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Abstract

We! investigate a collection of continuous time stochastic differential
equation (SDE) models for short term interests with respect to their match
to Swedish 3-month Treasure bill rates.

It is well-known that estimation of parameters of SDE models are difficult
in the absence of closed form expresion for the transition density. In this
thesis we use simulated maximum likelihood (SML) to estimate parameters.

Our conclusion is that SDE models with the most general volatility spec-
ification gives the best fit to the data.

!Throughout this thesis we use the conventions We=1 and we=1.
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1 Introduction

The dynamic behavior of interest rates is an important aspect of the financial
environment. This is so because financial institutions and intermediaries such
as banks and insurance companies has liabilities and assets that depend on
interest rates. If these actors have poor information about interest rates, it
can have very dramatic effects on their activities.

For example, in the savings and loan market in the 1980s in USA, interest
rates increased rapidly and billions of dollars in profits turned over to huge
losses and numerous insolvencies. The problem was that assets were primarily
long term and fixed-rate mortgage while most liabilities were short term
demand deposits. So, when interest rates increased rapidly the difference
between the long term earnings used to pay the short term liabilities became
very small or even negative. FEffects like this make it very important to
develop models such that risk management tools that can be used to decrease
risks, see Ahlgrim et al. [1].

Nowadays SDE are commonly used to model financial and economic data.
Estimation of parameters of SDE models has proved to be difficult. This is
so because closed form expressions of transition densities are not known in
general, so that the log likelihood function isn’t either. However, recently new
methods have been developed to approximate transition densities, such as a
generalized method of moment (GMM) by Chan et al. [9], simulated method
of moments by Duffie and Singleton, efficient method of moments (EMM)
by Gallant and Tauchen, and approximation of transition densities using
Hermite function by Ait-Shalia [3]. Another important method is Markov
Chain Monte Carol (MCMC), a method which in turn is closely related to
the simulated maximum likelihood (SML) method by Pedersen [16] that we
will use in this thesis.

The idea behind SML is to approximate the unknown transition density
by simulating M — 1 unobserved points between two observations z; and x;
say, where s < t. Since the simulated points are unobserved they have to
be integrated out by means of th Chapman-Kolmogorov theorem. Choosing
a big M gives better approximations, but at a cost of a higher dimensional
integrals, since M — 1 unobserved points correspond to a M — 1 dimensional
integral. In general, the only feasable way to calculate this integral is by
Monte Carlo integration. There we face a trade off between the accuracy of
the approximation and the simulation time required.

There are two approximation errors for the SML method, namely a bias
error due to approximation of the transition density by for example an Eu-
ler scheme, and a variance error due to the Monte Carlo approximation of
integrals. To make the method faster one employs different acceleration



methods, such as importance sampling for the Monte Carlo method and a
finer approximation of the transition density.

The purpose of this thesis is to learn how to estimate parameters for SDE
models when the transition density is not known in closed form. Then we
apply our found method to fit weekly Swedish 3-month Treasure bill rates to
the following nested SDE models proposed by Ait-Shalia [2]:

dX = (ap + X + X? + a3/X) dt +\/Bo + 1 X + foXPs dW.

The thesis is structured as follows: In Section 2 we introduce the SML
method and some of its asymptotic properties.

In Section 3 we present the Monte Carlo integration method and methods
for variance reduction.

In Section 4 we describe how to combine the simulation approach SML
with acceleration methods.

In section 5 we evaluate the performance of our accelerated SML method
by applying it to the CIR model. As this model has analytic solutions we
can compare the results of our method with exact results.

In Section 6 we give a review of different interest rate models.

In Section 7 we present our data set and the test statistics we use to
evaluate our fitted interest rate models.

In Section 8 we give the results of our fit of interest rate models to the
Treasure bill rates data set.

Finally, in Section 9 we make conclusions from our work.



2 Simulated maximum likelihood (SML)

2.1 The SML method

The idea of the SML method goes as follows: Consider a time homogeneous
SDE model

dX = p(X,0)dt + o(X,0)dW, X(t) = Xo. (1)

Here 6 is a parameter vector and W a standard Brownian motion.

Suppose that we have observed the values {X; = X(¢;),i = 0,...,n} of
the solution to (1). Let the transition density for (X (¢,6)|X (s, #)) be given by
p(x4, t; x5, 8,0) for s < ¢, so that (as we are working with a Markov process)
the log likelihood is given by

1,(0) = Zlog (p(X;, ti; Xi 1, ti1,0)). (2)

In many cases of practical interest a closed form expression for the tran-
sition density is not available, and thus this is also so for the log likelihood.
Maximum likelihood (ML) estimators and with their statistical properties
then cannot be calculated in a straightforward naive manner.

The first order Euler approximation of the solution to (1) is given by

dXi—H = H(Xz; H)AZ + O'(XZ', 9)A2/26Z‘, Az = ti—f—l - tz', €; N(O, 1) (3)

The Euler approximation (3) corresponds to the first order approximated
transition density

p(l)(xt, t;xs,8,0) = ¢ (a:t, zy+ p(zs)(t — 8), 0% () (t — s)) , (4)

where ¢ (z;u,0%) is a Gaussian density probability density function with
expected value p and variance 2. From now on we call approximative tran-
sition densities sub densities.

The approximations (3) and (4) are good only if the length h = t—s of the
interval [s, ] is small enough, and in the limit as A — 0 the approximation
becomes exact. To get a better approximation one may partition the interval
in subintervals s = 79 < 73 < ... < 1)y =t, all with equal length 6 = A/M.
When the process values X(71),... X(7a—1) has not been observed they
must be integrated out using the Chapman-Kolmogorov theorem to get an
approximated likelihood.



Theorem 1 (Chapman-Kolmogorov). For the transition density
function p(y,t;x, s) of a diffusion process we have

potins) = [ otz pldsuias) fors<u<t. ()

o0

Using (5) we can calculate the approximated transition density p(™)(z,, t;
Zs, 8, 0) recursively: The probability that X () = z; conditional on that
X(19) = x5 passing through X (71) = us,..., X(7am—1) = upy—1 can by (5) be
written as

pM (x4, t; 25, 5,0) = /p(l'taTMQUM—laTM—lae) p(uni—1, Tn-13 @, 5,0) dunr—1.

R ~
=1

(6)
As the one step ahead transition density is given by (4) we can replace
(4, Tars Uni—1, Tar—1,0) in (6) by pM (x4, Tar; unr—1, Tii—1,0). Treating I in
(6) in the same way we get

p(uM—laTM—l;xa 859)

:/P(UM—1,TM—1;UM—2,7'M—2,9)10(UM—2,7'M—2;33,Sa 9) dupr—s.
R

Here we approximate p(uns—1, Tar—1; Unr—2, Tar—2, 0) by p (Uar—1, Tar— 15 Uns—2,
Tam—2,0) ... . Repeating this procedure M — 1 times we end up with the
approximate transition density

p(xta t, Zs, S, 9) ~ p(M) (mt: ta Ts, S, 0)
M-1

= / H p(l)(um+1,Tm+1;um,Tm,0) dA(Ul,...,U,M,I),
RM-1

m=0

where A denotes Lebesgue measure, uy = x5 and uy; = x;. In general, the
only feasible way to calculate this integral numerically is by means of Monte
Carlo integration.

2.2 Asymptotic condition

The SML method has some very nice asymptotic properties, two of which
will be briefly reviewed here. For more detail information the interested
reader is refered to Brandt and Santa-Clara [6], Durham and Gallant [12]
and Pedersen [15, 16].



Assume that the densities p(-,t; zy, s,0) and p™) (-, t; z,, s, 0) exist for all
s < t, xy € sup|X(s,0°)], 0 € © and M > 1, where 6° is the unknown
parameter vector and X; = X][t;;6°] are observations generated from the
Euler approximation (4). Denote by Py, the probability measure induced

by {Xo,.--,Xn}, by Z%M)(Q) the approximated log likelihood
1M (g) = zn: log (p™) (X, t55 Xio1, ti-1,0))
=1
and by [,(#) the exact likelihood
1. (0) = ilog (p(Xi, ti; Xiz1, tic1,0).)
=1

Pedersen [16] shows under some special conditions that

lim p(M)(-,t;xs,s,H) =p(-, t; 75, 5,0) in L'

M—oo

and that

lim ™) (#) =1,(0) in probability under Py, for 6 € ©.

n
M—oo






3 Monte Carlo integration

To calculate the expectation of a function in one and multidimensional space
approximatively one can use the Monte Carlo method. Here we give a brief
introduction to this method.

3.1 The Monte Carlo method

Consider a random variable X with cummulative probability distribution
function Fx. The expected value of a function A(X) of X is given by

E{h(X)} = / ) dFx (o

We get the Monte Carlo estimate of E{h(X)} by taking a sample of {X1,...,
X,} of observations of X and compute the mean of h over the sample, that

is,
1 n
T n i=1 X

By the strong law of large numbers we have h,(X) — E{h(X)} as n —
oo almost surely. Note that the estimator A, (X) is unbiased, by a trivial
calculation.

As always with simulations, we want our method to be computationally
efficient. In our case the standard error is given by w/y/n where w is the
standard deviation of A(X). There exist many methods for accelarating the
convergence, some of which are presented in Cairns [8]. In this thesis we will
use a random number scheme and importance sampling.

3.2 Random number scheme

Suppose that we have to generate an ii.d. sample {X,..., X5,} from a
standard normal distributed random variable X. Instead of a sample of
length 2n we generate an initial i.i.d. sample {X3,..., X,,} and get the final
sample by setting X, = -X,,....X,, = —X,. Without a random number
scheme, the variance is given by 0%/(2n) where ¢ is the standard deviation
of h(X). But if we use the n variates X together with their n antithetic
variates X and set

=1



we get

_ Var{h(X) + h(X)}
4n
_ Var{h(X) + Var{h(X)} + 2 Cov{h(X), h(X)}
4dn :

Var{h(X)}

Therefore the variance will be smaller if Cov{h(X), h(X)} < 0. This will
typically (but not strictly always) be the case with our choice X = —X.
In this thesis we will use normalized variates W, that is,

) ) ;M —1/2
(Wla"'7WM—1): (M—]_ ZI/I/?) (Wla""WM—l)'
m=1

By normalization we can control the jaggedness of the sample path by letting
each vector of Gaussian increments have sample variance one.

Since we maximize our log likehood function numerically we must calcu-
late it for different parameter values and for each calculation we use the same
random numbers. This will give approximated densities that are smooth
functions of the parameters and will thus be of help when optimizing. The

asymptotics results are also based on using the same random numbers repet-
edly.

3.3 Importance sampling

The idea of importance sampling is to draw random numbners from a part
of a distribution that contribute the most to the integration. This is based
on a trick to get an integrand that varies less than the original one over
the integration region, and goes like this: For a random variable X with
probability density function f and a function r, the expectation E{r(X)}
can we written as

E{T(X)}Z/r(x)f(x)d:r:/h(x)%dx:Eh{%}

for probability density functions A, where the notation E; means expectation
with respect to the density h. This can be seen as changing of measure. The
new Monte Carlo estimation is the given by

1~ f(X)r(X;
ﬁ;% where X; have density h. (7)



It can been shown that the variance of the estimator (7) is minimized
when h is proportional to r f, see Andersen [5]. However, there are some other
properties the importance sampler should have possess as well: It should be
easy to simulate values from h and it should be easy to compute h(x) for all
x we realize. Also, as rf and h roughly have the same shape we get trouble
if the tails of h get thinner faster than those of rf, that is, if we realize a
value X; from the far tails the ratio 7(X;)f(X;)/h(X;) will be much larger
than values of r(X) f(X)/h(X) that we actually observe.

In our particular application the importance sampling will work as fol-
lows: Fix s < t, x4, 24, # and M and let ¢(uq,...,up 1,0) denote a prob-
ability density on RM~1. Further, let {(ug1,...,upm-1),k = 1,..., K} be
independent observations from ¢q. We approximate (6) by

p(M’K) (iCt, ta Tsy S, 0)

1 XK: 1 ﬁ o ) (8)
= — P \Ukms Tms Uk,m—1, Tm—1,0),
K 1 q(uk,l, coey Uk, M—1, 9) m—1 g k ' '

where uy o = x, and u, v = x; for all k. The density ¢ is given by

M-1
H pimp(um: Tms Um—15 Tm—1, 0)

m=1

where Pimp(Um, Tm; Um—1, Tm—1, 0) is the transition density for the importance
sampler.
If it holds that

M
1
E (1) Ui To; Un—1, Tin—1, 0 } < 00,

{q(Ul,...,UMl’g) T}__[lp ( 1 1,0)

then the strong law of large numbers gives

;;im |p(M’K)(:vt,t; s, 5,0) — pM) (x4, t; 4, s, 0)| =0 almost surely.
—00
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4 SML with acceleration methods

In this section we introduce different simulation approaches for estimating
the parameters of our processes due to Pedersen and Santa Clara (indepen-
dent of each other). Then we describe acceleration methods to make speed
up the method. Durham and Gallant [12] investigated different bias and
variance reduction techniques on a one factor CIR process, and we will use
the acceleration techniques that gave the best results according to their in-
vestigation.

4.1 Lamperti transformation

Before we present the bias and variance reduction techniques we transform
the SDE (1) to make the diffusion term constant, following Shoji and Ozaki
[20] and Ait-Shalia [3]. This will improve both the approximation of (4) and
the acceleration of convergence of the Monte Carlo estimation of (6), because
the transformed SDE is closer to a Gaussian process. The transformation we
will use is often called Lamperti transformation and is given by

Xy
Y =GX)= 9
6= [ Q
where G(X) satisfies G'(X) = 1/0(X;6). By Ito’s lemma we have
1
dY = G'(X)dX + 5G”(X)a?(X) dt,
which after inserting dX; can be rewritten as

_(MGY)) 1
dY_(U(GI(Y)) oG (Y))) dt + dW.

In some cases the integral in (9) is defined as —Y to get Y > 0. If, for
example, 0(X;0) = X? and p > 1, then we get Y = G(X) = —X'7?/(1—p).
The transformed SDE in this case is equal to

d(-Y) = — (% - %a'(G‘l(Y))) dt — dw.

The relation between the new transition density py and p is given by

dy

p(xtat; 335,8,9) :pY(ytat; ys,S,H) dz

Y

11



where |dy/dx| is the Jacobian.

It is not always the case that the Lamperti transform has a closed form
expression, so that one has to calculate the transformation numerically. This
can be done by defining an equidistant grid zi,...,z, and calculate the
corresponding values yi, ..., ¥y, from

/CXt du/o(u;0)

by, for example, the Runge-Kutta method. The constant ¢ has to be chosen
less than z;. For an observation xy we find the interval where it belongs, say
[i, z;+1] and then interpolate between [y;, y;+1]. The forward transformation
Y = G(X) is straightforward and fast compared to the backward transfor-
mation X = G (V). First we have to locate the interval for an observation
Yo by, for example, using bisection search, and this has to be done for all
unobserved data which requires extra simulation time.

4.2 Pedersen and Santa Clara approach

The importance sampler used by Clara and Pedersen is the Euler scheme:
For given 25 = X (s) and x; = X (¢) this sampler is given by the recursion

U1 = U + ((tm; 0)0 + 0 (tm; 0)0Y * W1, m =0,..., M — 2,

where Wy, ..., Wy are i.i.d. standard normal, ug = z; and § = (t — s)/M.
With the above setup (8) simplifies a lot. The first M — 1 factors in the
numerator cancel out since
M—2
gk, upar—1,0) = [ ] SWrmers v + 1(ukm; )5, 0> (ug m; 0)5),
m=0

so that we end up with

K

Zp(l) (e, t w1, T -1, 0),
k=1

(M,K)(

1
T, ta Ts, S, 0) = ?

p

where we draw {ug a1,k =1,..., K} from the (M — 1):st component of g.
Durham and Gallant [12] show that this approach does not work well becuase
samples are drawn from regions where the integrand has little mass.

12



4.3 Bias reduction: Shoji and Ozaki approach

We have two sources of approximation errors, namely a bias error due to
approximation of the subdensity and a variance error from the Monte-Carlo
integration.

We will use a method to decrease the bias error proposed by Shoji and
Ozaki [20] called local linearization method. Their method approximates
a non-linear SDE with a linear SDE. Since the linear SDE has a Gaussian
transition density the parameters can be estimated by the ML method. They
show the method is more efficient and much more numerically stable than

the Euler approximation. To use the method one need constant volatility.
Given the SDE
dX = p(X,t)dt + o dW

and a fixed z;, an application of Ito’s lemma to p(X,t) gives

o2 ?u(X,t)  ou(X,t ou(X,t
dp(X,t) = (7 8(X2 )+ (at )) dt+7éX )

Next we linearize u wrt. x; and ¢ by assuming that
82
/J,(Jf,t), Ou(x,t) and Oou(z,t)
0z? oz ot

are constant. If ¢ belongs to a small interval [s,s + A) this assumption will
be reasonable. In this manner (10) can be approximated as

u(xg, t) — u(zy, 8) = (%282/55; ) + 8ugvt, t)> (t—s)+ 8u§;’ ) (T — x4).

dX.  (10)

We can write this equation as

u(zy,t) = (Lszy + Mst + Ng) dt + o dW, (11)
where
ou(zs, s)
L. =
S ax Y
0?0 u(zs,8)  Ou(xs,s)
M= a2 T (12)
_ ou(zs, s) 02 0% u(zs,s)  Ou(xs,s)
No = ulz,8) = —5,— o = (7 ozt a )

Next we transform (11) using Girsanov,s theorem, which gives

dz, = Lz, dt + o dW, (13)

13



where .
W=Ww, - / y(u)du and v(u) = ! (Msu + Nj) .

o

Using Ito’s lemma on 1y; = f(zs,t) = e Lsx; we can solve (13) and the

solution is given by

t
Yeys + 0 / e " dB,
s , .
=y + / (Myu + Ny) e B du + a/ e Ls*dB,.

Putting things together we end up with a discretized process x; given by

u(zs, S) N M,
L, L

t
Ty = Ts + ( ) (eLs(t_s) —1)+ M (t—s)+ 0/ et qB, .

where L, and M; are given by (12). The solution to our new SDE is an
Ohrstein-Uhlenbeck process with subdensity given by

p(xta ta Ts, S, 9) = ¢($ta ﬂa 62)

where

D AACONT S
i =xs+ K CEA)E (K — /() A,

+

52 g ( 2u' (zs)A 1)
1o 200 () e :

Example of other subdensities is Elerian’s based on a Milstein scheme.
Kessler uses higher order Ito Taylor approximations. See Durham and Gal-
lant [12] for more information.

4.4 Variance reduction by importance sampling

The importance sampler in thesis samples u,,.; from a Gaussian density
function

d) (um—f—l; U, + /7'5: 5-25) ’

where . o )
-8 —-m— Upr — U,
0= , §2=———"6% and = oM T

M—-m t—Tm

14



The resulting process is called a modified Brownian bridge. This process
actually is a Brownian bridge if o is constant, as

_ M—m—1
t— Tm M —m

where W, are i.i.d. standard normal.
Examples of other importance samplers are given in Durham and Gallant
[12] and Pastorello and Rossi [17].

4.5 Log likelihood bias reduction

It is well-known that the approximated log likelihood log(p™-¥) (z,, t; z,, s, 0))
is a biased estimator of the real log likelihood log(p(zy, t; zs, s,0)). We use a
bias reduction from Bruche [7] given by

) K

—2
(M), . So [ 1 3
log (p (x4, t; 25, 8, 9 = log < E wk> 5K (K wk>

k=1

where

g

W = H p uk,m,Tm;uk,mflaTmfl,e)-

q(uk,la .- U’k M— la —1

and s, is the standard deviation of w. This transformation reduces the bias
to O(K3/?).

In practice, our results turned out to be nearly the same with or without
the log likelihood bias reduction.

15
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5 SML applied to the CIR process

We test the SML method on the famous CIR interest rate model of Cox,
Ingersoll and Ross [10]. Since the CIR model has a closed form transition
density and thus a closed form log likelihood a test can be done.

The CIR process is given by

dX = a0 — X) dt + oVX dW, (14)

where «, 0,0 > 0 are parameters such that 2a0/c? > 1. In Figure 1 below a
trajectoria of the CIR process is depicted.

2.5

15

0.5

0 50 100 150 200 250 300 350 400 450

Figure 1: CIR trajectory.

If we let
2c¢
c= o2(1 — e~olt=9))’
200

2 ;
u = cx(s)e 29,
v = cx(t),
Z = 2cX,

17



then (Z;|Z,) has a non-central chi-squared distribution with 4af/c? degrees
of freedom and non-centrality parameter Z,e*~*). This is to say that

(e, t; x5, 5,0) = ce” " (v/u)q/QIq(Q\/uv)

where I,(-) is the modified Bessel function of the first kind of order g.
The Lamperti transform for the CIR model is given by YV = 2\/)_(/0.
Applying Ito’s lemma and inserting in (14) we get the transformed equation

aY 1 400

The relation between the transformed transition density py (ys, t; ys, s, ) and
the original one is given by

dy
p(x4,t; 24, 5,0) = py (Y, t; Ys, 5, 0) ‘—‘ =

pY(yta ta Ysy S, 0)
dx )

oV

Figures 2-5 below show the results when approximating transition densi-
ties for different M and K with parameters dt = 1/12, (o, 6,0) = (0.6, 0.05,
0.15), Xy = 0.1 and X; = [0.05,0.15]. The top panels display the approxi-
mated likelihood (circles) and exact log likelihood (line) for 124 repetitions.
The bottom panels display the error between the approximated and exact log
likelihood (line) together with the median and interquartiles (both dashed).

0.04 0.06 0.08 0.1 0.12 0.14 0.16

0.04 0.06 0.08 0.1 0.12 0.14 0.16
X(t)

Figure 2: Log likelihoods and approximation errors for M = 8, K = 32.
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.04 0.06 0.08 0.1 0.12 0.14 0.16

error
N

) ‘ ‘ ‘ ‘ ‘
0.04 0.06 0.08 01 0.12 0.14 0.16
X(®)

Figure 3: Log likelihoods and approximation errors for M = 8, K = 16.

0.04 0.06 0.08 0.1 0.12 0.14 0.16

error
N

) ‘ ‘ ‘ ‘ ‘
0.04 0.06 0.08 01 0.12 0.14 0.16
X(®)

Figure 4: Log likelihoods and approximation errors for M = 8, K = 8.
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0.04 0.06 0.08 0.1 0.12 0.14 0.16
x 10"
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1t i
2 o0 1
(]
_l - -
2 ‘ ‘ ‘ ‘ ‘
0.04 0.06 0.08 0.1 0.12 0.14 0.16

X(0)

Figure 5: Log likelihoods and approximation errors for M =4, K = 8.

We would like to see how well we can approximate the log likelihood for
a larger sample. Therefore we use the same settings as above, except for the
number of observations where we use n = 5000. The sample comes from a
explicit discrete scheme proposed by Alfonsi [4], given by

x = (0 (Wti—H B Wti) + Ati)2
bt 21+ a(tiy, —t;)) ’

o2
Bu = 0 (Wi = Wi+ (o + (00 = 5 )t = )1 +alts — 1)
As starting point we choosed 0.5. The scheme will ensure positive values for
the solution if, so that there are no problem with the square root. We used
the RMSE measure proposed in Durham and Gallant [12] to calculate the
error, which is given by

RMSE = |~ log (3(zis1 2)) = log (p(wisa )"

In Table 1 below the RMSE and CPU time? are presented.

2We used a 3GHz Windows machine together with Matlab software.
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(M,K) RMSE | CPU time (s)
M=8 K =32|0.000183 29.92
M=8 K =16 |0.000175 15.95
M=8 K=28 |0.000248 8.47
M=4 K=8 |0.000472 8.11

Table 1: Test of approximation of log likelihood
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6 Interest rate models

As mentioned in the introduction we model interest rates through the SDE
dX = (g + a1 X + X2+ a3/ X) dt + /By + B X + B X P dW.

This SDE nests most models in the literature, as is shown in Table 2 below.

Table 2: Examples of interest rate models nested in our model (15).

Our drift and volatility specifications are listed in Table 3 below (cf.
Durham [11]). The Affine model gives affine zero-coupon bond prices and
include CIR and Vasicek as special cases. The CEV1-CEV3 models have so
called constant elasticity of their volatilities, while the GEN1-GEN3 models

Model w(z;0) | o(x;0)
Merton o o
Vasicek a+ Bx o
CIR a+pfx| oz
Pearson-Sun a+ Bz | oyr—n
Dothan — ox
GBM Bx ox
Brennan-Schwartz | o + Sz ox
CIR VR — ox®/?
CEV Bx ox?
CKLS a+ px ox?

have more general volatility specifications.

Model w(zx; 0) o(z;6)
Affine oy + ox \/ﬂo + .’L’ﬂl
CEV1 T BoxPt

CEV2 ap + oz BoxP!

CEV3 | ap + az + oz + as/x BozP

GEN1 o VBo + Bz + PP
GEN2 ap + i VBo + Bz + BoaPs
GEN3 | ag + a1z + aoz? + a3/x \/50 + Brx + PoaPs

Table 3: Interest rate models used in this thesis
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7 Data analys and test statistics

Here we present our data set together with the test statistics we use.

7.1 Data

The data set we used is the weekly Swedish 3-month Treasure bill rates
from January 1, 1983 to January 1, 2007, see Riksbanken [18]. As the five
rates from week 18 1983, weeks 5-7 1990 and week 27 2004 were missing, we
substituted these missing data with interpolated values. The total number
of data is n = 1247. The data is plotted in Figure 6 below.
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Figure 6: Weekly Treasure bill rates January 1, 1983 to January 1, 2007.

Table 4 below lists some stylized facts (descriptive statistics) for the data.

Mean 7.4912
Variance 17.1794
Standard Deviation | 4.1448
Skewness 0.311

Kurtosis 2.3027

Table 4: Stylized facts of the data
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Note that the skewness 0.3111 and kurtosis 2.3027 indicate some asymmetry
and some rounded peaks within the data.

7.2 Test statistics

Since our models are nested in (15) and since likelihood values are available
we can apply the well-known likelihood ratio (LR) test and together with the
convenient asymptotic properties of this test. We also use Akaike information
criterion (AIC) and Schwartz’ Bayesian criterion (SC) to rank the models.

7.2.1 LR test

With the LR test we can compare if a reduced model gives a fit which is as
good as a fuller model.

Consider a parameter vector @ and a null hypothesis Hy that puts m
restrictions on #. For example, suppose that we are interested to test if a
population has zero mean p when 6 = (u, o), so that m = 1 since we have one
restriction on 6. Let éML denote the ML estimator without restrictions and
GNO,ML the restricted ML estimate. If the null hypothesis is true, then Oy, and
0~0,ML both should be close to #, which should imply that the corresponding
likelihoods L(éML) and L(0~0,ML) are close.

The likelihood ratio test rejects Hy if

2 |log(L(0r1)) — log(L(Bo.arr))| > X2 (16)

where Xi,m is the o upper probability value of the chi-square distribution
with m degrees of freedom. The LR test (16) is only approximative, as it is
obtained the limit test obtained when the sample size tends to infinity under
some regularity conditions.

The asymptotic distribution of the ML estimator 6 is well-known, see e.g.,
Pawitan [14]. It can be described in several ways, as, for example,

0~ N(@©,I6)Y)

where I(6) is the Fischer information, which is to say minus the Hessian,

that is,
2

1i(0) =~ 59,58,

logL(H) |a:é :

The standard error for the parameter number i is given by Iizl/ *(6).
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7.2.2 AIC and SC

AIC and SC are used for model selection and both depend on the likelihood.
The AIC is defined as
_210g(L(§ML)) 2K

AIC = + 2
n n

while the SC is defined as

_210g(L(§ML)) N log(n)K‘

SC =

In both cases K is the number of free parameters and n the sample size. The
model selection is made by minimizing each of AIC and SC. Both criteria
depend in the same way on the likelihood, but differ in the second term which
penalizes too many parameters. Therefore SC tend to favour models with
fewer parameters than AIC. In practice the models selected by AIC and SC
tend to be close or even identical, see Ruppert [19].
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8 Parameter estimations

We M = 8 and K = 16 we estimated the parameters. This choice gave
good approximation results for the CIR model at the same time as giving
reasonable simulation times. Matlab was used as software, but I would like

to recommend faster softwares such as C\C++ or Fortran.

The optimization of the log likelihood was not trivial since the Hessian
was ill-conditioned, that is, close to a singular matrix.
In Tables 5 and 6 below we list the estimated drift and volatility param-
eters, respectively, together with their corresponding standard errors for the
different nested models considered.

Model o oy 1o Qs
Affine 0.22 + 0.09 0.00 + 0.05

CEV1 0.00 = 0.09

CEV2 | 0.001 4 0.000 | -0.012 + 0.000

CEV3 | -0.063 4+ 0.000 | -0.010 + 0.000 | -0.004 = 0.000 | 0.187 4+ 0.000
GEN1 | 0.000 4+ 0.002
GEN2 | 0.025 + 0.000 | -0.062 + 0.000
GEN3 | -0.319 £+ 0.000 | 0.000 + 0.000 | -0.001 4+ 0.000 | 0.505 =+ 0.000

Table 5: Estimated drift parameters with standard errors.

Model Bo By Be B3

Affine | -0.751 4+ 0.008 | 0.515 + 0.004

CEV1 | 0.073 £ 0.002 | 1.428 + 0.010

CEV2 | 0.073 4+ 0.000 | 1.427 £ 0.000

CEV3 | 0.073 4+ 0.000 | 1.426 £ 0.000

GENT1 | -0.064 £ 0.000 | 0.074 £ 0.000 | 0.000 +0.000 | 7.520 4+ 0.107
GEN2 | -0.073 £ 0.001 | 0.075 £ 0.001 | 0.000 £ 0.000 | 7.488 4+ 0.000
GEN3 | -0.070 £ 0.000 | 0.073 £ 0.000 | 0.000 £ 0.000 | 7.518 4 0.000

Table 6: Estimated volatility parameters with standard errors

Table 7 below presents the log likelihood together with the AIC, SC and
LR tests. Note that the volatility is the sensitive part in model specification
and thus the most general volatility specification is to be preferred for our

data set.
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Model | log likelihood | AIC | SC LR test
Affine 254. -0.40 | -239. rejected
CEV1 708. -1.13 | -698. rejected
CEV2 709. -1.13 | -694. rejected
CEV3 709. -1.13 | -688. rejected
GEN1 860. -1.37 | -842. | not rejected
GEN2 863. -1.37 | -842. | not rejected
GEN3 863. -1.37 | -835. -

Table 7: Estimations of log likelihood, AIC,SC and LR test

The Affine model (and thus Vasicek and CIR models) fit the data very poorly.
This conclusions was also made by Chan et al. [9] and Durham [11] with
different data sets. The reason that we have used this model is because of
its analytical tractability. All interest rate models from Table 2 are rejected.

In Figure 7 below we have plotted the fitted drift for GEN1-GEN3 and
the fitted volatility for GEN1-GEN3 and CEV3. Both the drift and volatility
seem to have non-linearity properties as the non-linearity parameters are
statistically significant.

GEN1
0.02 ‘ ‘ : : o cEnz2[
— — GEN3
— 07 - T —
Ef [ Tt
S| - - -
-0.021 T~
-0.04 ;
0 5 10 15 20 25 30

101

Allzo(r)

o N B [} oo
T T T T

J
30

Figure 7: Fitted drift and volatility.

Our conclusion that a general volatility function is required is supported
by Durham [11], who required general volatilities to model daily observations
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of the U.S 3-month Treasury bill rate. Durham mentions that the CEV
volatility function which for low interest rates is constrained to approach
zero was unable to catch the relativetely high volatility found in the daily
data at low interest rates. The result is that the model tries to catch the
low values of the interest rates causing a volatility function with too little
curvature.

In Figures 8-10 below we show simulations of our fitted interest rate
models, to be compared with the plot of the real data set in Figure 6.
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Figure 8: Trajectory of GENI1.
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Figure 9: Trajectory of GEN2.
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Figure 10: Trajectory of GEN3.
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9 Conclusions

In this thesis we have shown that SDE interest rate models with a more flex-
ible volatility function match the weekly Swedish 3-month Treasure bill rates
from 1 January, 1983 to 1 January, 2007 much better than constant elasticity
of volatility models and the Affine model, the latter of which includes, for
example, the CIR and Vasicek models.

When using SML is seems favorable to use fast softwares such as C\C++
and Fortran. However, also the programmer highly affects the speed of the
method. The SML method has the advantage to be robust for large time
discretization steps. By increasing the parameters M and K of the method,
the approximation error can be controlled and made arbitrarily small. This
has to be balanced against available computing resources. In our case is was
problematic to choose M and K sufficiently large to get small approximation
errors as this resulted in simulation that took too long time.

We evaluated the performance of the SML method by calculating log like-
lihoods for the well-known CIR interest rate model. It turned out that the
likelihood for a dataset with 5000 data could be approximatated very well
with 8 seconds of computing time. Regarding the optimization of the log
likelihood there is the disadvange with the use of SML that it is difficult to
differentiate the log likelihood as the approximated density is not smooth
enough. Further, when the Lamperti transformation does not exist in closed
form, then this problem becomes even greater at the same time as signif-
icantly more simulation time is required. Although SML does not require
Lamperti transformation, it has been shown by Durham and Gallant [12]
and Stramer and Yan [21] that better results are obtained with transforma-
tion.

To estimate parameters the ML method was used. The well-known op-
timal properties of ML helped us analyze the fitted models. The LR test
was used to test reduced models against non-reduced ones. We used AIC
and SC to rank the different models. All these statistical procedures re-
quire likelihoods which is the reason we used the SML method with its good
approximation properties for likelihoods.
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