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Abstract

In this master thesis statistical models for electricity prices during Jan-
uary and February 2012 is developed. The time series is modeled based
on autoregressive and moving average (ARMA) model and extreme value
theory. The spikes are simulated by Generalized Pareto distribution (GPD).
The innovation process is analyzed by autoregressive conditionally heteroskedas-
tic (GARCH) process and exponential GARCH (EGARCH) process. All
the parameters are estimated by maximum likelihood method.
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1 Introduction

Many statistical models for time series are worked through researching mean
or variance (volatility) of the process. The ARMA model is used to present
the stationary time series based on autoregressive process and moving av-
erage of noises. On the other hand, the autoregressive conditional het-
eroskedasticity (ARCH) model is focus on time varying conditional vari-
ance. In practice, however, high ARCH order has to be selected. Bollerslev
extended this model to Generalized ARCH (GARCH) model, which can
solve this problem. GARCH model describe variance at a certain time with
both past values and past variances. Most time series is sufficiently modeled
using GARCH(1, 1) that only includes three parameters.

Electricity prices are significantly affected by the demand and supply on the
market. Generally, high demand results in high price. Moreover, electricity
prices are affected by external factors such as weather, prices of fossil fuels,
availability of nuclear power, water reservoir levels, prices of exhaust rights
etc. Like most financial time series, electricity price has the characteristic
of volatility clustering. Mandelbrot quoted (1963): large changes tend to be
followed by large changes, and small changes by small changes. GARCH-
type model successfully captures this property. Another main feature of
electricity price is fat tails. Extreme values in electricity prices are better
analyzed by extreme value theory.

In this project, we aim to explore the properties of electricity price applying
ARMA , GARCH-type models and extreme value theory. We will mainly
focus on modeling hourly electricity prices from Nord Pool in this winter,
Jan-Feb 2012, hoping those external factors might be ignored. We pay at-
tention to periodic components and extreme values. At first, in Section 4.2,
the predictable periodicities of 24-hours and 168-hours and extreme values
are removed. Then, in Section 4.3, we will fit the time series into ARMA
model. In Sections 4.4 and 4.5, to analyze the volatility of data set, we em-
ploy GARCH-type models. In this thesis, extreme value theory is also in-
volved in Section 4.6. At last, in Section 4.7, we simulate time series using
above models and GP distribution.
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2 Electricity Markets

2.1 The Nord Pool

Nord Pool market was created in 1996 as a result of the establishment of
common electricity market of Norway and Sweden. Nord Pool Sport runs
the largest market for electrical energy in the world, measured in volume
traded (TWh) and in market share. It operates in Norway, Denmark, Swe-
den, Finland and Estonia. More than 70 % of the total consumption of elec-
trical energy in the Nordic market is traded through Nord Pool Spot. It was
the world’s first multinational exchange for trading electric power. Nord
Pool Spot offers both day-ahead and intra-day markets, see [18].

2.2 The Main Features of Electricity Prices

The first characteristic is periodicity of different length. Electricity prices
exhibit various seasonality over days, weeks and months. Weather condi-
tions affect demand of electricity over months. In this paper we analyze
electricity price on winter months. So, the periodic behaviors in daily and
weekly are considered. And they explain periodicity components strongly,
since the need for electricity is various during whole day and whole week.
For example, the electricity demand is higher during daytime than at night.
On the other hand, the electricity supply performs different ways between
weekdays and weekends.

Secondly, presence of spikes is distinct in electricity price. This feature is re-
lated to instantaneous supply and demand, which is quite differ from stocks.
And it should be treated by appropriate model.

The third one is stationary over short intervals. This means that electricity
price is mean reversion over shorter periods. It can be observed that, during
winter, the price fluctuate around a stable level but not follow a trend.

Last but not least, high volatility plays important role among features of
electricity price. The volatility means the standard deviation of the hourly
price. For electricity price, the volatility is not a constant but various from
time to time.
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3 Theoretical Background

3.1 ARMA Model

The general autoregressive and moving average (ARMA) statistical model
is used to describe a time series that evolves over time. In this process there
is a linear relationship between the values at a certain time point and past
values, noise as well.

According to [1], time series {Xt} is an ARMA(p, q) process if {Xt} is sta-
tionary and if for every t,

Xt = φ1Xt−1 − ... + φpXt−p + ǫt + θ1ǫt−1 + ... + θqǫt−q,

where {ǫt} is i.i.d. N(0, σ2) and the polynomials

(1 − φ1ǫ − ... − φpǫ
p)

and
(1 + θ1ǫ + ... + θqǫ

q)

have no common factors.

The process {Xt} is said to be an ARMA(p, q) process with mean µ if {Xt−µ}
is an ARMA(p, q) process. The time series {Xt} is said to be an autoregres-
sive process of order p, and a moving-average process of order q.

3.2 GARCH Model

According to [4], the generalized autoregressive conditional heteroskedas-
ticit (GARCH) is a model that is used to estimate the volatility of an as-
set. It indicates that the present volatility depends on past observations and
volatilities. The time series Xt can be modeled by

Xt = σtǫt,

where {ǫt} is i.i.d. N(0, 1) random variables. GARCH model is used to
estimate the variance σ2

σt
2 = ω +

q
∑

i=1

αiX
2
t−i +

p
∑

j=1

βjσt−j
2.
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The GARCH (p, q) model is strictly stationary with finite variance when the
conditions ω > 0, and

∑q
i=1 αi +

∑p
j=1 βj < 1 are required. We can see the

GARCH model has similar pattern with ARMA model, which shows we
can derive GARCH process using similar theory and method with ARMA.

Particularly, in most cases structure p = q = 1 is sufficient and it is sufficient
for our purposes. GARCH(1, 1) model is the most widely used, which is
given by

σ2
t = ω + αX2

t−1 + βσ2
t−1

To obtain strictly stationary solution, the conditions ω > 0, α + β < 1 are
required. Looking at the formula we see that GARCH (1, 1) explains that
the present volatility depends only on previous one. It is easy to calculate
and simulate since there are only three parameters in GARCH(1, 1) model.

Though GARCH model successfully explain the volatility clustering, it does
not capture the leverage effect. Next we will introduce another GARCH-
type model, which could capture leverage effect.

3.3 Exponential GARCH Model

Accoding to [4], The exponential GARCH (EGARCH) is a model that is
used to estimate the volatility of an asset. Time series Xt can be modeled by

Xt = σtǫt

where ǫt is i.i.d.N(0, 1) random variables.

log σ2
t = ω +

q
∑

i=1

αi|ǫt−i| +

q
∑

i=1

γiǫt−i +

p
∑

j=1

βj log σ2
t−j

EGARCH(1, 1) is frequently used to estimate the variance σ2

log σt
2 = ω + α|ǫt−1| + γǫt−1 + β log σt−1

2

The parameters ω, α, β and γ can be estimated by using the maximum like-
lihood method. Note that |β| < 1 is required, and γ is the parameter that
indicates leverage effect.
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3.4 Stationary Process

A discrete time stochastic process {X(n)}∞n=−∞ is simply an definite se-
quence of random variables defined on a common probability space. And
electricity prices can be modeled as discrete time stochastic processes. The
stationary process is required, which means that finite dimensional distribu-
tions of the process are invariant for time translations

P{X(n1 + m) ∈ A1, ..., X(nk + m) ∈ Ak} = P{X(n1) ∈ A1, ..., X(nk) ∈ Ak}

for any n1, ..., nk,m ∈ Z, A1, ..., Ak ⊆ R and k ∈ N. From this it fol-
lows in particular that the random variables {X(n)}∞n=−∞ are identically dis-
tributed. Also, it follows that {X(n)}∞n=−∞ is a so called weakly stationary
process, which is to say that

mX = E{X(n)}

does not depend on time n, and the covariance function

rX(k) = Cov{X(n), X(n + k)}

only depends on the distance in time k between a pair of process values
considered. It is generally to assume that the hourly electricity price data
are observations of a stationary process within short period after removing
24-hours and 168-hours periodicities.

3.5 Extreme Value Theory

3.5.1 Generalized Pareto Distribution

From [11], Generalized Pareto distribution(GPD) is mostly used, when we
focus on the behavior of large observations that exceed a high threshold.
Given a high threshold u, the distribution of excess values of x over thresh-
old u is defined by

Fu(y) = P{X − u ≤ y|X > u} =
F (y + u) − F (u)

1 − F (u)

which represents the probability that the value of x exceeds the threshold u
by at most an amount y given that x exceeds the threshold u. A theorem by
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Balkema and de Haan and Pickands shows that for sufficiently high thresh-
old u, the distribution function of the excess may be approximated by the
generalized Pareto distribution (GPD) such that, as the threshold gets large,
the excess distribution Fu(y) converges to the GPD, which is

G(x) =

{

1 − (1 + γ x
β
)−1/γ if γ 6= 0 ;

1 − e−x/β if γ = 0.

where γ is the shape parameter. For ordinary Pareto distribution γ is posi-
tive.

A graphical test for assessing the tail behavior may be performed by study-
ing the sample mean excess function based on the sample X1, ..., Xn. With
Nu being the number of exceedances of u by X1, ..., Xn, the sample mean
excess function is given by

en(u) =
1

Nu

n
∑

k=1

(Xk − u)1u,∞(Xk).

The mean excess plot is the plot of the points

{(Xk,n, en(Xk,n)) : k = 2, ..., n}.

If the mean excess plot is approximately linear with positive slope the Xn

may be assumed to have a heavy-tailed Pareto-like tail.

Figure 1 shows the mean excess plot for GP distribution.

3.5.2 Peak Over Threshold

Assume an i.i.d. sample of random variables X1, ..., Xn from an unknown
distribution function F with a right tail, the distribution of excesses Xk − u
over a high threshold u is approximated by a distribution called the gener-
alized Pareto distribution (GPD). This situation can be applied to construct
estimates of tail probabilities.

For γ > 0 and β > 0, the generalized Pareto distribution (GPD) function is
given by

Gγ,β(x) = 1 − (1 + γx/β)−1/γ , x ≥ 0
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Figure 1: Mean Excess Plot for GP Distribution

Suppose that X is a random variable with distribution function F that has a
regularly varying right tail so that

lim
u→+∞

1 − F (λu))

1 − F (u)
= λ−α

for all λ > 0 and some α > 0. Then

lim
u→∞

P (
X − u

u/α
> x|X > u) = lim

u→∞

P (X > u(1 + x/α))

P (X > u)

= (1 + x/α)−α = 1 − G1/α,1(x)

The excess distribution function of X over the threshold u is given by

Fu(x) = P (X − u ≤ x|X > u), x ≥ 0.

Notice that

1 − Fu(x) =
1 − F (u + x)

1 − F (u)
=

1 − F (u(1 + x/u))

1 − F (u)
.

Since F is regularly varying with index −α < 0 it holds that (1−F (λu))/(1−
F (u)) → λ−α uniformly in λ ≥ 1 as u → ∞, i.e.

lim sup
λ≥1

|(1 − F (λu))/(1 − F (u)) − λ−α| = 0.
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Hence,
lim

u→∞
sup
x>0

|1 − Fu(x) − (1 − Gγ,β(u)(x))| = 0,

where γ = 1/α and β(u) ∼ u/α as u → ∞

Next, choose a high threshold u and let

Nu = #{i ∈ {1, ..., n} : Xi > u}

be the number of exceedances of u by X1, ..., Xn. On the other hand,

1 − F (u + x) = (1 − F (u))(1 − Fu(x)).

If u is not too far from the tail, then the empirical approximation 1−F (u) ≈
Fn(u) = Nu/n is accurate. Moreover,

1 − Fu(x) ≈ 1 − Gγ̂,β̂(x) = (1 + γ̂
x

β̂
)−1/γ̂

where γ̂ and β̂ are the estimated parameters. So,

1 − F̂ (u + x) ≈
Nu

n
(1 + γ̂

x

β
)−1/γ̂

4 Methods

4.1 Maximum Likelihood Estimation Method

The maximum likelihood estimation is a most widely used method to esti-
mate parameters in statistical model base on a known data set. For time se-
ries y1, y2, ..., yn, assume the density function is known, the parameters can
be estimated through maximizing the probability of getting the observed
data from the known density function [13]. For an i.i.d. sample, their joint
density function is

f(y1, y2, ..., yn|θ) =
n

∏

i=1

f(yi|θ).

The likelihood function for the given time series is defined by

L(θ|Y ) =
n

∏

i=1

f(yi|θ),
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Our purpose is to estimate parameters through maximizing above likeli-
hood function. In practice it is easy to calculate the logarithm of likelihood
function, called log-likelihood function:

l(θ|Y ) := log L(θ|y1, y2, ..., yn) =
n

∑

i=1

log f(yi|θ).

To maximize the log-likelihood function we let the partial derivatives equal
to zero.

4.2 Estimation for ARMA Model

Assume time series {Xt} is mean zero, we aim to fit this process to ARMA(p, q)
model, which satisfied following equation:

xt = φ1xt−1 + ... + φpxt−p + ǫt + θ1ǫt−1 + ... + θqǫt−q, (1)

where ǫt is an i.i.d. N(0, σ2). Let r = max(p, q +1), and rewrite the model as

xt = φ1xt−1 + ... + φrxt−r + ǫt + θ1ǫt−1 + ... + θr−1ǫt−r+1. (2)

Denote φi = 0 for i > p and θj = 0 for j > q.

Kalman filter, a recursive estimator, is applied in the estimation procedure.
Only the estimated state from the previous time step and the current mea-
surement are needed to compute the estimate for the current state. The
Kalman filter can be written as a single equation for prediction:

x̂k|k−1 = Fkx̂k−1|k−1 + Bkuk,

where x̂k|k is a posteriori state estimate at time k given observations up to
and including at time k, Fk and Bk are parameter matrices and uk is resid-
ual in our model. Based on the Kalman filter, we transform the model to
following state-space:

Yt+1 = AYt + Bǫt+1, (3)

xt = C ′Yt, (4)

where Yt is an r × 1 state vector, A is an r × r matrix, and B and C are r × 1
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vectors, which is given by:

A =



















φ1 1 0 0 ... 0
φ2 0 1 0 ... 0
φ3 0 1 0 ... 0
...

. . .
φr−1 0 1 0 ... 0
φr 0 0 0 ... 0



















; B =



















1
θ1

θ2

...
θr − 1



















; C =



















1
0
0

...
0



















.

We can see that system (3) and (4) is equivalent to (2). Now denote by
Ŷt+1|t = E[Yt+1|x0, ..., xt; Y0] the expected value of Yt+1 conditional on the
history of observations (x0, ..., xt). Associated with each of these forecasts is
a mean squared error matrix, defined as

Zt+1|t = E[(Yt+1 − Ŷt+1|t)(Yt+1 − Ŷt+1|t)
′].

Given the estimate Ŷt|t−1, we use (4) to calculate the residuals

et = xt − E[Yt|x0, ..., xt−1; Y0]

= xt − C ′Ŷt|t−1.

The innovation variance, denoted by ωt, satisfies

ωt = E[(xt − C ′Ŷt|t−1)(xt − C ′Ŷt|t−1)
′] (5)

= E[(C ′Yt − C ′Ŷt|t−1)(C
′Yt − C ′Ŷt|t−1)

′] = C ′Zt|t−1C.

Moreover, to estimate Ŷt+1|t, the Kalman filter equations imply the follow-
ing evolution of the matrices Zt+1|t

Zt+1|t = A[Zt|t−1 − Z ′
t|t−1CC ′Zt|t−1/ωt]A

′ + BB′σ2. (6)

Given the initial value Ŷ1|0 = 0, which is the unconditional mean of Yt, the
likelihood function of the observation vector x0, x1, ..., xT is given by

L =
T

∏

t=1

(2πωt)
−1/2 exp(−

e2
t

2ωt

).

Taking logarithms and dropping the constant, we obtain

l = −
T

∑

t=1

[log(ωt) + e2
t /ωt]. (7)
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To find estimations, we should maximize log-likelihood function (7) with
the parameters θi, φj, and σ2. However, above function does not include the
term σ2, and only involve the parameters θi, φj. Suppose we initialize the
filter with the matrix Z̃1|0 = σ2Z1|0. Then from (6) it follows that each Zt+1|t

is proportional to σ2, and from (5) it follows that the residual variance is
also proportional to σ2. So, we can optimize with respect to σ2 first, replace
the result into the log-likelihood function, then maximize the function with
the parameters θi, φj. Note that (7) becomes

l = −
T

∑

t=1

[log(σ2ωt) +
e2

t

ωtσ2
] (8)

Optimize (8) with respect to σ2, we obtain

σ2 =
1

T

T
∑

t=1

e2
t /ωt.

Replacing above result into (8) and ignoring constants, we obtain following
log-likelihood function

l = −[T log
T

∑

t=1

e2
t /ωt +

T
∑

t=1

log ωt] (9)

At last, we can estimate ARMA parameters through maximizing equation
(9), see [4].

4.3 Estimation for GARCH Model

For GARCH model, the quasi-maximum likelihood method is particularly
used to estimate parameters. Since we present an iterative procedure when
we calculate the log-likelihood based on an initial values, see [4].

We fit the time series Xt in GARCH (p, q) process, assume the residuals {ǫt}
are i.i.d N(0, 1), the Gaussian quasi-likelihood function is given by

Ln(θ) = Ln(θ; X1, ..., Xn) =
n

∏

t=1

1
√

2πσ2
t

exp(−
X2

t

2σ2
t

),

the Gaussian log-likelihood function is given by:

ln(θ) = −
1

2

n
∑

t=1

(log(2π) + log(σ2
t ) +

X2
t

σ2
t

).
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So, maximizing the likelihood is equivalent to minimize
∑n

t=1(
X2

t

σ2

t

+ log σ2
t ).

Notice σt = ω + αX2
t−1 + βσ2

t−1, in GARCH model.

Iterative procedure is generally used in GARCH(1, 1) model. And it is
common to choose σ0 = V ar(X) and X0 =

√

V ar(X) as initial values for
GARCH(1, 1). In this project we choose initial values by this way.

4.4 AIC

Order selection is quite important when we use ARMA process. As we
know, the higher order in model may result in smaller estimated errors. But
the higher-order model is complex. When we apply the model into forecast-
ing, the mean squared error of the forecasts will be large, which depends on
errors from estimation of the parameters of the fitted model. So, we should
choose order considering both sufficient and simple factors.

Many criteria are used to select order. In this paper we introduce one of
them, AIC criterion. AIC, a generally applicable criterion for model selec-
tion, is an approximately unbiased estimate of the Kullback-Leibler index
of the fitted model versus to the true model. According to [1], AIC criterion
is defined as

AICk = 2k − 2 log(L)

where k is the number of parameters in the fitted model and L is the value of
the maximized likelihood-function for the model. Assume the model errors
have the same variance, then it holds that

AICk = 2k + N [log(2π
N

∑

i=1

ǫi
2/(N − 1)) + 1],

which means that it is enough to minimize

AICk = 2k + N log(
N

∑

i=1

ǫi
2/(N − 1)).
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4.5 Analysis of Residuals

Stationarity are required for residuals in our models. To test for station-
arity, Ljung-Box test is widely used, which has the null hypothesis that the
time series are independently distributed. This test considers the sample
autocorrelation functions simultaneously by test statistics QLB , defined as

QLB = n(n + 2)
h

∑

i=1

ρ̂2(i)/(n − i)

where n is the sample size, ˆρ(i) is the sample autocorrelation at lag i, and h
is the number of lags being tested. For large n , QLB can be approximately
the chi-squared distribution with degrees of freedom h. The assumption of
an i.i.d. sequence is rejected at significance level α if QLB > χ2

1−α(h), see
[1].

The residuals ǫt are also assumed to be normal distribution. To investigate
this assumption, several methods and tests can be performed on the residu-
als. Using visual methods, we can check for normal distribution with a QQ-
plot and independence by plotting the autocorrelation function. We can
also compare the empirical density plot with normal density plot in the fig-
ure. Statistical hypothesis tests, such Pearson Chi-Square test, can be used to
test the residuals for normal distribution. Kolmogorov-Smirnov test can be
used to check the distance between residuals empirical density function and
normal density function. The distance between the fitted distribution func-
tion F and the empirical distribution function Fn of the sample (X1, ..., Xn),
given by

Fn(x) =
1

n

n
∑

i=1

1{Xi≤x},

where 1{.} is the indicator function. The most basic of these statistics is the
Kolmogorov distance (KD), given by

KD = sup
x∈R

|Fn(x) − F (x)|.

We will check the Kolmogorov distances between residuals and normal dis-
tribution for our models.
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5 Modeling

In this section the time series model will be applied for the hourly system
price from Nord Pool.

5.1 Data Set

The price period from January to February 2012 is used to estimate the
model. This data set is obtained from Nord Pool’s market data service. The
original price is shown in Figure 2. The presence of spikes and volatility
clustering is quite obvious. We explore the basic statistics from our data set
in Table 1. We also get histogram plot and QQ-plot to compare with normal
distribution.
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Figure 2: the Original Data Set
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Figure 3: Empirical Histogram of Electricity Prices

−4 −3 −2 −1 0 1 2 3 4
0

50

100

150

200

250

Standard Normal Quantiles

Q
ua

nt
ile

s 
of

 In
pu

t S
am

pl
e

QQ Plot of Sample Data versus Standard Normal

Figure 4: QQ-plot of Original Data Set
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Table 1: Descriptive Statistics of Electricity Price

Statistic Value
Mean 42.9219

Maximum 224.97
Minimum 22.16

Standard Deviation 21.7299
Skewness 4.4526

Kurtosis 28.0635

As we can see, from histogram and QQ-plot, our data set is long tailed com-
paring with normal distribution. Table 1 shows some descriptive statistics
of the electricity price. We can find our data set is heavily tailed according
to positive skewness and higher kurtosis than the normal distribution. The
statistic values are largely affected by extreme values. So, it is necessary to
deal with these extreme observations when we fit the model.
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5.2 Fit the Model

From above plots and statistics, it is necessary to identify and remove ex-
treme values. We apply extreme value theory to deal with them. Secondly,
considering seasonal components, we remove seasonal periods of 24-hours
and 168-hours.

5.2.1 Remove Extreme Values

We should remove some outliers and analyze the extreme values using sta-
tistical model. We just remove 1 % left outliers, and deal with right heavy tail
based on extreme value theory. There are 84 extreme observations above
threshold being removed. For both left outliers and right extreme values,
we use their previous values instead of the old observations to protect the
periodic feature. However, how to choose the appropriate threshold is not
an easy issue, which we will explain in Section 4.6.

5.2.2 Remove the Seasonal Components

As we predict, the seasonal components of 24-hours and 168-hours are re-
moved. We can see that 24-hours period of electricity prices is very clear
from ACF plot. After comparing two figures, we can see that the ACF be-
comes much smoother when we remove periodic components. After these
preprocessing, we can regard our data set as shortly stationary and model
them applying ARMA process.
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Figure 5: the ACF of Time Seriers after Removing Extreme Values
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Figure 6: the ACF of Time Series after Removing Extreme Values and 24-
hours and 168-hours Periodic Components
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5.3 ARMA Model

We calculate AIC values using different orders of ARMA model.

Table 2: AIC Values using Different Parameters of ARMA Model

(p, q) 1 2 3 4 5 6 7 8
1 1.7530 1.7131 1.6990 1.6921 1.6888 1.6882 1.6829 1.6841
2 1.6891 1.6762 1.6762 1.6769 1.6780 1.6905 1.6787 1.6844
3 1.6786 1.6773 1.6790 1.6782 1.6796 1.6796 1.6485 1.6800
4 1.6771 1.6779 1.6797 1.6713 1.6816 1.6773 1.6480 1.6860
5 1.6788 1.6800 1.6769 1.6712 1.6736 1.6788 1.6483 1.6752
6 1.6803 1.6817 1.6652 1.6799 1.6788 1.6413 1.6820 1.6698
7 1.6822 1.6823 1.6784 1.6753 1.6506 1.6645 1.6768 1.6752
8 1.6837 1.6831 1.6742 1.6780 1.6729 1.6743 1.6639 1.6645

The smallest value is 1.641 from ARMA(6, 6) model according to above
table. And when we increase the order of parameters, the AIC value be-
comes smaller. We calculate AIC values until p=25, q=25. The smallest
value appears at ARMA(21, 24). But the model will be complex when we
use the optimal order of model. And if we apply the optimal model, the
mean squared error of the simulation will be large, which depends on er-
ror from estimation of the parameters of this model. To solve this problem
we try to find sufficient and simple model through checking and comparing
residuals from different models. We can see that AIC value of ARMA(2,
2) is not much bigger than the smallest value and smaller than other val-
ues around it. We explore the residuals of ARMA(2, 2), ARMA(6, 6) and
ARMA(21, 24) as follows.

Table 3: Residuals Analysis for ARMA Model with Different Parameters

residuals AIC value Kolmogorov distance
ARMA(2, 2) 1.6762 0.1255
ARMA(6, 6) 1.6413 0.1304

ARMA(21, 24) 1.6007 0.1207

Above table shows that we can get smallest AIC value from ARMA(21, 24)
model. For all ARMA models, however, the kolmogorov distances between
residuals and normal distribution are quite close. Hence, we can conclude
that higher order might get smaller AIC value, but it contributes limitedly
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to reduce distance between residuals and normal distribution. To decrease
distance between residuals and normal distribution it is not enough to in-
crease the order of ARMA model. So, we may need another type model to
analyze residuals for ARMA model. And it is not a good choice to use high
order ARMA model. In this case, we decide to try simpler model ARMA(2,
2) to deal with our data set.

Table 4: Estimated Parameter and Standard Error of ARMA(2, 2) Process

Parameter Value Standard Error T-Statistic
φ1 1.6587 0.04232 39.1943
φ2 -0.66046 0.041914 -15.7575
θ1 -0.73096 0.04404 -16.5974
θ2 -0.1625 0.025755 -6.3092

It is obvious that both parameters of AR and MA are significant from T-
statistic. Since the absolute value of T-statistic is larger than 2, we can get
significant conclusion.
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Figure 7: Residuals of ARMA(2, 2) Process

It seems that the residuals are stationary and volatility clustering. Then we
check the ACF and PACF of residuals. We also check the ACF of squared
residuals later.
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Figure 8: ACF with Bounds for Residuals of ARMA(2, 2) Process
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Figure 9: PACF with Bounds for Residuals of ARMA(2, 2) Process
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Figure 10: ACF with Bounds for Squared Residuals of ARMA(2, 2) Process

From ACF and PACF plots of residuals we can see that most values are
within bounds, which are 95% confidence interval for Gaussion write noise.
ACF for squared residuals shows that although the row data themselves are
largely uncorrelated, the variance process exhibits some correlation. This
indicates the possibility of a variance process close to being non-stationary
and GARCH-type model may suit to this situation.
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We also use formal test to check stationary for residuals and squared resid-
uals.

Table 5: Results of Ljung-Box Test for Residuals

lag H P-value State value Critical Value
5 0 0.7967 2.3649 11.0705

10 0 0.6174 8.1168 18.3070
15 1 0.0017 36.1535 24.9958

Table 6: Results of Ljung-Box Test for Squared Residuals

lag H P-value(10−6) State value Critical Value
5 1 0.2016 39.3537 11.0705

10 1 0.0529 53.7993 18.3070
15 1 0.6307 57.6728 24.9958

Ljung-Box test may confirm the conclusion from plots. It indicates that the
residuals of ARMA(2, 2) model are stationary, at least shortly stationary
(within 12 lags). However the variances do not hold his property. Next, we
will compare the residuals with normal distribution.

From following two plots we can see the empirical cdf of residuals is a bit
far from normal distribution. The kolmogorov distance between residuals
and normal distribution is 0.1255. According to Kolmogorov-smirnov test,
we have to reject the null hypothesis that the residuals follow normal dis-
tribution at 5% significance level. Hence, the residuals of ARMA(2, 2) is
stationary but a bit far from normal distribution and variance shows non-
stationary. Next step we will use both GARCH and EGARCH model in
order to describe volatilities.
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Figure 11: QQ-plot for Residuals of ARMA(2, 2) Process
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Figure 12: Empirical cdf for Residuals of ARMA(2, 2) Process vs Normal
Distribution
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5.4 ARMA-GARCH Model

Table 7: Estimated Parameter and Standard Error of GARCH(1,1) Process

Parameter Value Standard Error T Statistic
ω 0.14599 0.010132 14.4090
α 0.90769 0.0049621 182.9240
β 0.072466 0.0056852 12.7463

It is clear that ω, α and β are significant from T-statistic. And we get the plot
of residuals of ARMA-GARCH process.
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Figure 13: Residuals of ARMA(2,2)-GARCH(1, 1) Process
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Figure 14: ACF for Residuals of ARMA(2, 2)-GARCH(1, 1) Process
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Figure 15: PACF for Residuals of ARMA(2, 2)-GARCH(1, 1) Process
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Figure 16: ACF for Squared Residuals of ARMA(2, 2)-GARCH(1, 1) Pro-
cess

We can see all values are within bounds. We may draw a conclusion that
both residuals themselves and variance are uncorrelated. It also shows that
the GARCH(1, 1) model sufficiently explains the heteroscedasticity. We
also use formal test to check stationary for residuals and squared residuals.

Table 8: Results of Ljung-Box Test for Residuals
lag H P-value State value Critical Value

5 0 0.5721 3.8443 11.0705
10 0 0.8835 5.1128 18.3070
15 0 0.8200 9.9953 24.9958

Table 9: Results of Ljung-Box Test for Squared Residuals

lag H P-value State value Critical Value
5 0 0.2480 6.6505 11.0705

10 0 0.3755 10.7721 18.3070
15 0 0.5218 14.0496 24.9958

Ljung-Box Test can confirm the conclusion of plots.
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Figure 17: QQ-plot for Residuals of ARMA(2, 2)-GARCH(1, 1) Process
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Figure 18: Empirical cdf of ARMA(2, 2)-GARCH(1, 1) Process vs Normal
Distribution

The residuals are quite close to normal distribution.
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We also check the Kolmogorov distance between residuals of our model and
normal distribution.

Table 10: Residuals Analysis for ARMA-GARCH Model

residuals Kolmogorov distance P-value Test (h)
ARMA-GARCH model 0.0255 0.5254 0

where h = 0 indicates that we can not reject the null hypothesis at the 5%
significance level. From above plots and tables, it can be observed that the
distance between residuals of ARMA-GARCH model and normal distribu-
tion become much smaller than residuals of ARMA model.

5.5 ARMA-EGARCH Model

In this section I employ EGARCH model to deal with residuals of ARMA(2,
2) process.

Table 11: Estimated Parameter and Standard Error of EGARCH(1, 1) Pro-
cess

Parameter Value Standard Error T Statistic
ω 0.098413 0.0063656 15.4600
α 0.95767 0.003133 305.6779
β 0.18685 0.0097585 19.1472
γ 0.058309 0.0080679 7.2272

It is obvious that ω, α, β and γ (leverage) are significant from T-statistic. The
plot of residuals for ARMA-EGARCH process is following. To analyze
them we obtain ACF and PACF of residuals and squared residuals. Later
formal test of stationary is used. We also compare empirical distribution
and normal distribution.
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Figure 19: Residuals of ARMA(2, 2)-EGARCH(1, 1) Process
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Figure 20: ACF for Residuals of ARMA(2, 2)-EGARCH(1, 1) Process
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Figure 21: PACF for Residuals of ARMA(2, 2)-EGARCH(1, 1) Process
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Figure 22: ACF for Squared Residuals of ARMA(2, 2)-EGARCH(1, 1)
Process
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From ACF and PACF plot we can see all values are within bounds. We may
draw a conclusion that both residuals themselves and variance are uncorre-
lated. It also shows that the EGARCH(1,1) model sufficiently explains the
heteroscedasticity. We also use formal test to check stationary for residuals
and squared residuals. They confirm our conclusion from plots.

Table 12: Results of Ljung-Box Test for Residuals
lag H P-value State value Critical Value

5 0 0.8316 2.1247 11.0705
10 0 0.8647 5.3758 18.3070
15 0 0.8646 9.2410 24.9958

Table 13: Results of Ljung-Box Test for Squared Residuals

lag H P-value State value Critical Value
5 0 0.3780 5.3209 11.0705

10 0 0.1369 14.8695 18.3070
15 0 0.4081 15.6149 24.9958
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Figure 23: QQ-plot for Residuals of ARMA(2, 2)-EGARCH(1, 1) Process

35



−4 −3 −2 −1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

F
(x

)

Normal vs Empirical cdf

 

 
Normal
Empirical

Figure 24: Empirical cdf of ARMA(2, 2)-EGARCH(1, 1) Process vs Nor-
mal Distribution

From above plots we can get the conclusion that the residuals are indepen-
dent and very close to normal distribution. Next we check the Kolmogorov
distance between residuals of our model and normal distribution.

Table 14: Residuals Analysis for ARMA-GARCH Model

residuals Kolmogorov distance P-value Test (h)
ARMA-EGARCH model 0.0182 0.8878 0

where h = 0 indicates that we can not reject the null hypothesis at the 5%
significance level. From above plots and tables, it can be observed that the
distance between residuals of ARMA-EGARCH model and normal distri-
bution become much smaller than residuals of ARMA model. In addition,
the Kolmogorov distance in EGARCH model is slightly smaller than one in
GARCH model.
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5.6 Extreme Value Distribution Model

The time series indicates a behavior that makes the price spikes tend to
accumulate. This characteristic should be taken into consideration in model
of extreme values. The observations that are larger than threshold u will
be treated into two steps. Firstly, we fit spikes into GP-distribution and
obtain the parameters. Secondly, we simulated each extreme value using
parameters and add them to the simulated processes of above models. We
have assigned the positions of extreme values when we remove them. We
add the simulated extreme values on the signed positions earlier.

Firstly, we get the mean excess plot of our data set. Our mean excess plot
follows linear, which shows that we can fit extreme values with GP distribu-
tion. In GP distribution, it is important to find a threshold. We will choose
threshold based on mean excess function and mean residual life plot as fol-
lows.
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Figure 25: Mean Excess Plot
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Figure 26: Mean Residual Life Plot

It is not simple to find a threshold in practice. Above figure shows the mean
residual life plot with approximate 95% confidence intervals for the elec-
tricity price. At first glance, we may conclude that there is no stability until
u = 130, after which there is approximate linearity. However, there are only
20 exceedances above the threshold u = 130, too few to get meaningful con-
clusions. In addition, from the plot, large values of u is unreliable because
of the limited amount of data on which the estimate and confidence interval
are based. We intend to choose the threshold about 70. From mean ex-
cess plot, we also find it is better to choose threshold u=70. We remove 84
observations above this threshold u.

For every observation above our threshold, we use its previous value instead
of current one. The size of our data set after moving extreme values is the
same with original time series. So, this data set still possess the same periodic
property with the original electricity price. We also assign the position in
each extreme value for later simulating.
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5.7 Simulation of GARCH-Type model and Extreme Value

Distribution Model

We simulate our GARCH-type model and GP distribution model sepa-
rately. At first, we simulate time series using estimated parameters for
ARMA-GARCH and ARMA-EGARCH model. On the other hand, we
use the GP distribution to simulate extreme values. Then we obtain the fi-
nal simulation by following way. On Section 4.6 we assign the position of
each extreme value when we remove them. We add our estimated extreme
values to the positions that assigned earlier.

From following figures we find that two simulated processes with extreme
values are similar with the original data. It can be observed that the simu-
lated time series is quite similar with the original data set for both ARMA-
GARCH model and ARMA-EGARCH model with GP model. But we
know that there are also some distances between original data and simu-
lated processes. The main reason is that the residuals are not exactly normal
that is our assumption when we fit our models. They look very slight since
we add the simulated extreme values at the same position with our data,
and the non-extreme values are in a small range.
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Figure 27: Simulated Processes for Data From January 2012 - February Us-
ing ARMA-GARCH Process and EVT
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Figure 28: Simulated Processes for Data From January - February 2012 Us-
ing ARMA-EGARCH Process and EVT
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6 Conclusions

We can draw the conclusions as follow:

Predictable periods are appropriate to the data set. After removing them
the data set tend to stationary. We can see that the ACF become much
smoother then before.

For this kind of shortly stationarity, ARMA can successfully decompose au-
toregressive process and moving average components, then obtain station-
ary residuals.

On the other hand, GARCH-type models are quite necessary since the
volatility is still not independent.

It is not easy to say that GARCH or EGARCH is better to fit the time series.
The residuals from both models are quite close to normal distribution.

AIC may be over estimated for order selection.From this criterion we can
get the best choice of parameter order, however, more parameters will in-
crease errors in prediction in practice. In stead of it, fewer parameters are
chosen based on AIC values.

GP distribution is fit for extreme values of electricity prices.

We also need develop following issues in the future:

The residuals are assumed to be normal distribution. Actually, there is more
or less distance between residuals and normal distribution, which may affect
our result.

Order selection for ARMA model is a complex problem. We may need
further research and find a general way for electricity price.

Finding threshold in GP distribution is quite important. We will compare
different thresholds and results, then study some criteria to judge different
thresholds.

When we add the simulated extreme values, it is better to find the position
randomly. How to estimate the occasion that may appear extreme value is
a future task.

External factors that affect electricity price are not ignored completely. How
to indicate these factors and remove them becomes a task in the future.
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