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Abstract
In this thesis we investigate the relationship of the Swedish electricity prices with
outdoor temperatures and the water levels of the reservoirs from the hydro power
plants. We will try to model the dependence between these time series with copulas.
Methods of estimating copula models from the most popular copula families are
described and the methods performances are compared in a simulation study. To
help us see if our estimated copula models have a good fit, goodness-of-fit tests are
performed. We find that several of our procedures on the data improve our models
and that there are copulas that fit well on some of our data sets, especially the data
that pairs the electricity prices and water levels.
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1 Introduction and Background

1 Introduction and Background
Electricity prices have a direct relationship with natural physical conditions such as pre-
cipitation and outdoor temperatures. The water supply in the hydro plants reservoirs
decides how much electricity can be produced and the outdoor temperatures rules how
much electricity we need to heat our households.

In this thesis we will model the dependence between the time series of Swedish elec-
tricity prices, water levels in reservoirs and outdoor temperature by using copulas. Tra-
ditionally the pairwise dependence between variables are modeled with classical bivariate
distributions such as the normal, lognormal and gamma. The problem with this ap-
proach is that the individual univariate distributions of the variables must belong to the
same parametric family. Copulas do not have to deal with this type of problem as the
marginals of a copula can be of different types and also be different from the joint distri-
bution. We shall see that the copula models can capture important dependence features
such as asymmetry and heavy-tail behavior.

The thesis is structured as followed: Chapter 1 describes information about the
Swedish electricity market which will be needed to understand the data we will use for
modeling. Chapter 2 introduces the theory of the mathematical models that this the-
sis employs and Chapter 3 deals with the estimation methods of these models and how
to evaluate them. Chapter 4 presents the results of the modeling which is discussed in
Chapter 5.
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1 Introduction and Background

1.1 The electricity market
The Swedish electricity market has developed significantly and is very different from what
it used to be 15 years ago. In 1996 a legislation was introduced, with a new system mar-
ket that made it possible to produce and trade electricity in competition. The electricity
market consists of several independent players. At one end we have the electricity pro-
ducers that generates and feeds the network with electricity from hydro power, nuclear
power, wind power and thermal power. On the other end are the electricity consumers
which are everything from industries to households. The network owners are responsible
of transmitting the electricity from the producers to the consumers. This is done via the
national grid and regional and local networks. The power trading company are the ones
that sell electricity to consumers. They buy electricity from either the producers directly,
or from an organized market place such as Nord Pool. Nord Pool provides standard agree-
ments between the actors on the market. They have a spot market for physical trading
of financial contracts on the hours for the following 24-hour period. Sweden, Norway,
Finland and Denmark form a joint, open electricity market without border tariffs for spot
trading and the players can trade freely within all four countries [11].

Figure 1: An overview of the electricity market. Source: Svenska Kraftnät [10]

1.2 Influences of the electricity prices
The electricity prices are reflected by its supply and demand and what makes the electricity
trading market unique is the inability to store the asset. Electricity is therefore more or
less directly produced in relation to the demand.

In Sweden, the main sources of energy are from hydro power and nuclear power where
about half of the electricity produced are from hydro power and about half is from nuclear
power. Water from rain and snow is stored in the hydro plants reservoirs and the water
levels are thus highly dependent on the precipitation. When the availability of water is
high the electricity price tend to be low and vice versa. The overall production capacity is
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1 Introduction and Background

affected by the water levels and also the number of nuclear power plants that are online,
as they sometimes need downtime for maintenance.

The lead consumers of electricity are households that need heating and industries that
are running. The demand varies over time as most industries only run during the day
and are inactive at night and weekends. As for the households the people also consume
according to the daily time where they consume less when they are out for work. Ad-
ditionally the yearly season affects our need for electricity as the outdoor temperature
decides how much is required to heat our homes. Low temperatures during the winter
raises the demand which in turn raises the electricity prices. The most commonly rec-
ognized seasonal periods are thus the 24-hour period, the 7-day period and the 52-weeks
period. Figures 2 demonstrates how the electricity prices varies throughout the day and
figure 3 compares the prices and outdoor temperatures in the year 2012.
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Figure 2: A plot of hourly electricity prices in first week of December 2012. The graph
demonstrates how the prices relate to the hour of the day.

Electricity is also priced with respect to geographical location. Since most of the
electricity is produced in the north of Sweden, the electricity needs to be transferred
for long distances through the power grids to the souther regions where the population
is denser and have a higher demand of electricity. This transmission leads to different
prices between the regions. As a result, Sweden has been divided into four price regions
(SE1-SE4).

Another factor that affects the electricity prices are political decisions. With the global
warming at large, EU introduced in 2005 a new system for the electricity producers
with the goal of minimizing the emission of greenhouse gases such as carbon dioxide.
The system of trading with emission rights changed the behavior of the electricity prices
drastically and lead to a significant increase of which is demonstrated in Figure 4.
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Figure 3: Electricity prices in 2012 (top) and temperature [Gällivare, Sweden] (bottom).
As we can see, the prices are significantly higher during the winter season.
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Figure 4: The log-scaled electricity prices from 1996 to 2012. The vertical line marks year
2005 when the emission legislation was introduced. We see a clear distinction in price
behavior after 2005.
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2 Theory

2 Theory
This chapter presents the theory that is necessary for modeling the dependence between
time series with copulas. It starts with a short introduction to time series with seasonality,
followed by the main topic, copulas. The fundamental definitions and theorems of copulas
are explained and thereafter the different types and classes of copulas are presented.

2.1 Time Series with trend and seasonal components
A time series is a set of observations xt that are observed at a specific time t. In this
thesis we will consider a discrete times series, where the set of times that are recorded is
a discrete set T0. To investigate a time series, a suitable mathematical model needs to be
selected in order to consider the unpredictability of the data. The time series xt can then
be assumed to be a realization of a stochastic process {Xt, t ∈ T}. A stochastic process
is a family of random variables {Xt, t ∈ T} defined on a probability space (Ω, F , P ). The
functions {X(w), w ∈ Ω} on T are then called the realizations of the stochastic process
{Xt, t ∈ T}.

When modeling with time series, it is important to be aware of possible seasonal affects
on the data and make proper adjustments in the case of its presence. We have previously
mentioned how electricity prices are affected by the date and time. A common model for
times series that contemplate these factors, is the additive model [2],

Xt = mt + st + Yt. (1)

The time series Xt in Equation 1 is decomposed into three components. The trend com-
ponent mt is a slowly changing function. The seasonal component st is a periodic function
with a known period d. A periodic function st with period d is a function with the prop-
erty that st = st+d and ∑d

j=1 sj = 0. The final component Yt is a random component that
is weakly stationary. A time series {Yt, t ∈ Z} is said to be stationary in the weak sense if

(i) E|Yt|2 < ∞, for all t ∈ Z;

(ii) E(Yt) = M , for all t ∈ Z;

(iii) Cov(Yr, Ys) = Cov(Yr+t, Ys+t), for all r, s, t ∈ Z.

By removing the trend and seasonal components, further analysis and model fitting are
easier accomplished on the stationary series Yt. A method of estimating and removing
the deterministic components mt and st is explained in Section 3.1.
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2 Theory

2.2 Introduction to copulas
Copulas are parametrically specified joint distributions generated from given marginals.
They have only quite recently become popular to statisticians and is now widely used
in many fields such as finance, actuarial sciences and biostatistics for its wide range of
dependence structures and flexibility in modeling. The definition is as follows:

Definition 1. A 2-dimensional copula is a function C : I2 → I, where I = [0, 1], with the
following properties:

1. C(u, 0) = 0 = C(0, v) for all u, v ∈ I;

2. C(u, 1) = u and C(1, v) = v for all u, v ∈ I;

3. C(u2, v2) − C(u2, v1) − C(u1, v2) + C(u1, v1) ≥ 0 for all u1, u2, v1, v2 ∈ I such that
u1 ≤ u2 and v1 ≤ v2.

In other words, C is a 2-dimensional cumulative distribution function with marginals that
are uniformly distributed over [0, 1].

The definition is expandable to the multivariate case and the definition of a n-dimensional
copula is analogous to the 2-dimensional. However for simplicity and readability, the the-
ory and examples in thesis will be for the bivariate case unless otherwise stated. The
density c(u, v) of copula C(u, v) is written as

c(u, v) = ∂2C(u, v)
∂u∂v

.

The graph of a copula is a continuous surface within the unit cube I3 with vertices
(0, 0, 0), (1, 0, 0), (0, 1, 0) and (1, 1, 1). Another way to present the graph of a copula is
with a contour diagram which plots its level curves.

An essential property of copulas explained by Sklar, that sets the foundation of copula
modeling is described in the following theorem.

Theorem 1 (Sklar’s theorem). Let H be a joint distribution function with marginal func-
tions F and G. There then exists a copula C, such that

H(x, y) = C(F (x), G(y)). (2)

Conversely, if C is a copula and F and G are distribution functions, then the function
H(x, y) = C(F (x), G(y)) is a distribution function with margins F and G. Furthermore
if F and G are continuous, then C is unique.

Sklar’s theorem explains the relationship between bivariate distributions and their
univariate marginals. When given two arbitrary marginals, we can find a bivariate dis-
tribution that "couples" them, simply by plugging a couple of univariate margins into a
function which satisfies the copula definition. This eliminates restrictions the traditional
method of constructing multivariate distributions has where the margins need to be of the
same type. With Sklar’s theorem the marginal distributions do not need to be in any way
similar to each other. It also offers the flexibility when modeling in that the estimation
problem can be decomposed in two steps; first by estimating the marginals and then the
copula.

Sklars theorem is expressed in terms of random variables in the following manner;
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Theorem 2. Let X and Y be continuous random variables with distribution functions
F (x) = P (X ≤ x) and G(y) = P (Y ≤ y), respectively. Then there exists a unique copula
C such that

P (X ≤ x, Y ≤ y) = C(F (x), G(y))

where C(u,v) is a distribution of the pair (U, V ) = (F (x), G(y)) whose margins are uniform
on the unit interval [0, 1].

The copula for two independent random variables has the form C(u, v) = uv and is
called the product copula. Figure 5 shows the graph and contour diagram of the product
copula.

Figure 5: Graph and contour diagram of the product copula
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An important property that will be of use for our inference is that copulas are invariant
under strictly increasing transformations.

Theorem 3. Let X and Y be continuous random variables with copula C. Then if g and
h are strictly increasing functions on the range of X and Y , the random variables g(X)
and h(Y ) have the exact same copula C. Thus C is invariant under strictly increasing
transformations of X and Y .

2.3 Dependence
To measure the dependence between random variables, we shall look at a rank based
measure called Kendall’s tau which is defined by concordance. A pair of random variables
X and Y are concordant if "large" values of one of the random variables is associated with
"large" values of the other, and "small" values of one them is associated with "small" values
of the other. More formally, let (xi, yi) and (xj, yj) be two observations from a random
vector (X, Y ). (xi, yi) and (xj, yj) are concordant if xi < xj and yi < yj or if xi > xj and
yi > yj. On the other hand (xi, yi) and (xj, yj) are said to be discordant if xi < xj and
yi > yj or if xi > xj and yi < yj.

Now to define the sample version of Kendall’s tau, let {(x1, y1), ..., (xn, yn)} be a sample
from a vector (X, Y ) of continuous random variables and let c be the number of concordant
pairs and d the number of discordant pairs. The Kendall’s tau for the sample, τn is

τn = c − d

c + d
.

Kendall’s tau range from −1 to 1, where a positive value notions that large or small values
of random variables tend to occur together while a negative value expresses that large
values of one variable occurs with small values of the other variable.

Kendall’s tau for random variables X and Y with copula C denoted as τ is defined by

τ(C) = 4
∫∫

C(u, v)c(u, v)dudv − 1,

where c(u, v) = ∂2C(u, v)/∂u∂v, assuming that this derivative exists.

2.4 Archimedean copulas
Archimedean copulas is a very important class of copulas with many nice properties that
makes them suitable for modeling. Their popularity comes from that

• they contain a large variety of families that together captures a wide range of de-
pendences;

• the distribution functions have explicit formulas;

• they are easy to estimate.

The construction of Archimedean copulas is explained by the following. Let ϕ be a
continuous, convex and strictly decreasing function from I to [0, ∞] such that ϕ(1) = 0.
Moreover let ϕ[−1] be the pseudo inverse which is defined as

ϕ[−1](t) =
{

ϕ−1(t), if 0 ≤ t ≤ ϕ(0).
0, if ϕ(0) ≤ t ≤ ∞.

18



2 Theory

There exists copulas C(u, v) that can be written in the form of

C(u, v) = ϕ[−1][ϕ(u) + ϕ(v)]. (3)

Copulas that can be constructed in this form are the Archimedean copulas. If a copula
C can be defined as in Equation 3, then the function ϕ is called the generator of C.

2.5 Examples of bivariate copula families
When modeling with copulas, C is unknown but often assumed to belong to a parametric
family

C0 = {Cθ : θ ∈ Θ}.

Θ is an open subset of Rp for some integer p ≥ 1 and Cθ is a copula for every θ ∈ Θ. A
copula family is thus characterized by this vector of parameters θ. We will now present
the bivariate copula families that we will use for our modeling. They have been chosen
because they are easy to work with, but can still capture different types of structures. All
of them with the exception of the Student’s t copula have only one parameter where as
the Student’s t have two. For more examples of families, Nelsen [12] provides an extensive
compendium of the most popular ones.

• The Gaussian family, also known as the Normal family, is given by

Cθ(u, v) = Nθ(Φ−1(u), Φ−1(v))

= 1
2π

√
1 − ρ2

∫ Φ−1(u)

−∞

∫ Φ−1(u)

−∞
exp

[
−(s2 − 2ρst + t2)

2(1 − ρ2)

]

dsdt,

where Φ denotes the standard normal distribution function and Nθ is the standard
normal bivariate distribution with correlation parameter θ which is restricted in
(0, 1). The Gaussian copula is symmetric and generates the standard joint normal
distribution function whenever the margins are standard normal. Figure 6 shows a
visual example of the Gaussian copula distribution.

• The Student’s t copula family has two parameters and is defined by

Cθ,ν(u, v) = Tθ,ν(T −1
ν (u), T −1

ν (v))

=
∫ T −1

ν (u)

−∞

∫ T −1
ν (v)

−∞

1
2π

√
1 − θ2

(

1 + s2 + t2 − 2ρst

ν(1 − ρ2)

)− ν+2
2

dsdt,

where Tν is the univariate Student’s t distribution function with ν degrees of freedom
and Tθ,ν is the bivariate Student’s t distribution with correlation parameter θ and
ν degrees of freedom. The range of θ is in (0, 1). The parameter ν controls the
heaviness of the tails. When the number of degrees of freedom diverges to infinity,
the copula converges to the Gaussian copula. An advantage with the Student’s t
copula over the Gaussian is that it captures more observations in the tails, where
the extreme dependent values are observed.

• The Frank family is an Archimedean family given by

Cθ(u, v) = −1
θ

log
(

1 + exp(−θu) − 1)(exp(−θv) − 1)
exp(−θ) − 1

)

.
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Figure 6: A plot of the Gaussian copula distribution with θ = 0.5

The dependence parameter may take on any real value (−∞, ∞). When θ = 0,
the copula corresponds to the product copula. The main advantage with the Frank
copula is that it can take on negative dependence between the marginals unlike
some others. It is also symmetric, however the dependence in the tails are weak
compared to the Gaussian and Student’s t [15]. The generator of the Frank copula
is

ϕθ(t) = − log e−θt − 1
e−θ−1 .

• The Clayton family also belongs to the Archimedean class and is defined as

Cθ(u, v) =
[
max{0, u−θ + v−θ − 1}

]−1/θ
.

θ has ranges in [−1, ∞)\{0} and the marginals become independent as θ approaches
0. The Clayton copula has the generator ϕθ(t) = 1

θ (t−θ − 1).

• The third Archimedean family that we will study is the Gumbel copula.

Cθ(u, v) = exp
[
−

(
(− log(u))θ + (− log(v))θ

)1/θ
]

.

Here θ ∈ [1, ∞). The Gumbel does not allow negative dependence. It has a strong
right tail dependence and weak left tail dependence and is a good choice if outcomes
are strongly correlated at high values and less correlated at low values. The Gumbel
generator ϕ(t) = (− log t)θ.
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Figure 7: Examples of scatterplots with sample size 200 from the five copula families.
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Figure 8: Examples of the densities of the five copula families.

22



2 Theory

Gaussian copula where θ=−0.5 Student t copula where θ=−0.5 and ν = 3

Frank copula where θ=1 Clayton copula where θ=1

Gumbel copula where θ=2

Figure 9: Examples of the contour plots of the five copula distributions.
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2.6 Mixed copulas
A mixed copula combines different copulas with the intention of creating more general
dependence structures. The mixed copula has the form of

Cmix(u, v, β, θ) = β1C1(u, v, θ1) + ... + βsCs(u, v, θs),

where β = (β1, ..., βs) are the weight parameters with the conditions β1 + ... + βs = 1
and 0 ≤ βk ≤ 1, k = 1, ..., s. The sequence {Ck(u, v, θk}s

k=1 are known copulas with
parameters {θk}s

k=1. θ = (θ1, ..., θs) are called the associate parameters in the mixture
copula and that controls the degree of dependence. The weight parameters or the shape
parameters β = (β1, ..., βs) decides the shape of the dependence and how much load the
respective copulas have in the mixed copula. The higher the value of θj, the more the
j-th copula is appropiate for the data. A mixture of copulas is also a copula. For this
study we will consider a mixed copula that includes two copulas,

Cmix(u, v, β, θ1, θ2) = βC1(u, v, θ1) + (1 − β)C2(u, v, θ2).

The copulas C1 and C2 will be from the five families previously described.

2.7 Extension to trivariate copulas
In this section we will show how copulas work in the three dimensional case. Most of the
definitions, theorems and inference methods from the earlier sections are analogues to the
trivariate case. For example Sklar’s theorem in the trivariate case is expressed in that a
3-dimensional continuous distribution function F with marginal distributions F1, F2 and
F3, we can find a 3-dimensional copula C satisfying

F (x1, x2, x3) = C(F1(x1), F2(x2), F3(x3)).

2.7.1 The copula families in three dimensions
Recall how bivariate Archimedean copulas are constructed as showed by Equation 3 in
Section 2.4.

C(u, v) = ϕ[−1][ϕ(u) + ϕ(v)].
We can include a third marginal distribution as trivariate Archimedean copulas with
generator ϕ are represented analogously by

C(u, v, w) = ϕ[−1](ϕ(u) + ϕ(v) + ϕ(w)).

The requirement is that ϕ−1 has to be completely monotonic on [0, ∞] [3]. The corre-
sponding trivariate Archimedean copulas that we are working with have one dependence
parameter as well.

We are now ready to present our copula families in three dimensions:
• Let θ be a symmetric, positive definite 3-dimensional matrix with diagonal elements

1, and Φθ the standardized trivariate normal distribution with correlation matrix
θ. The trivariate Gaussian copula is defined as:

Cθ(u, v, w) = Φθ(Φ−1(u), Φ−1(v), Φ−1(w)),

where Φ−1 is the inverse of the standard normal univariate normal distribution
function.
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• Let θ be a symmetric, positive definite 3-dimensional matrix with diagonal elements
1 and Tθ,ν be the standardized trivariate Student’s t distribution with correlation
matrix θ and ν degrees of freedom. The trivariate Student’s t copula is defined as:

Cθ,ν(u, v, w) = Tθ,ν(T −1
ν (u), T −1

ν (v), T −1
ν (w)),

where T −1
ν is the inverse of the univariate Student’s t distribution with ν degrees of

freedom.

• The generator for the Frank copula is

ϕ(u) = log
(

e−θu − 1
e−θ − 1

)

,

with
ϕ−1(t) = −1

θ
log(1 + et(e−θ − 1)),

which is completely monotonic for θ > 0. This gives the three dimensional Frank
copula

C(u, v, w) = −1
θ

log
(

1 + (e−θu − 1)(e−θv − 1)(e−θw − 1)
(e−θ − 1)2

)

, θ > 0.

As opposed to the bivariate case, the dependence parameter for the Frank copula
can only be positive.

• The generator for the Clayton copula is given by ϕ(u) = u−θ − 1, with inverse
ϕ−1(t) = (t + 1)− 1

θ . It is completely monotonic for θ > 0. The copula is

C(u, v, w) =
[
u−θ + v−θ + w−θ − 2

]− 1
θ , θ > 0.

• The Gumbel copula has generator ϕ(u) = (− log u)−θ and the inverse ϕ−1(t) =
exp(−tfra1θ completely monotonic if θ > 1. This gives the copula

C(u, v, w) = exp
{

−
[
(− log u)θ + (− log v)θ + (− log w)θ

] 1
θ

}
, θ > 1.
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3 Method
In this chapter we will present the methods of copula modeling. First we explain how to
deal with the trend and and seasonal components in time series. Thereafter we describe
methods of estimating copula models and how to evaluate them with a goodness-of-fit test.
The chapter is concluded with a description of the data to be analyzed in our modeling.

3.1 Estimation of trend and seasonal components in time series
Recall the additive model of a time series:

Xt = mt + st + Yt.

Brockwell and Davies [2] suggests a method of estimating the trend and seasonal com-
ponent with a moving average technique which goes as follows: Suppose that we have
observations of a time series {x1, x2, ..., xn} and assume that there exists a trend and
seasonal component. In the first step the trend component is estimated with a symmetric
moving average of the series xt. For an even period d and an integer q such that 2q = d,
mt is estimated by

m̂t = (0.5xt−q + xt−q+1 + ... + xt+q−1 + 0.5xt+q)/d, q < t ≤ n − q.

If d is odd such that 2q + 1 for some integer q, we instead estimate mt by

m̂t = 1
2q + 1

q∑

j=−q

xt+j q + 1 ≤ t ≤ n − q.

Since xt is not observed for t ≤ 0 and t > n, we define xt := x1 for t < 1 and xt := xn for
t > n. The next step is to the estimate seasonal component st, which we will denote by
ŝt. For k = 1, ..., d define the weight function wk as the average of the deviations

{x(k + jd) − m̂(k + jd) : q < k + jd ≤ n − q}.

We estimate the seasonal component by

ŝk = wk − 1
d

d∑

i=1
wi, k = 1, ..., d

and ŝk = ŝk = ŝk−d, k > d. Now we deseasonalize our data to get the series dt = Xt − ŝt.
We should now reestimate the trend, m̃t from the non-seasonal data {dt}. The rees-

timation of the trend is done in order to have a parametric form for the trend that can
be extrapolated for the purpose of prediction and simulation. The estimated random
component is given by

Ŷt = xt − m̃t − ŝt, t = 1, ..., n.
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Figure 10: Estimated seasonal component of hourly electricity prices in 2012 with period
24.
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3.2 Estimating copula models
Suppose that we have an independent and identically distributed (IID) random sample
(X1, Y1), ..., (Xn, Yn). The sample is assumed to be drawn from a copula distribution
C(F (x), G(y)), with associated marginals F and G, and belongs to a parametric family
{Cθ : θ ∈ Θ} where θ is a q-dimensional parameter.

Following Sklar’s theorem, the model estimation problem can be decomposed in that
the marginals are estimated independently of the copula. Selecting the copula is done
by first specifying a parametric family and then estimating its dependence parameter.
We will present two methods to estimate the dependence parameter θ; the pseudo max-
imum likelihood estimate and the minimum distance estimate. These methods will be
investigated in a simulation study to see their effectiveness and accuracy.

3.2.1 Pseudo observations

When modeling with copulas, the marginals F and G are often unknown. The natural
replacement are their respective empirical distribution functions. A rescaled version of
the empirical distribution will be used and is defined as

F̂n(x) = 1
n + 1

n∑

i=1
1(Xi ≤ x), Ĝn(y) = 1

n + 1
n∑

i=1
1(Yi ≤ y).

The scaling factor of 1/(n + 1) instead of the traditional 1/n is to avoid problems with
the log-likelihood function, that will later be introduced, to blow up at the boundary of
[0, 1]2. The transformation of the sample is a collection (U1, V1), ..., (Un, Vn) where

(Uk, Vk) = (F̂n(Xk), Ĝn(Yk)), k = 1, ..., n

and will be called pseudo-observations. This works as a transformation of the data to the
"copula scale", which is the unit cube. The pseudo-observations can be interpreted as a
sample from the underlying copula and the estimation methods and goodness of fit tests
will be based on this. However they are not mutually independent and their components
are only approximately uniform (0, 1). These features must be taken into account when
dealing with any inference based on these transformations.

3.2.2 Empirical copula

A nonparametric and objective representation of the underlying copula is the empirical
copula. For the bivariate case, the empirical copula constructed with pseudo-observations
is defined as followed,

Cn(u, v) = 1
n

n∑

i=1
1(Ui ≤ u, Vi ≤ v), (u, v) ∈ [0, 1]2.

This is a consistent estimation of the true underlying copula C and a weak convergence
of the empirical copula has been shown by Fermanian [5].

3.2.3 Pseudo maximum likelihood estimation

The maximum likelihood estimate is a well known method that is popular for its ef-
ficiency and nice properties. Given an independent and identically distributed sample
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Contour comparison between distribution function and a empirical copula

Figure 11: Contour plot comparison between a Gaussian copula with parameter θ = 0.25
and a empirical copula sample generated from the same copula. The solid lines is the
contour plot from a Gaussian copula and the dashed line represents the empirical copula.

{(Xi, Yi)}n
i=1 from a distribution Cθ(F (x), G(y)), the classic maximum likelihood estima-

tor of the dependence parameter θ is the value that maximizes the log-likelihood function:

)(θ) =
n∑

i=1
log[cθ(F (Xi), G(Yi)].

This requires that C is absolutely continuous with density cθ. In our case the marginal
distribution functions F and G are unknown. This is solved by making use of the pseudo
observations. With this we instead get the pseudo likelihood function

)(θ) =
n∑

i=1
log[cθ(Ui, Vi)].

The pseudo maximum likelihood estimate (PML), denoted by θ̂PML is the value that solves
the equation

∂

∂θ
)(θ) =

n∑

i=1

ċθ(F (Xk), G(Yk))
cθ(F (Xk), G(Yk)) = 0, (4)

where ċθ = (∂cθ/∂θ1, ∂cθ/∂θ2). Genest et al [6] shows that the root of Equation 4 is
unique. Moreover θ̂PML also has all the other properties as the classic maximum likelihood
estimate, such as consistency and asymptotic normality. The downside with this method
is that the likelihood function can be difficult to compute and involves numerical work
and also requires the existence of a density.
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The pseudo maximum likelihood extends to the three dimensional case in the sense of
estimating a multidimensional dependence parameter θ = (θ1, ..., θq) from a trivariate cop-
ula C(F1(x1), F2(x2), F3(x3)). A random sample {(X1i, X2i, X3i)}n

i=1 from a distribution
Cθ would have the estimate θ̂PML of θ as the solution to the system

n∑

i=1

∂

∂θj
log[cθ(U1i, U2i, U3i)] = 0 (1 ≤ j ≤ q).

3.2.4 Minimum distance estimation
The minimum distance method finds the copula that is measured closest to the empirical
copula. Assume that the distribution function (X, Y ) is associated with copula D and
we want to fit the data to a family of copulas {Cθ; θ ∈ Θ}. Define the minimum distance
functional T on the space of the copula by

T (D) ≡ arg min
θ

d(D, Cθ).

Here d is a distance statistic that measures how close two distributions C and D are with
each other. The measures that we will consider are the Kolmogorov-Smirnov statistic
(KS),

d(C, D) = sup
u∈(0,1)2

|C(u) − D(u)|.

There is also the Cramér-von Mises statistic (CvM),

d(C, D) =
∫

(0,1)2
(C(u) − D(u))2 du.

When given a sample {Xi, Yi}n
k=1 that is assumed to belong to a specified copula family,

the minimum distance estimator (MD), denoted by θ̂MD
n , is defined as

θ̂MD
n = T (Cn) = arg min

θ
d(Cn, Cθ),

where Cn is the empirical copula based on {Xi, Yi}n
k=1. In other words, the fitted copula

of a parametric family is the one that is measured closest to the empirical copula.
T has some nice properties that are investigated by Tsukahara [16]; under the basic

assumptions,

(i) For every copula D, t )→ d(D, Ct) is continuous;

(ii) d(Ct, Cθ) = 0 if and only if t = θ.

Assuming that Θ is compact and that (i), and (i) hold, we get that:

1. T (D) exists for every copula D and T (Cθ) = θ uniquely.

2. T is continuous at Cθ: for any ε > 0, there exists a δ > 0 such that d(D, Cθ) < δ
=⇒ |T (D) − θ| < ε.

Furthermore the MD estimator θ̂MD
n converges locally uniformly to the estimand T (D)

whenever the true D is close to Cθ. Finally the MD estimator also has the property of
asymptotic normality. The estimator is appropriate to apply when a slight deviation from
a given parametric family is anticipated.
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3.2.5 Simulation study
Before we analyze our data, we want to be certain that our estimation methods estimate
the copula dependence parameter well. We thus perform a simulation study. In the
study we consider the bivariate case where we generate 500 samples from the copulas
with sizes n = 200. The copulas that are tested are: Frank, Clayton, Gumble and
Gaussian. The dependence parameter is estimated on each sample with our three different
methods; Pseudo maximum likelihood and the Minimum distance estimator (MD) with
the Kolmogorv-Smirnov and Cramér-von Mises distances. We do the simulation on three
different true parameter values of the copulas. Thereafter the estimates are evaluated by
computing the Monte Carlo based bias and mean squared error (MSE). The results of the
simulation study are presented in Table 1.

From the study we see that the estimated bias and MSE for all the methods are quite
small and we can thus feel comfortable using them on our data. We also notice that the
PML performs significantly better than both the MD estimators as it causes less bias and
MSE. What is not presented in the table is that the code for PML computes much faster
than the MD. We can thus conclude that PML the most efficient and optimal estimation
method and will the one that will be mostly used for the upcoming analysis.

The results between KS and CvM statistics were quite even, although CvM performed
slightly better overall. Another observation is that as the true dependence parameter
increases, the estimation becomes more difficult and the bias and MSE increases with it.
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Table 1: Simulation results measured in estimated bias and MSE of the estimation meth-
ods for different copula families.

Family Real parameter value Estimate method b̂ias MSE
Gaussian θ = −0.75 PML 0.0045 0.0010

MD(KS) 0.0305 0.0028
MD(CvM) 0.0308 0.0026

θ = 0 PML 0.0039 0.0050
MD(KS) 0.0397 0.0080

MD(CvM) 0.0428 0.0077
θ = 0.25 PML −0.0026 0.0042

MD(KS) 0.0285 0.0066
MD(CvM) 0.0314 0.0062

Clayton θ = 1 PML 0.0408 0.0315
MD(KS) 0.1104 0.0654

MD(CvM) 0.1039 0.0552
θ = 4 PML −0.0349 0.2373

MD(KS) 0.4034 0.6957
MD(CvM) 0.4456 0.6408

θ = 8 PML −0.1776 0.6768
MD(KS) 0.8093 1.8439

MD(CvM) 1.0744 2.0701
Frank θ = 1 PML 0.0219 0.1831

MD(KS) 0.1844 0.2698
MD(CvM) 0.1873 0.2435

θ = 4 PML 0.0168 0.2941
MD(KS) 0.2504 0.3815

MD(CvM) 0.2737 0.3625
θ = 8 PML 0.0304 0.5466

MD(KS) 0.4993 0.9364
MD(CvM) 0.6134 0.9905

Gumbel θ = 1.5 PML 0.0231 0.0099
MD(KS) 0.0535 0.0157

MD(CvM) 0.0604 0.0151
θ = 4 PML −0.0049 0.1069

MD(KS) 0.2473 0.2762
MD(CvM) 0.3601 0.3000

θ = 8 PML −0.1543 0.4663
MD(KS) 0.7504 1.5585

MD(CvM) 1.2792 2.2453
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3.3 Goodness-of-fit test for copulas
Continuing from the problem of estimating the dependence parameter θ of a copula model,
there is the issue of testing the validity of the null hypothesis:

H0 : C ∈ C0,

for some specific parametric copula family C0 = {Cθ : θ ∈ Θ}. In other words, we want
to test that the dependence structure of the copula C is well represented by a specific
parametric family C0. Since the underlying copula C is invariant by continuous and
strictly increasing transformations of its components (Theorem 3), Genest and Remillard
[9] proposed a semi-parametric bootstrap test based on a maximally invariant statistics
with respect to a ranking transformation. The pseudo observations that were described
earlier will constitute the statistic on the test where large values of statistic will lead to
rejection of the estimated model. The statistic in mind is the Cramér-von Mises statistic
which involves the empirical copula

n∑

t=1
(Cθn(Ut, Vt) − Cn(Ut, Vt))2 .

Let (X1, Y1), (X2, Y2), ..., (Xn, Yn) be independent copies of a random vector (X, Y ) and
(U1, V1), (U2, V2), ..., (Un, Vn) be their respective pseudo observations. The procedure con-
sists of the following steps:

1. Compute the empirical copula Cn and estimate θ with θn = Tn[(U1, V1), ..., (Un, Vn)]
where Tn is the functional for one of the estimation methods from Section 3.2.

2. Compute
Sn =

n∑

t=1
{Cθn(Ut, Vt) − Cn(Ut, Vt)}2.

3. For a large integer N , repeat the following bootstrap steps for every k ∈ {1, ..., N}

(a) Generate a random sample (X∗
1,k, Y ∗

1,k), ..., (X∗
n,k, Y ∗

n,k) from distribution Cθn

and compute their pseudo vectors (U∗
1,k, V ∗

1,k), ..., (U∗
n,k, V ∗

n,k).
(b) Estimate the pseudo bootstrap samples empirical copula

C∗
n,k = 1

n

n∑

i=1
1(U∗

1,k ≤ u, V ∗
1,k ≤ v).

and the dependence parameter θ by θ∗
n,k = Tn[(U∗

1,k, V ∗
1,k), ..., (U∗

n,k, V ∗
n,k)].

(c) Let
S∗

n,k =
n∑

i=1
(C∗

n,k(U, V ) − Cθ∗
n,k

(U, V ))2.

The p-value is then given by ∑N
k=1 1(S∗

n,k > Sn)/N . If the distance between the observed
distribution and fitted distribution is sufficiently short, the p-value will be high, suggesting
that the null hypothesis can not be rejected.

The test is consistent, meaning that if C /∈ C0, then the null hypothesis is rejected
with probability 1 as n → ∞ [8].
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3.4 Data description
Nord Pool Spot [14] provided data of the spot electricity prices as well as the water levels
in the Swedish hydro power plants from 1996 to 2012. The electricity prices are measured
hourly and weekly in SEK/ MWh, while the water levels are measured once a week in
GWh. SMHI [13] provided data of outside temperatures from different weather stations
throughout Sweden. The data consists of hourly measures from 1996-2012.
A note on notation:
The time series of electricity prices, water levels and outdoor temperature will be denoted
E, W and T respectively. If the electricity prices have been deaseasonlized with a period
of d, then it will have notation E(d). Data sets that pairs two time series are for instance
denoted as [E(d), W ](ot), where the observation times (ot) can be either hourly (h), or
weekly (w).

With the data provided, the sets of interest to investigate are the following:
Electricity prices and Water levels, [E,W]
Weekly observations of the Stockholm electricity prices and the water levels in the Swedish
hydro reservoirs with the time periods 1996-2012 and 2005-2012. The electricity prices
are tested with and without estimated trend and seasonal components with a period of
52 weeks. There is a total of 4 data sets.

1. [E, W ](w)(1996 − 2012).

2. [E, W ](w)(2005 − 2012).

3. [E(52), W ](w)(1996 − 2012).

4. [E(52), W ](w)(2005 − 2012).

Data sets 1 and 3 are of size 887, and 417 for sets 2 and 4.
Electricity prices and Outdoor temperature [E,T]
We will investigate data sets of whole 2012 but also for specific months, December and
July. With and without seasonality with daily and weekly period i.e. 24 and 168 hours.
Here the temperatures are from Gallivare (Northern Sweden, close to one of the biggest
hydro power plants). We also investigate the weekly measures of electricity prices and
temperature from 1996-2012 and 2005-2012. A total of 13 datasets.

1. [E, T ](h)(2012).

2. [E(24), T ](h)(2012).

3. [E(168), T ](h)(2012).

4. [E, T ](h)(December, 2012).

5. [E(24), T ](h)(December, 2012).

6. [E(168), T ](h)(December, 2012).

7. [E, T ](h)(July, 2012).

8. [E(24), T ](h)(July, 2012).

9. [E(168), T ](h)(July, 2012).

35



3 Method

10. [E, T ](w)(1996 − 2012).

11. [E, T ](w)(2005 − 2012).

12. [E(52), T ](w)(1996 − 2012).

13. [E(52), T ](w)(2005 − 2012).

Data sets 1-3 are of size 8783, sets 4-9 are of size 745. Data sets 10 and 12 are of size 887
and 11 and 13 have size 417.
Electricity prices, Water levels and Outdoor temperature [E,W,T]
We will also try to fit a trivariate model by investigating the data of the weekly observa-
tions of electricity prices, water levels and temperature together.

1. [E, W, T ](w)(1996 − 2012).

2. [E, W, T ](w)(2005 − 2012).

3. [E(52), W, T ](w)(1996 − 2012).

4. [E(52), W, T ](w)(2005 − 2012).
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Figure 12: Plot of the [E(52), W ](w)(2005 − 2012) data set. Deseasonlized electricity prices
(top) and water levels (bottom)
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Figure 13: The pairs of pseudo observations of [E(52), W ](w)(2005 − 2012) gives us a hint
of their dependence.
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Figure 14: Plot of the [E(24), T ](h)(December, 2012), Deseasonalized electricity prices (top)
and temperature (bottom)
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Figure 15: The pseudo observations of [E(24), T ](h)(December, 2012) showing the depen-
dence between electricity prices and temperature.
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4 Results
We will now present the results from our analysis of the data sets in a collection of tables
and figures. For each data set, the dependence parameter was estimated for the copula
families Frank, Clayton, Gumbel, Gaussian and Student’s t. The method of estimation
used was the pseudo-maximum likelihood. Thereafter the Cramér-von Mises statistic was
calculated and the goodness-of-fit test was performed to evaluate the best model. The
CvM statistics in the tables are displayed in their square roots, for a more comprehensible
view. The goodness-of-fit tests were executed with 1000 bootstrap samples with the size
of the original data set.

4.1 Copula modeling with electricity prices and water levels.

Table 2: Estimate of dependence parameter, θ̂ for [E, W ] data sets. The estimates clearly
suggests a negative dependence. Moreover the really high estimated degrees of freedom
for the Student t copula indicates that the Gaussian copula is sufficient enough.

Data set Frank Clayton Gumbel Gaussian Student’s t
1. [E, W ](w)(1996 − 2012) −0.877 0.000 1.000 −0.189 −0.191, ν̂ = 3.876 · 106

2. [E, W ](w)(2005 − 2012) −1.125 0.000 1.000 −0.221 −0.226, ν̂ = 1.402 · 107

3. [E(52), W ](w)(1996 − 2012) −0.612 0.000 1.000 −0.114 −0.116, ν̂ = 1.402 · 107

4. [E(52), W ](w)(2005 − 2012) −0.577 0.000 1.000 −0.122 −0.125, ν̂ = 1.577 · 107

Table 3: Cramér-von Mises statistic for the [E, W ] data sets. We notice that by desea-
sonlizing the prices and by concentrating on shorter time periods, the statistics decreases.
Since the Frank, Gaussian and Student t copulas can capture negative dependence, they
have lower statistics and make a better fit than Clayton and Gumbel.

Data set Frank Clayton Gumbel Gaussian Student’s t
1. [E, W ](w)(1996 − 2012) 0.3992 0.4880 0.4880 0.4201 0.4234
2. [E, W ](w)(2005 − 2012) 0.3611 0.5046 0.5046 0.3619 0.3637
3. [E(52), W ](w)(1996 − 2012) 0.1970 0.3321 0.3321 0.1975 0.1985
4. [E(52), W ](w)(2005 − 2012) 0.1449 0.2098 0.2098 0.1539 0.1565
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Frank Clayton Gumbel Normal t
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Figure 16: A visual representation the CvM statistic.

Table 4: p-value from goodness of fit test for [E, W ] data sets. Data set 4 with the
deaseaonalized prices and shorter time period clearly have insignificant p-values, which
suggests that the statistics are sufficiently low and that we can not reject the null hy-
pothesis that the dependence can be modeled with the Frank, Gaussian and Student’s t
copulas.

Data set Frank Clayton Gumbel Gaussian Student’s t
1. [E, W ](w)(1996 − 2012) 0 0 0 0 0
2. [E, W ](w)(2005 − 2012) 0 0 0 0 0
3. [E(52), W ](w)(1996 − 2012) 0.0080 0.0020 0.0040 0.0180 0.0160
4. [E(52), W ](w)(2005 − 2012) 0.3270 0.0660 0.0690 0.2630 0.2270

40



4 Results

4.2 Copula modeling with electricity prices and temperatures

Table 5: Estimates of dependence parameters, θ̂ of the [E, T ] data.

Data set Frank Clayton Gumbel Gaussian Student’s t
1. [E, T ](h)(2012) −4.746 0 1 −0.600 −0.613, ν̂ = 10
2. [E(24), T ](h)(2012) −0.163 0.122 1 −0.009 −0.024, ν̂ = 5
3. [E(168), T ](h)(2012) 0.232 0.173 1.001 0.039 0.042, ν̂ = 5
4. [E, T ](h)(Dec, 2012) 0.108 0 1 −0.052 −0.038, ν̂ = 27
5. [E(24), T ](h)(Dec, 2012) −0.161 0 1 −0.027 −0.028, ν̂ = 4.66 · 106

6. [E(168), T ](h)(Dec, 2012) −1.331 0 1 −0.196 −0.198, ν̂ = 1.60 · 107

7. [E, T ](h)(July, 2012) 1.462 0.338 1.125 0.264 0.267, ν̂ = 1.41 · 107

8. [E(24), T ](h)(July, 2012) 0.241 0.100 1 0.044 0.043, ν̂ = 16
9. [E(168), T ](h)(July, 2012) −0.584 0 1 −0.079 −0.080, ν̂ = 3.759 · 106

10. [E, T ](w)(1996 − 2012) −0.907 0 1 −0.200 −0.169, ν̂ = 7
11. [E, T ](w)(2005 − 2012) −1.182 0 1 −0.227 −0.201, ν̂ = 4
12. [E(52), T ](w)(1996 − 2012) 0.184 0 1 −0.036 0.0232, ν̂ = 5
13. [E(52), T ](w)(2005 − 2012) −0.015 0 1 −0.053 −0.016, ν̂ = 4

Frank Clayton Gumbel Normal t
0

0.05

0.1

0.15

0.2

0.25

0.3

 

 
data4
data5
data6

Figure 17: A visual representation of a few of the CvM statistics.
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Table 6: Cramér-von Mises statistic for [E, T ] data. The statistics are overall pretty high
and the fit of the models are not that great. The models improve when we only look
at the specific months instead of the whole year and the 24 hour deseasoning is slightly
better than the 168 hour deseasoning.

Data set Frank Clayton Gumbel Gaussian Student’s t
1. [E, T ](h)(2012) 0.8526 6.3459 6.3459 0.7596 0.6686
2. [E(24), T ](h)(2012) 0.6957 1.2252 0.7609 0.7292 0.6535
3. [E(168), T ](h)(2012) 0.7537 0.8752 0.8420 0.7576 0.7099
4. [E, T ](h)(December, 2012) 0.4486 0.4643 0.4643 0.5224 0.5055
5. [E(24), T ](h)(December, 2012) 0.2425 0.2460 0.2460 0.2423 0.2423
6. [E(168), T ](h)(December, 2012) 0.3081 0.6111 0.6111 0.3407 0.3390
7. [E, T ](h)(July, 2012) 0.3330 0.3202 0.4445 0.3220 0.3214
8. [E(24), T ](h)(July, 2012) 0.2661 0.2640 0.2864 0.2640 0.2617
9. [E(168), T ](h)(July, 2012) 0.2610 0.3501 0.3501 0.2632 0.2629
10. [E, T ](w)(1996 − 2012) 0.2848 0.4391 0.4391 0.3203 0.2615
11. [E, T ](w)(2005 − 2012) 0.2573 0.4206 0.4206 0.2627 0.2293
12. [E(52), T ](w)(1996 − 2012) 0.2358 0.2915 0.2661 0.3659 0.2394
13. [E(52), T ](w)(2005 − 2012) 0.1871 0.1852 0.1806 0.2390 0.1856
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Figure 18: A visual representation of a few of the CvM statistics.
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Table 7: p-values from goodness of fit results for [E, T ] data. Most of the values are 0 or
close to 0 so it might be better to look at the statistics instead, to find the best models.

Data set Frank Clayton Gumbel Gaussian Student’s t
1. [E, T ](h)(2012) 0 0 0 0 0
2. [E(24), T ](h)(2012) 0 0 0 0 0
3. [E(168), T ](h)(2012) 0 0 0 0 0
4. [E, T ](h)(December, 2012) 0 0 0 0 0
5. [E(24), T ](h)(December, 2012) 0 0.014 0.017 0.001 0
6. [E(168), T ](h)(December, 2012) 0 0 0 0 0
7. [E, T ](h)(July, 2012) 0 0 0 0 0
8. [E(24), T ](h)(July, 2012) 0 0 0.004 0 0
9. [E(168), T ](h)(July, 2012) 0 0.001 0.001 0 0
10. [E, T ](w)(1996 − 2012) 0 0.001 0 0 0.068
11. [E, T ](w)(2005 − 2012) 0 0 0 0 0
12. [E(52), T ](w)(1996 − 2012) 0 0.003 0.004 0 0
13. [E(52), T ](w)(2005 − 2012) 0.016 0.171 0.154 0.002 0.036
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Figure 19: A visual representation of a few of the CvM statistics from.
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4.3 Mixed copulas
Mixed copulas with two copulas were fitted on the data sets with the hope of finding a
more suitable copula model. Recall the mixed copula

Cmix(u, v, β, θ1, θ2) = βC1(u, v, θ1) + (1 − β)C2(u, v, θ2).

The parameters β, θ1 and θ2 were estimated on mixed copulas combining the pairs of the
families Frank, Clayton, Gumbel and Gaussian. The estimation procedure is harder than
normally since it requires an estimation of three parameters. For most of the data sets,
the estimated shape parameter β was either 0 or 1, implying that a mixed copula was
not more appropriate than a single copula. Table 8 presents the data sets where a good
estimated mixed copulas were found and their Cramér-von Mises statistic.

Table 8: Mixed copula results on the [E, T ] data. When compared to Table 6 we see
that the Cramér-von Mises statistics in this table is slightly lower than, showing an
improvement.

Data set Copula 1 Copula 2 β̂ θ̂1 θ̂2 CvM stat.
1. [E, T ](h)(2012) Gaussian Gumbel 0.861 -0.704 1.000 0.6364
2. [E(24), T ](h)(2012) Frank Clayton 0.666 -1.745 1.000 0.4837
3. [E(168), T ](h)(2012) Frank Clayton 0.592 -1.599 1.000 0.4889
7. [E, T ](h)(July, 2012) Frank Clayton 0.773 1.070 1.000 0.3066
8. [E(24), T ](h)(July, 2012) Clayton Gumbel 0.774 0.129 1.000 0.2627

4.4 Trivariate data
Estimating three dimensional copulas are a lot more difficult than in two dimensions due
to the more complex structures. The problem especially arises in the estimation procedure
where numerical issues occurs for the pseudo maximum likelihood estimation. When an
estimate could not be found on a data set, due to convergence problems, the minimum
distance method was used instead. Table 9 presents the statistics for the estimated copulas
in three dimensions.

Table 9: Cramér-von Mises statistics for the trivariate data [E, W, T ]. The statistics are
surprisingly low, and are on the same level as the two dimensional copulas showed.

Data Frank Clayton Gumbel Gaussian Student’s t
[E, W, T ](w)(1996 − 2012) 0.5564 0.5546 0.6181 0.5263 0.5255
[E, W, T ](w)(2005 − 2012) 0.6051 0.4044 0.5381 0.3247 0.3242
[E(52), W, T ](w)(1996 − 2012) 0.4471 0.4630 0.4592 0.4539 0.4529
[E(52), W, T ](w)(2005 − 2012) 0.2910 0.2832 0.2919 0.3172 0.3159
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4.5 Adaption to positive dependence
To solve the issue of when negative dependence is implied to the data, we transformed the
electricity prices by changing the sign of the values. The transformation will hopefully
benefit the Clayton and Gumbel copulas and make them more relevant, since they only
account for positive dependence. We present the results of the transformation of the
[E, W ] data in tables 10 and 11 below, and notice that the Cramér-von Mises statistics
improves for the Clayton and Gumbel copulas. Compare to tables 2 and 3 to see the
difference. Similar results were seen for the transformed [E, T ] data sets although there
were no significant decrease of any data set.

Table 10: Estimate of dependence parameter, θ̂ for [E, W ] data sets, where the sign has
been changed for the electricity price observations in order to account for positive values
of the dependence parameter.

Data set Frank Clayton Gumbel Gaussian Student’s t
1. [-E, W ](w)(1996 − 2012) 0.876 0.094 1.131 0.189 0.191, ν̂ = 3.667 · 106

2. [-E, W ](w)(2005 − 2012) 1.125 0.173 1.129 0.221 0.226, ν̂ = 1.491 · 107

3. [-E(52), W ](w)(1996 − 2012) 0.612 0.073 1.041 0.114 0.116, ν̂ = 1.677 · 107

4. [-E(52), W ](w)(2005 − 2012) 0.577 0.083 1.057 0.122 0.125, ν̂ = 1.584 · 107

Table 11: Cramér-von Mises statistic for the [E, W ] data sets. We notice that the trans-
form of the data resulted in a decrease of the Clayton and Gumbel statistics. Since the
Frank, Gaussian and Student’s t are symmetric, their respective statistics have not been
changed.

Data set Frank Clayton Gumbel Gaussian Student’s t
1. [-E, W ](w)(1996 − 2012) 0.4026 0.4450 0.3571 0.4123 0.4148
2. [-E, W ](w)(2005 − 2012) 0.3751 0.4373 0.3590 0.3663 0.3663
3. [-E(52), W ](w)(1996 − 2012) 0.2032 0.2642 0.2542 0.1982 0.1982
4. [-E(52), W ](w)(2005 − 2012) 0.1575 0.1876 0.1682 0.1487 0.1490
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5 Conclusion

5 Conclusion
Copula models have been estimated and evaluated on time series observations from the
electricity market. Looking at the Cramér-von Mises statistics in Tables 3 and 6 we note
that the removal of the trend and seasonal components, and by adapting the data for
positive dependence, is essential to find a good copula model, as the procedures signifi-
cantly lowers the statistics. Moreover we noticed that it was easier to fit a copula when
we were concentrating on shorter time periods. Instead of fitting the copula over a whole
year, the copula model should instead reflect the month or season in focus. The same
thing can be said when modeling over several years as a longer time period has to deal
with a change behavior of the electricity price from new regulations, such as the emission
regulation introduced in year 2005. It is therefore suggested that different models should
be used on different seasons.

Of all the data sets, there was one in particular that fit very well, the [E(52), W ](w)(2005−
2012) data set. The data set had high, insignificant p-values for the Frank, Gaussian and
Student’s t copulas with p-values of 0.327, 0.263 and 0.227 respectively, which indicates
sufficiently short statistics for the symmetric copulas. We can thus not reject the null
hypothesis that the dependence between weekly observations of electricity prices and
water levels can be modeled with these copulas. There were no models with an ex-
citing p-value for the electricity price and temperature data, but some of them had a
noteworthy low CvM statistics, specifically the sets of the deseasonalized months. The
[E(52), T ](w)(2005 − 2012) data set had high p-values and low test statistics, less than 0.2
However the estimated models were the corresponding of the product copula which is
unexciting.

The modeling of the more general mixed copulas also improved the statistics for some
of the data sets. A mixed copula could however not be found on most of the data sets,
as they are a lot more difficult to estimate than a single copula. Instead of our pseudo
maximum likelihood and minimum distance estimates, other more advanced estimation
methods could be applied to mixed copulas to find better fitted models. Estimating three
dimensional copulas was also hard due to the complex structure of their structures and
none of our models did fit quite well. Although they don’t provide a good fit, our three
dimensional copula families are convenient to work with and are more plausible than other
simpler models that assume independence.

It is of course possible to improve all of our methods and procedures to tune our
models, but our result give a good indication on how well copulas fit the data.
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