }1¢[0,11

for t€[0,T]

has quadratlc variation [M](t) fo )2ds for t € [0,T], for some o € Pr, then it
holds that M (¢ fo odW for t €0, T] for some Brownian motion {W (%) }sc(0,17-
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C. Martingales.
(a) Prove that {B(t)? —t}cjo,r is a martingale in two different ways. (0.5 credits)

(b) Show that ,
M(t) :/ PV dB(s) for te0,T]
0

is a well-defined Ito integral process that is a square-integrable martingale for T €

[0, 7], but that is not a square-integrable martingale for " € (3, 1]. (1 credit)

To complete the second part of Task b you might want to use the consequence
of the Doob-Meyer decomposition that the submartingale { M (¢)?}c[0,r) has an inte-
grable compensator that coincides with the quadratic variation {[M](t)}cjo,r7 of M

when {M (%) }+cjo,r7 is a continuous square-integrable martingale.

(c) Let By, By and Bjs be independent BM’s. Show that the weak solution

1
X = VB (t+1)2+ By(t+1)2 + B3 (t+1)

obtained in Task B e to the equation

for t€[0,T]

1
VBi(1)2+ By(1)2 + Bs(1)>

is a local martingale that is square-integrable but that is not a martingale. (1 credit)

dX(t) = X(t)*dB(t) for t€[0,T], X(0)=

To complete Task ¢ you might want to recall that B;(1)?>+Ba(1)?+Bs(1)? has prob-
ability density function fp,(1)248,(1)2+B512(2) = /2/(27) ™%/ for z > 0 and that

martingales have constant means, and use that the self-similarity of BM gives

By (t+1)?+ By(t+1)*+ B3 (t4+1)* =gistribution (t+1) (B1(1)*+By(1)?+B3(1)?) for t> 0.

(d) Given a constant p > 1 and a right-continuous martingale { M () }+cfo,r] such that
the process {|M(t)[?}sefo,r] is integrable, the Doob-Kolmogorov inequality says that
P{ sup |M(t)| > )\} E{M(T)P} for A > 0.

0<t<T AP
Show that it (unsurprisingly) is sufficient to require that E{|M(T')|?} < oo [rather
than that E{|M(t)[’} < oo for all ¢ € [0, 7] for the inequality to hold. (0.5 credits)

(e) Show that a non-negative local supermartingale is a supermartingale. Also, show
that a local submartingale { M (t) };c[0,77 such that {| M (t)|}+cjo,r7 is a square-integrable

submartingale is a square-integrable submartingale. (2 credits)

To complete the first part of Task e you might want to use Fatou’s lemma to prove
integrability and Fatou’s lemma for conditional expectations to prove the defining
supermartingale inequality. To complete the second part of Task e you might want

to use Doob’s maximal inequality to show that E{(sup,co 1 M (2)])*} < oo.
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D. Stationary Ornstein-Uhlenbeck Processes. A zero-mean Gaussian stochas-

tic process {X (¢) }s>0 is called stationary if it has covariance function
[0,00)3s,t~r(t—s) =E{X(5)X(t)} € R

that depends only on the distance t—s between the times s, > 0. We shall investig-
ate which measurable and stationary zero-mean Gaussian stochastic processes { X (¢)

}i>0 that are Markov processes. Here the Markov property means that
E{I{X(t)eA}\]:;X} = E{l{x@ea}| X(s)} for 0<s<t and measurable sets A CR,

where FX = o(X(r):r €0, s]) for s > 0. Note that the measurability of X ensures

that the covariance function r is measurable by Fubini’s theorem.

(a) Show that a measurable stationary zero-mean Gaussian Markov processes { X ()
}>0 must have covariance function r(¢t) = r(0) e=** for ¢ > 0, for some constant o >
0. (1 credit (This task gives only 1 credit because it is not so much about SDE.))

To complete Task a you might want to show that E{X (t+s)|X(s)} = r(¢t)X(s)
/7(0) and use this fact to show that by taking appropriate conditional expectations
r(t+s)  E{X(t+s)X(0)} r(s) r(t)

r(0) r(0) r(0) r(0)

This in turn is the so called Cauchy functional equation, the only measurable soluti-

ons of which take the form r(¢)/r(0) = e ** for t > 0, for some constant a > 0.

for s,t>0.

(b) Show that the solution
X(t) = e X + v/2a7(0) e Ot e dB(r) for t>0 (D.1)
to the Langevin equation
dX (t) = —adt+ /2ar(0)dB(t) for t>0, X(0)=X,, (D.2)

where the initial value X; is normal N(0,r(0)) distributed (and independent of B as
always) is a measurable stationary zero-mean Gaussian process with the desired cov-
ariance function r(t) = 7(0) e~** for ¢ > 0. (1.5 credits)

(c) Show from algebraic manipulations that the process X given by (D.1) satisfies

¢
X(t) = e’o‘(t’s)X(s) +2ar(0)e [ e dB(r) for 0<s<t. (0.5 credits)

’ (D.3)
(d) Prove (D.3) in a different way by means of using (existence and) uniqueness for

strong solutions to the equation (D.2) together with time homogeneity. (1 credit)

(e) Show from (D.3) that the process X given by (D.1) is Markov. [Thus X is the

measurable stationary zero-mean Gaussian Markov process by Tasks a-b]. (1 credit)
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E. Properties of It6 Integrals. Recall that we defined the Ito integral process
{ fot X dB}yepo,r) for X in the space Sr of simple processes on [0, 7] taking the form

X(t) = X(0)I;0y(t +ZX% M aq(t) for te[0,T],
for some constants 0 = t;5 < t; < ... < t, = T and for some random variables
X(0), X4, ..., X;,_, that are adapted to Fo, Fyy, ..., Fy,_,, respectively, and that
satisfy | X (0)],| Xz, ..., | X, ,| < C for some (non-random) constant C' > 0, as

/ "xdB = zmjxti_l (B(t;) — B(ti1)) + Xo. (B(t) — B(tn)) for t € (tm, tmir],

form =0,...,n—1, with [ X dB = 0.
Next we defined the It6 integral process { fot X dB}iepo;r for X in the space Er of

measurable and adapted processes { X (t)};c[0,7] such that

E{/OTX(t)th} < 00

as the limit in the sense of convergence in mean-square
¢ t
/ XdB<—/ X,dB as n—oo for t€[0,T],
0 0

where {X,,}22, is a sequence in Sy such that

lim E{/OT (X (t) —X(t))th} = 0.

n—oo

Finally we defined the It6 integral process { fot X dB}iepo;r) for X in the space Pr

of measurable and adapted processes {X (t)}:cpo,r7 such that

P{/OTX(t)2dt < oo} =1

as the limit in the sense of convergence in probability
t t
/ X dB <—/ X,dB as n—oo for t€[0,T)],
0 0

where { X, }2° , is a sequence in E7 such that in the sense of convergence in probability

/T(Xn(t) —X(t)*dt -0 as n— oo.

(a) Prove linearity for It6 integrals on one of the spaces Sy, E or Pr®. (1 credit)
(b) Prove adaptivity for It6 integrals on one of the spaces Sy, Er or Pr®. (1 credit)
(c) Prove continuity for It6 integrals on one of the spaces St, Er or Pr*. (1 credit)
(d) Prove isometry for Ito integrals on one of the spaces Sr or ErP. (1 credit)

(e) Prove that Ito integrals on one of the spaces St or Er are martingales®. (1 credit)

2A proof for St must take off from scratch, while a proof for Er may use the property for St, and a

proof for Pr may use the property for Er.

YA proof for St must take off from scratch, while a proof for Er may use the property for St.
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F. Stopping Times.
(a) Prove that 71+7 is a stopping time when 71 and 7, are stopping times. (1 credit)

To complete Task a you might want to make use of the fact that

{fn+n>tt= U ({n>agn{n>t—gq}) for t>0.
geQN[0,1]

(b) Given a stopping time 7 it is a standard procedure in many a proof to approxim-

ate 7 with the discrete random variable

2" 1 k+1 k k+1
TnZL ;—:_J: ;; forTE[Q—n,Qin), for k=0,1,2,... .
Prove that the discrete approximation 7, of 7 is a stopping time for each n € N and
that 7, L 7 as n — oc. (1 credit)

(c) Show how the approximation technique from Task b can be employed to give an
alternative proof of the fact established in Task a that 7 +7» is a stopping time when

71 and 7, are stopping times. (1 credit)

To complete Task ¢ you might want to take off from the fact that, with obvious

notation, 00
{rn+mn>t}= N{(n)+(r), >t} for t>0.

n=1
Recall that the hitting time inf{t > 0: X (¢) >z} of any level z € R is a stopping
time for a continuous adapted stochastic process {X(¢)}i>o. However, in the next

task we show that inf{¢>0: X (¢) >z} need not be a stopping time.

(d) Consider a random walk X, = Y " | & for n € N, where {£}2, are indpendent
random variables that are Rademacher distributed P{§ =1} = P{§ = —1} = 7 for
i € N. Construct a continuous time continuous adapted stochastic process {X (t)}+>0
by connecting all values of the discrete time process { X, }nen with straight lines and
taking the filtration to be the filtration generated by X itself. Show that inf{¢ >0 :
X (t) > n} is not a stopping time for any of the levelsn = 1,2,... . (1 credit)

Although it can happen that inf{t > 0 : X(¢) > z} is not a stopping time for a
continuous adapted process {X(t)};>o according to Task d, it can also happen that
inf{t >0: X (t) > 2} is a stopping time for each z € R for a non-continuous adapted
process {X (t) }+>0, as the next and final task illustrates.

(e) Show that inf{t >0 : X (¢) >z} is a stopping time for z € R with respect to the
filtration generated by the process itself for a Poisson process {X () }i>0. (1 credit)

Good Luck!
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14 The optional stopping theorem

14.1 Optional stopping

The technique to stop a process {X (t) }+c[0,7] at a stopping time 7 to obtain a stopped
process { X (tAT)}ieo,r] we have used several times. It turns out that this technique
together with the Doob-Meyer decomposition are the crucial ingredients for the build
up of the whole theory. The reason for the importance of stopping is the same as
when we have used it before, namely that it permits proofs to be carried out under
additional integrability assumptions etc. that are not valid for the unstopped process.
Stopping times are also called optional times, and the key result for the use of
the above mentioned stopping technique is the so called optional stopping theorem,
which says that a continuous martingale remains a martingale when stopped at a
stopping time (optional time). Previously we have only stopped It6 integral type of
martingales fot X dB for t € [0,T], where X € Er, so that by Theorem 6.3

tAT t
/ XdB = / Iy X dB for t€0,T].
0 0
As X € Er implies Ijp ;1 X € Er, the statement of the optional stopping theorem that
{ fot/w X dB}icjo,r is a martingale is immediate in this case. But now when we shall
develop martingale theory in greater generality than that of 1t integrals, we have to

prove the optional stopping theorem in its full generality.

Lemma 14.1. (LOCALIZATION OF CONDITIONAL EXPECTATIONS) Let G and H be
two o-algebras contained in F, and let A € GNH be such that ANG = ANH. For
integrable random variables X and Y such that P{I4 X = I,Y} = 1 it then holds
that INE{X |G} = I,E{Y |H} with probability 1.

Proof. As the random variables I, E{X |G} and [, E{Y |H} are both G-measurable

as well as H-measurable (see Exercise 147 below), we have that

/ (LAE{X |G} — L, E{Y |H}) dP
{TAE{X[G}>14 E{Y|H}}

(E{I, X |G} —E{I.Y |H})dP
{14 B{X|G}>14 B{Y |} (14.1)

(Ip X —1,Y)dP
{IAE{X|G}>I4 E{Y|H}}

0,

so that P{I,E{X |G} > I4E{Y |H}} = 0 (see Exercise 148 below). By the symmet-
ric argument we get P{I4E{Y |H} > [4E{X |G}} = 0. Hence we have I, E{X |G}
= [LE{Y |} with probability 1. O
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Exercise 147. Prove that the random variables 4 E{X |G} and I E{Y | H} that

feature in the proof of Lemma 14.1 are both G-measurable and H-measurable.

Exercise 148. Explain why (14.1) gives P{I,E{X |G} > ILE{Y |H}} = 0.

Definition 14.2. For a stopping time T we define

Fr={AeF: An{r<t} €F for all t>0}.

Proposition 14.3. For a stopping time 7 the family F, is a o-algebra and 7 is
F.-measurable. Further, F,N{r=t} = Fyn{r=t} fort>0. For two stopping times
o and T we have FoN{o <7} C Fopr = FoNF,. In particular F, CF, if o <.

Exercise 149. Prove Proposition 14.3.

Theorem 14.4. (OPTIONAL SAMPLING) For a martingale (non-negative submart-
ingale) [non-positive supermartingale] {M (t)}scor) and discrete stopping times o, T
< T, we have that M(7) is integrable and E{M(7)|F,} = M(cAT) (> M(ocAT))
[<M(oAT)].

Proof. We prove the theorem for martingales. It will be evident from that proof how
to do the proof for non-negative submartingale and non-positive supermartingales,
see also Exercise 151 below. Now let {tx}72, C [0, 7] be the possible values of o and

7. The integrability of M(7) follows readily in a by now familiar fashion as

E{[M(r)[} =Y B{Lr—ry [M (1)}

k=1

<D E{lp—y B{IM(T)[| 7} }

= ZE{I{T:tk} |M(T)‘}
= E{|[M(T)[},

since | M| is a submartingale. Further, by Lemma 14.1 together with Proposition 14.3
(which gives the first identity below), we have

Hr=y B{M(T) | 7} = Iz=y E{M(T) | Fiy } = L=y M (t) = Tir=iyy M (7),
so that E{M(T)|F,} = M(7). From this in turn, by Exercise 150 below, we get
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using Proposition 14.3
lio<ry BAM(7) | Fo} = Iio<ry B{E{M(T) | F: }| Fo}
= lio<ry E{M(T) | 75} (14.2)
= I{O'ST} M(O’)

On the other hand, using first Lemma 14.1 alone, and then Lemma 14.1 together
with Proposition 14.3, we get

Locd BAM(T)|Fo} =D Y Tiomuy L=y BAM(7) | F}

k=1 {£:t,<t}}

SN Loy g B{M (o) | o}

k=1 {£:t,<ty}

(14.3)

I

Lo=tyy Lir=ty E{M (o) | F2, }

{e: }

tp<tg
> Tiomty Imey M (1)
1 {€:tp<ty}

= I{r<op M(7).

Putting (14.2) and (14.3) together, we arrive at the statement of the theorem. O

M T

B
Il

Exercise 150. With the notation of the proof of Theorem 14.4, show that
Loy BE{E{M (T) | F; }| Fo} = I{o<y E{M(T')| F,}, e.g., by using the definition

of conditional expectations together with Proposition 14.3.

Exercise 151. Modify the proof of Theorem 14.4 to work for non-negative sub-

martingales. Explain how this gives the result for non-positive supermartingales.

Theorem 14.5. (OPTIONAL STOPPING) For a continuous martingale/non-neg-
ative submartingale/non-positive supermartingal {M(t)}icjo,r) and a stopping time
7, the stopped process {M(LAT)}iepo,r) s a continuous martingale/non-negative sub-

martingale/non-positive supermartingal.

Proof. We prove the theorem for martingales. It will be evident from that proof
how to prove it for non-negative submartingale and non-positive supermartingales,
see Exercise 153 below. Note that the continuity of the stopped process is trivial.
We use the discrete approximation 7,, of 7 from the proof of Theorem 6.3, see (6.2).
Recall that 7, is a stopping time such that 7, | 7 as n — oo. Now the sequence
{M (t A7)} nen is uniformly integrable by the following modification of the proof of
Theorem 13.10:
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sup B{ L a1(inm) 153 [M (EATo) |}
ne

= sup Z E{I(r =iy I m(nz-—nk) gy [ M(EA27"E)[}
ne k=1

= sup Z E{I{THZQ—nk}I{‘M(t/\Q—nk)‘>y} |E{M(t) |f2—nk}‘}

neN k=1

< sup Y B{I(r, a-niy L na(enz-nk) sy B{ M (8) || Fomni} }

neEN k—1

= sup Z E{I{Tnzrnk}l{\M(t/\rnk)\>y} |M(t) |}

neN
= ilé}N) E{I{n(tnrn)>yy [ M(1)[}
= sup E{ Ifsup,c o1y 1M(s)|>93 M ()]}
—0 as y— o0

by absolute continuity, since | M (t)| is integrable and P{sup,c(o 7 [M(s)| >y} — 0 as
y — 0o by the Doob-Kolmogorov inequality. And so we have M (tA7,,) — M(t) in L
as n — oo by the continuity of M together with Theorem 13.7. Hence it is sufficient
to prove that { M (tAT,,) }iejo,r) is @ martingale for each n € N, see Exercise 152 below.

Noting that s and tA7, are bounded discrete stopping times for every choice of
0<s<t<T, we get that {M(tAT,)}tco,r) is @ martingal directly from the optional

sampling Theorem 14.4, as

E{M (A1) |Fs} = M(tAT,As) = M (sAt,) for 0<s<t<T. O

Exercise 152. Show that the martingale property for { M (tA,) }se[o,r] for each
n € N together with the convergence M (tA7,) — M(t) in L! as n — oo imply the
martingale property for { M (%) }sep0,77-

Exercise 153. Modify the proof of Theorem 14.5 to work for non-negative sub-

martingales. Explain how this gives the result for non-positive supermartingales.

Exercise 154. (WALD’S IDENTITY) Prove that for a continuous martingale
{M () }+ej0,r] and a stopping time 7 < T we have E{M(7)} = E{M(0)}.

Exercise 155. Prove that for a martingale { M () };>o and a stopping time 7 < 0o
it does not necessarily hold that E{M(7)} = E{M(0)}.

We will see a crucially important application of the optional stopping theorem in

the next section to prove Theorem 13.17. Here we present a first quick application:

90



Theorem 14.6. If there for a continuous process {M(t)}icpo,m exists a localizing
sequence of stopping times {T,}52, such that {M(tAT,)}icom is martingale/non-
negative submartingale/non-positive supermartingale for each n € N, then there exists
another localizing sequence of stopping times {1),}°2, such that {M(tAT;)}icpo,m is @
martingale/non-negative submartingale/non-positive supermartingale bounded by the

constant n for each n € N.

Proof. Set 1), = m,A\o,,, where 0,, = inf{t € [0, T] : |[M(t)| > n}. Then the continuity of
M together with the optional stopping theorem show that M (tA7)) = M ((tAT,)Aoy)
is a martingale/non-negative submartingale/non-positive supermartingale bounded

by the constant n. O

Example 14.7. For a continuous process { M (t)}+cjo,r1 Theorem 13.10 says that
the requirement that {M(¢A7,)}icjo,r is uniformly integrable in Definition 13.9
is void when the latter process is a martingale/non-negative submartingale/non-
positive supermartingale, as such processes are always uniformly integrable. We
get a knew proof of this voidness using Theorem 14.6, as that result says that we
can find another localizing sequence {7,,}22, of stopping times such that {M (tA
T7) }tefo,r] is @ bounded by n martingale/non-negative submartingale/non-positive

supermartingale, and thus uniformly integrable by Theorem 13.12.

14.2 Proof of Theorem 13.17

First assume that |M(t)|, A(t) < N for t € [0, T], for some constant N > 0, where A
is the compensator of M. (We will relax this assumption later.) Consider a partition
0=ty <ty < ... <t,=t of the interval [0,¢] C [0,T]. Recall from (13.2) that

n

B{ M) M) - 3 (M)~ (607 | 7} =0

j=k+1
for k=0,...,n—1, so that

n

E{ S (M(t) - Mt0))?

j=k+1

} =E{M(t,)* — M (tx)*| 7, } < N? (14.4)

for k=0,...,n—1. From repeated applications of (14.4) in turn we get

{Z > (M)~ Mlts-0)? (M ()~ M50))*

k=1 j=k+1

S E{ Mt 1>)2E{ > ((t) - M0, f}}

k=1 j=k+1
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(14.5)

By another application of (14.4) we get

n n

E{Z(M(tk)—M(tk_l))4} < 4N2E{Z(M(tk)—M(tk_1))2 ‘ .7-}0} < 4N*. (14.6)

k=1 k=1
Putting (14.5) and (14.6) together we get

n

B{ (Lo —M(tk_1>>2)2}

k=1
n

- E{;(M(tk) —M(tk—l))4} (14.7)

n—1 n
+ QE{Z > (M () = M(te-))* (M(t;) - M(tj_w}
k=1 j=k+1
< 6N™.
From this in turn together with Holder’s inequality we get

B{> (M)~ (-1}

k=1

<B{( e M- ) S0 - M)

Jr—s|< max t;—t;—
| ‘_1§j5n1 j—1

(ol o) Jof (S e )]

=|T*5|§lrélja§ntj —tj—1

B
Il
—

—0 as maxt;—t;_ 140
1<j<n J J 1~L )

(14.8)
since the first expectation inside the square root goes to zero by continuity of M and
bounded convergence, while the second expectation inside the square root is bounded
by 6 N*. Now we may finish off the proof (for M and A bounded by N) as follows:

n

Bd (o) - w10 0)* - A(t))2}

k=1

B{ S (0010 - Mtuon))? ~ (4(0) — A1)’

k=1

(14.9)
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n

< zE{z”j(M(tk) - M(tk_l))4} +2 E{Z(A(tk) - A(tk—l))2}

<2B{300) ()} + 25 (o3, O A0}

where the first term on the right-hand side goes to zero as maxi<j<,?;—%;_1 4 0 by
(14.8), while the second term goes to zero by continuity of A together with bounded
convergence. [See Exercise 156 below on the second equality in (14.9).]

Of course, to adress the general case when |M| and A need not be bounded by a

constant N, we stop the processes at their first contact with the level N, that is, at
v =inf{t €[0,T]: |M(t)| > N} Ainf{t € [0,T] : A(t) > N} for NeN.

Here 7y is a stopping time since M and A are continuous and adapted. Now {M (tA
Tn) }tejo,r) is a bounded by N martingale by the optional stopping theorem, while
{M(tATN)*— A(tATN)}iefo, is a bounded by N* martingale. As the first part of the
proof only uses that M and M?— A are bounded martingales with A bounded, we
can use the first part of the proof to conclude that {M(t A7y)}cjo,r has quadratic

variation {A(¢ATx)}eejo,r)- Given a constant € > 0 we now have

S (A1) M)~ A >

lim sup P{
k=1

maxi<;j<n tj—tj—140

n

> (M (tyATn) =M (te—1 ATx))> = A(tATN)

<P{ry<T}+ lim sup P{
k=1

maxi<j<n tj—tj—140

>e)

As the limsup on the left-hand side does not depend on N, and as P{ry < T} — 0
as N — oo by continuity of M and A, it follows that the limsup on the left-hand

=P{ry<T} for NeN

is zero. This in turn is the claim of the theorem to prove, that is, M has qudratic

variation process A in the sense of convergence in probability. O

Exercise 156. Prove the second equality in (14.9).

Exercise 157. (BURKHOLDER-DAVIS-GUNDY INEQUALITY) Prove that for a
square-integrable continuous martingale { M (t)};co,r) With M(0) = 0, we have
E{[M|(T)} < E{sup,cr) M(t)*} < 4B{[M](T)}.
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15 Stochastic integration with respect to continuous martin-

gales

Here we construct the It6 integral process { fot X dM }4epo,r) With respect to a contin-
uous local martingale M. We first carry out the construction for square-integrable
continuous martingales M, in which case it is the same in essence as that for the in-
tegral with respect to BM. The only difference is that we must replace the quadratic
variation process [B](t) =t of BM with that of M. The intergal is then extended by
means of stopping methods to continuous local martingales.

It would have been more economical to construct the Ito integral for martigales
already from the beginning and skip the intermediate step with the integral for BM.
But then we would have had to start the course with several lectures on pure martin-
gale theory, so that we would not have been able to treat existence of strong solutions
within the framework of the first part of the course.

As usual, we assume the usual conditions. (We do not really need the BM that

comes with those conditions now for a good while, albeit it doesn’t hurt to have it.)

15.1 1It6 integrals for the space St

In the same way as for BM, the construction of the integral will be in three steps S,
E and P. Here the first step is exactly as before (cf. Definition 4.1):

Definition 15.1. The It0 integral process {fothM}te[o,T} of a simple process
X € Sr given by equation (3.6) in Definition 3.11 with respect to a continuous square-
integrable martingale { M (t) }icpo,r) is defined by fOOXdM =0 and

[ AN = 3 (M) M)+ X (M)~ M) for 1€ (b ]

form =0,...,n—1. Further, we define

t i s
/XdM:/XdM—/ XdM  for s,t e [0,T).
s 0 0

(CONSISTENCY) Recall from Exercise 41 that Definition 15.1 is consistent in the

sense that if X € S7 has two representations

X(t) = X(0) oy (¢ +Zth i) = X (0) L0y (2 +2Xt’ (@)

for t € [0, T], then by means of introducing a third grid that contains all times of the
grids 0=ty <t; < ... <tp, =T and 0=ty <t < ... <t =T, we see that the It6

integral processes { fot X dM }iepo,r) for the two representations of X coincide.
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Theorem 15.2. (PROPERTIES OF ITO INTEGRALS FOR THE SPACE St) Let

{M (1) }+eo,r be a continuous square-integrable martingale.
(CoNTINUITY) For X € St the process {f;X dM }icp0,17 18 continuous.

(NADA) For X € St we have
t s

/XdM— /XdM and /I[T,S]XdM:/XdM for 0<r<s<t<T.
0 T

(LINEARITY) For X,Y € Sr and constants a,b € R we have

t t 1
/(aX—l—bY)dM:a/ XdM+b/ YdM for t€0,T).
0 0 0

(ADAPTEDNESS) For X € St the process {fOtX dM }icpo,1 s adapted.
(MARTINGALE) For X € S, {fOtX dM }icp017 @5 a square-integrable martingale.
(ZERO-MEAN) For X € St the process {f(fX dM}icp0,m) has zero mean.
(ISOMETRY) For X,Y € Sy we have

{</XdM)</ YdM)}:E{/OtXYd[M]} for t€[0,T].

Proof. The continuity, nada, linearity, adaptedness and zero-mean properties are ver-
ified exactly as in Exercises 42-46 which establish the corresponding properties for
It6 integrals with respect to BM — just replace every occurance of B with M.

As for the martingale property, in the same fashion we need only replace B with
M at all occurances in the proof of Theorem 4.2. In particular, given 0 =1, < t; <

.<s=t;< ... <t, =T, the key identity (4.1) of that proof changes to

E{ mf:l Xy (M(t;) =M (ti-1)) ‘ 7—"5} = mi:l E{th._l E{M(t;) = M(t;1)|Fs_, } ‘ .7—"5}

i=j+1 i=j+1
=0.

Moving over to the isometry property, recall from Theorem 13.17 and (13.1) that
a continuous square-integrable martingale {M(t)}:cpo,m has a well-defined continu-
ous integrable quadratic variation process {{M]()}+cjo,r that satisfies (15.1) below.
Therefore the only thing that is required for the proof of isometry is again to re-
place B with M at every occurance in the proof of the corresponding result Theorem
4.3 for stochastic integrals for S; with respect to BM. In particular, the indentity
E{B(t;) — B(ti—1)} = 0 of that proof is replaced with E{M (¢;) — M (t;—1} = 0, while
the identity E{(B(t;) — B(t;_1))?} = t; — t; 1 is replaced with

E{(M(t) - M(t:1))?} = [M](t:) — [M](t:1). 0o (15)
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Exercise 158. Prove in full detail one of the properties martingale or isometry
in Theorem 15.2.

15.2 Itd integrals for the space E(M)r

The next step E must pay attention to what is the quadratic variation:

Definition 15.3. Given a constant T >0 and a continuous square-integrable mar-
tingale {M (1) }+cjo,r) we say that a stochastic process {X (t)}i>o belongs to the class
E(M), if X is measurable and adapted with

E{/OTXQd[M]} < o0.

Exercise 159. In Definition 15.3, show that fOTX 2d[M] is a random variable.

We have the following version of Theorem 4.4 for the space E(M)r:

Theorem 15.4. For X € E(M)r there exists a sequence { X}, C Sr such that

lim E{/OT(Xn —X)2d[M]} = 0. (15.2)

n—oo

Proof. Copy-and-paste to here the proof of Theorem 4.4. Then replace every occu-
rance of dr (integral of a function or stochastic process of the argument r with respect
to Lebesgue measure) that features in that proof with d[M](r) (integral with respect
to the quadratic variation process of M). Using that {[M](Z)}scjo,r is continuous
increasing and integrable the proof is complete by inspection. [The integral for the YV
process Y (t) = fot XW)(s)ds and the integral for the Z, process in (5.8) in the last
paragraph of the proof shall remain ds integrals and not be changed.] O

Definition and Theorem 15.5. For a continuous square-integrable martingale
{M (1) }sepo,r) and an X € E(M)r, the 1t6 integral process {fOthM}te[o,T] is well-
defined as the unique up to version and continuous with probability 1 stochastic process

that is given as the limit in the sense of convergence in mean-square by
t t
/ XdM<—/ X, dM as n— oo for t€[0,T), (15.3)
0 0

where {X,}22, C Sy satisfies (15.2). Further, we define

1 i s
/XdM:/XdM—/ XdM  for s,t € [0,T].
s 0 0
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Proof. Copy-and-paste to here the proof of Definition and Theorem 4.5. Then replace
all occurances of B and dr with M and d[M]|(r), respectively. Also, replace references
o0 (4.2) and (4.3) with references to (15.2) and (15.3), respectively. O

The properties of It6 integrals for the space Er carry over to the space E(M)r:

Theorem 15.6. (PROPERTIES OF ITO INTEGRALS FOR THE SPACE E(M)r) Let

{M (1) }+ejo,r be a continuous square-integrable martingale.

(NADA) For X € E(M)r we have
t s

/XdM— /XdM and /I[T,S]XdM:/XdM for 0<r<s<t<T.
0 T

(LINEARITY) For X,Y € E(M)r and constants a,b € R we have

t t ¢
/(aX-i—bY)sza/ XdM—H)/ YdM for t€][0,T].
0 0 0

(ADAPTEDNESS) For X € E(M)r the process {f(fX dM }icpo,r is adapted.

(MARTINGALE) For X € E(M)r, {fot X dM }ieo.r) @5 a square-integrable martingale.
(ZERO-MEAN) For X € E(M)y the process {fOtX dM }icpo,m) has zero mean.
(

ISOMETRY) For X,Y € E(M)r we have

{</XdM)</ YdM)}:E{/OtXYd[M]} for t€[0,T].

(CONVERGENCE) If X € E(M)7 and {X,}3°, C E(M)r satisfy

lim E{/OT (Xa(r) —X(r))Qd[M](r)} ~0,

n—o0

then we have in the sense of convergence in mean-square
t t
/ XndM—>/ XdM as n— oo for t€[0,T).
0 0

(Zpp) For X € E(M)r and an Fy-measurable random variable Y is that is bounded
by a (non-random) constant we have fot Ity (r) Y X () dM (1) Yf X(r)dM(r) for
0<s<t<T.

(STOPPING) For X € E(M)r and a stopping time 7 we have {Ijo(t) X (t)}seco,1) €
E(M)r and ["" X dM = [} Iip.7 X dM for t €[0,T7.

Proof. The proofs of all these properties for the space Fr in Exercises 49-52, Exer-
cises 54-57, and Theorem 6.3, respectively, carry over to the space E (M) with only
obvious modifications: Just replace B with M everywhere and use Theorem 15.2

whenever a property for the integral on the space St is requested. O
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Exercise 160. Prove in full detail one of the properties isometry, martingale or

stopping in Theorem 15.6.

15.3 Quadratic variation for continuous local martingales

We show by stopping that continuous local martingales have quadratic variations.

Theorem 15.7. A continuous local martingale { M (t) }1eo,r) has a well-defined con-
tinous with probability 1 quadratic variation process given by [M](t) = [M]n(t) for
t€[0,T] on the event {1, > T}, where {{M]m(t)}tcjor is the quadratic variation of
{M(EATm) beepor) and {Tp}eo_; is a localizing sequence of stopping times such that

{M(tATm) brepo 45 a square-integrable continuous martingale for m € N.

Proof. Theorem 14.6 gives the existence of a localizing sequence {7,,}>°_, such that
{M (tATp)}tejo.r) is square-integrable for m € N. The quadratic variations [M],, and
[M],, of M(- A1) and M( - AT,), respectively, make M (- A7,)? — [M],, and M (- A
Tn)?> — [M],, continuous martingales, and are uniquely determined by that property.
As {M(tATm) }repo,r) and { M (EAT,) }eeo,r) agree on the event {7,,A7, > T}, it follows
that {[M],(t)}eepo,r) and {[M],(t) }rejo,r) agree on that event. Hence the definition
[M](t) = [M](t) for t € [0, T] on the event {7,, > T} is consistent (non-multivalued).
Here [M] is continuous on the almost sure event | J-_ {7, > T}, as each of the pro-
cesses [M],, are continuous. To see that [M] is the quadratic variation of M we con-
sider partitions 0 =ty <, < ... <t, =t of the interval [0, ¢] C [0, T] and note that

lim sup {

maXi<j<n ti—t;— 140

Mlts-0) = (M) >}

< lim sup {

maxi<;j<n tj—tj—140

Z (te ATi) — M (tg 1 AT))? — [M]m(t)‘ >5} +P{r,<T}

k=
=0+ P{r,<T} foreach meN, for e>0.

It follows that the limsup on the left-hand is zero for each ¢ > 0, as it does not

depend on m and the probability on the right-hand side goes to 0 as m —o0. O

Exercise 161. With the notation of Theorem 15.7, show that [M],,(t) — [M](t)

in the sense of convergence in probability for ¢ € [0, 7] as m — cc.

Corollary 15.8. A continuous local martingale { M (t)}icio,r) has a well-defined con-
tinuous quadratic variation process {[M](t) }ieo,m which is the unique non-decreasing

(adapted) process that makes { M (t)? — [M](t) }epor] @ continuous local martingale.
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Proof. With the notation of the proof of Theorem 15.7 we have
M2(tAT,) — [M](tAT,) = (M?(- A7) (EAT,) — [M]m(tAT,)  for some m >n
= (M*(- A7) (tAT,) — [M( - AT)](EATS)
= (M?*(- A1) (AT, — [M( - ATR)](tAT,)  for t€[0,T]
= martingale.

As this martingale is uniformly integrable by Theorem 13.10, it follows that { M (¢)*—
[M](t) }+ejo,r7 is a continuous local martingale.

Let {A(t) }seo,17 be a non-decreasing process such that {M(t)* — A(t) heo,a7 is a
continuous local martingale. Then A is continuous and by the optional stopping the-
orem together with Theorem 14.6 we may find a localizing sequence of stopping times
{7352, such that {M(tA7,)* — [M](tATs) hepo,r) and {M (tAT,)? — A(tAT,) hepo,r] are
continuous martingales bounded by n for each n € N. Hence {[M|(tAT,) — A(tAT,)
}eeqo,r is a bounded by 2n continuous martingale with finite variation. As such it has
zero quadratic variation, so that it is zero by Exercise 157. Hence {[M](tAT,) }efo,11

and {A(tAT,) }eeo,r) agree for n €N, so that [M] and A agree by sending n —oco. 0O

Corollary 15.9. A pair of continuous local martingales {M (t) }sejor) and {N(t)
}eepo,r has a well-defined continuous quadratic covariation process {[M, N|(t)}scpo,r
which has the property that {M(t)N(t) — [M, N](t) }+ejo,r] 45 a continuous local mar-

tingale.

Exercise 162. Prove Corollary 15.9.

Exercise 163. Let {M(t)}:c0,7] be a continuous local martingale and 7 a stop-

ping time. Show that [M (- AT)|(t) = [M (- AT)|(tAT) = [M](tAT) for t € [0,T].

15.4 Ito integrals for the space P(M)r

The following definition should not come as a suprise.

Definition 15.10. Given a constant T > 0 and a continuous local martingale { M
(t) }eepor) we say that a stochastic process {X (t)}i>0 belongs to the class P(M)r of

predictable processes on [0,7], if X is measurable and adapted with

P{/OTXQd[M] < oo} =1

We have the following versions of Theorems 5.1 and 5.2:
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Theorem 15.11. For a continuous square-integrable martingale {M(t)}icio,r and

an X € P(M)r, we have in the sense of convergence in probability

T
lim (X, — X)>d[M] =0 for some sequence {X,}>°, C E(M)r. (15.4)

n—oo 0

Theorem 15.12. For a continuous square-integrable martingale { M (t) }reor], an
X € E(M)r and a constant C >0, we have

t C T
P{tggg]/o XdM‘ >)\}§§+P{/0 X(r)2d[M](T)ZC’} for A>0. (15.5)

Proof of Theorem 15.11. Copy-and-paste to here the proof of Theorem 5.1. Replace
every occurance of dr in that proof with d[M](r). Also replace references to the
spaces Er and Pr with references to the spaces E(M)r and P(M)r, respectively.
Noting that the process { fot X2 d[M]}iepm is adapted by a modification of Lemma
6.4, see Exercise 164 below, as well as continuous, as [M] is continuous, see Exercise

164 below, the theorem follows by inspection. O

Exercise 164. Show that the process { f(f X?d[M]}iepo,r is adapted and contin-

uous for {M () }+¢[o,77 @ continuous square-integrable martingale and X € P(M)r.

Exercise 165. Prove Theorem 15.12.

Definition and Theorem 15.13. For a continuous square-integrable martingale
{M(t)}repor and an X € P(M)r, the 1t6 integral process {fOthM}te[O,T] is well-
defined as the unique up to version and continuous with probability 1 stochastic process

that is given as the limit in the sense of convergence in probability by
t t
/ XdM(—/ Xn,dM as n— oo for t€[0,T], (15.6)
0 0
where { X}, C E(M)r satisfies (15.4). Further, we define

1 i s
/XdM:/XdM—/ XdM  for s,t € [0,T].
s 0 0

Proof. Copy-and-paste to here the proof of Definition and Theorem 5.3. Replace all
occurances of B and dr in that proof with M and d[M](r), respectively. Also replace
references to equations (5.10), (5.11) and (5.12) with references to equations (15.4),
(15.5) and (15.6), respectively. By inspection this proves the theorem. O
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For future use we prove the following property new to us:

Theorem 15.14. (ZORRO) For a continuous square-integrable martingale { M (t)
Yeo,r), an X € P(M)r and a stopping time 7, we have X € P(M(-AT))r and Ijg 1 X
€ P(M)r as well as [y X dM (- AT) = [} Io.1 X dM for t €[0,T).

Proof. By inspection of Definition 15.1 we readily see that
t tAT
{/ XdM('/\T)} :{/ XdM} for X € Sy. (15.7)
0 te[0,T] 0 te[0,T7]
For an X € P(M)r we get X € P(M(- AT))r and I X € P(M)y from
TAT T T
X%d[M] = / I X? d[M] = / X?2d[M(-AT)].  (15.8)
0 0

[/t

Further, if {X,}32, C Sy satisfies (15.2) for an X € E(M)r, then (15.8) shows that

0

E{/OT(J[O,T]X,,—J[O,T]X)Qd[M]} = E{/OT(Xn—X)Qd[M(-/\T)]} —0 as n— oo.

From this and Definition and Theorem 15.5 together with (15.7) and the stopping
and convergence properties for E(M ) we get the theorem for X € E(M)r as

t t tAT t t
/XdM(-/\r) <—/XndM(-/\7') =/ XndM:/I[O,T]XndMa/I[O,T}XdM
0 0 0 0 0

in the sense of convergence in mean-square as n — oo for ¢ € [0,7]. From (15.8) we
futher see that if {X,}>°, C E(M)r satisfies (15.4) for an X € P(M )7, then we have

T T
/(f[o,T]Xn—f[o,ﬂX)Qd[M]=/ (Xp—X)2d[M(-AT)] =0 as n— oo
0 0

with convergence in probability. From this and Definition and Theorem 15.13 together
with the theorem for X € E (M) we get the theorem for X € P(M)r as

t t t t
/XdM('/\T)(—/XndM('/\T):/I[(),T]XndM%/I[OyT]XdM
0 0 0 0
in the sense of convergence in probability as n — oo for t € [0,7]. O

Besides the new zorro property, the other properties of 1t6 integrals for the space

P(M)y are the expected ones:
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Theorem 15.15. (PROPERTIES OF ITO INTEGRALS FOR THE SPACE P(M)r) Let

{M (1) }+eo,r be a continuous square-integrable martingale.

(CONVERGENCE) If X € P(M)r and {X,}2°, C P(M)r satisfy

T
/ (Xn(r) —X(r))2 d[M](r) =0 as n— oo
0
in the sense of convergence in probability, then we have

/t X, dM — /thM in probability as n — oo for t€[0,T].

0 0

(NADA) For X € P(M)r we have

/XdM— /XdM and /tI[T,S]XdM:/SXdM for 0<r<s<t<T.
0 r

(LINEARITY) For X,Y € P(M)r and constants a,b € R we have

t t ¢
/(aX-i—bY)sza/ XdM+b/ YdM for t€][0,T].
0 0

0
(ADAPTEDNESS) For X € P(M)r the process {f(fXdM}te[o,T] is adapted.
(LOCAL MARTINGALE) For X € P(M)r, {fOtX dM }iep0,m) @5 a local martingale.

(Zpp) For X € P(M)r and an Fs-measurable random variable Y is that is bounded
by a (non-random) constant we have fot I (r)Y X (r) dM(r) Yf X(r)dM(r) for
0<s<t<T.

(STOPPING) For X € P(M)r and a stopping time 7 we have Iz X € P(M)r and
[ X dM = [ Iy q X dM for t €[0,T).

Proof. The nada, linearity, adaptedness and zipp properties follow more or less im-
mediately from that P(M)r integrals are convergence in probability limits of E(M)r
integrals, see also Exercises 74-77. The proof of the convergence property is done
exactly as in the proof of Theorem 5.4 for the space Pr — just replace every occurence
of B and dr with M and d[M](r), respectively. The stopping property is proved by
a straightforward modification of the proof of Theorem 6.3 for the space E7, mak-
ing use of the newly established convergence, nada and zipp properties for the space
P(M)r, see also Exercise 78. Finally, the local martingale property is proved by a
straightforward modification of the proof of Theorem 13.13 for the space Pr, making
use of the newly established stopping property. O

Exercise 166. Prove in full detail one of the properties convergence, stopping

or local martingale in Theorem 15.15.
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The time has come to extend the integral to its final local martingale generality:

Definition and Theorem 15.16. For a continuous local martingale {M (1) }1efo,11
and an X € P(M)r the Ito integral process {f(fXdM}te[o,T] is well-defined as the

unique up to version and continuous with probability 1 stochastic process given by
t t
/ XdM = / X dM(- A1) for t€]0,T] on the event {7, >T},
0 0

where {Tp Yooy is a localizing sequence of stopping times such that {M(tATpm) }eejo,r

15 a square-integrable continuous martingale for m € N.

Proof. Theorem 14.6 gives the existence of a localizing sequence {7,,}>°_, such that
{M(t A Tp) }eeo,r is square-integrable for m € N. By application of the zorro and
stopping properties in Theorems 15.14 and 15.15 it follows that

tATh

0

t tATm
XdM(- A1) = / X dM( - AT AT,) = / X dM(- AT,). (15.9)
0 0

Hence fOthM(- NTm) = fJXdM( - A1) for t € [0,T] on the event {7, A7, > T},
so that the definition of fot X dM is consistent (non-multivalued).

Let {7;,}ox_, be another localizing sequence making {M(tA7;,)}sco,r] @ square-
integrable martingale for m € N. We must show that the integral given by fot XdM
= f(fXdM( - A1) for t € [0,T] on the event {7/, > T} agrees with the integral
{fothM{te[O,T]- However, changing 7, to 7/, in (15.9), we see that f(fXdM =
fothM for t € [0,7] on the event {7, A7/ > T}. Sending m — oo this gives
{3 X dM}epor) = {§ X dM}refor. O

Exercise 167. With the hypothesis and notation of Definition and Theorem
15.16, show that [ X dM(-Ary,) — [ X dM in probability as m — oo uniformly
for X € P(M)r and t € [0,7] in the sense that

lim P{ sup
m—00 te[0,7], XeP(M)

¢ t
/XdM('/\Tm)—/XdM‘>6}=O for each € > 0.
0 0

Theorem 15.17. (PROPERTIES OF ITO INTEGRALS FOR THE SPACE P(M)r) The
properties zorro, convergence, nada, linearity, adaptedness, local martingale, zipp and
stopping in Theorems 15.14 and 15.15 all carry over without any changes from It
integrals with respect to continuous square-integrable integrals to Ito integrals with

respect to continuous local martingales.

Proof. The properties zorro, convergence, nada, linearity, adaptedness, zipp and stop-
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ping are all more or less immediate from Exercise 167 together with Theorems 15.14
and 15.15, see also Exercises 168 and 169 below. Moreover, the property local martin-
gale is immediate from the stopping property together with inspection of Definition
and Theorem 15.16. O

Exercise 168. Prove the convergence property in Theorem 15.17.

Exercise 169. Prove the stopping property in Theorem 15.17.
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16 Continuous local martingales and martingale problems

16.1 Approximation of It6 integrals

Exercise 170. Show that for a continuous square-integrable martingale {M ()
}eepo,r) and an X € P(M) we have

T
/ (X, —X)?d[M] -0 as n—oo for some sequence {X,}>°, C Sr
0

in the sense of convergence in probability. Conclusions?

Exercise 171. Show that for a continuous local martingale { M (%) };c[o,r] and an
X € P(M)r we have

T
/ (X, —X)>d[M] =0 as n—oo for some sequence {X,}°°, C Sy
0

in the sense of convergence in probability. Conclusions?

Unsurprisingly, we need the following version of Theorem 6.6:

Theorem 16.1. For a continuous local martingale {M(t)}scor), an X € P(M)r
and a constant C >0, we have

¢ T
P{sup /XdM‘>A}§%+P{/ X2d[M]zC} for A>0.
te[0,7]1J0 A 0

Proof. Let {1,,}5°_, be a localizing sequence of stopping times such that {M (¢t A

Tm) }teo,7] i & square-integrable continuous martingale for m € N. Define

To :T/\inf{te [0,7] : /OtXQd[M] 20}

[cf. (6.3)], and note that X¢ = X 1o, € E(M(- A1p))r with

/OTX(QJd[M](-/\Tm):/OTATmXéd[M] g/OTng[M] <c.

Hence Exercise 167 together with Theorem 15.12 and the stopping property give

t
P{sup /XdM‘>A}
tefo,7]|Jo

< limsupP { sup
m—00 t€[0,T

/XdM /XdM ATw)| >

>)\—e}

> A—6}+P{T0<T}

+ limsup P { sup

m— 00 t€[0,T]

/ X dM(- ATw)

/ XcdM( - A1)

m—00 te[0,T]

<0 +limsupP{ sup
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<0+(Af) +0+P{/ X?%d M]>C’} for each > 0. O

Exercise 172. Show that for a continuous local martingale {M () }+cjo.r) and a

continuous and adapted process { X (t)}+cpo,r] it holds that

P{ sup
t€[0,T1]

The following version of Theorem 6.7 is crucial to derive It6 formulas. It follows

/\2

t T
/XdM‘>/\}<£+P{/ XQd[M]>C} for C,\A> 0.
0 0

from Theorem 16.1 in the same fashion as Theorem 6.7 follows from Theorem 16.2.

Theorem 16.2. A continuous adapted process {X (1) }iepo,r belongs to P(M)r and

sup
t€[0,T]

/XdM /ZX io1) I,y 40dM| — 0 in probability

for partitions 0=ty <t1 < ... <t, =T of [0,T] such that maxi<j<nt; — ti—1 1 0.

Exercise 173. Derive Theorem 16.2 from Theorem 16.1.

16.2 Quadratic variation of It6 integrals

Recall that we had to use two-and-a-half or so pages to derive the formula for the
qudratic variation of and It6 integral with respect to BM in Theorem 8.6. Now we

will see that things go much easier when we have the Doob-Meyer representation.

Theorem 16.3. For a continuous local martingale { M (t) }1e0,m) and an X € P(M)r,

we have

[/ XdM] /XQd[M] for t€[0,T).

Proof. For X € St the claim of the theorem follows in exactly the same fashion as it
does in the proof of Theorem 8.6 — just make the appropriate replacements of B and
dr with M and d[M](r), respectively.

Now assume that M is square-integrable and that X € E(M)r. Pick a sequence
{X,}5°, € St such that (15.2) holds. By the Doob-Meyer representation, in order to

prove the claim of the theorem, it is sufficient to prove that

([ )~ ([ xo0) - ([ - [ ) )

for 0 < s <t <T. However, by (15.2) together with Definition and Theorem 15.5,

the above conditional expectation equals the limit (in the sense of convergence in L',
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recall Exercise 53) as n — oo of

([ ) ([ ) ([ - [ )| )

Now, this conditional expectation in turn is always zero by the first part of the proof
for the case X € Sy together with the Doob-Meyer representation.

Return to the general setting when {M(t)}+«cjo,r7 is a continuous local martingale
and X € P(M)r. Pick a localizing sequence {7,,}o_; such that {M(tA7y) e
is square-integrable and fOT Tjo,r) X2 d[M] < m for m € N, see Exercise 174 below.
Using what we have proved already for M square-integrable and X € F(M)r, we then
get using Exercise 163 and the stopping and zorro properties (see Theorem 15.17)

[/O(') X dM] (tAT) = :/O('M'n) X dM} (1)
_ :A('ATmATM)XdM] (1)

= -/(.)I[O,Tm]XdM( : /\Tm)} (t) (16.1)

t
- /0 Ty X2 d[M (- A7)
tATm
= / X2d[M] for te[0,T],
0
see Exercise 175 below. Hence the theorem follows from sending m —oo. O

Exercise 174. Explain the details of how to find a localizing sequence of stopping

times {7, }o°_, that has the two properties claimed in the proof of Theorem 16.3.

Exercise 175. Explain all steps in (16.1) in full detail.

16.3 Burkholder-Davis-Gundy inequality

The inequality in Exercise 157 is a special case of the following famous result, the

proof of which is very complicated (except in the case p =1 treated in Exercise 157):

Theorem 16.4. (BURKHOLDER-DAVIS-GUNDY INEQUALITY!) There exist func-
tions ¢,C : (0,00) — (0,00) such that for every continuous local martingale {M (t)

Yeepo,m, for every stopping time T < T, and for every constant p € (0,00), we have

e(p) E{[M](r)"/?} < E{tzl[épﬂ M)} < Cp) B{MI(r)?}.

"Gee e.g., Revuz and Yor: “Continuous Martingales and Brownian Motion”, Section IV.4. As we do not

make any essential use of this result, it is no real loss that we do not prove it.
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The power of the Burkholder-Davis-Gundy inequality is illustrated by the next two
corollaries that give a sharp constancy criteria for local martingales and an improved

sufficient condition for It integrals to be martingales, respectively.

Corollary 16.5. A continuous local martingale {M(t)}seom) s constant over an
interval [s,t] C[0,T] if and only if [M](s) = [M](t).

Exercise 176. Derive Corollary 16.5 from Theorem 16.4.

It is the Burkholder-Davis-Gundy inequality for p = 2 together with Corollary 16.5
that are important to build up the theory. Luckily, we can derive these results directly
from Exercise 157, see Exercise 177 below. Thus the omission of a proof of the Burk-

holder-Davis-Gundy inequality does not create any holes in our theory building.

Exercise 177. Derive the Burkholder-Davis-Gundy inequality for p =2 as well
as Corollary 16.5 from Exercise 157 without using Theorem 16.4.

Corollary 16.6. An Ité integral process {fOtX dM }iepor) for an X € P(M)r with

respect to a continuous local martingale {M (1) }rejo,r) is a martingale if

([ o))<

In particular, the Ité integral process { fot X dB}yeor) for X € Pr is a martingale if

E{ (/OTX(T)W)I/?} < .

Exercise 178. Derive Corollary 16.6 from Theorems 13.12 and 16.3-16.4.

Exercise 179. Explain what is the improvement in Corollary 16.6 of the suffi-
cient condition for It6 integrals to be martingales as compared with our previous

knowledge of results of this type.

Putting together Corollaries 15.9 and 16.5 we get the following appealing result:

Corollary 16.7. A pair of continuous local martingales {M (t) }1ej0,r) and {N(t)
}eepo,r has a well-defined continuous quadratic covariation process {[M, N|(t)}sepor
which is the unique adapted finite variation process with [M, N](0) = 0 that makes
{M(@E)N(t) —[M, N](t) }repo,r) @ continuous local martingale.

110




Exercise 180. Prove Corollary 16.7.

Putting together Corollaries 13.19 and 16.5 we further obtain the following im-
portant (it shall turn out) sharpening of Corollary 13.19:

Corollary 16.8. A pair of continuous square-integrable martingales { M (t)}ieio,r]
and {N(t) }seo,r) has a well-defined continuous, adapted and integrable quadratic co-
variation process {[M, N|(t) }ico,m (in the sense of convergence in probability) which
is uniquely determined by the property that {M(t)N(t) — [M, N|(t) }sepo,r s a contin-

uous martingale.

Exercise 181. Prove Corollary (16.8).

Corollary 16.9. For two continuous local martingales {M(t)}ico7 and {N(t)
}eepo,r an two processes X € P(M)r and Y € P(N)r, we have

U XdM/ YdN] /XYd[M N] for t€0,T]. (16.2)

Proof. For X,Y € Sy (16.2) follows in exactly the same fashion as in the proofs of
Theorems 8.6 and 16.3. Next assume that M and N are square-integrable and that
X € E(M)r and Y € E(N)r. Pick sequences {X,,}22,,{Y,}52, € Sr such that

lim E{/OT(XR—X)Qd[M]} = lim E{/OT(Yn—Y)Qd[N]} = 0. (16.3)

n—o0 n—0o0

By Corollary 16.8, in order to prove (16.2) it is sufficient to prove that

E{ (/OthM> (/OtYdN> - (/OSXdM> (/OSYdN> —/StXYd[M,N] ‘ ]—"s} =0

for 0 < s <t <T. However, by (16.3) and Definition and Theorem 15.5 together with
Exercise 182 below, the above conditional expectation equals the limit (in the sense

of convergence in L', recall Exercise 53) as n — oo of

E{(/OtXndM) </Y dN) (/ X, dM) (/ YndN>—/:XnYnd[M,N]‘FS}.

Now, this conditional expectation in turn is always zero by the first part of the proof
for the case X,Y € Sr together with Corollary 16.8.

Return to the general setting when {M () }scjo,7 and {N(t)}sepo,r are continuous
local martingales and X € P(M)r and Y € P(N)r. Pick a localizing sequence
{Tm}oo_, such that {M(tATy)}iepo,r) and {N(tATm) }eeo,r) are square-integrable and
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such that fOT Ijo71X? d[M] < m and fOT I0,7,,)Y? d[N] < 'm for m € N, recall Exercise
174. Using what we have proved already for M and N square-integrable with X €
E(M)r and Y € E(N)r, we then get from polarization and Exercise 163 together

with the stopping and zorro properties for the It integral

[/ XdM/ YdN] (tATm)

“NTm) (-ATm)
- / X dM, / YdN}( )
LJ 0
r (AT ATm) ATm ATm)
- / X di, / YdN} )
LJ 0 0

r () ()
= / I[O,Tm] X dM( . /\Tm), / I[O,Tm} YdN( . /\Tm)] (t)
LJ 0 0

t
- / Ty XY d[M (- Arin), N(- ATi)]
0
tATm
:/ XY d[M,N] for tel0,T],
0
see also Exercise 175. Hence the theorem follows from sending m — co. O

Exercise 182. Prove that (16.3) implies that

¢ ¢
/ XY, d[M,N] —>/ XY d[M,N] in L' as n— oo for t€0,T].
0 0

16.4 Stochastic differentials and It formula

Equipped with It6 integrals for continuous local martingales we may consider stochas-

tic differentials and It6 processes driven by such:

Definition 16.10. Let {M(t) }scj0,17 be a continuous local martingale. If {11(t) }refo,17

15 an adapted measurable stochastic process such that

p{ [ lu)iar <o} =1

if o € P(M)r, and if X(0) is an Fy-measurable random variable, then we call

t t
X(t) = X(0) +/ u(r)dr—i—/ odM, te€l0,T],
0 0
an It6 process and the corresponding stochastic differential is given by

dX (t) = p(t) dt + o(t) dM ().

Note the difference between the concepts of It6 integral process and Itd process!

112




Corollary 16.11. The quadratic variation of an It process {X(t)}seom with
stochastic differential dX (t) = p(t) dt + o(t) dM(t) is given (with probability 1) by

X)(s6) = [ o*dM] for [s,0C[0.T)

Exercise 183. Prove Corollary 16.11.

Exercise 184. Show that an It6 process has zero quadratic variation if and only

if it has finite variation.

Corollary 16.12. The quadratic covariation between two Ité processes { X () }sepo,m
and {Y (t) }seo,r) with stochastic differentials dX(t) = px(t)dt + ox(t)dM(t) and
dY (t) = py (t) dt + oy (t) dM(t), respectively, is given (with probability 1) by

X, V]([s, 4]) = / oxoyd[M] for [s,4C[0,T]

Exercise 185. Prove Corollary 16.12.

Corollary 16.13. IfP{X(t)=Y(t) for t€[0,T]} =1 for two Ité processes { X (t)}
tefo,r] and {Y (t) }repor) with stochastic differentials dX (t) = pux(t) dt + ox (t) dM (1)
and dY (t) = py (t) dt + oy (t) dM(t), respectively, then we have

P{ox(t)=oy(t) a.e. d[M] for t€[0,T]|} = P{ux(t)=py(t) a.e. for t€[0,T]} =1.

Exercise 186. Prove Corollary 16.13.

Definition 16.14. If dX(t) = p(t) dt + o(t) dM(t) is a stochastic differential and

{Y'(t) }epo,r) an adapted measurable process such that

p{ [ el <oo =1

and Yo € P(M)r, then we define the Ité process {fOtX dY }epom by

t ¢ ¢
/ YdX :/ Y (r)u(r) dr—i—/ YodM for t€]0,T].
0 0 0

In order to make sure that the above definition of fot Y dX is consistent, in the
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sense of not being multi-valued, we must check that if two It6 processes agree

t t t t
P{/ i (r) d7“+/ o1dM = | pus(r) dr+/ oo dM for t € [O,T]} =1, (16.4)
0 0 0 0

then

P{/OtY(r)ul(r) dr +/0tY01 M :/OtY(T),uQ(T) dr +/0tyaz dM for te[O,T]} —1
(16.5)

However, this follows from Corollary 16.13, see Exercise 187 below.
Exercise 187. Show that (16.4) implies (16.5).

Exercise 188. Explain why the It6 process f(f Y dX is well-defined when X
is an Ito process and Y is a continuous adapted process. Conclude that the Ito

process f(f Y dX is well-defined when X and Y are both It6 processes.

Unsurprisingly, we need the following generalization of Theorem 16.2:

Theorem 16.15. For an It6 process {X(t) }icfo,r) and a continuous adapted process
{Y'(t) }eero,r, we have

sup
t€[0,T]

/YdX /ZY i),y 41dX | = 0 in probability

for partitions 0=ty <t; < ... <t, =T of [0,T] such that maxi<;<, t; — ti—1 1 0.

Exercise 189. Prove Theorem 16.15.

The proof of the Ito formula in Theorem 11.1 carries over with only obvious

modifications, see Exercise 190 below, to the continuous local martingale setting:

Theorem 16.16. (ITO FORMULA) For an It process {X(t)}icpm all values

of which belong to an open interval I C R with probability 1 and a function
fe€CY([0,T]xI), we have

df (t, X (1)) = fi(t, X (1)) dit+ f(¢, X(t)) dX () +%fi'w(t,X(t)) d[X](t) for te[0,T].

Exercise 190. Explain how we can be so sure that the above It6 formula The-

orem 16.16 is true without any worries.
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16.5 Paul Lévy’s characterization of BM

We are now prepared to extend Paul Lévy’s characterization of BM Theorem 10.1 to

its full continuous local martingale generality:

Theorem 16.17. (PAUL LEVY’S CHARACTERIZATION OF BM) A continuous lo-
cal martingale {M(t)}icio,r) 25 BM if and only if it has quadratic variation process
[M](t) =t for t€][0,T].

Proof. Assume that [M](t) =t for t € [0,7T] and consider the processes
¢ ¢
Yi(t) :/ Zy(r)dM(r) and Ya(t) :/ Zy(r)dM(r) for te[0,T],
0 0

where Z;(t) = cos(OM(t)) e2%°t and Z,(t) = sin(6M (t)) e2?*t for t € [0, T], and where
6 € R is a constant. As the processes {Z:(t)}tcjo,r] and {Z5(t) }+epo,r) are bounded
by the constant e30°T they belong to E(M)r, so that Y7 and Y5 are martingales, see
Exercise 191 below. Further, It6’s formula Theorem 16.16 shows that

A7, (1) = %9221 (£) dt — 0 Z(t) dM(£) — %9221 (£) d[M](£) = —0.dYa(2),

dZy(t) = %02Z2(t) dt+ 07 (t) dM(t) — %02Z2(t) d[M](t) = 64dYi(1).
Hence Z; and Z, are martingales (as Y; and Y5 are martingales). It follows that
E{eMO+20 FY = B{Z, ()| F} + i B{Z:(t)|F,} = Zu(5) + i Zo(5) = MO +30%
for 0 <s<t<T, which in turn (as M is adapted) by rearrangement gives

B{e 0O MO | F) = ¢ 3009 and  B{eIMO MO = 109

for 0 < s <t <T. From this we may finish off the proof of the theorem in exactly

the same manner as we used (10.1) to finish off the proof of Theorem 10.1. O

Exercise 191. Explain why Z;, Z, € E(M)r in the proof of Theorem 16.17.

16.6 Local martingale problems'?

The following approach to weak solutions to SDE was invented by Daniel Strock
and S.R.S. Varadhan'®. The latter is famous for his exceptional ability to rephrase
any (that is, any!) problem presented to him as a problem regarding martingales.

Unsurprisingly then, he did so too to find weak solutions to SDE.

2Here the moment of truth comes at last folks!

13See their very demanding book “Multidimensional Diffusion Processes”.
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Definition 16.18. The generator of the SDE (9.1) is the differential operator A,
wen b
g Y o(t,x)?

5 f"(z) for feC*(R). (16.6)

(Af) () = p(t, =) f'(z) +

Definition 16.19. A continuous and adapted stochastic process {X (t)}ieo,r) @5 @
solution to the local martingale problem associated with the generator A, in (16.6) if
for each f € C*(R) the following stochastic process is a continuous local martingale

{f(X(t)) - s - | (Arfo(r))dr} . (167

t€[0,T

Theorem 16.20. A continuous and adapted stochastic process {X (t)}iejor s a
weak solution to the SDE (9.1) if and only if X(0) =p Xo and X is a solution to the

local martingale problem associated with the generator A in (16.6).

Proof. Let {X(t)}+cjo,r] solve the local martingale problem associated with the
differential operator A; in (16.6). Taking f(z) =z in (16.7) we see that

t
M(t) = X(t) — X (0) - / u(r, X(r)) drfor te[0,T] (16.8)
0
is a continuous local martingale. Hence the It6 formula Theorem 16.16 gives

df (X (t)) — (Auf)(X(2)) dt

= f(X(t))dX(t) + % FI(X (1) dIX](t) — (AS)(X(2)) dt (16.9)
a(t, X(t))?

5 (X (t))dt for tel0,T],

= f(X(2)) dM(t) + % (X (@) dM](t) -

for f € C*(R). As X solves the local martingale problem and the process in (16.8) is

a continuous local martingale, we may conclude from (16.9) in turn that

{500 - [ 22508 poar)

is also a continuous local martingale. However, as this process is also a finite variation

t€[0,T]

process it has zero quadratic variation — an immediate corollary to Theorem 8.3 —
so that this continuous local martingale is constant, by Corollary 16.5, and therefore

zero, as it takes of at zero at time zero. Taking f(z) =2 this shows that

(IM)(0) heeor = { /0 o X ()2 dr}tE[O,T].

Therefore the following process is a well-defined It6 integral process
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t 1 t
= — T Lo (r,x(r))=0y B
{W(t)}eepo,r { /0 Towxmnso o —~yy M) + /0 {or,X(r))=0} @ (7‘)}

te[0,T]

As the quadratic variation of this continuous local martingale is [W](t) = t, it follows
from Paul Lévy’s characterization of BM Theorem 16.17 that W is BM.
Putting all our findings together wee see that

dM(t) = dX (t) — u(t, X (t)) dt = o(t, X () dW () for ¢ € [0, T]. 0

Exercise 192. Show how the implication to the right in Theorem 16.20 follows

from the It6 formula for Ito6 processes in Theorem 7.6.
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17 Existence of weak solutions to SDE

17.1 Martingale problems

In order to find a solution to a local martingale problem it turns out to be convenient

to rephrase the problem as a so called martingale problem:

Corollary 17.1. If {X(t) }eo,1) s a solution to the SDE (9.1) with the generator
A; in (16.6) where the coefficient o is locally bounded', then for each f € CZ(R)'

the following stochastic process is a continuous martingale

{f(X(t)) - sxo) - [ (A,.fo(r))dr} . ar.1)

t€[0,T1]

Proof. Since the process (17.1) is a continuous local martingale by Theorem 16.20,
that is bounded by the assumptions on f and o, see Exercise 193 below, it is a

continuous martingale by Theorem 13.12. O

Exercise 193. Prove that the process (17.1) is bounded under the hypothesis
of Corollary 17.1.

Exercise 194. Given an alternative proof of Corollary 17.1 based on It6’s for-
mula together with the Burkholder-Davis-Gundy inequality for p = 2 (recall Ex-
ercise 177) and Theorem 13.12.

Definition 17.2. A continuous and adapted stochastic process {X(t)}ico1 45 a
solution to the martingale problem associated with the generator A, in (16.6) if for

each f € CZ(R) the process (17.1) is a continuous martingale.

Theorem 17.3. A continuous and adapted stochastic process { X (t)}scpo,r is a weak
solution to the SDE (9.1) with a locally bounded o coefficient if and only if X (0) =p
Xo and X is a solution to the martingale problem associated with the generator A,
in (16.6).

Proof. The implication to the right follows from Corollary 17.1. For the implication
to the left, let X be a continuous and adapted process that solves the martingale
problem associated with A;. By Theorem 16.20 it is sufficient to show that X solves
the local martingale problem associated with A;. To that end, given an f € C?*(R)

14 The coefficient function o : [0, T]xR is bounded on compact subsets of [0, T] xR.

15The class of two times continuously differentiable functions f:R — R with compact support.
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and an k € N, pick an f; € C3(R) that agree with f on the interval [—k, k]. Then

(M) heor = {fk(X(t» (X (0) — / (A fe) (X (7)) dr}

t€[0,T]

is a continuous martingale. Define a stopping time 7, = inf{t > 0: |X(¢)| > k}. By
the continuity of X we have 7, 7 oo as £ — oo. Hence it is sufficient to show that
{M(tATk) }eo,r) is a martingale for each k£ € N, where M is the process given by

(17.1) (which clearly is continuous). However, by the optional stopping theorem
{M (tATE) }efoa1

_ { F(X (tAT)) = F(X(0)) - / ) d’"}

t€[0,T]

_ {fk (X(tA)) + I F(X(0)) — Fu(X(0))] — FX(0)) —

tATE

(A i) (X(r) dr}

0 t€[0,T]

= { My (tAT) — I{z >0y [f (X (0)) —fk(X(O))]}te[O,T]
= {Mi(tATk) befo,1]

is a martingale when M}, is a continuous martingale. O

17.2 Existence of solutions to martingale problems

For strong solutions to SDE, uniqueness criteria (e.g., Theorems 10.5 and 11.3) typ-
ically are less demanding in terms of their hypothesises than existence criteria (e.g.,
Theorem 12.3). For weak solutions it turns out to be the other way around, so that
weak uniqueness is more demanding than weak existence.

Our weak existence proof uses weak convergence of probability measures for an
Euler iteration scheme (recall Exercise 113). For that purpose we cite the following

standard result from a standard graduate course in weak convergence'®:

Lemma 17.4. Let {1X(t)}icor), {2X(t) icpo,r)s --- be continuous stochastic pro-
cesses such that
lim sup P{|, X (0)| > A} =0, (17.2)
A—=00 k>1

and such that there exist constants C, o, f > 0 such that
E{iX(t) —1X(s)|*} < C|t—s|""* for s,t€[0,T] and k€ N. (17.3)

There exist a continuous stochastic process {X (t)}iefo,r) and a sequence {k;}32, C N
with kj 1 oo as j — 0o such that for each bounded continuous function F : C([0,T])*

— R we have F(;; X) — F(X) as j — oo in the sense of convergence in distribution.

16See e.g., Karatzas and Shreve: “Brownian Motion and Stochastic Calculus”, Section 2.4.B.

'"The space of continuous functions f : [0, T] — R equipped with the norm ||f] = sup;epo, | F ()]
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As this is a course on SDE, the two main results of the course so far are Theorem
10.5 (see also Theorem 11.3) and Theorem 12.3 concerning uniqueness and existence
of strong solutions to SDE, respectively. We are now prepared to state and prove the
third main result of the course, which concerns existence of weak solutions to SDE.

We prove the existence by solving the corresponding martingale problem.

Theorem 17.5. (STROOCK-VARADHAN) Consider the generator A; in (16.6) where
the coefficients p,0 : [0, T] xR — R are bounded and continuous. For each random

variable Xy the martingale problem associated with Ay has a solution {X (t)}sepo,m
such that X (0) =p Xo.

Proof. Given a k € N, define a process {,X (t) }+co,r] recursively by ,X(0) = X, and

(X (1) = kX (9) 4 (L X (D) (=B + oL X (D) (B~ B(Y)) for te (£ LT

for ¢=1,2,...,|kT]. Notice that, writing p(0) = 04(0) = 0 and

pi(t) = (£ X () and o(t) = o (£ X (£) for 1 (£, L AT)

for £ =1,2,...,|kT|, the process ;X solves the non-diffusion type SDE
t t
kX (1) = X(0) + / w(r) dr +/ ordB for t€[0,T], X(0)=X,. (17.4)
0 0

In order to apply Lemma 17.4 to the processes {1X(¢)}iefo,r1, {2X(2) beeo11s - - -
we note that they are continuous martingales by (17.4) and that (17.2) holds since
X (0) = X, for £ € N. Further, (17.3) holds with o = 4 and 8 = 1 since (17.4)
together with the Burkholder-Davis-Gundy inequality for p =4 give

E{(:X (1) — X ()"}

- {(/f*jk“)dﬁ/f“’“wf}t 4
< SE{ (/Stuk(T)ZdT> t} +8E{ <2/ ok dB) } t )
(1) (L) fescwn{([aora)}

<8(T°+CMA) (t—s)* sup  (u(r,z)*+o(r,2)?)
(r,x)€[0,T]xR

for s,t € [0,T], see also Exercise 195 below. Hence Lemma 17.4 shows that there ex-
ists a continuous process { X (t) };c[o,r] and a sequence of integers {k;}32; with k; 1 oo
as j — oo such that

(f(ij(t)) ~F,X6)~ [ (A0, X(0) dr)g({ijm}rem,s]) (17.5)
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converges in distribution as j — oo to

(1) =16 - [(ADE) )X rena) (17

for f € C3(R), 0 <s<t<T and any bounded continuous function g: C([0, s]) = R.

In fact, by continuity and boundedness of ;1 and o also

(f(ij(t)) ~ 15 X6) = [ 40X 0) dr)g({ijm}re[o,s]) a7

converges in distribution to the limit (17.6) for f € CZ(R), 0 < s <t < T and any
bounded continuous g : C([0, s]) = R, where

Ok (t)2
2

(eALf) () = () f' () + f"(z) for feCH(R)

is the generator of the SDE (17.4). This is so because the absolute value of the
difference between the random variables in (17.5) and (17.7) is bounded by

2t 5| sup (1uw.9) - (0,2
(u,y),(v,z)E[O,T]Xsupp(f), \u—v|§%, |y—Z|S sup ‘ij(T)_ij(TA)‘
J T,fe[o,T],\r—mgkij
|O'(’I,L, y)Q—O'(U, $)2| )
2

+ sup (|f'(@)| +1f"(z)]) sup [g(h)],

z€R hec([0,s])
(17.8)

which converges to zero in distribution as j — 0o, see Exercise 196 below.

It is sufficient to prove that

(M }epi = {f(X(t)) - 100 - [[(ADE () dr}

t€[0,T]

is a martingale with respect to the filtration {F;*}iejom = {o(X(r) : 7 €[0,t]) }repo,ry
generated by X for any f € C2(R), which is to say that

B{M(t)— M(s)| F¥} = E{f(X(t)) ~FXG) - [ AN dr

Fr } =0
for 0 <s<t<T,for f€CZ(R). This in turn is the same thing as
E{ (f(X(t)) _F(X(s)) —/:(Arf)(X(r)) dr)IA} —0 for A€FX,  (17.9)
for 0 < s<t<T and f € C3(R). By standard approximation methods (17.9) holds if
B (50¢6) - 70X - [ AN )ol(X 0 hepa) b =0 (170)

for any bounded continuous g: C([0,s]) = R, for 0 < s <t <T and f € CZ(R), see

Exercise 197 below. As the sequence (indexed by j) of random variables in (17.7) is
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bounded by a deterministic constant it is uniformly integrable. Hence the expected
value of the random variables in (17.7) converges to the expected value of the limit

random variable in (17.6). However, as (17.4) implies that

{f(kX(t)) - 16X0) - [ (A NHEX0) dr} (a7.11)

t€[0,T

is a martingale with respect to the filtration generated by B for f € CZ(R), see Ex-
ercise 198 below, and as ;X also is adapted to that filtration, it follows that (recall
Exercise 197)

B (#:X0) = 16X6) - [ (ADEX D)o (X Dhrepg) b =0
for any bounded continuous g: C([0,s]) > R, for 0<s<t<T and f € C3(R). O

It is unsatisfactory that the Burkholder-Davis-Gundy inequality for the power
p =4 is used in the proof of Theorem 17.5 as we have not provided a proof of that

inequality. This problem is circumvented by the following exercise:

Exercise 195. With the notation of the proof of Theorem 17.5, show by means
of direct calculations (not involving the Burkholder-Davis-Gundy inequality) that

t 4
E{ (/ o dB) } <4(t—s)* sup o(r,xz)h
s (r,z)€[0,T]xR

Exercise 196. With the notation of the proof of Theorem 17.5, show that the

random variable in (17.8) converges to zero in distribution as j — oo.
Exercise 197. Show that (17.9) holds if (17.10) holds.

Exercise 198. Show that the process in (17.11) is a martingale.
Here is a tricky one:

Exercise 199. Why can we not adopt truncation type of techniques as in the
proof of Theorem 12.3 to relax the condition in Theorem 17.5 that the coefficients

i and o are bounded to local boundedness?

The following result was originally proved by methods based on genious instead

of using martingale problem techniques:

Corollary 17.6. (SKOROHOD) Let the SDE (9.1) have bounded and continuous co-
efficients i, 0 : [0, T)XR — R. The SDE has a weak solution for each initial value X.
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Exercise 200. Prove Corollary 17.6.

We close this lecture by remarking that it is Lemma 17.4 that is the weak spot of
the proof of Theorem 17.5, as there exist must sharper criteria for convergence in dis-
tribution of stochastic processes than that lemma. So in order to improve on Theorem

17.5 one should look for better such convergence criteria to base the proof on.
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18 Uniqueness of weak solutions to SDE

18.1 Regular conditional probabilities

In order to adress uniqueness of weak solutions to SDE we make crucial use of the
following concept of conditional probability that comes with more structure as com-
pared with what is available by the usual direct application of the Radon-Nikodym

theorem. The proof of this result is rather long and demanding?'®.

Lemma 18.1. (REGULAR CONDITIONAL PROBABILITY) Let Z be a random variable
on a probability space (Q, F,P) taking values in a complete separable metric space
S with Borel sets B(S). Given a o-algebra G C F there exists a stochastic process
{Q(B)} Bens) called a regular conditional probability such that Q(w,-) is a probabil-
ity measure on (S, B(S)) for each w € Q that satisfies

P{ZeB|G}="°Q(B) for BeB(S). (18.1)

One appealing consequence of the existence of regular conditional probabilities is

the following result about conditional characteristic functions.

Corollary 18.2. With the notation of Lemma 18.1, let Z be an R-valued random

variable and suppose that
E{e??|G} = p(#) for HER, (18.2)

for some stochastic process {¢(0)}ger such that p(w,-) is a characteristic function

for some probability measure P“) on R for each w € Q. Then we have

P{P{Z e B|G} = PY)(B) for all BE B(R)} =1. (18.3)

Proof. Use Lemma 18.1 to find a regular conditional probability () such that
P{Z e B|G} =Q(B) for Be B(R). (18.4)

From (18.2) together with (18.4) we readily conclude that

/ewde(z) =/ei9ZdP(')(z) for f € R, (18.5)
R R

8See e.g., Karatas and Shreve: “Brownian Motion and Stochastic Calculus”, pp. 84-85 together with
Parthasarathy: “Probability Measures on Metric Spaces”, Chapter V.

19Recall that conditional expectations and probabilities are unique and well-defined in the sense of equality

almost surely only.
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see Exercise 202 below. As the equality in (18.5) is almost sure for each choice of an

0 € R we may conclude that
/ e dQ(w, z) = / %2 dP™(2) simultaneously for all 0 € Q, (18.6)
R R

for w on an event with probability 1. As the functions on both sides of the equality

(18.6) are continuous in the § argument for each w € Q, it follows that

/ e dQ(w, 2) = / 2 dP“(z) simultaneously for all 0 € R, (18.7)
R R

for w on an event with probability 1, see Exercise 203 below. From (18.7) in turn we
conclude that the probability measures Q(w, -) and P“)(-) on R agree [simultaneously
for all Borel subsets B(R) of R] on an event with probability 1. In view of (18.4),
this in turn is the same thing as (18.3). 0O.

Exercise 201. Give two reasons that we cannot conclude (18.3) immediately
from (18.2).

Exercise 202. Show that (18.2) and (18.4) imply (18.5).

Exercise 203. Show that (18.6) implies (18.7).

18.2 TUniqueness of solutions to martingale problems

We are now prepared to state and prove the fourth main result of the course, which

concerns uniqueness of weak solutions to SDE.

Theorem 18.3. (STROOCK-VARADHAN) Consider the generator A, in (16.6) which

s supposed to have a locally bounded o coefficient. Assume that given any f €
C(R)?°, s€[0,T) and t € (0,T—s] the so called Cauchy problem
g(r, x)
or
has a solution g € Cp([0,t]xR) NCH%([0,t]xR). Given an R-valued random variable
Xo a solution {X(t)}epom to the martingale problem associated with A, such that
X (0) =p Xo has uniquely determined fidi’s.

+ (Arys9) () =0 for (r,z) €[0,t] xR,  g(t,-)=f, (18.8)

Proof. Given an s € [0,T"), let {Y'(¢) }+cjo,r—s) solve the martingale problem associated
with A.;,. By Theorem 17.3, {Y(7)},¢[o,q then solves the SDE

dY (r) = p(r+s,Y(r))dr + o(r+s,Y(r))dB(r) for r€[0,t], for t€[0,T—s].

20The class of infinitely many times differentiable functions f:R — R with compact support.
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Now, given an f € C®°(R) and a t € (0, T—s], let g € Cy(]0, {]xR) N C¥2(]0, {] xR)

Sy

solve the Cauchy problem (18.8). By It&’s formula Theorem 16.16 it follows that
{90, Y (1) = g2 (0,Y (0)}, 0.0

= {ggﬁ) (7’, Y(T)) - ggﬁ) (0’ Y(O)) _/OT (algs(;f:t) (Ta Y(T)) + (-AT+sg) (Ta Y(T))) dT}

ref0,t]

(18.9)

is a continuous local martingale, see Exercise 204 below. Since this process is bounded

it must in fact be a martingale. This in turn gives

E{/(V(%)} - E{g(0,Y(0)} = E{g)(t, Y (1))} - B{gH(0,Y(0)} =0 (18.10)

for s€[0,T),t€ (0, T—s] and f € C§°(R).

We have to show that any pair of solutions {X(t)}sc0,r7 and {Xa(t) }eo,r) to
the martingale problem associated with .4, such that X;(0) =p X5(0) =p X, have
common fidi’s. By Exercise 205 below, this holds if

E{Qﬁ(&(t»)} - E{Zﬁfi(xzm))} (18.11)

forneN, 0<t1< ... <t,<T and fi,..., f, € C°(R). To prove (18.11), note that
(18.11) holds for n =1 by application of (18.10) with s =0, as that equation gives

E{f(X;(1)} = E{g{) (0, X;(0))} = E{g§} (0, X)} for j=1,2,

for t € (0,7] and f € C§°(R). Now assume that we have proved (18.11) for n =k and

consider the case n = k+1. Choose a regular conditional probability (); such that
P{A|X;(t1),..., X;(t)} = Q;(A) for Aeo(X;)*, (18.12)

for j = 1,2, see Exercise 206 below. Then the process {Z;(t)}icjor—t,) = {X;(t+
tk) }tejo,r—t,) solves the martingale problem associated with A..;, for the filtration

{Fi+t, }tepo,r—1,) and the probability measure @); for j =1,2, because

[ (1= 160 - [(Ann@ ar) aq,

- E{IA (f(Xj(t+tk)) —f(X(s+te) _/s

+tg

(A1) (X, () dr)

X;(t), - .. ,Xj(tk)}

]:s+tk }

‘ Xi(t1),. .. ,Xj(t,c)}

E{IAE{f(Xj(mk)) X (s t) — / (AL (X)) dr

+ig

=0 for Ae Fyy,, 0<s<t<T—1t; and f €C:(R)

*The o-algebra o(X;(t):t€[0,T]) generated by the process {X;(t)}+cfo,1]-
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since X; solves the martingale problem for A;. Hence (18.10) gives

E{ﬁfxxj(ti))} -

—elBe 0, (0 Zj<o>>}Hfz-<Xj<ti>>}

i=1

g
E{ (/ frn1(Z tk+1_tk))de> ﬁf(Xj(ti))}

{

{

= E{E{g/5) tk(o,Xj(tk>>|Xj(tl>,...,Xj(m}Hfi(Xj(ti))}

=1
k

_ E{gﬁ,{';:i . o,Xjuk))Hfi(Xj(m))} for j=1,2.
=1

Here the right-hand side does not depend on j by the assumption that (18.11) holds
for n = k, as that assumption implies (X;(¢1), ..., X1(tx)) =p (Xa(t1), ..., Xa(tx)) by
Exercise 205 below. 0.

Exercise 204. With the notation of the proof of Theorem 18.3, show that the
process {ggf? (r,Y(r)) — ggt)(O,Y(O))}Te[o,t] in (18.9) is a local martingale.

Exercise 205. Prove that for two R"-valued random variables Y and Z we have

Y=p2 & E{ﬁfi(lﬁ)}:E{zﬁfi(Zi)} for any fi,..., fn € C(R).

i=1
Exercise 206. Explain in detail how (18.12) follows from Lemma 18.1.
Remark 18.4. The Cauchy problem (18.8) has a solution if, for example??, the
coefficients p and o for generator A; in (16.6) are bounded with o bounded away

from zero?® and satisfy a global Holder condition, which is to say that there exist

constants K, o > 0 such that

(s, 2)=p(t, y)|+lo(s, z)—o(t,y)| < K|(s,2)=(t,y)|* for (s,z), (t,y) € [0, TIxR.

Corollary 18.5. Under the hypothesis of Theorem 18.3 the SDE (9.1) displays uni-

queness for weak solutions.

Exercise 207. Prove Corollary 18.5.

22Gee e.g., Stroock and Varadhan: “Multidimensional Diffusion Processes”, Theorem 3.2.1.

2We have |o(t,z)| > ¢ for (t,z) € [0, T] xR for some constant & > 0.
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18.3 Feynman-Kac formula

According to Theorem 18.3 existence of solutions to a Cauchy problem associated with
the generator of an SDE implies weak uniqueness of solutions to the SDE. In Theorem
18.6 below we prove the second part of a remarkable duality, namely that existence of

weak solutions to the SDE implies uniqueness of solutions to the Cauchy problem?*.

Theorem 18.6. (FEYNMAN-KAC FORMULA) Consider the generator A; in (16.6)

where the coefficients u and o satisfy the global linear growth condition in Definition
12.2. Assume that the SDE

dX(s) = pu(s, X (s))ds+ o(s, X (s))dB(s) for s€[t,T], X(t)==z,  (18.13)

has a weak solution {X7(s)}sepa) for each x € R and each t € [0,T). Consider the
Cauchy problem

ou(t, )

5 + (Aw) (¢, z) + k(t, 2)u(t,z) = g(t,z) for (t,x) €[0,T|xR, u(T,-)=f,

(18.14)
where k : [0, T] xR — (—o0, 0] is measurable, while f € C(R), g € C([0,T]xR) and
the solution u € CY2([0, T]xR) satisfy the polynomial growth condition

[f(@)| +[g(t, 2)| + |u(t,z)| < CQA+]2[**)  for (t,z) €[0,T]xR, (18.15)
for some constants C >0 and o > 1. Any such solution u to (18.14) is given by

u(t, )
= u{ r0 @) o [ b Xt ar| - [t e 6 e [ x5 09 | a5

for (t,z) € [0, T|xR. In particular, any such solution u to (18.14) is unique.

Proof. By 1t6’s formula Theorem 16.16 together with (18.13) and (18.14), we have
d(u(s, X/ (s)) exp [/ k(r, X7 (r)) dr})
t
1
= ((%u ds + Opu dX(s) + 5 02,u d[XF](s) +uk ds) exp [ : :|

(18.16)
1
= (81u ds + Oqu (nds+ adB(s)) + 3 O2uc?ds +uk ds) exp [ : }

= (azu(s, X7 (s))o(s, X7 (s)) dB(s) + g(s, X (5) ds) exp [ / k(X)) d’"}

24Many prominent probabilists hold Theorem 18.6 as one of their absolute favorite results in probability

theory, simply because it shows how one of the argubly most important problems in pure mathematics can

be solved by means of probabilistic methods?.

% That is, we are not the less talented younger brothers and sisters to the pure mathematicians anymore!
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for s € [t,T]. Introducing the stopping time

T, = inf{s € [t,T] : | X[ (s)| > n},
it follows that the integral of the left-hand side of (18.16) over the interval [t, T AT,]

T ATy
w(T AT, XE(T ATy)) exp [ / k(r, X2(r)) dr]
t
¢
X7 @) exp | [ K0, X5 0)) ]
¢
T
= sz exp| [k X0 dr] s
¢
+ u(r, XE (1)) exp [ |k xz ) dr] Lnnery
¢

— u(t, )

is equal to the integral of the right-hand side of (18.16) over the interval [¢, TAT,]
TNy s
[ st xey e [ hoxzeyar as
t ¢
TNy, s
+ / Oou(s, X7 (s)) exp [/ k(r, X7(r)) dr] o(s, X7 (s)) dB(s).
t t

Here it is obvious (as k is non-positive) that

E{ /t T (s, X7(s)) exp [ /t kG, X2 () dr]a(s,Xf(s)) dB(s)} —0, (1817)

see Exercise 209 below. Hence it follows from rearrangement that
T
ottea) =B P (0 x| [ b XE 0 ] 16 )
t
+ E{U(Tn, X7 (7)) exp [/ k(r, X7 (r)) dr] 1{Tn<T}} (18.18)
t

_ E{/tTATng(s,Xf(s)) exp [/tsk(r, X2 (1)) dr] ds}.

By a modification of the argument employed to show that (the linear growth condition
for p and o) gives (12.7), we see that

E{ sup Xf(s)Qa} < D(1+4|z>)ePTY for (t,z) € [0, T] xR, (18.19)
s€[t,T]

where D is a constant that depends on 7', the global linear growth coefficient C' and
a > 1 only?", see Exercise 210 below. From (18.19) in turn together with dominated
convergence and the assumed polynomial growth conditions on f, u and g, the non-

positivity of £ and the continuyity of X7 (implying that 7,, — oo as n — 0o, we

26Unless a = 1, the proof of (18.19) will require the Burkholder-Davis-Gundy equality with p = 2a.

*"You may employ Grénwall’s lemma here if you like.
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conclude that the right-hand side of (18.18) converges to the right-hand side of the

Feynman-Kac formula as n — oo, see Exercise 211 below. O

Exercise 208. Explain what exactly is meant by a solution to the SDE (18.13)
(that takes off at time s rather than time 0).

Exercise 209. Prove (18.17).
Exercise 210. Prove (18.19).

Exercise 211. Prove that the right-hand side of (18.18) converges to the right-

hand side of the Feynman-Kac formula as n — oc.

Exercise 212. Show that the polynomial growth conditions (18.15) on the func-

tions f and/or g can be dropped if f is non-negative and/or g is non-positive.

Exercise 213. Explain how we can deduce the claimed uniqueness of the solu-
tion u to the Cauchy problem (18.14) in Theorem 18.6 from the Feynman-Kac

formula.

131



132



19 Multidimensional SDE

In this final chapter of these lecture notes we show how our results about existence
and uniqueness of solutions to SDE extend to a multidimensional setting. It turns out
that the new difficulties we encounter are almost exclusivly of a notational character,

and that virtually no new ideas or methods are required.

19.1 Multidimensional BM and It6 processes

Definition 19.1. An R%-valued stochastic process {B(t)}i>o with B(0) = 0 is a

multidimensional R¢-valued Brownian motion (BM) if it has the following properties:
o (CONTINUITY) [0,00) 3 ¢t ~ B(w,t) € R? is continuous for all (or almost all)
w e,

o (INDEPENDENT INCREMENTS) B(t) —B(s) is independent of {B(r)},ejo,s for 0 <
s <ty

o (STATIONARY NORMAL INCREMENTS) B(t)— B(s) is zero-mean normal distribut-

ed in R with covariance matriz (t—s) I for 0 < s <t, where I is the identity matriz.

Definition 19.2. Let {B(t)}i>0 be an R¢-valued BM that is adapted to an augment-
ed filtration {F;}1>0 on a complete probability space, and that is such that B(t)—B(s)
s independent of Fs for 0 <s<t. This we call the usual conditions.

Henceforth we assume the usual conditions.

Definition 19.3. Let {o(t)}ico,m) be an R, q-matriz valued stochastic process such
that 0;; € Pr fori=1,...,n and j=1,...,d. We define the multidimensional R"-
valued It6 integral process { fot o dB}icpor) of o with respect to an R¢-valued BM by

d

t t
(/ adB) :Z/ 0ijdB; for te€[0,T], for i=1,...,n.
0 ; 0

% j=1

Exercise 214. Our Definition 19.1 of R¢-valued BM B is in fact more restrictive
than the definition that is usually employed in other parts of mathematical statis-
tics, where it is instead required that B(t) — B(s) is zero-mean normal distributed
in R¢ with covariance matrix (t—s)V for 0 < s < ¢, for some non-negative definite
matrix V. Explain why the latter more general definition of R?-valued BM does

not give rise to more different It6 integral processes { fot o dB}icpor)-
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Of course, equipped with multidimensional It6 integral processes, the next step is

to introduce multidimensional [t6 processes and stochastic differentials.

Definition 19.4. Let B be an R*-valued BM. If {1u(t) }seo,r] is an R™-valued stochas-

tic process with component processes that are measurable and adapted and satisfy

T
P{/ |,uz-(7")\dr<oo}:1 for i=1,...n,
0

if {o(t)}eo,r) i an Ry g-matriz valued stochastic process such that o;; € Pr for
i=1,...,nand j=1,...,d, and if X(0) is an Fyo-measurable random variable, then

we call . .
(XOheun = {xO+ [ uryar+ [oas] (19.1)
0 0 t€[0,T]
a multidimensional R"-valued It6 process and

dX (1) = u(t) dt + o(t) dB(t)

the corresponding multidimensional R™-valued stochastic differential.

Exercise 215. Show that if {X (¢)}scp0,r) and {Y (¢) }+cjo,r] are multidimensional
It6 processes (with respect to a common filtration and multidimensional BM),

then {(X(t), Y (¢))}sepo,m is also a multidimensional It6 process.

Exercise 216. Show that the quadratic covariation process between two compo-
nents X; and X of the R*-valued It6 process {X (%) }+cjo,r) given in (19.1) satisfies

{1Xi, X51(¢) bepor = {/ Zai,k(r)aj,k(r) dr} for i=1,...,n.
0 41 t€[0,7)

Theorem 19.5. (ITO FORMULA) For an R"-valued Ité process {X (t)}ieo,r) and a
function f € CY([0, T]xR"), we have

df (t, X(t)) = fl(t, X (t) dt—l—Zf (t, X (t Z 1)) d[ X, X;](t).

1,J=1

Exercise 217. Prove Theorem 19.5.

Note that in view of Exercise 215 we do not need separate It6 formulas of the type
in Theorem 9.12 for functions f(X(¢),Y(¢)) of two multidimensional It6 processes,
as such formulas are already contained in the It6 formula Theorem 19.5, see also

Exercise 218 below.
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Exercise 218. Use Exercise 215 and Theorem 19.5 to derive the 1t6 formula for

a function f(X(¢),Y (¢)) of two multidimensional It6 processes.

We will need versions of Definition 19.4 and Theorem 9.12 for It6 integrals and

[t0 processes with respect to continuous local martingales:

Definition 19.6. Let oy € P(M)r,...,0, € P(My)r where {My(t)}icpo ), - - - {Mn
(t) }eeo,r) are continuous local martingales, let {1 (t) bepo,17, - - - » {#n (%) brefo,r) be mea-
surable and adapted processes such that fo |1 (t)] dt, . fo \Mn )| dt < oo with prob-
ability 1, and let X (0) be an Fy-measurable random variable. We call the R"-valued

stochastic process {X (t)}sepo,r with components given by

t t
XiOhean = {XO+ [ wyars [ o) poriziim,
0 0 0,77
a multidimensional R"-valued It6 process and
dX (t) = pu(t)dt + o(t) dM(t)

the corresponding multidimensional R™-valued stochastic differential.

Theorem 19.5. (ITO FORMULA) For an R"-valued Ité process {X (t)}icjom and a
function f € CY([0, T]xR"), we have

df (t, X(t)) = fl(t, X (t) dt+Zf (t, X (t Z s 1)) d[X;, X;](t).

1,j=1

Exercise 217. Prove Theorem 19.5.

Of course, Corollary 16.9 is essential for applications of Theorem 19.5.

19.2 Multidimensional SDE

Definition 19.7. A multidimensional stochastic differential equation (SDE) of dif-

fusion type s given by
dX (t) = p(t, X(t))dt + o(t, X (t)) dB(t) for t€[0,T], X(0)= Xy, (19.2)
where p : [0,T] xR* — R* and o : [0,T]xR* — Ry4 are measurable (in each of

their components) coefficient functions, Xy is an Fy-measurable R"-valued random
variable called the initial value, and {B(t) }s>0 is an R*-valued BM.
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A solution to the multidimensional SDE (19.2) is an R"-valued It6 process { X ()
}eqo,ry such that X (0) = X, and

X (1) :X(O)-I—/0 w(r, X(r)) dr-l—/o o(r,X(r))dB(r) for t€[0,7]. (19.3)

Of course, for this solution to be well-defined X must be an adapted process that is

continuous with probability 1 such that

{ {/ pult, X0 'dt<°°}ﬂﬂﬂ{/ ouslt, X(OP e <oof b =1,

i=1j=1

Definition 19.8. An R"-valued process { X (t) }sc[o,17 is a strong solution to the SDE
(19.2) for a given R%-valued BM B and a given initial value Xo, if (19.3) holds for
this choice of B with X (0) = Xy with probability 1.

Definition 19.9. A R"-valued process {X(t)}scpo,r] is a weak solution to the SDE
(19.2) if there exists an R-valued BM B such that (19.3) holds with X (0) =p Xo.

Definition 19.10. Solutions to the SDE (19.2) have strong uniqueness if whenever
{X1(t) hepory and {Xa(¢) }epo,r) are strong solutions for a common given an R?-valued

BM B and a common given initial value Xq, it holds that

P{Xi(t)=X5(t) for all t€[0,T]} =1.

Definition 19.11. Solutions to the SDE (19.2) have weak uniqueness if whenever

{X1(t) hepo,r) and {Xo(t) hepo,r) are weak solutions they have common fidi’s.

19.3 Strong uniqueness

Definition 19.12. The coefficients p: [0, T|xR* = R* and 0 : [0, T]xR* = R, 4 of
the multidimensional SDE (19.2) are said to satisfy a local Lipschitz condition if to
each m € N there exists a constant K,, > 0 such that

2
[t ) = p(t,y ||2+ZZ 0i(t, ) = 0ij(t,y))” < K [l —yll*

i=1 j=1

fort€[0,T] and z,y € R* with ||z||, ||y|| < m, where ||-|| denotes the Euclidian norm.
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Theorem 19.13. If the coefficients of the multidimensional SDE (19.2) satisfy a

local Lipschitz condition, then we have strong uniqueness for solutions to the SDE.

Proof. Consider two strong solutions {1X(t)}iwcjo,r; and {2X(t)}icjor) to the SDE
(19.2) together with the stopping time

=inf {t€[0,T]: |1 X (¢)|| > m} Ainf {t € [0,T]: |2 X ()| > m}.
Then the process ;X (™ (t) = ;X (tAT,,) satisfies |; X™(¢)|| <m for ¢t € [0,T] and
t t
XM () = / 1u(r, i X (r) Tjo ey (r) dr + / o(+,iX) s, dB for t€[0,T],
0 0

for i = 1,2. Since 7, T 0o as m — oo it is sufficent to prove that P{; X (¢) =
2 X™(t)} =1 for t € [0, T] and m € N, recall Exercise 121. However, by the triangle
inequality and the elementary inequality (z+y)? < 222+ 2y? together with isometry,

the Cauchy-Schwarz inequality and the local Lipschitz condition, we have

E{|l; X (1) - X™ (0]}

e 2
}

_ 2E{§< /0 (s LX) — 157 X () T (7 )dT)Q}
=2 E{; </ot dr) (J/Ot (1s(r, 1 X () = palr, 2X (1)) T () dr) } 10
1 Jﬁ:( / 515(1X) =05 (-,2X)) T dBj)Q}

=2t [ B (1 X0)) = 12X 0D gy 1) b

/0 (1(r, LX (1)) = e 2X (7)) Doy ()

+ ZE{ /Ot (0(-1X) = 0(+,5X)) gy dB

n

+2dE{

=

+2d/ ZZE 01511 X (1)) = 01512 X () Ty (1)} dr

i=1 j=1
2(T+d)Km/ E{|[{X"™(r) =2 X™(r)|*}dr for t€[0,T].
0

Hence an application of Gronwall’s lemma with C' =0, u(t) = 2 (T+d) K,,, and v(¢)
= E{| 1 X™ () —, X (¢)||?} (which is continuous by continuity of ; X(™ and ,X (™

together with the bounded convergence theorem) gives v(t) =0. O
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Exercise 219. Let diag(z) = diag(zy,...,,) denote the diagonal R, ,-matrix
with diagonal entries zi,...,z, for (z1,...,2,) € R". Solve the following non-
diffusion type multidimensional SDE for the so called multidimensional stochastic
ezponential {€(X)(t)}ieo,r) of an R*-valued It6 process {X (¢)}+epo,r

dE(X) () = diag (E(X)(H) dX (t) for t€[0,T], &£(X)(0)=1.

19.4 Strong existence

Definition 19.14. The coefficients p: [0, T|xR* = R* and 0 : [0, T]xR* = R, 4 of
the multidimensional SDE (19.2) are said to satisfy a global linear growth condition
iof there exists a constant C' > 0 such that

n d
Ipt2) P+ 0t 2)* < C(1+]z]?) for t€[0,T] and z €R".

i=1 j=1

Theorem 19.15. If the coefficients of the multidimensional SDE (19.2) satisfy
a local Lipschitz condition and a global linear growth condition, then there exists a
strong solution to the SDE for every given BM B and any given initial value X, that

18 strongly unique.

Proof. As we have uniqueness by Theorem 19.13 it is sufficient to prove existence.
Further, it is sufficient to prove existence for any square-integrable initial value
E{||Xo||?} < oo by the truncation argument we used in the proof of Theorem 12.3,

recall Exercise 131. Now consider a Picard-Lindeldf iteration where Xy(t) = X, and

Xip1(t) = Xo + /t,u(r, Xi(r)) dr + /ta(-,Xk) dB for te[0,T], (19.5)

for £ > 0. To establish that the process Xy;; on the left-hand side of (19.5) is well-
defined it is sufficient to show that the process X on the right-hand side satisfies

E{ sup ||Xk(t)||2} < 0, (19.6)

te[0,T]

because by analogy with (12.4) the global linear growth then gives

E{/Ot oii(r, Xk(r))er} < /OtC(l+E{||Xk(r)2||}) dr < 0o for te0,T],

so that 0;;(-,X;) € Erfori=1,...,nand j=1,...,d, while by analogy with (12.5)

1/2

Bf [ utrXeolar} < vT [ [eqemgmima] <o o e
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so that fOT | i (r, X (r)| dr < oo with probability 1 for i =1,...,n. Now, (19.6) holds
trivially for k¥ = 0 since E{||X||*} < oco. Further, if (19.6) holds for a certain k € N,
then by analogy with (19.4), (19.5) and the elementary inequality (z + ¥y + z)?
322+ 392+ 3 2% together with Doob’s maximal inequality and isometry give

E{ sup || Xee1(s)[1?}
s€[0,t]
2
< 3B(IX[*) + 3B su }

s€[0,t]

| e xio | ot xan

2
} +3 E{ sup
s€[0,t]

< 3B{||X,|*} + (3T +124) / O (1+B{IX,(n)[I?}) dr

<D+D/ sup || Xg( )||2}ds for t€[0,T],
r€[0,s]

(19.7)

where D = 3E{X?} + (3T+12d) (TC+C). Hence (19.6) holds for k+1, so that (19.6)
holds for all k£ € N by induction. In fact, recalling Exercise 132, from (19.7) we get
by iteration the following stronger version of (19.6)
E{ sup || Xu(s )||2} < (DV1)ePt for te[0,T] and k> 0. (19.8)
s€[0,t]

Now assume that a global Lipschitz condition holds, that is, a local Lipschitz
condition where we may choose the Lipscitz constant K, not to depend on m. We
will relax the global Lipschitz condition to a local Lipschitz condition later. By
application of the arguments used to obtain (19.7) [this time using the inequality
(x+y)? <22%+2y? instead of (z+y+ 2)* < 32°+3y?+32?%, we then readily get

E{Ss?op [ Xes1(s) = Xe(s)] } / {Tsel[lol,js]HXk(T)—Xk1(7‘)”2}d8 (19.9)

for t € [0, 7] and k € N, where L = (27'+8d) K, recall Exercise 133. Using (19.6) it
therefore follows using induction by analogy with (12.9) and Exercise 134 that

k
E{ sup || Xk+1(s) (s)] } LT) for t€[0,T] and k€N,  (19.10)

s€[0,¢]
for some constant M < oo. Using (19.10) in turn we may conclude by the same
arguments that were employed in the proof of Theorem 12.3 that there exists an
R"-valued stochastic process {X (¢)}scjo,7] that is continuous with probability 1 such
that supsepo.r) [| Xk(t) — X (¢)[| = 0 as k — oo with probability 1, and such that

H } 2M62LT

E{ sup ||X(t)||2} < oo with E{ sup || X (t) (19.11)

t€[0,7T te[0,T

for k € N. Recalling (19.5) and (19.6) it follows that the It6 process
t t
Y(t) = Xo +/ ,u(r,X(r))dr—i-/ o(-,X)dB for t€[0,T]
0 0
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is well-defined. In order to establish the existence of a solution it is therefore sufficient
to show that P{X(¢) =Y (¢) for t € [0,7]} = 1. However, by an obvious version of
(19.9) together with (19.11), we have

QM LT T
ok

E{ s HY(t)—Xk+1(t)H2} < L/OTE{ sup ||X(3)—Xk(s)|\2}dt <

tel0,T s€[0,t

for £ € N. From this in turn together with (19.11) we readily get P{X =Y} = 1.
It remains to show how to relax the global Lipschitz condition to a local Lipschitz

condition. To that end write £ = z/||z|| and consider the truncated coefficients

t f < o(t,x) for ||z||<m
y gy = 4 B T llal<mo (t,2) lzlf<m
wu(t,mz) for ||z||>m o(t,mz) for ||z||>m

The truncated coefficients u(™ and o™ satisfy a global linear growth condition with
the same growth constant C' as the non-truncated coefficients, and a global Lipschitz
condition with global Lipschitz constant 2K, where K, is the local Lipschitz constant
for the non-truncated coefficients, see Exercise 220 below. We may now finish off the

proof of the theorem in the same way as we finished off the proof of Theorem 12.3. O

Exercise 220. Show that the coefficients (™ and ¢(™ in the proof of Theorem
19.15 satisfy a global linear growth condition with the same growth constant C
as the coefficients p and o, and that they satisfy a global Lipschitz condition with

Lipschitz constant 2K, where K, is the local Lipschitz constant for ;4 and o.

19.5 Paul Lévy’s characterization of BM

Theorem 19.16. (PAUL LEVY’S CHARACTERIZATION OF BM) An R"-valued
stochastic process { M (t)}repo,r) each component {M;(t)} e, @ =1,...,n, of which
s a continuous local martingale is an R"-valued BM if and only if it holds that
[M;, M;](t) = 6(i—j)t for t€[0,T), fori,j=1,...,n.

Proof. Assume that [M;, M;|(t) = é6(i—j)t for t € [0,T], for 4,5 =1,...,n. Let
(-, -) denote the inner product on R", pick a constant # € R" and define

Yl(t):/OtZldw,M) and Yg(t):/otZQd(G,M> for t€ [0, ],

where Z;(t) = cos({0, M(t))) ezl?I*t and Z,(t) = sin((6, M (t))) ez’ for ¢t € [0, T].
[Note that {(6, M(t))}cjo,r) is a continuous local maringale.] As |Z;(t)],[Z>(t)| <
esl?I°T and d[(, M)](t) = ||0||%d¢ for ¢ € [0, T], we have Zy, Zs € E({8, M))r, so that
Y; and Y, are martingales. Further, 1t6’s formula Theorem 16.16 shows that
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A7 () = %||0||2Z1(t) dt — Zo(t) d(0, M(2)) — %Zl(t) d[(0, MY](£) = —dYs(b),

1 1
dZ(t) = S 101° Za(t) dt + Z1(t) {9, M (1)) — 5 Zo(2) d[(6, M)](t) = Y7 (1)-
Hence Z; and Z, are martingales (as Y; and Y, are martingales). It follows that
E{c OO £} = B{Z,(1)| £} +iB{Zo(t) | F,} = eOME+H0IEs
for 0 <s<t<T, which in turn (as M is adapted) by rearrangement gives

E{c0MO-MO) | £} = o 310PC9  and  E{OMO-MO = o HOPE)

for 0 < s <t <T. From this we may finish off the proof of the theorem in exactly

the same manner as we used (10.1) to finish off the proof of Theorem 10.1. O

Exercise 221. Prove the implication to the right in Theorem 19.16.

19.6 Martingale problems

Definition 19.17. The diffusion matrix of the SDE (19.2) is the function a :
[0, T]xR* =Ry, given by
d

a;;(t,z) = Zalktx)ajk(tfv) for (t,z) € [0,T|xR"*, for i,j=1,.
k=1

Definition 19.18. The generator of the SDE (19.2) is the differential operator

(Aef)(z Z“Z (t, ) )+ Z az’j (t,z) fara; (@) for f € C*(R"). (19.12)

1,j=1

Definition 19.19. A continuous and adapted R™-valued stochastic process {X (t)
}eeqo,r is a solution to the local martingale problem associated with the generator A,
in (19.12) if for any f € C*(R™) the following stochastic process is a continuous local

martingale

{f(X(t)) - rxo) - [ (Arf)(X(r))dr} . (19.13)

t€[0,T1]

Theorem 19.20. A continuous and adapted R"-valued stochastic process {X (t)
Yeepo,r @5 a weak solution to the SDE (19.2) if and only if X(0) =p Xo and X is a

solution to the local martingale problem associated with the generator A; in (19.12).
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Proof. Let {X(?)}+c[o,7] solve the local martingale problem associated with the
differential operator A; in (19.12). Taking f(z) =x; in (19.13) we see that

{M,-(t)}te[o,T]:{X,-(t)—X,-(O)—/Oui(r,X(r))dr} =1, (19.14)

t€[0,T1]

are continuous local martingales. Hence we may apply the continuous local martingale

version of the Ito formula Theorem 19.5 to conclude that

dF(X () (Atf)(X( )) d
=D _[L(X() Z v (X)X X)) — (AS)(X (D) db

:Zf”l“(X( Z ! (X)) (d[ My, My)(1) — ai (1, X (2)) dt)

for t € [0,T], for f € C?*(R*). As X solves the local martingale problem and the

processes in (19.14) are continuous local martingales, it follows that

{ / Z " (X)) ([, My)(r) — as(r, X (7)) dr)} (19.15)
i,j=1 t€[0,T]
is a continuous local martingale. But as this process has finite variation it has zero
quadratic variation and is thus zero by Corollary 16.5. From this in turn we get
¢
[M;, M;](t) = / a;;(r,X(r))dr for te[0,T], fori,j=1,...,n, (19.16)
0
see Exercise 222 below. Hence it remains to deduce from (19.16) that

M(t) = /Ota(-,X) dw for t€]0,T], (19.17)

for some R¢-valued BM {W (t) }sepo,r], as (19.14) together with (19.17) give (19.2).
We will prove (19.17) in the particular case when n =d, as that turns out to give no
loss of generality, see Exercise 228 below.

As the diffusion matrix a is symmetric and non-negative definite, see Exercise 223

below, there exists an orthogonal R,,-matrix valued process {q(t)};c[o,r] such that

q(t)"a(t, X (1)) q(t) = q(t) "alt, X (1)) q(t) = diag(M(t), ..., Au(t)) for ¢€[0,T7,

(19.18)
for some non-negative stochastic processes {A;(t)}icjo,r), - - - » {An(t) }eepo,r)- Here the
processes ¢ and A1, ..., \, are measurable and adapted, see Exercise 224 below. Now

we may define continuous local martingales
{N:(t) }eepo.r) = {Z/ q;”de} for i=1,...,n. (19.19)
t€[0,T
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This is so because ¢(t);; < >y, q(t)z; = 1for t€[0,T] and k,i=1,...,n, so that

/OT i d[My] < /OT d[My] = [Mi](T) < o0,

giving qx; € P(My)r. From (19.16) and (19.18) together with Corollary 16.9 we get

N, N Z/qk,qmd[Mk,Mg]—(S(z— )/ (r)dr for t€[0,T], (19.20)
k=1

fori,5=1,...,n. For the R*-valued process with components

R t 1 t
(W) heor = {/ Tintrro0) — e ANy (r) + /1 1o} dBy(r )} (19.21)
t€[0,T] ARENORY ) (Mi(r)=0} o

for + = 1,...,n, Paul Lévy’s characterization of BM Theorem 19.16 together with
(19.20) shows that W is an R*-valued BM, see Exercise 225 below. Further, we have

1
{/ \E,.dw,.} = {Ni() by for i=1,...,n. (19.22)
0 t€[0,17]

Now note that as ¢;; <1 for k,i=1,...,n it follows from (19.20) that

T T
| awionae< [ awde<oo,
0 0

so that x; x = ¢ g/ Ak € Pr for k,i=1,...,n. Hence (19.19) and (19.22) give

Z/ Tip AWy = Z/ Qi g ANy = Z/ Gipjx AM; = M;(t) (19.23)

k,j=1

for t €[0,T], for i=1,...,n. Further, note that x = ¢diag(y/A1, ...,V A, ) satisfies

z(t) 2(t)" = q(t) diag (M (2), ..., Aa(t)) g()" = a(t, X (t)) = o, X (1)) o (t, X (2))"
(19.24)
for t € [0,T]. It follows that there exists an R,,,-matrix valued measurable and
adapted process {R(t)}scpor) such that R(¢)R(t)" = I and o(t, X(t)) = x(t)R(t) for
t €10, T], see Exercise 226 below. Hence the following process

t
{W (@) hepo,r) = { / RY dW} (19.25)
0 t€[0,T]

is well-defined and is an R"-valued BM by Paul Lévy’s characterization of BM The-
orem 19.16, see Exercise 227 below. Recalling (19.23) we now get (19.17) as

M(t) = /OtxdW = /OtJJRRtr dW = /Oto(r,X(r)) dW(r) for t€|0,T)]. O

Exercise 222. Show that the fact that the process (19.15) is zero implies (19.16).

143



Exercise 223. Show that the diffusion matrix a(¢,z) is symmetric and non-
negative definite for each (¢,z) € [0, T] xR".

Exercise 224. Show that the processes g and Aq,..., A\, in (19.18) are measur-
able and adapted.

Exercise 225. Show that the process W in (19.21) is an R"-valued BM.

Exercise 226. Show that (19.24) implies existence of an R,|,-matrix valued me-
asurable and adapted process { R(t)}icjo,r] such that RR" = I and o( -, X) = zR.

Exercise 227. Show that the process W in (19.25) is an R"-valued BM.

Exercise 228. With the notation and setting of the proof of Theorem 19.20,

explain why it gives no loss of generality to prove (19.17) when n = d only®.

Exercise 229. Show how the implication to the right in Theorem 19.20 follows

from the It0 formula Theorem 19.5.

Corollary 19.21. If {X(t)}icjo,r) is a solution to the SDE (19.2) with the generator
Ay in (19.12) where the coefficient o is locally bounded, then for each f € CZ(R™) the

following stochastic process is a continuous martingale

{f(X(t)) - rxo)- [ (AJ)(X(r))dr} | (19.26)

t€[0,T]

Exercise 230. Prove Corollary 19.21.

Definition 19.22. A continuous and adapted R™-valued stochastic process {X (t)
}te[o,T] is a solution to the martingale problem associated with the gemerator A; in
(19.12) if for each f € CZ(R"™) the process (19.26) is a continuous martingale.

Theorem 19.23. A continuous and adapted stochastic process {X(t)}icor is a
weak solution to the SDE (19.2) with a locally bounded o coefficient if and only if
X(0) =p Xo and X is a solution to the martingale problem associated with the
generator Ay in (19.12).

28Gee also Karatzas and Shreve: “Brownian Motion and Stochastic Calculus”, pages 170-172 and 316-317.

”

In particular note the paragraph “It suffices ...” at the lower part of page 316.
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Proof. The implication to the right is Corollary 19.21. For the implication to the
left, let X be a continuous and adapted process that solves the martingale problem
associated with A;. By Theorem 19.20 it is sufficient to show that X solves the local
martingale problem associated with A;. To that end, given an f € C%*(R") and an
k €N, pick an f; € CZ(R") that agree with f on the ball {z€R": ||z||<k}. Then

t

00 henn = {000 - £XO) - [ (AIX )

0 t€[0,T
is a continuous martingale. Define a stopping time 7, = inf{t > 0 : || X (¢)|| > k}.
By the continuity of X we have 7, 1 o0 as k£ — oco. Hence it is sufficient to show
that {M(¢ATk)}iepo,r is a martingale for each k € N, where M is the process in
(19.26). However, that is done by exactly the same computation as that in the proof
of Theorem 17.3, which shows that {M(tATy) }eejo,r) = { My (tATk) }eejo,r), Where the

latter process is a martingale by the optional stopping theorem. O

19.7 Weak existence

Lemma 19.242° Let {; X (t) hepo,r1, {2X (t) }eor)s - -~ be continuous R*-valued sto-
chastic processes such that
lim sup P{|[;X(0)|| > A} =0, (19.27)
A—00 k>1

and such that there exist constants C, o, > 0 such that
E{|[:X () =X (s)[*} < Clt—s["**  for 5,t€[0,T] and k€N. (19.28)

There exist a continuous R™-valued stochastic process {X(t)}icjor) and a sequence
{ki}521 € N with k; 1 0o as j — oo such that for each bounded continuous function F':
C([0,T])" = R we have F(y;X) — F(X) as j — oo with convergence in distribution.

Theorem 19.25. (STROOCK-VARADHAN) Consider the generator A; in (19.12)
where the coefficients p and o are bounded and continuous. For each random variable

Xy the martingale problem associated with A; has a solution {X(t)}eor) such that
X(0) =p Xo.

Proof. Given a k € N, define a process {3 X (t) }+co,r] recursively by X (0) = X, and
WX (0 = kX (D) + (X (9) (t— )+ 04X (9) (BO) - BY) for te (£, LIAT),
for =1,2,...,|kT]. Notice that, writing p(0) = 04(0) = 0 and

p() = p(E X (1) and ou(t) = o (£ X (L) for te (£, EAAT]

Gee e.g., Karatzas and Shreve: “Brownian Motion and Stochastic Calculus”, Section 2.4.B.

145




for £ =1,2,...,|kT|, the process ;X solves the non-diffusion type SDE
t t
kX (t) = X (0) +/ p(r) dr —|—/ ordB for t€[0,T], ,X(0)=X, (19.29)
0 0

In order to apply Lemma 19.24 to the processes {1.X (%) }tcjo,r1, {2X (¢) }eeo,rs
we note that they are continuous martingales by (19.29) and that (19.27) holds since
kX (0) = Xy for £ € N. Further, (19.28) holds with o = 4 and = 1 since (19.29)
together with Exercise 231 below and the Burkholder-Davis-Gundy inequality for
p =4 give (see also Exercise 195)

ol [ [}
S8E{ } SE{ /StokdB } 2
([ (o] e s (fonira])

E{||1cX — kX ()]}

=1 j=1
<8 <T2 sup  ||u(r, z)||* + nd*C(4) Z Z sup 0 (r, :13)4> (t—s)?
(r,x)€[0,T]xR o1 j=1 (ro)ElTIxR

for s,t € [0,7]. Hence Lemma 19.24 shows that there exists a continuous process

{X (t)}tefo,m and a sequence of integers {k;}32; with k; 1 oo as j — oo such that

(f (e, X () = f (5, X () — / (A f) (1, X (1)) dr)g({ij(r)}re[o,s]) (19.30)

converges in distribution as j — co to

(Fx @)= 16 - [ANEO) )a(X 0D rens) (1930

for f € CZ(R"), 0 < s <t < T and any bounded continuous function g : C([0, s])” — R.

In fact, by continuity and boundedness of x4 and o also

(f(ij(t)) - X))~ [ ADEX0) dr)g({ijm}re[o,s]) (19.32)

converges in distribution to the limit (19.31) for f € CZ(R"), 0 < s <t < T and any
bounded continuous g : C([0, s])" — R, where

Zuk £y (Z P nlit) 1) tor pecame)

i,j=1

is the generator of the SDE (19.29), see Exercise 232 below.

It is sufficient to prove that

{rexcon-soeon - [ e ar

t€[0,T]
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is a martingale with respect to the filtration {F;¥};,ci017 generated by X for f €
CZ(R™). By analogy with the proof of Theorem 17.5, this in turn is so if

E{ (f(X(t)) -5 - [ (AN dr)g({X(r)}re[o,s])} —0 (1933)

for any bounded continuous g : C([0,s])® - R, for 0 < s <t < T and f € CZ(R").
However, as (19.29) implies that

{rex®)-sx0) - [ (A DX ar}

te[0,T]

is a martingale with respect to the filtration generated by B for f € CZ(R"), recall
Exercise 198, and as ;X also is adapted to that filtration, it follows that

E{ (mX(t)) - 16X () - [ (oA DX () dr)g({kxm}re[o,s])} —0 (19.34)

for any bounded continuous g: C([0, s])" = R, for 0< s <t <T and f € C3(R"). As
the sequence of random variables indexed by j in (19.32) is uniformly integrable and
converges weakly to the random variable in (19.31), (19.34) implies (19.33). O

Exercise 231. Show that (2?21(2?:1 zi ;)2 <nd*Y 2?21 T} .

Exercise 232. Show that the random variable (19.32) converges in distribution
to the random variable (19.31) when (19.30) does.

Corollary 19.26. (SKOROHOD) If the SDE (19.2) has bounded and continuous

coefficients p and o, then the SDE has a weak solution for each initial value Xj.

Exercise 233. Prove Corollary 19.26.

19.8 Weak uniqueness

Theorem 19.27. (STROOCK-VARADHAN) Consider the generator A; in (19.12)

which is supposed to have a locally bounded o coefficient. Assume that given any
feCER), s€[0,T) and t € (0,T—s] the so called Cauchy problem
dg(r, )
or
has a solution g € Cg([0,t]xR*) N CL2([0, t]xR"). Given an R"-valued random var-
iable Xy a solution {X(t)}co1 to the martingale problem associated with Ay such
that X (0) =p Xo has uniquely determined fidi’s.

+ (Aris9)(x) =0 for (r,x) €[0,t]xR*, g(t,-) =1, (19.35)
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Exercise 234. Prove Theorem 19.27.

Remark 19.28. The Cauchy problem (19.35) has a solution if, for example3,
the coefficients p and o for generator A; in (19.12) are bounded and satisfy a

global Holder condition with a strongly elliptic diffusion matrix a, that is,

0 ¢ > K||€||* for (¢,2)€[0,T]xR" and ¢ € R", for some constant K > 0.

Corollary 19.29. Under the hypothesis of Theorem 19.27 the SDE (19.2) displays

uniqueness for weak solutions.

Exercise 235. Prove Corollary 19.29.

30See e.g., Stroock and Varadhan: “Multidimensional Diffusion Processes”, Theorem 3.2.1.
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