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Abstract

The dependence between stock returns within a diversified portfolio is an important charac-

teristic to identify the risk of the portfolio. Traditionally, the linear correlation can describe

the dependence between stock returns with their joint elliptical distributions. However,

when the dependence structure between the stock returns is not sure or the joint distribu-

tion of stock returns is not elliptical, the linear correlation cannot express the dependence

between stock returns. Copula method combined with the bivariate Gaussian model is su-

perior to the traditional bivariate Gaussian model in quantifying the dependence between

stock returns, especially for the stock returns that have unknown dependence structure and

non-elliptical joint distribution. This thesis is to describe, by giving examples, how to apply

the Copula method to the traditional bivariate Gaussian model to get a deeper understand-

ing of bivariate dependencies and the risk of portfolio on stock market. The advantages of

the application of Copula method are shown by comparing the kernel density contour plots

and surfaces of the simulation data from the Copula models and the bivariate traditional

Gaussian models, and risk analysis of the portfolio.
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1 Introduction

1.1 Background and problem statement

In the stock market, the diversified portfolio is one of the most important technologies for

reducing investment risk, which means that the investment risk can be reduced by investing

in different assets. If the stock prices do not rise or fall in full synchronism, the risk of

a well-designed diversified portfolio will be smaller than that of investing only one asset.

The risk of a portfolio is strongly associated to the dependence of the stock returns within

the diversified portfolio. So dependence analysis of stock returns is an important approach

to optimize a diversified portfolio, and provide basis for decision maker to make a low-risk

portfolio plan (Guan 2011).

An effective approach to carry out dependence analysis is called Pearson correlation anal-

ysis, in which the dependence of two random variables X and Y is quantified using corre-

lation coefficient ρ = Cov(X ,Y )√
Var(X)

√
Var(Y )

. Due to its simplicity and convenience, it has been

widely used for interpretation of data dependence in science. However the Pearson corre-

lation coefficient can only quantify the linear dependence of the random variables X and Y

which meet their joint elliptical distribution (D’ Avino 2013). If the dependence structure

of X and Y are not determined or the joint distribution of X and Y is not elliptical, the

Pearson correlation analysis will lose the precondition of its application, so that another

approach should be used to depict the dependence.

In finance the Copula technique is suggested as a better way to describe the dependence

of stock returns. A copula is a multivariate cumulative distribution function for which

the marginal probability distribution of each marginal variable is a uniform distribution.

Therefore, the dependence between random variables can be described as a multivariate

distribution on the uniforms (Nelsen 2006).

The Copula technique can be used to combine with traditional bivariate Gaussian model

to get a deeper understanding of bivariate dependencies and the risk of portfolios on the

stock market. This thesis report will describe, together with examples, how the copula

techniques can be applied to improve the bivariate Gaussian model, and to better under-
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stand the risk of stock portfolios.

1.2 Outline

In the thesis, the bivariate Gaussian Copula model and the bivariate Gaussian model will

be firstly built for getting a better understanding of the dependence structure between stock

returns, and then the kernel density contour plots and surfaces will be applied to compare

the accuracies of the simulation of the bivariate Gaussian Copula models with the tradi-

tional bivariate Gaussian models. By repeating the simulations of the copula models and

the Gaussian models, respectively, the portfolios of the random variables will be estab-

lished, and for more clear comparison of the copula model and the Gaussian model, the

risk of the portfolios will be then estimated using probability density of the 100 end points

of the portfolios by 100 times simulations of the bivariate Gaussian copula models and the

bivariate Gaussian models, respectively.

This thesis is organized as the following: Chapter 2 reviews some basic definitions and

theories of copula. Chapter 3 illustrates the processes of building the bivariate Gaussian

copula model and the traditional bivariate Gaussian model and the method of simulating

and comparing of the copula model and the Gaussian model. Chapter 4 shows the charac-

teristics and the preprocessing of the stock data and the results of the modeling, simulations

and fitness of copula models. The risk analysis of the portfolios is covered in Chapter 5.

Conclusions are drawn in Chapter 6.
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2 Theory

In statistics, a copula is a multivariate cumulative distribution function with the uniform

marginal probability distribution of each variable, and it can describe the dependence be-

tween random variables. In this Chapter, I introduced the basic concepts, properties and

probabilistic interpretation relevant to copula function.

2.1 Bivariate Copula

In order to define copulas, the definitions of grounded and 2-increasing need first to be

introduced.

Firstly, Let us consider two non-empty subsets A1 and A2 of R, and the function f :

A1×A2→ R is a real function.

Definition 2.1 If A1 and A2 have a least element a1 and a2, respectively, then the function

f is said to be grounded if and only if

f (a1,v) = f (u,a2) = 0, ∀(u,v) ∈ A1×A2

Definition 2.2 The function f : A1 × A2 → R is called 2-increasing if and only if for

∀(u1,v1)× (u2,v2) ∈ A1×A2 with u1 ≤ u2, v1 ≤ v2, we have

f (u1,v1)− f (u1,v2)− f (u2,v1)+ f (u2,v2)≥ 0

Based on the above two definitions, it is ready to define copulas.

Definition 2.3 A bivariate copula C is a real function which is defined on the unit square

I2 = [0,1]× [0,1]

C : I2→ R,

and C is fulfilling the three following properties:

i. C is grounded, i.e. C(u,0) =C(0,v) = 0, ∀u,v ∈ [0,1];

ii. C is 2-increasing;

iii. for ∀u,v ∈ I, C(u,1) = u and C(1,v) = v.

3



2.2 The probability Density Function of Copulas

Since there is a virtual similarity between copula functions, it is difficult to visualize dif-

ferences between the distribution functions, so it is convenient to study copulas density

functions.

The density of a copula C is defined by

c(u,v) =
∂ 2

∂u∂v
C(u,v), ∀(u,v) ∈ I2

2.3 Frechet-Hoeffding bounds

According to the definition of bivariate copula, we can observe that for ∀u,v ∈ I the bivari-

ate copula 0 ≤C(u,v) ≤ 1, i.e. the graph of the copula is a continious surface in the unit

cube I3. The following Theorem 2.1 states the bounds of the copula.

Theorem 2.1 (Frechet-Hoeffding bounds inequality) For ∀(u,v)∈ I2, the copula C(u,v)

satisfies the following inequality

W (u,v) = max(u+ v−1,0)≤C(u,v)≤ min(u,v) = M(u,v)

i.e. the Frechet-Hoeffding lower and upper bounds are W (u,v) and M(u,v), respectively.

Fig. 2.1 and Fig. 2.2 show the upper and lower Frechet-Hoeffding bounds with their levels

sets, respectively.
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Figure 2.1: The upper Frechet-Hoeffding bound M(u,v) and its level sets.
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Figure 2.2: The lower Frechet-Hoeffding bound W (u,v) and its level sets.
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2.4 Product Copula

The other important definition of copula is the product copula which is defined as

Π(u,v) := uv, ∀(u,v) ∈ I2

whose plot is shown in Fig. 2.3.

0
1

0.8 1

0.5

P
(u

,v
)

0.6 0.8

v

0.6

u

0.4

1

0.40.2 0.20 0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

u

0

0.2

0.4

0.6

0.8

1

v

Figure 2.3: The product copula Π(u,v).
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2.5 Empirical Copula

The empirical copula is obtained through empirical cumulative density transform (rank

transform) of the original data.

Definition 2.4 Let (xi,yi)
n
i=1 denote a sample with size n from a continuous bivariate dis-

tribution. And let the random variable X = {xi}n
i=1 and the random variable Y = {yi}n

i=1.

The empirical copula Cemp(u,v) is given by

Cemp(u,v) =
]{(xi,yi) : FX(xi)≤ u,FY (yi)≤ v}

n

and the empirical copula density function cemp is given by

cemp(u,v) =
1
n

n

∑
i=1

δ (u−FX(xi),v−FY (yi))

where ] is the number of elements of a set, the function δ can be approximated by normal-

kernel smoothing, and FX and FY are the marginal distributions of X and Y , respectively.

2.6 Bivariate Gaussian Copula

The bivariate Gaussian copula is defined as following

CGa
ρ (u,v) = Φρ(Φ

−1(u),Φ−1(v))

where Φ and Φ−1 are the joint distribution function and the inverse probability distribution

function of a two dimensional standard normal distribution, respectively, and the parameter

ρ ∈ (−1,1) is the correlation coefficient.

The culmulative distribution function of the bivariate Gaussian copula is (Cherubini et al.

2004)

CGa
ρ (u,v) =

∫
Φ−1(u)

−∞

∫
Φ−1(v)

−∞

exp
{
− u2−2ρuv+ v2

2(1−ρ2)

}
dudv

2π
√

1−ρ2

Figure 2.4 shows the density surface and contour of the bivariate Gaussian copula.
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Figure 2.4: The bivariate Gaussian copula with ρ = 0.5.
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2.7 Sklar’s Theorem

In the application of copula, Sklar’s theorem provides the theoretical foundation, and it

states the role of copula which play the relation between multivariate distribution function

and univariate margins. For the bivariate copula, Sklar’s theorem is introduced as following

Theorem 2.2 (Sklar’s Theorem) Let H(x) (x = (x1,x2)) be a two dimensional distribu-

tion function with marginal distribution F1(x1) and F2(x2). Then there exists a copula C

such that

H(x) =C(F1(x1),F2(x2)), ∀(x1,x2) ∈ R2

Conversely, for any univariate distributions functions F1(x1) and F2(x2) and any copula

C, the function H(x) is a two dimensional distribution function with marginals F1(x1) and

F2(x2). Furthermore, if F1(x1) and F2(x2) are continuous, then the copula C is unique.

Proposition 2.1 The Gaussian copula generates the standard joint Gaussian distribution

function via Sklar’s Theorem if and only if the margin distributions are standard Gaussian

distribution (Jaworski et al. 2010).
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3 Modeling

In the thesis, I used the bivariate Gaussian copula to improve the traditional Gaussian

model, so the bivariate Gaussian copula model and the bivariate Gaussian model need to be

built firstly. The processes of building the models are introduced in this section, and then

the method and theory of the simulation and kernel density are introduced for comparing

the copula model with the Gaussian model, respectively. The Kolmogorov-Smirnov dis-

tance is used for testing the fitness of the copula models.

3.1 Building the bivariate Gaussian Copula model

The bivariate Gaussian copula model will be built using two time series of the selected

stock returns. The process of building the bivariate Gaussian copula has the following

steps.

Step 1. Calculating the daily returns of stock data

The characteristics of normality is usually considered as a precondition of the data that

can be used in a statistical analysis. However, stock return data usually do not follow nor-

mal distribution, so data transformation is needed to transfer the data to let them meet the

condition of normal distribution. To do the data transformation, Log returns of the raw data

(the daily stock return time series) are calculated as following:

Firstly, assume that there are two stock return time series Si(t), i = 1,2 and t = 1,2, . . . ,n.

Then the log returns Xi of the two stocks are

Xi(t) = log(Si(t))− log(Si(t−1))

And Xi(t) are two continuous random variables.

Step 2. The empirical cumulative distribution function of the log returns Xis

The empirical cumulative distribution function (CDF) of Xi is denoted by Ui, i = 1,2 and
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the formula is

Ui =
1
n

n

∑
j=1

1(X j ≤ Xi)

In generally, the log returns Xis are assumed independent identically distribution, so the

empirical CDF Uis are uniform distribution on interval [0,1].

Step 3. The standard normal inverse of the empirical CDF Uis

In this step, the standard normal inverse of the empirical CDF Uis is needed to be found,

and is denoted by Yi, i = 1,2, which are the following

Yi(t) = Φ
−1(Ui(t))

Since U ∼Uni f orm[0,1], so P(U ≤ u) = u. Then

P(Y ≤ y) = P(Φ−1(U)≤ y) = P(U ≤Φ(y)) = Φ(y)

So Yi follow standard normal distribution.

Step 4. The bivariate Gaussian copula

According to Proposition 2.1, since the margin are standard normal distributed, so there

exists the bivariate Gaussian copula CGa with Yi. In this step, the bivariate Gaussian cop-

ula CGa is assumed to be the bivariate normal distribution with mean 0 and variance V , i.e.

CGa∼N(0,V). The mean is two dimensions and V is the two dimensions covariance matrix

with Yi. So the bivariate Gaussian copula model is

CGa ∼ N
( (

0
0

)T

,

(
Var(Y1) Cov(Y1,Y2)

Cov(Y2,Y1) Var(Y2)

) )
.
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3.2 Building the bivariate Gaussian model

The bivariate Gaussian model GX of a random vector X = [X1,X2] can be written as the

following

GX ∼ N(µ,Σ)

where µ and Σ are the mean vector and the covariance of X , respectively, and the random

vector X = [X1,X2] is from Step1 of Section 3.1.

Then the bivariate Gaussian model is

GX ∼ N
( (

mean(X1)
mean(X2)

)T

,

(
Var(X1) Cov(X1,X2)

Cov(X2,X1) Var(X2)

) )
.

3.3 Simulation

The simulations using the bivariate Gaussian copula model and the bivariate Gaussian

model are introduced in this section.

1. Simulation of the bivariate Gaussian copula model.

The bivariate Gaussian copula model CGa is got from Section 3.1, so we can randomly

choose the simulated data {y(t)}n
t=1 from the model CGa, where y(t) is a two dimensional

vector which is denoted by y(t) = [y1(t),y2(t)]. And the data y(t) is needed to return to the

original values. Since

u(t) = (Φ(y1(t)),Φ(y2(t))),

so the original values are

x(t) = (F−1
1 (Φ(y1(t))),F−1

2 (Φ(y2(t)))) = (F−1
1 (u1(t)),F−1

2 (u2(t)))

Since ui(t), i = 1,2 follow a uniform distribution on interval [0,1] which is a piecewise

constant function, so the inverse F−1
i (ui(t)) can not be calculated. Under the situation, the

13



concept of Right inverse will be introduced as the following:

Definition 3.1 (Right inverse) Given a function F : R→ [0,1], then we can write

F−1(u(t)) = in f{x : F(x)≥ u(t)} ∀u(t) ∈ (0,1)

Then F−1
i (ui(t)), i = 1,2 is obtained using the right inverse. And from Step 1 of Section

3.1 we have

xi(t) = log(si(t))− log(si(t−1)), i = 1,2,

then

t

∑
j=1

xi( j) = log(si(t))− log(si(1)),

so we get

si(t)
si(1)

= exp{
t

∑
j=1

xi( j)},

and the original data of the simulated data {y(t)}n
t=1 is

si(t) = si(1) · exp{
t

∑
j=1

xi( j)}, i = 1,2

2. Simulation of the bivariate Gaussian model.

The bivariate Gaussian model GX is obtained from Section 3.2, so we can randomly choose

the simulated data {xG(t)}n
t=1 from the model GX , where xG(t) is a two dimensional vector

which is denoted by xG(t) = [xG
1 (t),x

G
2 (t)]. From the last equation, the original data of the

simulated data {xG(t)}n
t=1 can be obtained which is

sG
i (t) = sG

i (1) · exp(
t

∑
j=1

xG
i ( j)), i = 1,2
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3.4 Kernel density

In this section, the raw data and the simulated datas will be compared using the contour

plot and surface of the empirical copula density, respectively. But there is no giving de-

tailed information for a possible empirical copula density model, so under this situation the

Kernel density can be much more helpful estimating the density. In the thesis the bivariate

Gaussian Kernel density is chosen to estimate the empirical copula density.

Let x1,x2 be a sample of 2-variate random vectors drawn from a common distribution de-

scribed by density function f . The bivariate Gaussian kernel density is defined as following

(Guan 2011)

f̂ (x,H) =
1
n

n

∑
i=1

KH(x− xi)

where x = (x1,x2)
T , xi = (xi1,xi2)

T , i = 1,2, . . . ,n, KH(x) = |H|−
1
2 K(H−

1
2 x) is the kenel

function, and here K is chosen to be Gaussian, i.e.

K(x) =
1

2π
exp{−1

2
xT x}, ∀x ∈ [0,1]2

And H is the bandwidth matrix with H =

(
h2

1 0
0 h2

2

)
and h1,h2 is the bandwidth which

minimize

argminh1,h2E
[∫ 1

0

∫ 1

0
[ f̂ (u,v)− f (u,v)]dudv

]

So the bivariate Gaussian Kernel density can be obtained as

f̂ (x,H) =
1
n

n

∑
i=1

1
h1 ·h2

K(
x1− xi1

h1
,
x2− xi2

h2
)

K(x) =
1

2π
exp{−1

2
(x2

1 + x2
2)}
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3.5 Test the goodness of fit for the Copula models

To compare the copula models, the Kolmogorov-Smirnov (KS) distance will be used to test

the goodness of fitting of the copula models. The KS distance of the empirical copula can

be obtain by the following formula

D2D
KS = maxu,v∈[0,1]|Cemp(u,v)−C(u,v)|

A smaller KS distance implies the better fitting.

3.6 Portfolio

In this part, the portfolio of the two stocks S1(t) and S2(t) will be established using the

bivariate Gaussian copula model and the bivariate Gaussian model.

Step 1. Establishing a portfolio of the two stocks: P = S1(t)+S2(t);

Step 2. In Section 3.3, we have si(t) = si(1) · exp{∑t
j=1 xi( j)} for the bivariate Gaussian

Copula model and sG
i (t) = sG

i (1) ·exp{∑t
j=1 xG

i ( j)} for the bivariate Gaussian model. Now

we set si(1) = M and sG
i (1) = MG and then we do the simulations T times for the copula

model and the Gaussian model, respectively, after the process we will get si(t) and sG
i (t),

i = 1,2.

Step 3. Calculating the result p = s1(t)+ s2(t) and pG = sG
1 (t)+ sG

2 (t) and observe the

trends of the portfolio.
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4 Data and Simulation

4.1 Data

The adjusted closing price (ACP) of four short-term stocks and two long-term stocks in the

Swedish-A stock market were downloaded from the website of Yahoo Finance. The ACP

was chosen for analysis, because it is a more accurate representation of the value of a stock

compared to close price, since the ACP takes into account all corporate actions such as

stock splits, dividends and new stock offerings.

4.1.1 Characteristics and transformation of the short-term data

The four short-term stocks include those from companies of Ericsson, SEB, Volvo and As-

traZeneca. Daily data were derived from working days between 2018.01.01 and 2018.12.31

with a sample size of 252.

Figure 4.1 shows the ACP curves of the four short-term stocks. We can see that all the

ACP fluctuate over the time with Ericsson and AstraZeneca showing obviously positive

trends over the whole year, Volvo showing an obviously negative trend from late autumn to

end of the year, SEB showing seasonal fluctuation without a trend.
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Figure 4.1: ACPs of the four short-term stocks in 2018.
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Figure 4.2: Histograms of the ACPs of the four short-term stocks.

Figure 4.2 shows that all the ACPs of the short-term stocks are not symmetrically dis-

tributed, and does not follow a normal distribution. The normality of the ACPs are also

suggested by the Q-Q plots in Fig. 4.3.
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Figure 4.3: Normal Q-Q Plot of adjusted close prices in the four short term stocks.

The characteristics of normality is usually considered as a precondition of data from a stock

market, which can be used in a statistical analysis, so I calculated the log returns of ACPs

of every short-term stock, and check their normality characteristics in Fig. 4.4 and Fig. 4.5.

Figure 4.4 shows that trends of the four ACPs were removed after log-return processing.
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Figure 4.4: Log returns of the ACPs of the four short-term stocks in 2018.
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Figure 4.6: Normal Q-Q Plots of the log returns of the four short term stocks.

Figure 4.5 and 4.6 show that the ACPs approximately follow normal distributions after the

log returns processing. However, the tails of the ACPs are heavy.

Generally, the log returns of ACPs should be assumed to be independent identically dis-

tributed, so the distribution of the log returns should be approximately distributed as a

uniform on interval [0,1]. We can check the uniformity of the log returns on interval [0,1]
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by the empirical distributions plots. Figure 4.7 shows that the empirical distribution on

interval [0,1] is approximately uniformly distributed.
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Figure 4.7: Empirical distributions of the ACPs of the four short-term stocks.
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4.1.2 Characteristics and transformation of the long-term data

The two long-term stocks include those from companies of Volvo and AstraZeneca. Daily

data were derived from working days between 2010.01.01 and 2018.12.31 with a sample

size of 2264. Figure 4.8 shows the ACP variability of the two long-term stocks. We can see

that both of them show obviously positive trends over the sampling period. However, Fig.

4.9 and 4.10 show that the ACPs of the two long-term stocks do not follow normal distri-

butions over the sampling period, so that data transformation are needed before applying

statistical analysis to the data.
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Figure 4.8: ACPs of the two long-term stocks.
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Figure 4.9: Histograms of the ACPs of the two long-term stocks.
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Figure 4.10: Normal Q-Q Plot of the ACPs of the two long-term stocks.
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Figure 4.11 shows APC variability of the two long-term stocks after log-return transfor-

mations. We can see that the long-term trends were removed from both of the time series.

Figure 4.12 and 4.13 show the histograms and Normal Q-Q plots of the two transformed

ACP time series. We can see from the figures that both of the time series approximately

follow normal distributions, but still the tails of them are very heavy.
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Figure 4.11: Log returns of the ACPs of the two long-term stocks.
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Figure 4.13: Normal Q-Q Plot of the log returns of the two long-term stocks.
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The uniformities of the two transformed ACPs were checked using empirical distributions

plots (Fig. 4.14). We can see that the two log returns were uniformly distributed on interval

[0,1].
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Figure 4.14: Empirical distributions of the two transformed APCs of the two long-term
stocks.

4.2 Simulation

The bivariate Gaussian models and the bivariate Gaussian Copula models were built using

the six different stock combinations of the four short-term stocks and the stock combination

of the two long-term stocks respectively. Then 5000×2 dimensions simulated data matri-

ces were randomly chosen from the Gaussian models and the Gaussian Copula models,

respectively, and were used to compare with the raw data using the kernel density contour
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plots and surfaces plots.

1. The simulation of the Ericsson and SEB stock combination.

A bivariate Gaussian model of the combination of the stocks Ericsson and SEB were built.

The Gaussian model of the Ericsson-SEB stock combination is denoted by Geric−seb which

is

Geric−seb ∼ N
( (

0.00151476
−0.00019418

)T

,

(
0.00044926 0.00005207
0.00005207 0.00015601

) )
.

I randomly chose a 5000×2 data matrix from the model Geric−seb.

Then I built a bivariate Gaussian Copula model using the Ericsson-SEB stock combina-

tion. The Gaussian Copula model of the Ericsson-SEB combination is denoted by Ceric−seb

which is

Ceric−seb ∼ N
( (

0
0

)T

,

(
0.9110 0.2264
0.2264 0.9219

) )
.

I randomly chose a 5000×2 dimensions data matrix from the model Ceric−seb.

Then I calculated the kernel densities of the Ericsson-SEB stocks combination from the

raw data, simulated data based on Gaussian model and simulated data based on Gaussian

Copula model, respectively. And the kernel density contour plots and surface plots of the

raw data combination, the simulated data of Geric−seb and the simulated data of Ceric−seb

are shown in Fig. 4.15 to 4.20.

From Fig. 4.15 to Fig. 4.20, we see that the simulation with the Copula model Ceric−seb is

more similar with the raw data, so the simulation using the Copula model Ceric−seb is better

than the simulation using the Gaussian model Geric−seb.
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Figure 4.15: Empirical copula kernel density contour plot of the raw data of the Ericsson
and SEB stock combination.
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Figure 4.16: Empirical copula kernel density contour plot of the simulated data by the
Gaussian model of the Ericsson and SEB stock combination.
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Figure 4.17: Empirical copula kernel density contour plot of the simulated data by the
Copula model of the Ericsson and SEB stock combination.
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Figure 4.18: Empirical copula kernel density surface of the raw data of the Ericsson and
SEB stock combination.
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Figure 4.19: Empirical copula kernel density surface of the simulated data by the Gaussian
model of the Ericsson and SEB stock combination.

0.2
0.4

0.6
0.8

0.2

0.4

0.6

0.8

0.0

0.5

1.0

1.5

2.0

2.5

3.0

u1

u
2

Figure 4.20: Empirical copula kernel density surface of the simulated data by the Copula
model of the Ericsson and SEB stock combination.
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2. The simulation of the Ericsson and Volvo stocks combination.

Using the same methods I built the bivariate Gaussian model and the bivariate Gaus-

sian Copula model of the Ericsson and Volvo stock combination, which were denoted by

Geric−volvo and Ceric−volvo respectively. I randomly chose two 5000× 2 dimensions data

matrices from the models Geric−volvo and Ceric−volvo. The Gaussian model and Copula

model are shown below

Geric−volvo ∼ N
( (

0.00151476
−0.00103154

)T

,

(
0.00044926 0.00009798
0.00009798 0.00024042

) )

and

Ceric−volvo ∼ N
( (

0
0

)T

,

(
0.9110 0.3267
0.3267 0.8970

) )
.

Figure 4.21 to Figure 4.26 show the kernel density contour plots and surfaces of the com-

bination raw data, the simulated data of Geric−volvo and the simulated data of Ceric−volvo,

respectively.

From Fig. 4.21 to 4.26, we can see that the simulation using the Gaussian model Geric−volvo

is better than the simulation using the Gaussian Copula model Geric−volvo, because the pos-

itive relations are in the similar place.
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Figure 4.21: Empirical copula kernel density contour plot of the raw data of the Ericsson
and Volvo stock combination.
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Figure 4.22: Empirical copula kernel density contour plot of the simulated data by the
Gaussian model of the Ericsson and Volvo stock combination.
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Figure 4.23: Empirical copula kernel density contour plot of the simulated data by the
Copula model of the Ericsson and Volvo stock combination.
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Figure 4.24: Empirical copula kernel density surface of the raw data of the Ericsson and
Volvo stock combination.
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Figure 4.25: Empirical copula kernel density surface of the simulated data by the Gaussian
model of the Ericsson and Volvo stock combination.
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Figure 4.26: Empirical copula kernel density surface of the simulated data by the Copula
model of the Ericsson and Volvo stock combination.
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3. The simulation of the Ericsson and AstraZeneca stocks combination.

The bivariate Gaussian model and Gaussian Copula model of the Ericsson and AstraZeneca

stock combination were denoted by Geric−astra and Ceric−astra, respectively. I randomly

chose two 5000× 2 dimensions data matrices from the models Geric−astra and Ceric−astra.

The Gaussian model and Copula model are

Geric−astra ∼ N
( (

0.00151476
0.000665608

)T

,

(
0.00044926 0.00008093
0.00008093 0.00015445

) )

and

Ceric−astra ∼ N
( (

0
0

)T

,

(
0.9110 0.3217
0.3217 0.9180

) )

The kernel density contour plots and surface plots of the raw data combination, the sim-

ulated data of Geric−astra and the simulated data of Ceric−astra are shown in Fig. 4.27 to 4.32.
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Figure 4.27: Empirical copula kernel density contour plot of the raw data of the Ericsson
and AstraZeneca stock combination.
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Figure 4.28: Empirical copula kernel density contour plot of the simulated data by the
Gaussian model of the Ericsson and AstraZeneca stock combination.
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Figure 4.29: Empirical copula kernel density contour plot of the simulated data by the
Copula model of the Ericsson and AstraZeneca stock combination.
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Figure 4.30: Empirical copula kernel density surface of the raw data of the Ericsson and
AstraZeneca stock combination.
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Figure 4.31: Empirical copula kernel density surface of the simulated data by the Gaussian
model of the Ericsson and AstraZeneca stock combination.
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Figure 4.32: Empirical copula kernel density surface of the simulated data by the Copula
model of the Ericsson and AstraZeneca stock combination.

From Fig. 4.27 to Fig. 4.32 we can see that the performance of the Gaussian Copula model

Ceric−astra is better than the simulation by the Gaussian model Geric−astra, because the sim-

ulation by the Copula model Ceric−astra is more similar with the raw data.

4. The simulation of the SEB and Volvo stock combination.

The bivariate Gaussian model and Gaussian Copula model of the SEB and Volvo stock

combination are denoted by Gseb−volvo and Cseb−volvo, respectively, and I randomly chose

two 5000× 2 dimensions data matrices from the models Gseb−volvo and Cseb−volvo. The

models Gseb−volvo and Cseb−volvo are built as

Gseb−volvo ∼ N
( (

−0.00019418
−0.00103154

)T

,

(
0.00015601 0.00008869
0.00008869 0.00024042

) )

and
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Cseb−volvo ∼ N
( (

0
0

)T

,

(
0.9219 0.4283
0.4283 0.8970

) )
.

The kernel density contour plots and surface plots of the raw data, the simulated data of

Gseb−volvo and the simulated data of Cseb−volvo are shown in Fig. 4.33 to 4.38.

From Fig. 4.33 to 4.38, we can see that the simulation of the Gaussian Copula model

Cseb−volvo is a little better than the simulation of the Gaussian model Gseb−volvo, because

the positive relation and peak of the simulation of the Copula model Cseb−volvo are in simi-

lar position with the raw data.
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Figure 4.33: Empirical copula kernel density contour plot of the raw data of the SEB and
Volvo stock combination.
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Figure 4.34: Empirical copula kernel density contour plot of the simulated data by the
Gaussian model of the SEB and Volvo stock combination.
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Figure 4.35: Empirical copula kernel density contour plot of the simulated data by the
Copula model of the SEB and Volvo stock combination.

43



0.2
0.4

0.6
0.8

0.2

0.4

0.6

0.8

0

1

2

3

seb

v
o
lv

o

Figure 4.36: Empirical copula kernel density surface of the raw data of the SEB and Volvo
stock combination.
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Figure 4.37: Empirical copula kernel density surface of the simulated data by the Gaussian
model of the SEB and Volvo stock combination.
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Figure 4.38: Empirical copula kernel density surface of the simulated data by the Copula
model of the SEB and Volvo stock combination.

5. The simulation of the SEB and AstraZeneca stocks combination.

The bivariate Gaussian model and Gaussian Copula model of the SEB and AstraZeneca

stock combination were denoted by Gseb−astra and Cseb−astra, respectively, and I randomly

chose two 5000× 2 dimensions data matrices from the models Gseb−astra and Cseb−astra.

The models Gseb−astra and Cseb−astra are

Gseb−astra ∼ N
( (

−0.00019418
0.00066561

)T

,

(
0.00015601 0.00003631
0.00003631 0.00015445

) )
and

Cseb−astra ∼ N
( (

0
0

)T

,

(
0.9219 0.2251
0.2251 0.9180

) )

The kernel density contour plots and surfaces of the raw data, the simulated data of Gseb−astra

and the simulated data of Cseb−astra are shown in Fig. 4.39 to 4.44. We can see that the

Cseb−astra simulation is better in simulating the raw data than the Gseb−astra simulation.
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Figure 4.39: Empirical copula kernel density contour plot of the raw data of the SEB and
AstraZeneca stock combination.
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Figure 4.40: Empirical copula kernel density contour plot of the simulated data by the
Gaussian model of the SEB and AstraZeneca stock combination.
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Figure 4.41: Empirical copula kernel density contour plot of the simulated data by the
Copula model of the SEB and AstraZeneca stock combination.
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Figure 4.42: Empirical copula kernel density surface of the raw data of the SEB and As-
traZeneca stock combination.
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Figure 4.43: Empirical copula kernel density surface of the simulated data by the Gaussian
model of the SEB and AstraZeneca stock combination.
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Figure 4.44: Empirical copula kernel density surface of the simulated data by the Copula
model of the SEB and AstraZeneca stock combination.
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6. The simulation of the Volvo and AstraZeneca stocks combination.

The bivariate Gaussian model and Gaussian Copula model of the Volvo and AstraZeneca

stock combination were denoted by Gvolvo−astra and Cvolvo−astra, respectively, and I ran-

domly chose two 5000× 2 dimensions data matrices from the models Gvolvo−astra and

Cvolvo−astra. The models Gvolvo−astra and Cvolvo−astra are

Gvolvo−astra ∼ N
( (

−0.00103154
0.00066561

)T

,

(
0.00024042 0.00005532
0.00005532 0.00015445

) )
and

Cvolvo−astra ∼ N
( (

0
0

)T

,

(
0.8970 0.2663
0.2663 0.9180

) )

The kernel density contour plots and surface plots of the raw data, the simulated data of

Gvolvo−astra and the simulated data of Cvolvo−astra are shown in Fig. 4.45 to 4.50. We can

see that the Cvolvo−astra simulation is more similar with the raw data, so the Cvolvo−astra

simulation is better than the Gvolvo−astra simulation.
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Figure 4.45: Empirical copula kernel density contour plot of the raw data of the Volvo and
AstraZeneca stock combination.
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Figure 4.46: Empirical copula kernel density contour plot of the simulated data by the
Gaussian model of the Volvo and AstraZeneca stock combination.
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Figure 4.47: Empirical copula kernel density contour plot of the simulated data by the
Copula model of the Volvo and AstraZeneca stock combination.
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Figure 4.48: Empirical copula kernel density surface of the raw data of the Volvo and
AstraZeneca stock combination.
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Figure 4.49: Empirical copula kernel density surface of the simulated data by the Gaussian
model of the Volvo and AstraZeneca stock combination.
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Figure 4.50: Empirical copula kernel density surface of the simulated data by the Copula
model of the Volvo and AstraZeneca stock combination.

7. The simulation of the combination of the long-term stocks Volvo and AstraZeneca.

The bivariate Gaussian model and Gaussian Copula model of the long-term Volvo and

AstraZeneca stock combination were denoted by Gl−volvo−astra and Cl−volvo−astra, respec-

tively, and I randomly chose two 5000× 2 dimensions data matrices from the models

Gl−volvo−astra and Cl−volvo−astra. The models Gl−volvo−astra and Cl−volvo−astra are

Gl−volvo−astra ∼ N
( (

0.00037907
0.00036023

)T

,

(
0.00015445 0.00006817
0.00006817 0.00017824

) )
and

Cl−volvo−astra ∼ N
( (

0
0

)T

,

(
0.9681 0.2887
0.2887 0.9694

) )
.

The kernel density contour plots and surface plots of the raw data, the simulated data

of Gl−volvo−astra and the simulated data of Cl−volvo−astra are shown in Fig. 4.51 to 4.56.

We can see that the Cl−volvo−astra simulation is more similar with the raw data, so the

Cl−volvo−astra simulation is better than the Gl−volvo−astra simulation.
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Figure 4.51: Empirical copula kernel density contour plot of the raw data of the long-term
Volvo and AstraZeneca stock combination.
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Figure 4.52: Empirical copula kernel density contour plot of the simulated data by the
Gaussian model of the long-term Volvo and AstraZeneca stock combination.
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Figure 4.53: Empirical copula kernel density contour plot of the simulated data by the
Copula model of the long-term Volvo and AstraZeneca stock combination.
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Figure 4.54: Empirical copula kernel density surface of the raw data of the long-term Volvo
and AstraZeneca stock combination.
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Figure 4.55: Empirical copula kernel density surface of the simulated data by the Gaussian
model of the long-term Volvo and AstraZeneca stock combination.
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Figure 4.56: Empirical copula kernel density surface of the simulated data by the Copula
model of the long-term Volvo and AstraZeneca stock combination.
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4.3 The goodness of fitting of the copula models

By quantifying Kolmogorov-Smirnov (KS) distance the goodness of fitting of the bivari-

ate Gaussian Copula models of the six combinations of the four short-term stocks and the

combination of the two long-term stocks will be tested, and compared. The KS distances

are shown in Table 4.1.

Stock combinations Parameter ρ KS distance

Ericsson-SEB 0.2752949 0.0510
Ericsson-Volvo 0.3720650 0.0572

Short term Ericsson-AstraZeneca 0.3396017 0.0370
SEB-Volvo 0.5119775 0.0464

SEB-AstraZeneca 0.2589931 0.0446
Volvo-AstraZeneca 0.3049567 0.0308

Long term Volvo-AstraZeneca 0.2777583 0.0794

Table 4.1: Parameters of the Copula models and their corresponding Kolmogorov-Smirnov
distances of the six short-term stock combinations and the long-term stocks combination.

By visually checking, Table 4.1 shows that there are no relationships between the values of

the parameters and the KS distances. For the copula models of the short-term stock combi-

nations, the KS distances of the Ericsson-SEB and Ericsson-Volvo combinations are higher

than those of other short-term stock combinations. The KS distance of the long-term stock

combination is longer than those of the short-term stock combinations. Namely, the fittings

of the short-term stock combinations by the copula models are better than the fitting of the

long-term stock combination. This is due to the much longer time spans of the two long-

term stock data than the short-term stock data, so that the rule of randomness has much

more changes over a much longer period of time.
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5 Portfolio and risk analysis

5.1 Portfolio analysis

In this section, I established the portfolios of the six combinations of the four short-term

stocks and the combination of the two long-term stocks extracted from the Copula models

and Gaussian models respectively. The extractions were done by randomly selecting data

with a sample size of 250 (approximately equal to the number of one-year working days)

for each of the Copula model and Gaussian model and for 10 times and 100 times.
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Figure 5.1: Portfolio curves of the 10 times and 100 times simulations of the Copula model
and the Gaussian model of the Ericsson and SEB stock combination.
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From top-left panel of Fig. 5.1, we can see that the curve has an increasing trend over the

time, and the portfolio curve reaches its minimum value at the point t = 60, and at the point

t = 245, the portfolio curve reaches its maximum value which is about 625. The curve is

increasing from t = 60 to t = 140 and from t = 190 to t = 245. From the top-right panel of

Fig. 5.1, we can see that the curve is smoother, but it also has an increasing trend over the

time. The portfolio curve reaches its maximum value at the point t=250.

From bottom-left panel of Fig. 5.1, we can see that the portfolio curve reaches its max-

imum value at the point t = 250. The curve has a radical increase from t = 170 to t = 200.

From bottom-right panel of Fig. 5.1, we can see that the curve reaches its maximum value

at the point t = 245, and it is smoother than those in 10 simulations but less smooth than

that for the Copula model in 100 times simulation. Based on the results in Fig. 5.1 it is

difficult to say which model (Copula or Gaussian) is better in simulating the Ericsson and

SEB stock combination.
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Figure 5.2: Portfolio curves of the 10 times and 100 times simulations of the Copula model
and the Gaussian model of the Ericsson and Volvo stock combination.

Figure 5.2 shows similar results with Fig. 5.1. All the four portfolio curves show obviously

increasing trends over the whole period, with 10 times simulations showing more variation

and 100 times simulations showing less variation over the time.

The portfolio curve in the top-left panel reaches its maximum value at the point t = 245

which value is about 670. The curve shows a radical increasing trend from t = 110 to t =

140, and a decreasing trend from the point t = 140 to the point t = 170. The portfolio curve

in the top-right panel reaches its maximum value at the point t=250. The portfolio curve in

the bottom-left panel reaches its maximum value at the point t = 245 and minimum value
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at the point t = 40, respectively. The curve shows a radical increasing trend from t = 205

to t = 245. The portfolio curve in the bottom-right panel reaches its maximum value at the

point t = 245. Still, it is difficult to say which model is better in simulating the Ericsson and

Volvo stock combination.

0 100 200 300
450

500

550

600

650

700
10 times Copula model simulation

0 100 200 300
500

550

600

650

700

750

800
100 times Copula model simulation

0 100 200 300
500

550

600

650

700

750

800
10 times Gaussian model simulation

0 100 200 300
500

550

600

650

700
100 times Gaussian model simulation

Figure 5.3: Portfolio curves of the 10 times and 100 times simulations of the Copula model
and the Gaussian model of the Ericsson and AstraZeneca stock combination.

Figure 5.3 also shows that all the four portfolio curves have obviously positive trends over

the whole period, with 10 times simulations showing more variation and 100 times simula-

tions showing less variation over the time. It is also difficult to say, according to the figure,

which model is better in simulating the Ericsson and AstraZeneca stock combination.
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Figure 5.4: Portfolio curves of the 10 times and 100 times simulations of the Copula model
and the Gaussian model of the SEB and Volvo stock combination.

Figure 5.4 shows that all the four portfolio curves have decreasing trends over the whole

period, with 10 times simulations showing more variation and 100 times simulations show-

ing less variation over the time.

The portfolio curve in the top-left panel reaches its minimum value at the point t = 250,

and has an increase trend from t = 110 to t = 130. The portfolio curve in the top-right panel

reaches its minimum value at the point t = 205, and has an increasing trend from t = 205 to

t = 240.
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The portfolio curve in the bottom-left panel shows big fluctuations over the time. The curve

has an increase trend from t = 50 to t = 100, and has two obvious decreasing trends from t

= 180 to t = 210 and from t = 230 to 250. The curve reaches its minimum value at the point

t = 250. The curve in the bottom-right panel reaches its minimum value at the point t = 250.
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Figure 5.5: Portfolio curves of the 10 times and 100 times simulations of the Copula model
and the Gaussian model of the SEB and AstraZeneca stock combination.

All the portfolio curves in Fig. 5.5 show obviously positive trends over the time, with 100

time simulations by Copula model showing least variation over the time.
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The curve in the up-left panel reaches its minimum value at the point t = 160 and max-

imum value at the point t = 250, and has an obvious increase from t = 215 to t=250. The

curve in the up-right panel reaches its maximum value at the end point t=250. Both curves

in the bottom panels reach their maximum values at the end points.
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Figure 5.6: Portfolio curves of the 10 times and 100 times simulations of the Copula model
and the Gaussian model of the Volvo and AstraZeneca stock combination.

The curves in the first three panels show obviously positive trends for the whole time pe-

riod, while the curve in the last panel (bottom-right) shows a slightly positive trend for

the whole period. The curve in the up-left panel reaches its maximum value at the point

t = 250, and the curve in the up-right panel reaches its maximum value at the point t =
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230. Seasonal variations are obvious for the curves in the bottom panels. The curve in the

bottom-left panel shows two obvious increases from t = 80 to t = 120 and from t = 215 to t =

240, and shows an obvious decrease from t = 120 to t = 160. The curve in the bottom-right

panel has three obvious increases from t = 45 to t = 70, from t = 120 to t = 180 and from t

= 205 to t = 230, and it also has three obvious decreases from t = 0 to t = 45, from t = 105

to t = 130 and from t = 180 to t = 205.
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Figure 5.7: Portfolio curves of the 10 times and 100 times simulation of the Copula model
and the Gaussian model of the long-term Volvo and AstraZeneca stock combination.

All the four portfolio curves in Fig. 5.7 show obviously increasing trends for the whole pe-

riod, with 10 times simulations showing more variation and 100 times simulations showing
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less variation over the time.

The curve in the top-left reaches its maximum value at the point t = 180. The curves in

the top-right and bottom panels reach their maximum values at the end point.

According to the results from the portfolio analysis (Fig. 5.1-5.7) it is difficult to say

which model is better in simulating the stock combinations. Therefore, risk analysis will

be done in the next section.

5.2 Risk analysis

In this section, in order to make more accurate comparisons between the Copula models

and Gaussian models, I simulated using each of the Copula model and the Gaussian model

100 times and calculated the portfolios. The 100 values at the end points (t=250) calculated

based on each model were saved. Then I calculated the probability density of the 100 val-

ues for each model. The results are shown in Fig. 5.8 and 5.9.

From Fig. 5.8 and Fig. 5.9, we can see that the risks of the Copula models Ceric−seb,

Ceric−astra, Cseb−volvo, Cseb−astra, Cvolvo−astra and Cl−volvo−astra are smaller than the risks of

the Gaussian models Geric−seb, Geric−astra, Gseb−volvo, Gseb−astra, Gvolvo−astra and Gl−volvo−astra.

And the risk of the Copula model Ceric−volvo is bigger than the risk of the Gaussian model

Geric−volvo.
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Figure 5.8: Risks comparisons of the Copula models and the Gaussian models of the six
short-term stock combinations.
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Figure 5.9: Risks comparisons of the Copula models and the Gaussian models of the long-
term stock combinations.
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6 Conclusion

The Copula method was applied to the traditional bivariate Gaussian model to improve the

dependence analysis of stock returns within several bivariate portfolio. It was concluded

that strong positive dependences existed in ACPs of the stocks between Ericsson and Volvo,

and Ericsson and AstraZeneca, and Volvo and AstraZeneca, and the strongest positive de-

pendence among these stocks appeared between the stock SEB and the stock Volvo. In

the stocks market, it is good to execute a portfolio if there is a strong positive dependence

between the two stocks.

According to the portfolio analysis, both of the Copula and Gaussian models showed the

same trend for the same stock combination. For the same stock combination, the maximum

values of the portfolio curves in most of the Copula models with 100 times simulations

were bigger than those in the Gaussian models if the curve trend was increasing, while

the minimum value of the portfolio curve in the Copula model with 100 times simulations

was smaller than this in the Gaussian models if the curve trend was decreasing. Together

with the figures of the risk analysis, we conclude that most of the Copula models have the

smaller risk than the Gaussian models.
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