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Abstract

In this thesis we will study the martingale representation theorem and its application to
mathematical finance. Specifically, we will find the stochastic integral representations explicitly
in this theorem for a number of functionals, most of which are inspired by the structure of
options in mathematical finance. Malliavin calculus turns out to be a powerful tool for finding
these stochastic integral representations and we will one of our main tools.
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1 Introduction

In this thesis we will study the martingale representation theorem and its application to math-
ematical finance. Specifically, we will find the stochastic integral representations explicitly in
this theorem for a number of functionals, most of which are inspired by the structure of options
in mathematical finance. Malliavin calculus turns out to be a powerful tool for finding these
stochastic integral representations and we will one of our main tools.

2 Martingale representation theorem

Let B=(B;)i>o be Brownian motion on a probability space (2, F,P) and (F;)i>o C F the
filtration generated by this Brownian motion 7, = o(B, : 0 < s < t). Let (M;)o<i<r be a
martingale with respect to this filtration. The martingale representation theorem ([4], [5]) says
that there exists an adapted process (Y;)o<i<7 with P[fOT Y2 dt < oo] = 1, such that

¢
Mt:Mo—i-/stBs for0<t<T. (1)
0
Moreover, if F' is an integrable Fpr-measurable random variable, then we have
T
F:E[F]+/ Y, dB,. (2)
0

Equation (1) is the so called martingale representation of M and we will call (2) the stochas-
tic integral representation of F', or as is often done in the literature, a martingale representation
of F. Our focus in this thesis will be to find the explicit form of the process Y in (2) for a
variety of choices of functionals F' of Brownian motion.

Finding the integral representation (2) of a random variable explicitly is a very difficult task
in general. However, in some cases this problem can be solved using a few simple tricks:

Example 1. For the time average of Brownian motion we have

1 T 1 T t 1 T T 1 T T s
~ - dB,dt = ~ dtdB, =~ | (T-s)dB,= | (1-2)dB,.
w ), poeg ) L L) e o= [ (-7)

(3)
Since E[T~! fOT By dt] = 0 (3) is our stochastic integral representation of 7! fOT Bydt. #

Example 2. Consider the Black-Scholes asset price model Sy = e o*/2T+0Br where ¢ > 0
is the so called volatility and r € R the interest rate. By application of [t0’s formula we get

2 T 2 T 0'2 2 1 T 2
a4 T/2+0Br _ e0 +/ e ° t/2+40 Bt dBt _ / E e~ t/2+0 B¢ dt + §/ 0_2 4 t/2+40 Bt dt
0 0 0

T
=1 +/ oe o Y2toB dB;.
0



Upon multiplication of both sides by e we arrive at
T
Sy = e(r—02/2)T—|—aBT — erT + o_e'rT/ e—a2t/2+UBt dBt,
0
which is our stochastic integral representation (2) of Sy. #

Example 3. To find the stochastic integral representation of Brownian motion raised to an
integer power BE. for k > 0 we make repeated use of It6’s formula.. We start by applying 1to’s
formula to B%, which gives

T k(k—1) [T
Br =k / Bf‘ldBt—F% / BF24t. (4)
0 0

The first integral in (4) is of the form required for the stochastic integral representation, but
the second integral is not. Aspiring to transform that second integral to our desired form we
apply It6’s formula again, this time to Bf‘Z, which gives

t _ _ t
BF %= (k- 2) / B¥?dB, + (& 2)2(k ) / B2 ds.
0 0

Integrating Bf 2 with respect to t we thus get

T T pt . . T pt
/ BF?dt = (k—2) / / Bf‘3dB5dt+(k 2)(k 3) / / Bt dsdt
0 t=0 J s=0 t=0 J s=0
T T .
= (k—2) / / B¥3dtdB, + (k 2)(k 3) / / B¥dtds
s=0 Jt=s s=0 Jt=s

= (k—2) /OT(T— s)B*3dB, + (k= 2)2(1“ /0 (T —s)B**ds.  (5)

Inserting (5) into (4) we get
k(k—1)(k —

Bt =k / Bf 1dB; + / (T — s)BF 2dB,
0 0

. k(k — 1)(/€4— 2)(k=3) /OT(T —t)BFdt.

We see that after having done one more “iteration” of It6’s formula we are left with another
integral of a non-desirable form in shape of the right-most member on the right-hand side.
However, we also see that after sufficiently many iterations that problem will vanish, so that
we get our stochastic integral representation desired. #

We will stop our calculations here. They turn out to be less tedious using the Clark-Ocone
formula, which we will introduce shortly. We will return to Example 3 in a later section thus
equipped.



3 Malliavin calculus and the Clark-Ocone formula

In this section we give a short introduction to Malliavin calculus inspired by [1].

Let the probability space Q be the space Cy([0,7]) of continuous functions w : [0,7] — R
such that w(0) = 0. This space is called the Wiener space. Note that any sample path of a
Brownian motion can be identified with an element of Cy([0, 7).

Choose a function g € L?([0,T]) (the space of square integrable functions on [0,7]) and
consider the integral

~y(t) = /Otg(s) ds for0<t<T. (6)

As L([0,T]) € L*([0,T]) it is clear that ~y is well-defined and belongs to 2. The space of v €
of the type (6) is called the Cameron-Martin space.

Let F : 2 — R be a random variable. The directional derivative of F in a direction vy (6)
of the Cameron-Martin spacecan is defined as

F - F
iF(w +evy)| =lim Cht) )
dS e=0 e—0 £

D,F(w) =

whenever this derivative exists.
Now assume that F is such that its directional derivative exists and belongs to L?*(Q) for

all directions v of the Cameron-Martin space. Further, assume that there exists a function
U(t,w) € L*([0,T] x Q) such that

D, F(w) = /0 B(t,w)g(t) dt. (1)

(Note that the L?-integrability of g and ¥ makes this integral well-defined.) Then we say that
Fis Malliavin differentiable and define the Malliavin derivative of F' to be

DiF(w) = Y(t,w). (8)
We denote the set of all Malliavin differentiable random variables D; 5. The notation D »
stems from the fact that we are looking at Malliavin derivatives of the first order that are

L?-integrable.

Example 4. Suppose that the random variable F' is given by

- [ tap.= [ 5@s) ormn g e 0.7

With + given by (6) belonging to the Cameron-Martin space we then have

Flw+ey) = /f (dw(s) + e dy(s) /f ) duo(s +e/f 5



so that

F(w+ev / £(s

exists in L?(Q)). We thus have the expression (7) for the directional derivative of F with
U(t,w) = f(t). This means that F' € D;, and DtF f(t) for t € [0,T]. This is a key result.
In the special case when f(t) = 1jg4,1(t) we get

T
F = / Ot1 ( )dB Bt1 and DtBtl = 1[0,t1](t)- #
0

Let us look at random variables of a slightly more complicated form: Let P be the class
of Wiener polynomials, that is, the class of random variables of the form (6, ...,0,), where

o(z) = ¢(x1,x9, ..., T,) is a polynomial in n variates and 6; = fOT fi(s) dB;s for some functions
fi,---s fn € L*([0,T)). Tt can be shown (see [1]) that

dp

@(01, ,071) € D1a2 with Dt(p(Hl, ,0 ) = a

— (61, ...,0,) fi(1).

We introduce the norm || - ||; 2 on D; o through

o)+ ||DtF||L2([o,T]><Q)-

Let Dy » be the topological completion of D; » with respect to the norm || - ||; 2. The Malliavin
derivative of an F' € I 5 is defined as D.F' = lim,,_,o, D F,, whenever {F,,}52, C D, , satisfies
F, — F in Dy 5. (See [1] on the details of this construction.)

3.1 Properties of Malliavin derivatives

Let us now highlight some further properties of Malliavin derivatives that will be useful to find
stochastic integral representations in the upcoming sections (see [6] for details).

If g : R™ — R is continuously differentiable or with bounded partial derivatives or Lipschitz
continuous and F = (F, ..., Fy,) € (Dy2)™, then the chain rule says that

dg(F)

——~D,F;.
or; K

g(F) €Dyz  and Dt(g(F))_Z

i=1
If F,G € Dy, with FG,Dy(F) G, F D,(G) € Dy 5, then the product rule says that

Let Vg = (0,9, 0,9, 0,g) denote the gradient of a function ¢ : R* — R and div(g) = 9,9 +
0,g+0,g the divergence of g, whenever they are well-defined. Similarly, let div,,(g) = 0,9+0,9,
and so on. The following theorem proved in [2] will be useful in the upcoming chapters.

4



Theorem 1. Let m; = ming<,<; B, and M; = maxo<s<; Bs. Further write X! = X, + 6t
for any process (X;);>o and constant § € R. If g : R*> — R is continuously differentiable
with bounded derivatives or Lipschitz continuous, then the functional g(Bg, mf., MY) has the
stochastic integral representation

T
(B}, mh, M8) = Blo(Bhmh, M) + [ (Bl ¥ ) B,
0

where

f(a,b,¢;t) = e 3T E[div(9)(By + a,mys + a, My 4+ @) €”P7 1o o) (M) 1ea00) (M)]
+e TR div,y(9)(Br + a,ms + a,¢) P 1o a)(mr) L ooc—a]]

div, . (9)(B; + a,b, M, + a) eanl[b a,00) (M) Le—a,00) (M)]

029(B; + a,b,¢) €”P 1jp_g 00) (M) 1 (o0 c—a] (M )]

_|_
CDI
Nl
B
o
)
o -

forb<a<c,b<0,c>0and7=T —t.

3.2 Clark-Ocone formula

The reason that we introduced the Malliavin derivative in Section 3 was to be able to present
the Clark-Ocone formula, which is a very useful theorem to find the stochastic integral repre-
sentation for functionals of Brownian motion. In fact, Theorem 1 of the previous Section 3.1
can be derived from this result:

Let F' € D 5 be an Fr-measurable random variable such that

T
E[|[F]]< oo and / E[(D,F)? dt < oo.
0
Then the Clark-Ocone formula says that
T
F—E[F| + / E[D,F | 7] dB.. ()
0

In other words, for Fr-measurable random variables F' that belong to ID; o the process Y in the
stochastic integral representation (2) is given by

Y,=E[D,F | F] for0<t<T.

For a more general version of this result we use Brownian motion B?Q under a probability
measure Q instead of the P-Brownian motion B to express F. Here B9 takes the form

t
BR :/ 0,ds + B,
0

5



where 6 is an (F;);>o-adapted stochastic process. The probability measure Q is given by
dQ(w) = Z(T,w) dP(w),

where Z(T) is a random variable given by

T T
Z(T):exp{—/ esst—%/ 9§ds}.
0 0

Expectation under Q is denoted by Eq.
Let F' € D, » be Fr-measurable. With the notation of the previous paragraph, assume that

T T ; T 2
Eql[|F|] < oo, / Eq[(D:F)?|dt < oo and Eq [|F\/ (/ D0, dB?) dt} < 00.
0 o \Jo

Then the generalized Clark-Ocone formula says that F' has the following martingale represen-
tation with respect to the Q-Brownian motion BQ:

T

T
F = Eq[F] +/ Eq [DtF - F/ D;0,dBR
0 t

.7-}} dBR.

4 Application to finance

Assume that we have a market model under the probability measure P with a risk-free invest-
ment Ay and a risky investment S; given by

dAt = ,OtAt dt and dSt = ,LLtSt dt + UtSt dBt, (10)

respectively. Here the interest rate p, the drift p and the volatility o are supposed to be (F;
)i>o-adapted processes with suitable integrability properties. Examples of safe and risky in-
vestments are bonds and stocks, respectively.
A portfolio (&,mn;) is the number of units invested in (A;, S;). The value of the portfolio is
given by
V;g = gtAt + ntSt- (11)

We will work with self-financing portfolios, which means that a change in the value of the
portfolio depends solely on a change in A; and S;, that is,

dVy = §&d Ay + 1 dS;. (12)

By substituting 7, = (V; — 7;S;)/A; from (11) in (12) and using the assumed price dynamics
(10) of A; and S; we get

dVy = pe(Vi — meSy) dt + oy Syd By = (peVi + (pe — pi)meSt) dt + 041y Sy d By (13)

6



We may want to find a portfolio that has a certain final value V. By some manipulations
of (13) and applying the generalized Clark-Ocone formula to G = exp { — fOT psds}Vr (see [1]
for the details), we get the following expression for G:

T T
G~Eolcl+ [ Ea|DG-G [ Dio.an?
0 t

f] 4B, (14)

where 6; = (uy — p1)/oy- From this we can easily deduce an expression for V. From this in
turn (see [1] for the details) it follows that the number of units of the risky investments should

be
1 t T
m=—-:" exp{/ pst}EQ [DtG — G/ DtHSstQ
015t 0 t

This result to determine a portfolio illustrates the importance to find stochastic integral repre-
sentations in mathematical finance.

ft:| for OStST

4.1 The Black-Scholes model

The expression (14) for G is simplified if D;# = 0, which is the case for constant §. Then we
have

G = Eq[G] + /T Eq|D:G | F]dBg. (15)

In the so called Black-Scholes model p, i and o are constants so that 6 is a constant. In this
case (15) gives us

T
Vo = EQ[VT] +/ EQ[DtVT | .7:,5] dB?, (16)
0

which is actually the Clark-Ocone formula (9) with P-Brownian motion B replaced by Q-
Brownian motion BQ. If we want to find the portfolio for an option in the Black-Scholes model
(see Section 5 below for more information on such options) it is thus more direct to use the
Clark-Ocone formula (9). This we do in the next paragraph.
By changing probability measure from P to Q we get that the price process under Q is
given by
dV, = pV,dt + on, S dBR.

Writing U, = eV it follows that
dU, = e **dV, — pe PV, dt = e "'on,S,dBR,

so that .
e_pTVT = % -+ / e_ptantSt dB;Q (17)
0

Applying the Clark-Ocone formula (9) to the functional e #T V7 gives us



T
eV = Bgle—"Vy] + / Eqo[Di(e"Vy) | F] dB2. (18)
0

Upon comparing (17) and (18) we see that Vy = Eqle V7|, so that the number of shares of
the risky investment in our portfolio should be

ep(t_T)

= Eq[DiVir | F).

¢

In the following we will use the Clark-Ocone formula to find the stochastic integral repre-
sentation for the final values V- of various options, some of which really exist while others are
fictive. In fact, we will mainly focus on what we call “pseudo-options” which are functionals
inspired by the structure of options but with stock prices following other models than the usual
Black-Scholes model. The motivation for the development of stochastic integral representations
for these kinds of functionals is to gain the skills to be able to find stochastic integral repre-
sentations for real options. We have researched the field and found that this work has already
been done for most (if not all) existing options, where the stochastic integral representations
are anaylytically tractable.

The stochastic integral representation has be found already for the call option, the lookback
option and the spread lookback option, see e.g., [2], while barrier options and partial barrier
options are dealt with in [3]. It should also be mentioned that Shiryaev and Yor [7] and [8]
use an alternative method to the Clark-Ocone formula approach based on It6’s formula to find
the stochastic integral representations of some other functionals of Brownian motion, including
maxi<r By, maxi<r , By and max;<,, B, where T, = inf{t : B, = —a} and gr = sup{t: B, =

0}.

5 Options based on the Black-Scholes model

Recall that under the probability measure P the price dynamics of the Black-Scholes market
model are given by
dA; = pA;dt and dS; = uS;dt + 0S5, dBy,

where A; is the risk-free investment and S; the risky investment, respectively. From (16) we
have the stochastic integral representation of an option with Black-Scholes price dynamics.
Here Q is the unique equivalent martingale measure, which is to say that under Q we have

dS, = rSydt + 0S,dBY and S, = Soe(T’”z/Q)HBtQ.

5.1 The call option (Syr— K)*

The stochastic integral representation for a call option is given without a proper derivation
in a number of articles, see e.g., [2]. Although it seems clear that this derivation is done in



detail somewhere, we have not been able to find it. Therefore we found it motivated to do that
derivation here.

To calculate the Malliavin derivative of our option we apply the chain rule from Section 3.1
to the Lipschitz continuous function ¢(z) = (z — K) = (z — K)1(k,00)(z). To that end recall
that

T
DB = D, / dBR = 1_q1(1).
0
Since

¢'(x) = (x — K)6(z — K) + Lk ,00) () = 1(k,00) (%)
and _ a
DtST = DtS() e(r_az/Z)H—Bt = O'ST,

it follows that
Dt(ST - K)+ = d)I(ST - K) DtST = 1([(,00)(57*) O'ST.

The conditional distribution of (r — ¢2/2)T + 0B given F,; is N((r — 02/2)T + 0 BR, 02(T —
t)). Hence we have
E[L(x,00)(S7) | Fi] = Ele" 1(x,00) ()], (19)

where Y is N((r—o2/2)T+0BR, 0*(T—t))-distributed under Q. No write yu = (r—o2/2)T+0 B2
and 0®> = 0(T — t) for simplicity. Then we have E[e¥] = e#t°"/2. We use a change of measure
to calculate the expectation (19). Define the likelihood A by

_ dQ1 ST eY

A= dQ ~ E[Sy]  E[e¥]

Then we have
Bl 1o ()] = Eie¥| E[A Lo (e¥)] = Ele?] B [1ov» ] = Ble¥] Qu(e” > K),
Since dQ,/dQ = e¥ # °*/2 we get that Y is N(u + 02, 0?)-distributed under Q, so that

Ele" 1k o0 (e")] = e“*OQ/QQ(W%) _ St(I)<ln(St/K) i(T;_ai/Q)(T - t))

Hence we have

E[D,(Sy — K)* | F] = O.Stq,(ln(st/K) + (r+02/2)(T - t))’

oVT —1t
so that finally by the Clark-Ocone formula
r In(S;/K) + (r +0o?/2)(T — t)
S—K+=ES—K++/ S(I)( ! )dBQ.
( T ) [( T ) ] 0 gt O'\/]Tt t

This completes the derivation of the stochastic integral representation for the call option.

9



5.2 The fictive option F = (max Sy — K)*

In this section we will find the stochastic integral representation of the fictive option F' =
(maxoStST St - K)+ = (maXOStST St - K)l(K,oo)(maXOStST St) by application of Theorem 1
from Section 3.1. To our knowledge this derivation has not been done before

In the termlnology of Theorem 1 we have maxo<;<7 Sy = ez g(BE., mb., ME) =
K)I(K,oo)(eUM ) and

(UM%_

fla,b,c;t) = e 0/ Elo eU(MT+a)1(K,oo) (eU(MT+a)) eaBTl[c—a,oo)(Mr)]:

where 7 = T'—t. Using the well-known expression for the joint density of maximum of Brownian
motion and Brownian motion, see e.g., [4], Theorerm 3.21, this equals

8—027/20_ eaa/ /y 2(2y — .T) eay60w60w7027'/27(2y7w)2/(27') da:dy
y=max(c—a,In(K/o)—a) Jz=—0c0 TV 2T

—6%r ga 00
e’ Toe 2 2 —y — 2071
= e (e y/(27) _ 99 o¥0+9°/2\ /20T & <7)) dy.
VanT y=max(c—a,In(K/c)—a) \/7_—

By Theorem 1 the stochastic integral representation of (maxg<;<r Sy — K)* is thus given by

(maXOStST St — K)+ = E[ maxo<t<T St K)+]

/T 70 'r [e’)
y=max(c—a,ln(K/o)—a)

20T
e’ (e v?/(27) _ 99 ¥0+0°/2\ /o7 T@(T)) dydB;.

6 Pseudo-options on the Bachelier model

In this section we study functionals of stochastic processes following the Bachelier model that
have an option-like appearance.

6.1 The functional (X — K)* for X = (uT + 0Br) = 7 fo pt + o Bydt)

In this section we use the Clark-Ocone formula (9) to find the stochastic integral representation
for the pseudo-option (X — K)*, where X is the time average of Brownian motion with drift.
This is to our knowledge achieved for the first time here. This functional is an analogue of the
Asian average call option (7 fOT Sydt — K)*, where S; is the stock price in the Black-Scholes
model.

Of course, the distribution of X is Gaussian. In order to calculate the integrand E[( X —K)* |
F:] in the Clark-Ocone formula we will first calculate the expectation and variance of X under
the F;-filtration, as

10



(/MH )

and

1 /T
Var(X | F;] = Var [—/ B ds
T Jy

Since

1 T r 1 T T
_ ﬁ/ / E[B,B; | F| dsdy = ﬁ/ / Cov[By, B, | Fi|dsdy + 11,
y=0 J s=0 y=0 J s=0

we see that 1] cancels out, leaving us with

1 [T
Var [—/ B;ds .7-}] / / Cov|By, B | Fi| dsdy
T 0 T y=0 J s=0

2
T_/t/ (s —t)dsdy

2 2
T_/y ——ty——-l—t)dy

(T
- 3T2

From (3) in Section 2 we have that

D, (/OTBsds) =D, </0T(T—s)st> =Tt

so that D, X =0 (1 —t/T) and Dy(X — K)* = 1(k,00)(K) 0 (1 —t/T). And so we have

E[D,(X ~ K)* | ] = o(1 - 2 ) Ell e (X) | 7
_ 0(1 - i) q)(,uT/2 +o( [y Bsds+ (T —)B,)/T — K) |
T o(T —1)3/2V/3T
The stochastic integral representation of the pseudo-option (X — K)* is thus

(X -K)*

N T t pT/2+o( f{ Beds+ (T —t)B)/T — K
— E[(X - K) ]+/0 “(1_T)(I)( g Ty )dBt.

11



6.2 The functional (Br — KBr)"

Another functional that as far as we know have not been investigated before is given by (Br —
KBr)*. Like the pseudo-option in Section 6.1 this functional is also inspired by an Asian
option, namely the random strike option (Sz—S)*. We have generalized this option by adding
the factor K.

Using that Dt(foT B;ds/T) =1 —t/T from Section 6.1, we have
_ _ _ t _
Dy(Br — KBr)* = (DBr — KD,Br)L(x5y.00)(Br ) = (1 -5 K) Lk npoo)(Br).  (20)
To calculate E[D;(Br — KBy)* | F;] we need to find the joint density function of By and By

conditioned on the filtration F;. Here X = Br | F; is N(By, T — t)-distributed, while we have
from Section 6.1 that

- Ll (T - 1y?
}/:l3T|.¢;:f\Jl\I(f</0v Bsd8+(T_t)Bt)a 3T2 )

In order to use the formula for the density function of a bivariate normal distribution

1 -1 T
—(z—p) =" (z—mu)' /2 21

Yy \Z, = ——F—=¢ ’
fxy(z,y) 9 ot(2) (21)

where z = (z,y), p = (E[X],E[Y]) and X is the covariance matrix of (X,Y’). The covariance
between X and Y is given by

Cov[X,Y] = E[B;Br | 7|~ E[Br | F)E[Br | 7,

I Ir
where

1 (T

I= —/ E[B;By | F ds
T Jo
T T
1 1
:—/ COV[BS,BT‘]:t]dS——/ E[Bs‘ft]E[BT‘]:t]dS
T Jo T Jo
1 T
_ T/t (s —t)ds + IT,
so that . ( e
1 T—t
X, Y] == — = :
Cov[X, V] T/t (s—t)ds =
Our covariance matrix and its inverse are thus given by
r, (@ T-vF (-1
5 _ 2T and st o 12T 377 2T
(-1 (71 T\ -2
2T 377 2T

12



For the exponent in (21) we therefore have

— 3= S e )
| 1 (-1 _(T-1p -
=y (@ — — 372 2T T —
e U TR ) (y_E[Y])
2T
= _(T6Tt)4 <(T3;2t) ($—E[X])2_2 (TZ_Tt) (x—E[X])(y—E[Y])—i—(T—t)(y—E[Y])2) )

We arrive at the following expression for the joint density function of X and Y:

V12172 {_ 617 ((T—t)3
/T P (T -0t 372

(- Bx)? 2 L1

fX,Y(xa y) = 2T

(o= BX)(y - BIY) + (7 - 0y~ BY)) |
Insering this density we can now calculate our required conditional expectation as

E[D(Br — KBr)" | /| =P[Br > KBy | 7] =P[Y > KX| = / / Ixy(z,y) dedy.
=—o0 Jy=Kz

(22)
Using (20) and (22) together with the fact that

L Var[Br — K By
E((Br — KBr)'] = \/ Jon =\/% <%—K+K2)

(using the covariance matrix ¥ with £ = 0 in an elementary Gaussian calculation) we may now
apply the Clark-Ocone formula to get the stochastic integral representation for our pseudo-
OptiOIl (BT - KBT)+

T

_ + i 2 _ _ _
(Br — K Br) \/ - (3 K+ K ) + /t:0(1 = K) / . /y _ Fxr(ay) dedydB,

6.3 The functional B:’ﬁ

Let us return to Example 3 of Section 2 where we studied the stochastic integral representation
of Brownian motion raised to an integer k by repeated application of using It6’s formula. With
the help of Malliavin calculus this work becomes much swifter and is to our knowledge done
for the first time here. Although this functional does not have an option-like structure, we still
find the result interesting.
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Let us look at the Malliavin derivative D;Bk = l{:B%‘1 of B%. In order to appkly the
Clark-Ocone formula and we use the binomial theorem to calculate

s 7] = [ e {50} o

LB el

1—(k—1)mod2

_ k—1\ 51520 = DIR(T —1)/2 —T
= Y ( ; )B _ o (T —t)

27/2+1
§=0,2,...

(k—1)/2—(k—1)/2 mod 2 E—1
— > ( )Bf—“f’ (2p — DI(T — t)P\/2n(T — t),

p=0 2p

where !! is the semifactorial (2p — 1)!! =1-3-5-...- (2p — 1). By the Clark-Ocone formula the
stochastic integral representation of B is therefore

(k—1)/2—(k—1)/2 mod 2

T —
Bk = E[BF] + /0 k > (k 1)35121’(219 T — t)P\/2n(T —t) dB,.

p=0 2p
Here elementary Gaussian calculations show that E[B%] = 0 for k odd, while

(2T)*2T((1 4+ k)/2)

E[BY] = N

for k even.
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7 Conclusion

We have found the stochastic integral representation for a number of pseudo-options, that is to
say, simplified forms of real world options that do not contain all the features of a real option.

Hopefully, our work can be used as a peace meal step forward to developing stochastic
integral representations for more complicated functionals which are closer to real world options.
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