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Abstract This thesis deals with the property of long range dependence (LRD) in stochastic
processes. Two different methods for estimating LRD are evaluated: The classical R/S-
analysis and the Wavelet method. The evaluation is done by applying these methods on
simulated time series, namely fractional Gaussian noise (FGN) and linear fractional stable
noise (LFSN). We show that the R/S estimator displays bias for negatively skewed LFSN.

Three models for risky assets that incorporates LRD in their log returns are evaluated:
fractional Brownian motion (FBM), linear fractional stable motion (LFSM) and a process
with NIG marginal distributions where the LRD is modeled by a set of Gaussian copulas.

The evaluation involves fitting of the marginal distributions (normal, stable and NIG) and
applying the Wavelet method to investigate the presence of LRD in empirical financial data.
We show that the stable distribution, with its economically appealing properties, fits the
implied density of the log returns somewhat better than the NIG distribution. The normal
distribution completely lacks ability to model the extreme values of the log returns. We also
show that LRD may be observed in log returns but the high variance of the Wavelet estimator
for LFSN makes it difficult to get a reliable result.
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Chapter 1

Introduction

In [S] A.N. Shiryaev suggests that the price of a risky asset (e.g. stock or portfolio) S(¢) has
properties that makes the use of fractional Brownian motion (FBM) more appropriate than
Brownian motion for modelling its evolvement over time. While the increments of Brownian
motion are independent the increments of FBM displays long range dependence (LRD), i.e.
has a dependence structure that makes the covariance function decay slowly' over time. Many
others have also proposed that risky assets should be modeled by a stochastic process with
LRD, see [0] [WRL)].

In [KK] an economic justification for fractional Brownian motion to be used in finance is
given. As Brownian motion is a limit of a random walk, fractional Brownian motion is a limit
of a Poisson shot noise process. The shot noise model is interpreted as information which
enters the price at random Poisson times. The arrival of new information may change the
price drastically. The long memory appears because new information may need some time to
spread among the market participants. This is thus an argument that relates to inefficient
markets.

Both Brownian motion and FBM have normal marginal distributions. It is well-known
that the normal distribution lacks properties that are observed in empirical financial data.
Our intent is to investigate the presence of LRD under more general assumptions. More
precisely, the marginal distributions are allowed to have heavy tails and skewness. The two
distributions considered here that fulfill these properties are the economically appealing stable
distribution and the flexible normal inverse Gaussian (NIG) distribution.

The diposition of this thesis is as follows: The first chapters gives a theoretical description
of the stochastic processes considered. The chapter about fractional Brownian motion includes
a brief summary of the recent results about the construction of a fractional market? that
lacks arbitrage opportunities and is complete. Then two estimators of LRD, R/S analysis
and wavelet method, are described and evaluated. After that a test is made on the error
of the estimated parameters (of the marginal distribution) when treating data with mutual
dependence as independent. Finally, empirical financial data are fitted to the normal, NIG
and stable distribution and LRD is estimated for these data sets. Simulation algorithms for
FBM and LFSM can be found in an concluding appendix.

The computer calulations of this thesis have been done with Matlab and Mathematica.

All random variables and stochastic processes featuring in this thesis are assumed to be

More precisely slow enough, for exact definition, see Chapter 2
2The risky assets are modelled by an exponential FBM.



defined on a suitable common filtered probability space (2, F, F, P).
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Chapter 2

Fractional Brownian motion

We start out with defining fractional Brownian motion and discussing some of its properties.

Definition 2.1 If 0 < H < 1 then the (standard) fractional Brownian motion with Hurst
parameter H is the Gaussian process {Bp(t)}ier, with By (0) = 0, that has mean

E{Bu(t)} =Bg(0) =0 forteR,

and covariance function

1
E{Bu(s)Bu(t)} = 5 (1t +[sPT = Jt = sPT)  fors,teR

Note that for H = % we get the ordinary Brownian motion.
Fractional Brownian motion is a H-self-similar stochastic process, i.e.

{BH(at)}tZO =d {GHBH(t)}tZO for a > 0,

where =; denotes equality of finite dimensional distributions.
The stationary sequence of increments for FBM,

{Xu(j)}jen = {Bu(j) — Ba(j — 1)}jen,

is called fractional Gaussian noise. It turns out that this sequence is strongly correlated for
H # % More precisely, we have the covariance function

. . 1
pu(k) = E{Xu()Xu(i+K)} = 5 (I + 177 =20l + k= 177) forkez, (2.1)

so that
pr(k) ~ H2H — DE*272  as k — oc.

Notice that the covariance is positive pg(k) > 0 for k # 0 when 3 < H < 1, while it is
negative pg (k) < 0 for k # 0 when 0 < H < %

For all 0 < H < 1, the covariance function tends to zero as k — oo, but when % <HKI1
it tends to zero so slowly that >"p° __ pm (k) diverges. In this case we say that {Xg(j)}jen
exhibits long range dependence (LRD). From now on we will assume that % < H < 1 unless
otherwise is stated.

11
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Figure 2.1: Simulated sample paths of fractional Gaussian noise with Hurst parameter H = 0.5
(top) and H = 0.7 (bottom). Simulation was done using the Davies-Harte algorithm, see Appendix
A.
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Figure 2.2: Simulated sample paths of fractional Brownian motion with Hurst parameter H = 0.5
(top) and H = 0.7 (bottom). Simulation was done using the Davies-Harte algorithm, see Appendix
A.
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2.1. ARBITRAGE

2.1 Arbitrage

If a market is modelled by a riskfree asset (e.g. bond) B(t) and a risky asset (e.g. stock or
stock index) S(t), where
B(t) = B(0)e",
and the risky asset follows an exponential FBM with drift, i.e.
S(t) = S(0) erito B ),

then there exists arbitrage opportunities in the market. This model for the risky asset is the
solution to a stochastic differential equation (SDE) driven by FBM. More specifially, it is the
solution using pathwise integration.

Fractional Brownian motion is not a semimartingale, hence the general stochastic calculus
for semimartingales cannot be applied to solve SDE’s driven by FBM. This has caused several
different stochastic integrals with respect to FBM to be developed. Two of these are the
pathwise integral and the fractional Wick-1to integral.

2.2 Pathwise integral

If the integrand ¢(t,w) is caglad®, then the pathwise integral can be defined as a limit of
Riemann sums
N-1

T
| #.00aBut) = Jim 3% o(0) (Barta) ~ B,

if the limit exists. Here 0 =ty < t; < ... <ty =T is partition of [0,7] and Aty = tx4+1 — tg.
The pathwise integral obeys Stratonovich type integration rules:

Theorem 2.2 Suppose H € (3,1) and f € C'(R). Let
Y(t) = f(X(),
where X (t) is given by
dX (t) = u(t)dt + v(t)dBg(t).
Then
dY (t) = f/(X(t))dX ().

Let us consider a market consisting of a riskfree asset B(t) and a risky asset S(t), where

the assets follow
dB(t) = rB(t)dt
and
dS(t) = pS(t)dt + oS(t)dBp (t), (2.2)
respectively. Here r, 4 and o > 0 are constants, and (2.2) should be interpreted in a pathwise
sense. Using Theorem 2.2 on (2.2), letting X (¢) = ut + cBg(t) and S(t) = f(X(t)), we get
the solution
S(t) = S(0) ert+oBu ),

The pathwise integral is intuitively appealing, but when applied to finance it leads to a

market with arbitrage, see [C] or [(].

3Left-continuous with right limits

14



2.3. WICK-ITO INTEGRAL

2.3 Wick-Ito integral

The Wick-It6 (or Skorohod) integral may be defined as follows:

/ ¢(t,w)6By(t) = lim Zq&tk o (By (tgs1) — By (ty))-

At —0

Here ¢ denotes the Wick product, for further details see e.g. [@]. The Wick-Ité6 analogue of
(2.2) is denoted
05(t) = pS(t)dt + o S(t)6 By (t). (2.3)

We use the following result to derive a solution to (2.3):

Theorem 2.3 ([BOSW]) Let f : R x R — R belong to CL*(R x R) and assume that the
random variables

2
f(t,Bg(t) /8 (s,Bp(s))ds and 8{(53 (s5))s?H~1ds

all have finite second moments. Then

of of o’ f 21
0f(t, Bu(t)) = 5, (&, Br(t)dt + 5= (t, B (t))dBa (1) + Ho 5 (¢, B (t))t™"~ dt.
From Theorem 2.3 it follows easily that
S(t) = §(0) 7B +ut—ot?/2 (2.4)

is the (unique) solution to (2.3). Note that if H = 1 this solution coincides with that obtained
from It6 calculus for Brownian motion. The Wick-It6 integral does in fact behave in many
ways like the It integral for Brownian motion. The latter is of course a fundamental tool for
the classical Bachelier-Samuelsson market ([B], [T]).

The market modelled by (2.2) and (2.3) is in fact arbitrage free and complete, see e.g.
[@]. Completeness of the market is important for pricing of financial derivatives since the
theoretical price is then uniquelly determined. This is for instance not the case in a general
semimartingale market.

15



2.3. WICK-ITO INTEGRAL
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Chapter 3

Stochastic processes with copulas

We want to create a stochastic process with LRD that has marginal distributions that permits
heavy tails and skewness. One possibilty is to consider a process with Gaussian copulas.

3.1 Copulas

Recall the definition of a copula:

Definition 3.1 A function C : [0,1]" — [0,1] is an n-copula if it enjoys the following prop-
erties:

-C(1,...,u,1,...,1) =u foru € [0,1];

- Clug,...,up) =0 foruy,...,uy €[0,1] with u; =0 for some i € {1,...,n};

- C is grounded and n-increasing, i.e. the C-volume of every boxr whose vertices lie in

[0, 1]™ is positive.

A copula is hence a multivariate distribution with uniform marginals on [0, 1].
We shall use the following important result, known as Sklar’s Theorem:

Theorem 3.2 Let F be an n-dimensional distribution function with margins Fy,..., F,.
Then there ezists an n-copula C such that

F(zy,...,zn) = C(F1(z1),.-.,Fn(zy)) for (z1,...,z,) € R". (3.1)

If Fu,..., F, are all continuous, then the copula C is unique.
By (3.1) it is clear that given a multivariate distribution F' with marginals Fi,..., F,,
the function C(u1,...,u,) = F(F; (1), ..., F; ' (uy)) is an n-copula. Here F~! denotes the

generalized left inverse of the distribution function F, i.e.

F~l(u) = inf{z: F(z) >u} foru € (0,1).

17



3.2. NORMAL INVERSE GAUSSIAN DISTRIBUTION

Theorem 3.3 (Invariance theorem) Let X1,...,X, be continuous random variables with
copula C. Then, for strictly increasing functions g1, . .., gn, the random variables Y1 = g1(X1),
..., Y, = g,(X,,) have the same copula C.

Theorem 3.3 shows that the dependence between n random variables is completely cap-
tured by the copula, independently of the shape of the marginal distributions. Thus for con-
tinuous multivariate distributions the univariate margins and the multivariate dependence
can be seperated.

The copula of the standard multivariate normal distribution with correlation matrix X is

CS%(uy, ... up) = LD (ur), ..., 0 (up)), (3.2)

where ®%, denotes the joint distribution function of the n-dimensional standard normal distri-
bution function with correlation matrix 3, and ® the univariate standard normal distribution
function.

The ‘classical’ use of copulas is to model the dependence structure between two or more
random variables. But copulas may also be used to model stochastic processes [SC]:

Corollary 3.4 (Corollary to Kolmogorovs Theorem) Let C = {Cy,,. 4, : t; € T,t1 <
- < tp,m € N} be a set of copulas with

uhyl Ctl,...,tn (ula s ,Un) = Ctl,...,tk_l,tk+1,...,tn (ula sy Uk —1,Uk41y - - - ;’u'n)a
k

and F = {F; : t € T} a set of one-dimensional distribution functions. Then there ezists a
probability space (Q,G,P) and a stochastic process X = {X;}er with

P{Xy, <z1,..., X, <zn} =Ch, .t (Fr(z1)s-- -, Fr,(T10)) (3.3)

forxzy,...,xp €ER, t1,...,t, €T and n € N.

From a financial perspective, the new use of copulas indicated by Corollary 3.4 means a
switch from the common method of using copulas to model dependence in a portfolio between
several assets (see e.g. [ELM]) to instead model the dependence over time for a single asset.

By an copula approach, one may seperate the dependence structure of FBM from its
marginal distribution, i.e. the Gaussian. The dependence structure is then modeled by a set
of Gaussian copulas.

3.2 Normal inverse Gaussian distribution

To be able to model the possibility of extreme event we need a distribution with heavy tails.
It is also well-known that the implied density of log returns are skewed, i.e. one tail is heavier
than the other. One usually assumes that the left tail is heavier than the right, due to the so
called leverage effect: A negative correlation between past stock returns and future volatility.
A distribution that has turned out to be successful in modeling heavy tails and skewness
of financial data (see e.g. [B], [BO] and [T]) is the generalized hyperbolic distribution (GH):

18



3.2. NORMAL INVERSE GAUSSIAN DISTRIBUTION

Definition 3.5 The GH distribution has probability density function given by
gh(@; X a, 8,6, 1) = a(A, @, ,8)(6° + (z — p)*)O/22 X K1 (ay/62 + (2 — p)2)e? @),

where

) 5 — (a2—,82)/\/2
a(A, o, 8,60) = \/2_7ra’\—1/25’\K>\(5\/m).

Here Ky is a modified Bessel function of the third kind with index A, i.e.

1

o
Kx(2) = 5 /O y e gy,

and the parameters satisfy 0 < |B| < a, p, A € R and § > 0.

We intend to consider a special case of the GH distribution, namely the normal inverse
Gaussian distribution (NIG):

Definition 3.6 Taking A = —1/2 in the GH distribution, we get the NIG distribution, with
probability density function given by

) 0 5\/a? B2+ p(a—n) Ki(ay@ + (@ —p)?).

nig(z; o, B,0, 1) =
g(z; o, B,6,p) = — P r—

The parameters satisfy 0 < || < o, u € R and § > 0.

We can now create a stochastic process which has the property described in (3.3), where
F ={F;:t €T} is a set of NIG distributions, and C = {C}, ..+, : t; € T,t1 < -+ < tp,n €
N} is a set of Gaussian copulas described by (3.2), where ®% is the multivariate normal
distribution for fractional Gaussian noise.

19



3.2. NORMAL INVERSE GAUSSIAN DISTRIBUTION
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Chapter 4

Linear fractional stable motion

Often the central limit theorem (CLT) is an argument for using the Gaussian model in finance.
Then the randomness observed in risky assets are considered being a result of many small
effects so that according to the CLT a Gaussian model would be appropriate.

However, assuming that random effects are heavy-tailed a non-Gaussian stable model may
be more accurate [JW]. In contrast to Gaussian distributions non-Gaussian stable distribu-
tions are heavy-tailed (always infinite variance) and admit skewness. These are properties
which are appropriate for applications in finance.

4.1 Stable distributions

The family of stable distributions plays has an important role i probability theory, because of
the following defining closedness property:

Definition 4.1 A random variable X is a-stable if for any n > 2, there exists a constant
b, € R such that
X1+Xo+---+ X, =4 nl/aX-l-bn

for some 0 < a < 2, where X1, Xo,..., X, are independent copies of X.

An definition equivalent to Definition 4.1 is to say that stable distributions are the only
distributions that can be obtained as limits of normalized sums of independent identically
ditributed (iid.) random variables:

Definition 4.2 A random wvariable X is said to have a stable distribution if it belongs to
a domain of attraction, i.e. if there is a seqeuence of iid. random variables Y1,Y5,... and
sequences of numbers ay, € Ry and b, € R, such that
Y1+Yo+---4+Y,
an

+b, =4 X asn— oo, (4.1)

where =4 denotes convergence in distribution.

A stable distribution is characterized by four parameters: The index of stability «; the
scale parameter o > 0; the skewness parameter 8 € [—1,1]; and the location parameter p € R.
We write

X~ Sa(o'aﬂalj')

21



4.1. STABLE DISTRIBUTIONS

Figure 4.1: Approximative density functions of stable distributions with 4y =0, c =1, a = 1.6
(top left), a = 1.4 (top right), a = 1.2 (bottom left) and @ = 1.0 (bottom right). The density
function are approximated by simulating 1,500,000 independent stable random variables.

to indicate that X has stable distribution with these parameters.
The parameter o controls the tails of the distribution of a stable random variable X, in
the sence that
P{|X| >z} ~Cz™® asz— oo,

for some constant C' > 0. Greater values of @ means lower probability of extreme values for
X.

Although FBM displays long range dependence, its marginal distribution is Gaussian and
thus concentrate its mass around the mean. Stable distributions with 0 < a < 2, on the other
hand, are heavy-tailed. Note that if X is normal distributed and the Y;:s have finite variance,
then (4.1) is the statement of the CLT. Thus, arguing that the randomness in risky assets
is a result of many small effects in the ‘the real world’, stable marginal distributions should
be used to model these random processes. If these effects moreover are heavy-tailed, these
marginal distributions should be non-Gaussian o < 2 (see Property 4.3 below).

22



4.2. TOTALLY NEGATIVELY SKEWED STABLE RANDOM VARIABLES

Except for a few particular values of the four parameters the probability density function
of a stable distribution is not known explicitly. A random variable with stable distribution is
therefore usually described using its characteristic function (chf.):

Property 4.3 A random variable X satisfies X ~ Sqo (o, B, 1) if and only if

e~ 0%10|*[1—iB sign(0) tan(ma/2)]+iub when a # 1

09X\ _
B{e™} = { e—0° 61 [1+iB(2/m) sign(6) 1og(ON+ik8  phem o = 1 (4.2)

We see that if @« = 2 in (4.2), then the chf. becomes 6*0202““0, i.e. the chf. for a Gaussian
random variable with mean p and variance 202.

Definition 4.4 A stochastic process {L(t)}+er such that L(0) =0 a.s. is called an a-stable
Lévy motion with skewness B, if the process has independent and stationary increments that
satisfy

L(t) — L(s) ~ Sa ((t - s)l/a,ﬁ,o) fort>s>0.

4.2 Totally negatively skewed stable random variables

If one wants to model some risky asset such that the logarithm follows an a-stable Lévy
motion with a < 2, the fact that a-stable random variables have infinite variance imposes a
problem: The expected payoff of an asset might not be finite! In fact, we have the following
result:

Property 4.5 If X ~ S,(0,8, 1), then the Laplace transform of X is not finite unless f = 1.
When B = 1, the Laplace transform is given by

E{e—AX} — o M= A%0% sec(ar/2) for A > 0.

Property 4.6 For any 0 < a < 2, we have
X~ Sa(aaﬁau) & -X~ Sa(U, _/83 —M)
Property 4.5 together with Property 4.6 give us that if X is a totally negatively skewed

stable random variable, i.e. 8= —1, then E{eX} < co. Carr and Wu [CW] use this fact to
model risky assets where the log returns are stable random variables, i.e.

where X; ~ S,(0,—1,). Their intent is to produce finite option prices, but as they put
it, “our specification has the added attraction of capturing the highly skewed feature of the
implied density for log returns”.

23



4.3. GENERAL STABLE RANDOM VARIABLES

4.3 General stable random variables

The assumption that log returns from risky assets are stable random variables that are totally
negatively skewed is, of course, restrictive. In Chapter 7 of this thesis we investigate just
how restrictive this assumption is. In [MC] McCulloch gives a justification for relaxing this
assumption. We will make use of the following result:

Property 4.7 Let X, and X5 be independent random variables with X; ~ Sy (0, Bi, ps) for
1 =1,2. Then we have
Xl + X2 ~ Sa(o-a/gau)a
where
_ Biof + Brog

— (A ayl/a
o= (of +03)"% B o

,and  p=p+ po. (4.3)

In [MC] the price of an asset at future time 7" is taken to be

Us

Sp =22
T Ula

where Uj is the random future marginal utility* of the asset and U; is the random future
marginal utility of the numeraire in which the asset is priced.

Now, let uy = logU; and us = logUs. Then Properties 4.6 and 4.7 imply that when u;
and ug are (independent and) stable with a common parameter «, then

log ST = ug + (—uy)

will also be stable with the same a. In order to keep E{Sr} finite, Property 4.5 requires that
u1 and u9 both are totally negatively skewed. However, by this setup, log St itself may still
have the general stable distribution

logST ~ Sa(O',ﬂ,,U/),

where the skewness (3 is determined by (4.3), where 81 = 2 = —1 and o7 and o9 are the
scale parameters of u; and ug, respectively.

4.4 «a-stable stochastic integrals

We state a basic property for the stochastic integral [, _p f(2)dL(z) of a deterministic function
f : R — R with respect to a-stable Lévy motion.

Property 4.8 Let {L(t)}1er be an a-stable Lévy motion with skewness 3. For measurable
functions f: R — R such that [ _p|f(z)|*dz < co we have

W\ [ e sign(f ()| f(z)|*ds
/:veRf(x)dL(w) NS&((/wER‘f(:E)l dw) B Joer | (z)|*dz ’0>'

*For those unfamiliar with this microeconomic term, see e.g. [V] for definition.
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4.5. LINEAR FRACTIONAL STABLE MOTION

4.5 Linear fractional stable motion

Our intent is to use the suggestions in [CW] and [MC], and add to this a dependence structure
in a similar way as a dependence structure is added to the Bachelier-Samuelsson model via
FBM. One natural way to do this is to consider the linear fractional stable motion (LFSM).
LFSM has for instance been proposed as a model for traffic in broadband networks, see e.g.
[HHL).

Definition 4.9 The linear fractional stable motion is the stochastic process given by
o
Lon(astit) = [ founla,bit,a) M (o) (44)
—00

where
fou(abit,x) = a( (¢ ) "7 = (o))" o ( (= 2)) T = () ) ),

and where a,b are constants, |a|+ 10| >0,0< a<2,0< H<1, H# 1/a, and M is an
a-stable random measure on R with Lebesgue control measure.

We do not make a formal definition of the a-stable random measure in (4.4) since it can
be viewed as an a-stable Lévy motion, see [ST]. This is the setup that we will consider.

Like FBM, linear fractional stable motion is H-self-similar and has stationary increments.

Following [CW] and [MC] we want the log returns to be a-stable random variables with
a common skewness parameter S. By Property 4.8 this is ensured if we choose an a-stable
Lévy motion with skewness § (In the case of [CW], § = —1) and fq u(a,b;t,z) such that
sign(fa,m(a,b;t,z)) =1 for ¢t > 0. By restricting our attention to the case H > 1/« (which is
LRD; see below) this is true when a = 1,b = 0. Then (4.4) reduces to

*© H-1 H-1
Loa(®) = [ ((t=2)")" " = (o))" ) dL(o). (4.5)
—0oQ
From now on we will by LFSM mean the stochastic process described by (4.5), where L(t)
is an a-stable Lévy motion with skewness 3, unless otherwise is stated.
The sequence of increments for LFSM is the stationary sequence

{Ya,H(j)}jEN = {La,H(j) - La,H(j - 1)}jEN
_ {/ (((] B $)+)H—1/a (G-1- x)+)H_1/a>dL(w)} (4.6)

—oo JeEN

called linear fractional stable noise (LFSN). By analogy with fractional Gaussian noise,
{Y4,1(j)}jen displays long range dependence when H > 1/a and negative dependence when
H < 1/a. Since H € (0,1) long range dependence is thus only possible when o > 1.
The resulting proposed model for the price of a risky asset is thus an exponential LFSM
with drift, i.e.
S(t) = 8(0) eler O tat,

The issue to adjust this model for non-arbitrage goes beyond the scope of this thesis.
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4.5. LINEAR FRACTIONAL STABLE MOTION
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Figure 4.2: Linear fractional stable noise. Two realizations, with H =
H = 0.7 (bottom), are displayed with two different scalings of values.
driving Lévy motion L(t) are « = 1.9 and 8 = 0.
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Chapter 5

Estimating long range dependence

To estimate the long range dependence in an observed time series is not a trivial matter and
many suggestions for methods can be found in the literature. In this chapter two methods to
estimate the Hurst parameter H are described and evaluated.

5.1 R/S-analysis
The phenomena of ‘long memory’ or ‘long range dependence’ was discovered by H. Hurst

in 1951 when studying annual run-offs from the Nile. This led to creation of the so-called
R /S-analysis: Let {X;}4=1,.., be an observed time series. Define

k . .
Hy = ;Xt and Ry = %f(ﬂj . lHk) - ljnsig(ﬂj . %Hk)

k
Here H; — %H i is the deviation of H; from the empirical mean over 1,...,k, and Ry, charac-
terizes the range of the sequence Hy, ..., Hy relative to its empirical mean. Further, let
i 1o 2
SE=->"Xx}-(-) X
=15

be the empirical variance. Now, Rjy/Si is the normalized range of the cumulative sums
{Hy}k=1,..n- This is known as the rescaled range statistics (R /S-statistics).
If {X;}4=1,..,n where independent, then it would be true that (see [S])
R

Tk ckY? as k — oo
k

Hurst discovered that instead one may actually have
R
=k ek ask— 00, (5.1)
Sk

where the Hurst parameter H is larger than % This suggests that the sequence displays long
range dependence.

By (5.1) an estimator of the Hurst parameter H can be obtained by performing a linear
regression of log(Ry/Sk) on k for k =1,...,n.
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5.2. WAVELET METHOD
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Figure 5.1: R/S-analysis for FGN with Hurst parameter H = 0.6. The fitted regression line is
log(Ry/Sk) = —0.034 + 0.598 log k.

5.2 Wavelet method

Another method for estimating long range dependence is based on wavelet analysis. This
estimation tool is described in e.g. [AFTV] and [AV]. A brief introduction to wavelets and
the properties of the wavelet coefficients for long range dependent processes are given in the
next two sections.

5.2.1 Multiresolution analysis and discrete wavelet transform

A multiresolution analysis (MRA) consists of a collection of subspaces {V;};cz with the
following properties:

- ﬂjeZVj = 0;

- U,jez Vj is dense in L2(R);

-V, CVjqforjeZ;

- X(t) €V; <= X(2t) € W for j € Z;

- there exists a so called scaling function ¢o € Vj such that the collection {¢g(t — k) }kez
is an unconditional Riesz basis for Vj.

Here the V}’s are approximation subspaces of the space of square integrable functions L2 (R).
The fact that the set of shifted scaling functions {¢¢ (¢t — k)} form a ‘Riesz basis’ means that
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5.2. WAVELET METHOD

they are linearly independent and span the space Vj. The index j is called the octave. Notice
that it follows that the set of functions

{$intrez = {27740 (277t — k) }rez

is a Riesz basis for V.
With the MRA, the process X () is successively projected into each of the approximation
subspaces V;

approx;(t) = Zax(j,k)¢j,k(t) €V
k

Since V; C Vj_1, approx;(t) is a rougher approximation of X (¢) than approx;_;(¢). That is,
less information about X (t) is contained in approx;(t). The idea is thus to study the process
by examining its rougher approximations, cancelling more details (high frequencies) from the
data.
The information that is lost when going from one approximation to a rougher one is called
the detail
detail;(t) = approx;_;(t) — approx;(t).

The details can be obtained directly by projecting X (¢) onto the collection of subspaces
W; = Vj_1\ V;. MRA theory shows that there exists a function g, called the mother
wavelet, derived from ¢p, such that the set of functions

{56 (1) Yrez = {27740 (277t — k) }rez

is a Riesz basis for W;. The details are then obtained as
detail; () =)~ dx (j, k)ebjx (£)-
k

In practical applications one considers some finite range for the octaves j = 0,...,J. This
means that the approximation of X (¢) on the subspace V} is obtained as the low-resolution
approximation onto the smaller subspace V; and the collection of details between 0 and J

J J
approx(t) = approx;(¢) + Y _ detailj(t) = > ax(J,k)¢se(t) + > > dx (5, k)jk(2).
Jj=1 k

j=1 k

Now, given a scaling function ¢y and a mother wavelet 1y, the discrete wavelet transform
consists of the collection of coefficients

X(t) = {{ax (k) bnezs {dx (G, 8)}j-1,.. ke

where the coefficients are defined by
ox(iih) = (X,gi) = [ Xt and dx(Gih) = (Xe) = [ X@ia(0)
The mother wavelet 1 has a number N of vanishing moments:
/tkzpo(t)dt =0 fork=0,1,...,N —1.

The value N can be chosen by selecting the appropriate mother wavelet, for instance the
Daubechies wavelets indexed by N = 1,2, ..., are often used in practice.
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5.3. SIMULATION

5.2.2 Wavelet transform of long range dependent processes

Using properties of wavelet coefficients it can be shown (see [AFTV]), that under some con-
ditions, for a stationary increment process X (¢) which is H-self-similar,

E{dx (j,k)?} ~ 227CH=Vc.C(H, o) as j — oo. (5.2)

Here c; is a non-zero constant,

C(H, ) = / |~ G019 () 2dv,

and Uy(v) is the Fourier transform of 1. Now

.
1 < )
yi=—> |dx(j, k)P

n
J k=1

is an unbiased estimator of the variance of the process dx(j,t), where n; is the number of
coefficients at octave j.

By (5.2) an estimator H of H can be designed from a simple weighted linear regression of
logy y; on j = ji,..., je. Define

S=X1/}, §=Xjl} and §"=X7/o,

where 0]2- is an arbitrary weight associated with log, y;. The unbiased estimator H of H is

> logy y;(Sj — 8") /o]
SSII _ (SI)2
With the weigths ajz- = Var{y;} in (5.3), one gets the minimum variance unbiased esti-

mator (MVUE) of the intercept and slope (see [AV2]). The minimum value of j; is 1, and the
maximum value of js is J. In practice, one often chooses a smaller range between j; and ja.

derived from

2H — 1 = (5.3)

5.3 Simulation

To test the estimation methods we simulate FGN and LFSN. Two different simulation meth-
ods where tried out: The Hosking method and the Davies-Harte algorithm, see Appendix A.
Both these simulation methods are exact, i.e. the covariance structure is not approximated
in any way. When simulating FGN with n = 2000 the Hosking method took approximately
twice as long time as the Davies-Harte algorithm. Hence, we used the Davies-Harte algorithm
for the simulations of FGN. For the LFSN, the algorithm proposed by Stoev and Taqqu [SST]
was used, see Appendix A.

5.4 Evaluation of the estimation methods

In this section an investigation is made to single out the best method for estimating the Hurst
parameter from a time series. This is done by simulating 40 independent paths of fractional
Gaussian noise and linear fractional stable noise for three different values of H. The length
of the paths is n = 5000. LFSN is simulated for three different values of @ and 5. On the
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log, Y;

-2r 1 ! | I ! I
2 3 4 5 6 7

Octave j

Figure 5.2: The wavelet method for FGN with Hurst parameter H = 0.8. The slope of the
regression line is 0.597, i.e. H = 2591 = (.798. Here j; = 2, jo =7 and N = 10.
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5.4. EVALUATION OF THE ESTIMATION METHODS

total 1200 simulations. The accuracy of the estimation methods is evaluated by calculating
the empirical mean and standard deviation of the estimated H from the 40 independent

simulations.

For the wavelet method the Daubechies wavelet with N = 10 vanishing moments was

chosen, and with j; = 2 and jo = 8.

Both the R/S-analysis and Wavelet method as described above assumes processes with
finite variance. However, in [TTW] it is suggested that most estimators of long range depen-
dence is based on H = w + % which in the stable case generalizes to H = w + 1/a. This
adjustion is made below when « # 2. The Matlab code used for the wavelet estimation can

be found at [CL].

a=20
H=1/a=05 |[H=06] H=0.7
H 0.545 0.628 0.703
& 0.028 0.027 0.027
a=19
H=1/a=0526 | H=0.6] H=0.7
f=-1 H 0.570 0.572 0.532
& 0.031 0.036 0.035
=—05 H 0.570 0.614 0.628
& 0.026 0.039 0.038
=0 H 0.570 0.630 0.706
& 0.026 0.026 0.035
a=1.6
H=1/a=0625 | H=0.7| H=08
B=-1 H 0.662 0.545 0.465
& 0.027 0.041 0.045
=—05 H 0.650 0.646 0.604
& 0.026 0.035 0.041
=0 H 0.660 0.717 0.795
& 0.022 0.025 0.027
a=1.3
H=1/a=0.769 | H=08 | H=10.9
B=-1 H 0.794 0.720 0.679
& 0.016 0.038 0.052
=—-05 H 0.781 0.781 0.773
& 0.024 0.030 0.053
=0 H 0.789 0.811 0.893
& 0.021 0.022 0.031

Table 5.1: R/S estimators of the Hurst parameter.
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5.4. EVALUATION OF THE ESTIMATION METHODS

a=2.0
H=1/a=05 |H=06| H=0.7
H 0.496 0.611 0.717
o 0.021 0.018 0.018
a=19
H=1/a=0.526 | H=0.6 | H=0.7
p=-1 H 0.526 0.585 0.690
o 0.030 0.024 0.026
B=-05 H 0.524 0.606 0.729
o 0.028 0.030 0.043
=0 H 0.524 0.617 0.713
o 0.028 0.027 0.030
a=1.6
H=1/a=0625 | H=0.7 | H=0.8
p=-1 H 0.624 0.700 0.803
& 0.046 0.051 0.056
=—05 H 0.621 0.717 0.833
o 0.039 0.060 0.075
=0 H 0.624 0.710 0.804
o 0.040 0.055 0.082
a=13
H=1/a=0.769 | H=08 | H=0.9
p=-1 H 0.767 0.794 0.885
o 0.062 0.062 0.107
=-05 H 0.760 0.794 0.903
o 0.056 0.078 0.078
=0 H 0.762 0.786 0.897
& 0.060 0.077 0.107
Table 5.2: Wavelet estimators of the Hurst parameter.
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Figure 5.3: (H — H) plotted against 3 for & = 1.9 (top), @ = 1.6 (middle) and o = 1.3 (bottom).
o = Wavelet estimator * = R/S estimator.
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5.5 Conclusions

It is clear that 8 is a critical parameter for the R/S estimator. As the LFSN process be-
comes more negatively skewed, the R/S analysis seems to systematically underestimate the
Hurst parameter. This error also seems to increase with H. The wavelet estimator displays
unbiasedness for all parameter values of the LFSN process but also a high variance.
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Chapter 6

Fitting marginal distributions to
dependent data

When fitting the marginal distribution to some observed stochastic process, the assumption
that the observed data are independent simplifies the estimation of parameters. The usual
‘casual’ usage of the maximum likelihood method, for example, usually assumes independent
observations. As does the theory that lies behind the maximum likelihood method.

Since the increments from fractional Brownian motion and linear fractional stable motion
are dependent one makes a false assumption when treating them as independent. The intent
of this section is to somewhat investigate how large the error of the estimated parameters
become when employing methods that assume independence.

6.1 Estimating parameters for simulated data

The parameters for the normal and NIG distribution are estimated by the maximum likelihood
method, i.e. maximizing the log likelihood function

£(©) =Y log f(Xi|0),

i=1

where © = (u,0) and (o, 3,0, u) respectively.

The lack of explicit expressions for probability density functions for stable distributions
makes the parameter estimation in that case more problematic. However, Nolan [N] describes
a numerical maximum likelihood method for stable distributions. The Mathematica package
can be found at [W].

Our investigation is carried out by performing maximum likelihood estimation on 10
different simulated sample paths of FGN and LFSN of size n = 5,000. The error of the
estimation of some parameter @ is calculated as the mean of |§ — §|. The investigation is
restricted to FGN with Hurst parameter H = 0.6 and H = 0.7, symmetric (5 = 0) LFSN
with @ = 1.6, H = 0.7 and H = 0.8 and symmetric LFSN with a = 1.3, H = 0.8 and
H =0.9. The estimated parameters are compared with the parameters estimated from their
independent (H = 1/a) counterparts.
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6.1. ESTIMATING PARAMETERS FOR SIMULATED DATA
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Figure 6.1: Empirical histogram from 5,000 independent S1 ¢(1, 0, 0)-distributed random variables
(solid line), and simulated linear fractional stable noise {Y165(5)}32 (dotted line) with Hurst
parameter H = 0.7 (top) and H = 0.8 (bottom).
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Parameter | H =05 | H=0.6 | H =0.7
|o— pl 0.0090 0.0323 0.0709
|6 — o] 0.0052 0.0096 0.0102

Table 6.1: Estimated parameters for fractional Gaussian noise

a=1.6
Parameter | H =1/a=0.625 | H=0.7 | H=0.8
|& — «f 0.0100 0.0180 0.0296
16— g 0.0471 0.0497 | 0.0450
|6 — o 0.0101 0.0110 0.0199
I — ul 0.0359 0.0562 | 0.0902
a=13
Parameter | H=1/a=0.769 | H=08 | H=10.9
l&—af 0.0196 0.0167 | 0.0432
|8 — Bl 0.0502 0.0227 0.0388
|6 — o 0.0106 0.0168 0.0680
|& — pl 0.0295 0.0637 0.1817

Table 6.2: Estimated parameters for linear fractional stable noise

6.2 Conclusions

For FGN, it seems that a large value of H may lead to an over- or underestimation of u. Also,
the dependence (i.e. H > %) does seem to produce larger error on the estimation of o.

For LFSN all parameters except 3 display an increase of estimation errors when H in-
creases. The errors also increas with heavier tails. As for FGN it is the estimation error
|t — p| that displays the most pronounced increase with H, and for large H the error is quite
large.

Notice in Figure 6.1 that the implied probability density function is shifted to the right
compared with the empirically observed density when H > 1/a.
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Chapter 7

Empirical financial data

In this chapter the models that have been described in previous chapters, i.e. FBM (Wick-Ito
solution), a stochastic process with copulas and NIG distributed marginals, and LFSM are
tested against empirical data. The data sets consist of the closing prices {Si}o<r<n of three
financial indeces and three individual stock prices, that can all be found at [Y]. The data sets
studied are:

- Standard & Poor 500 Index (S&P), 6 February 1950 to 22 April 2004 (13639 data);
- Nasdaq Bank Index (NBI), 5 February 1982 to 15 July 2004 (5655 data);

- Nasdaq Composite Index (NCI), 12 October 1984 to 2 August 2004 (4996 data);

- Coca Cola Co. (CC), 11 April 1988 to 16 July 2004 (4422 data);

- IBM Corp. (IBM), 21 September 1984 to 15 July 2004 (5000 data);

Ford Motor Co. (Ford), 9 February 1987 to 16 July 2004 (4400 data).

We study the log returns {Xj}1<x<n = {10g(Sk/Sk—1)}1<k<n- The returns are manupi-
lated so that two exact equal values never occur. This is done by adding a small random
number. This is for technical reasons, and of no practical importance.

7.1 Long range dependence

Since w = H — 1/« it quantifies the long range dependence in both the Gaussian and stable
case. Thus, instead of the Hurst parameter H, we estimate w for the log returns. We use
the Wavelet method with Daubechies wavelet with NV = 10 vanishing moments, j; = 2 and
J2 =38.

To estimate the LRD modeled by the Gaussian copulas, the log returns are transformed
to be Gaussian. Note that by the discussion above, this should not affect the value of w.
The confidence intervals are calculated using the usual methods for linear regression. Note
that the they are calculated under the assumtion of lognormal returns [AV2]. In Chapter 5
we noticed that the variance of H increased with lower a and hence the confidence intervals
should perhaps be larger under the assumption of stable marginals.
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7.1. LONG RANGE DEPENDENCE

Asset w P WCopula P
S&P -0.009 [—0.029,0.012] | 0.05 | -0.002 [—0.023,0.019] | 0.09
S&P July 1964 - June 1984 0.073 [0.033,0.112] 0.28 0.069 [0.030,0.108] 0.79
S&P July 1984 - June 2004 | -0.074 [-0.114, —0.035] | 0.63 | -0.079 [—0.118, —0.039] | 0.41
NBI 0.105 [0.069,0.141] 0.64 0.115 [0.079,0.151] 0.73
NCI -0.028 [—0.067,0.012] | 0.54 | -0.015 [—0.054,0.025] | 0.16
CC 0.023 [—-0.024,0.069] | 0.27 | 0.009 [—0.038,0.055] | 0.25
IBM -0.008 [—0.048,0.031] | 0.03 | -0.008 [—0.047,0.032] | 0.04
Ford 0.001 [—0.043,0.044] | 0.04 | -0.058 [—0.102, —0.015] | 0.04

Table 7.1: Estimated w for empirical financial data and for financial data that are transformed to
be Gaussian. Also included are 95%- confidence intervals and P-values for the linear fit.
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-13
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Figure 7.1: Wavelet based estimator of w for Nasdaq Bank Index, @ = 0.105.
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7.2. MARGINAL DISTRIBUTIONS

Asset 1 o
S&P | 0.000402 | 0.01090
NBI | 0.000530 | 0.00790
NCI | 0.000409 | 0.0144
CC | 0.000432 | 0.0220
IBM | 0.000539 | 0.0194
Ford | 0.000722 | 0.0226

Table 7.2: Estimated normal distribution parameters for financial data.

Asset a B 1) W
S&P 500 | 75.680 | -3.80609 | 0.008362 0.00082278
NBI 76.562 | -8.33385 | 0.0046431 | 0.00103864
NCI 37.2043 | -6.44085 | 0.00764422 | 0.00175328
CC 38.1001 | 1.38101 | 0.0171161 | -0.000188096
IBM 45.3864 | 2.30732 | 0.0161315 | -0.00028208
Ford 48.9789 | 5.30753 | 0.0226033 | -0.00174172

Table 7.3: Estimated NIG distribution parameters for financial data.

7.2 Marginal distributions

According to Chapter 6 we can treat the observations as independent under the assumption
that w = H — 1/« is not too large. In such a case the estimated parameters should not
deviate much from the true value. The parameters for Normal and NIG distributions are
estimated by maximum likelihood. The parameters for the stable marginals are estimated by
the maximum likelihood method described in [N].

For computational reasons the marginal distribution for the log returns of Standard &
Poor Index is estimated for only the last 5,000 data values.

From (2.4) the theoretical log returns for the Wick-It6 solution can be derived as

0.2
log <7S(i(f)1)) = oXpu(k) +p— - & = (k-1)*).

Here Xy (k) denotes fractional Gaussian noise. Thus, the increments of log S(¢) are not
stationary in this model. In fact, this process is not appropriate for larger time intervals since
the log returns on average then becomes smaller and smaller. However, the data sets has
been modified to be stationary by a recursive method and it turns out that the parameter
estimations are not affected.

To estimate the fit of the estimated distribution function to the empirical we use the
Anderson & Darling statistic

|F(.73) - Fest($)|
AD = max :
zeR \/Fest (2)(1 — Fegi(z))

Here F, is the estimated cumulative distribution and F the empirical distribution function
of the data set.
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Asset @ B o W
S&P 500 | 1.6546 | -0.072565 | 0.00575222 | 0.00040659

NBI 1.487 -0.110 0.00364 0.000489

NCI 1.388 -0.196 0.00614 0.000279

CC 1.682 0.101 0.0116 0.000764
IBM 1.697 0.160 0.0102 0.000854
Ford 1.780 0.196 0.0129 0.000785

Table 7.4: Estimated stable distribution parameters for financial data.
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Figure 7.2: Fitted Normal distribution (solid line) and Standard & Poor Index (dotted line).
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Figure 7.3: Fitted NIG distribution (solid line) and Standard & Poor Index (dotted line).

60 1

Figure 7.4: Fitted stable distribution (solid line) and Standard & Poor Index (dotted line).
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Asset Normal NIG Stable
S&P | 9.8716x10* | 9.6582 0.0561
NBI | 8.4890x10'" | 0.0480945 | 0.0906
NCI | 4.5432x10* | 0.0402288 | 0.1843
CC | 3.5799x10% | 4.51911 | 0.18378
IBM | 9.6808x10'7 | 1.09333 | 0.0735
Ford | 7.8695x10° | 0.298411 | 0.1599

Table 7.5: The Anderson & Darling statistic.

For the case of stable marginal distribution, Fey is approximated by simulating 1, 500, 000
independent stable random variables with the estimated parameters. The Anderson & Darling
distance is a measure of fit that gives special importance to the tails of the distribution [BFO]
[T].

7.3 Conclusions

The wavelet analysis shows that most assets considered here most likely lack long range
dependence in their log returns. All estimators of w but one includes 0 in their confidence
intervals.

The exception is the Nasdaq Bank Index for which the estimated w has a confidence
interval significantly far from 0, although this interval should be considered with caution.
The estimated w in this case has a high probability of the linear fit, which also can be seen
from Figure 7.1.

In addition, the Standard & Poor 500 Index from 1950 to 2004 displays LRD over one
20-year period, but short range dependence (w < 0) over the next 20-year period. Over
the full period it has an w very close to 0. This may be due to changing properties of the
underlying dynamics over time, but might as well be due to the significant variance of the
wavelet estimator. To transforme the log returns to be Gaussian should not change the value
of w and it is also noticed that the estimators does not change dramatically.

For the marginal distributions the Anderson & Darling statistic illustrates the normal
distributions incapability of capturing the extreme events on the financial markets. The
difference between the stable and NIG distributions is quite small, eventhough the stable
distribution performs more evenly. The stable distribution also has the economically appealing
feature as the limit distribution of many small effects on the price of an asset.

If one wants to model risky assets where the returns have LRD, the LFSM process has
the nice property that it can be expressed explicitly, which is not case for the copula process
presented here.

It is obvious that the assumption of totally negatively skewed stable log returns by Carr
and Wu is much too restrictive: For our data sets, as many assets display negative skewness,
as display positive. In addition, the skewness parameters is closer to 0 than to 1 for all assets.
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Appendix A

Simulation

A.1 Hosking method

By the Hosking method a stationary Gaussian time series {X; };—1, ..., with covariance function
p° is generated by the following scheme [TTW]:

- generate n independent random variables ¢; ~ N(0,1) for i =1,...,n;
- set X1 = /p(0)eq;
-set Xjp1 =1 Xi+ -+ ¢ i X1+ 056541 fori=1,...,n—1.
The variances o2 and the coefficients {¢ij}i=1,..n—1,=1,..; are computed recursively by:

2 fori=1,...,n—1;

- set 09 = 1/p(0) and compute 0? = o | (1 — ¢5,)
- compute ¢;; = (p(z) - 22;11 Gi—1kp(t — k))ai__21 fori=1,...,n—1;

- compute ¢; ; = ¢;_1,; — hiidi—1,,—; for j <i.

A.2 Davies-Harte algorithm

The Davies-Harte algorithm uses the discrete Fourier transform (DFT) of the covariance func-
tion to generate a stationary Gaussian process [CR]. With ¢ = y/—1 denoting the imaginary
unit, a time series {X;};—o,...n—1 With covariance function p is generated in the following way:

- generate 2n independent random variables €; ~ N(0,1), j =0,...,2n —1;
- compute
n o 2n—1 o
Apn(p) = p(j)eimki/m 4 Z p(2n — j)e”™IM for k=0,...,2n — 1;

- check that Ay ,(p) >0 V k;

5When simulating FGN p is given by (2.1).
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- compute
2n Ao n(p)€o when k=0
v nAgn(p)(€2k—1 + i€21) when 1<k<n-1
k= )
2nAp n(p)€2n—1 when k=n

V1A (p)(€an—1—2k — i€sp_2;) when n+1<k<2n-1

- the simulated Gaussian is obtained as

2n—1

1 :
Z Vet for t=0,...,n — 1.

X = —
2n
k=0

A.3 Stoev and Taqqu algorithm for LEFSM

In the stable infinite variance case exact simulation techniques for the LFSM process Lo g
are not known. Stoev and Taqqu [SST] suggests an algorithm based on, as Davies-Harte, the
DFT. The LFSN process in (4.6) is approximated by a Riemann sum

mM

Yuar (k) = 32 ((G/m)*) " = ((5/m=1)") ") Zagym(mb—3) for m, M €N, (A1)

where
Zapm(j) = L((j +1)/m) — L(j/m) for j € Z.

Here L is an a-stable Lévy motion with skewness intensity 5. The random variables Z, g m (j)
are iid. with Zg () ~ Sa(m~1/2, 8,0).
Let

mM
W(n) = agm(j)Zas(n—j) forneN, (A.2)
j=1
where .y .y
arm() = ((G/m) )7 = (G/m =)V ) m e forjen,
and where the random variables {Z, g(j) }jez, are iid. with Z, g(j) ~ Sa(1,3,0). Since
{Zapm(i)}iez =a {m™V® Za 5 (5)}jez,
(A.1) and (A.2) imply that
Yo m (k) Ye=1,...8 =d {W (mk) }p=1,...N-

The process {W(n)}n=1,.. num, can be computed efficiently using the DFT: Let

i) amm(j) when j=1,....mM
a =
HmJ 0 when j=mM +1,...,m(M + N)
Then
m(M+N) mM
W)y =, { S (i) Zag(n —j)}
j=1 n=1
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The discrete Fourier transform is defined as

R-1
a(k) = Drla)(k) = Y ™k By(j) for € Z.

7=0
Thus the sequence a is R-periodic and it satisfies the inversion formula

R-1 N
> e kIR (k) for j € 7.
k=0

1
N =D3a) () = =
al) = PE@)() = 3
Furthermore, for any two R-periodic sequences a and b, we have the following convolution
theorem

Dr(a)(k)Dgr(b)(k) = Dr(a xb)(k) for k € Z,

where
R

(axb)(n) = 2_: a(n —j)b(j) formn € Z.
=0

[y

If R is an integer power of two, then the DFT can be computed efficiently by using the
Fast Fourier Transform (FFT) algorithm (Matlab built-in function ‘fft.m’).

The algorithm:
- pick large enough integers m and M , so that m(M + N) is an integer power of two;
- using the FFT algorithm, compute the DFT
a(k) = Dy (@am) (k) for k=0,...,m(M +N) -1
of the m(M + N)-periodic sequence am,m;

- generate m(M+N) iid. So(1, 8,0) distributed random variables Z(j), j = 1,...,m(M+
N) and, by using the FFT algorithm, compute

Z(k) = Dyqarsny(Z) (k) for k=0,...,m(M + N) —1;
- using the FFT algorithm, compute the inverse DFT of the sequence a(k)Z(k), k =
0,...,m(N + M) — 1, and keep only

W(n+1) =D ! aZ)(n) forn=0,...,mN —1

m(M+N)(
and where (aZ)(k) = a(k)Z(k) for k =0,1,...,m(M + N) — 1;

- set
Yom(k) =W(mk) fork=1,...,N

and let .
X(n)= ZYm,M(k) forn=1,...,N.
k=1

Here Y, p(k), k =1,..., N is the approximation of a LFSN process Y, g, and the sequence
X(n), n=1,...,N is the desired approximate path of the LFSM process L, g -
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