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Abstract

This thesis deals with aspects of probability and statistics applied to breast cancer research.
The �rst part of the thesis concerns data from in vitro experiments with breast cancer cells. The
e�ect on aggregate counts and morphological parameters of the cells by surrounding (simulated)
tissue's sti�ness is analyzed using methods from linear mixed models theory. The analysis
indicates that certain parameters are signi�cantly di�erent for di�erent tissue sti�ness.

The second part of the thesis deals with stochastic modeling related to initial tumor growth.
A mathematical model for tumor growth is studied and certain types of randomness are intro-
duced in it. Using statistical methods we give a general characterization of numerical solutions
to the random system. Large deviation techniques are used to obtain results for probabilities
related to the random system and sample paths from the random and the deterministic systems
are compared.

Keywords: Breast cancer cells; Tissue sti�ness; Regression analysis; Repeated measurements;
Linear mixed models; Oncogenic mutations; Stochastic modeling; Random perturbations; Large
deviations
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Chapter 1

Introduction

The National Cancer Institute (NCI) estimates that during 2009, 192,370 women in the U.S.
will be diagnosed with breast cancer and 40,170 will die from the disease [27]. The NCI further
goes on to state that based on the rates from 2004-2006, approximately 12% of the women born
today will develop breast cancer at some point in their lives � it is the third most common type
of cancer.

Scientists of all trades have joined in to try and �ght cancer disease in general, and in particu-
lar this is so for breast cancer. Perhaps a bit surprisingly, mathematicians and statisticians have
joined this �ght in a rather successful way. The relatively young branch of the mathematical
sciences that is referred to as mathematical biology is �ourishing, with mathematicians providing
models for all kinds of biological processes, cancer included. Although not an exhaustive list,
Professor Crooke's (Vanderbilt University) reference list [10] shows the increase in mathematical
publications related to cancer over the last 50 years.

One important aspect of mathematicians contribution to cancer research is the topic to
de�ne models for tumor growth. Examples of such models, based on di�usion equations, are
given by Adams ([1], [2]). DeLisi and Rescigno ([12], [13]) provide a model for the interaction
between tumor cells and a certain type of immune response, an important aspect for tumor
growth. Based on predator-prey models, they characterize the growth of a tumor and conclude
on how di�erent initial conditions (tumor size, aggressiveness of immune response etc.) a�ect
the outcome. Stepping away somewhat from cancer cells, certain aspects of cell movement have
been modeled using stochastic di�erential equations (SDEs) ([15], [26]).

Aside from de�ning new models for tumor growth or similar characteristics of cancer cells,
mathematicians (and perhaps especially statisticians) usually contribute in the following aspects:

� Statistical design and analysis.

� Stochastic modeling.

Statistical methodology lends itself naturally to the analysis of data from experiments regarding
the behavior of cancer cells. Everything from basic statistics to advanced modeling methods
comes to use when trying to understand the properties of such cells. In stochastic modeling, one
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makes use of exact mathematical descriptions of biological phenomena and introduce randomness
in di�erent ways. It is important to understand how randomness will a�ect a certain model since
cell behavior seldom is deterministic, �noise� might therefore be necessary to include in order for
a model to adequately represent reality.

This thesis has been written at the University of North Carolina at Chapel Hill as a part
of the NSF funded project Emerging frontiers in 3-D breast cancer tissue test system. Principal
investigator is Dr Karen Burg of the bioengineering department at Clemson University, South
Carolina. The aim of the project is to [8]

�enhance knowledge of breast cancer cellular and biomolecular behavior as an inter-
active function of a combination of oxygen level and tissue sti�ness, by developing
experimental and analytical tools to develop tissues of hierarchial structure and to
assess normal and cancer cells within this framework.�

Our work contribute to the project in both ways mentioned above. Experiments that relate
to the dependency of breast cancer cells behavior on the surrounding tissue's sti�ness have
been carried out at Clemson University. The obtained data is analyzed using various statistical
methods. Furthermore, stochastic modeling is considered for a model of initial tumor growth.
Di�erent types of randomness are introduced in the model and the outcome is evaluated and
compared to the deterministic case.

The thesis is divided into two parts - Part I describes the methods and results for analysis of
experimental data and Part II deals with aspects of stochastic modeling related to initial tumor
growth. In Part I, Chapter 2 describes the experimental setup used at Clemson University and
corresponding obtained data. An exploratory analysis of the data is presented in Chapter 3,
in which di�erent subsets of the data are considered in accordance with test procedures. Some
methods from linear mixed models are introduced in Chapter 4 and aspects of the experimental
data is then further investigated, using such methods, in Chapter 5. In Part II, Chapter 6
introduces a model for tumor growth developed by Sherratt and Nowak [28]. In Chapter 7
the model for tumor growth is studied when containing random components of di�erent types.
Chapter 8 then compares the �new� stochastic models to the original deterministic one. Section
8.1 gives a brief introduction to large deviations theory, methods from which are then used to
conclude on the general probabilistic behavior of the stochastic models. Finally, a short summary
of conclusions from both parts is presented in Chapter 9.
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Part I

Statistical analysis of breast cancer cell
data
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Chapter 2

Introduction: Statistical data analysis

As mentioned in Chapter 1, experiments conducted at Clemson University have provided data
related to the behavior and properties of breast cancer cells. Section 2.1 describes the experi-
mental setup and Section 2.2 the data obtained with that setup. The aims and objectives for
analysis of the data as stated by grant proposals and experimental summaries (see e.g. [5] and
[8]) are given in Section 2.3.

2.1 Experimental setup

The experiments aim to investigate how human breast cancer cells, MCF-7 cells, behave in
di�erent types of substrates. More speci�cally, it is how the sti�ness of the di�erent substrates
a�ect the cells that is of most interest. The long-term goal associated with these experiments is
to be able to use observations of morphological parameters from microscopic imaging to predict
surface sti�ness. This is clearly in line with the overall objectives of the project mentioned in
the introductory Chapter 1.

MCF-7 cells were seeded onto the top of an agarose cellular mixture in 24 di�erent cell culture
plate wells. To obtain substrates with di�erent sti�ness, the cellular mixtures contained di�erent
amounts of agarose. The cellular mixture consisted of agarose, gelatin and phosphate-bu�ered
saline (PBS). The percentage of agarose in the solution was between 0.75 and 3.0. The use of an
agarose boundary was an attempt to minimize surface tension between the cellular mixture and
the surrounding container. However, some substrates still showed signs of surface tension and
therefore agarose content does not necessarily give a prediction of the gel sti�ness. Henceforth,
substrates with di�erent agarose contents will therefore be referred to as di�erent populations.

The 24 wells were distributed over eight populations with three samples each. An image
was taken of each sample once a day for a total of fourteen days. During these days there were
three media additions (days 1, 2 and 3) and three media replacements (days 5, 8 and 12). The
replacement/addition of media was always done after the imaging on the corresponding day.
Figure 2.1 shows examples of the type of images taken of the wells. In wells containing the
substrates with the lowest percentages of agarose (0.75% and 1.0%), cancer cells sunk through

5



Figure 2.1: Images taken from one of the wells at day 2 (left) and at day 7 (right).

the gel and attached to the bottom of the well. Also, in some of these wells the gel was weak and
fell apart. Moreover, the replacement/addition of media was observed to displace aggregates in
the samples.

2.2 Experimental data

Data from the experiments was obtained by processing the daily images of the samples. The
image processing was done in ImageJ under the protocol described in [5]. Figure 2.2 shows an
original image together with the corresponding processed image.

Figure 2.2: Image taken at day 2 from Figure 2.1 and the corresponding processed image.

The protocol for image processing basically separates large aggregates from the background
in the original images, as seen in Figure 2.2. From the processed images the following data was
obtained (k refers to a speci�c aggregate, j to a sample and i to the population):

� For a sample, the total aggregate count (Ni,j), average aggregate size and the average
fraction of the image that was covered by aggregates (in pixels).
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� For a speci�c aggregate, the (x,y) coordinates of the center of the aggregate, aggregate
size (area, Ak

i,j), circularity (Ck
i,j) and perimeter (P k

i,j).

Images from samples in which cancer cells sunk through the cellular mixture or in which the
gel fell apart (mentioned in the previous section) could not be processed. Thus the wells with a
cellular mixture consisting of either 0.75% or 1.0% agarose had to be ignored and no data was
obtained from them. Moreover, images from late time points were sometimes processed in an
erroneous way, e.g. spaces that were �locked within� aggregates were included in the aggregate
cluster in the processed image. Figure 2.3 shows one such example.

Figure 2.3: Original image (left) and processed image (right) for the same sample as in Figures
2.1 and 2.2 for day 12.

Due to the above described errors, we have chosen to exclude all data from late time points
(after day 8). Experimental data is thus available for days 1-8 for the populations in Table 2.1.
The notation in the table is henceforth used to refer to the di�erent substrates. Note that for
the subscript i in the variables, i = 1 corresponds to population A, i = 2 to population B and
so forth. In [31] days 9 and 10 are also used for analysis. Due to the replacement of media that

Table 2.1: Agarose content in the cellular mixture for the di�erent populations.

Population Agarose content
A 1.25%
B 1.5%
C 2.0%
D 2.25%
E 2.5%
F 3%

took place on day 8 the samples were again disturbed, possibly changing the characteristics of
the samples as compared to days 6-8. The choice to either include or exclude days 9 and 10 is
not obvious and both cases may be argued. Here we have chosen the latter option. Furthermore,
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due to the media replacements and additions we have chosen to analyze the data divided into
di�erent subsets. More speci�cally, the time periods days 1-8, days 1-6 and days 6-8 have been
analyzed separately.

2.3 Objectives

As stated above, the hope is that the experimental setup described in Section 2.1 will enable the
use of microscopic observations of morphological parameters to conclude on substrate sti�ness.
To achieve this, an investigation in the opposite direction is needed, i.e. it must be concluded
which morphological parameters (if any) that are a�ected by the substrate sti�ness.

Due to sti�ness and percentage of agarose not being equivalent measures (see Section 2.1),
objectives are here stated in terms of relations between population, rather than substrate sti�-
ness, and morphological parameters. The main questions to be asked of the data, stated in [5],
then translates to

� Do aggregates have di�erent size or shape for di�erent populations?

� Is the tendency of cells to cluster together and the rate at which this happens di�erent for
di�erent populations?
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Chapter 3

Exploratory data analysis

In the previous chapter the data obtained from experiments at Clemson University was intro-
duced. As was stated there, the desire is to conclude whether or not di�erent populations have
di�erent characteristics regarding cell clustering. In this chapter, exploratory data analysis is
performed. The measures number of aggregates, perimeter, area and circularity given in
the data are brie�y investigated separately in Sections 3.1-3.4.

In the notations for the di�erent measures, the time index t is usually dropped whenever the
whole time period (t ∈ {1,2,...,8}) is consider or if it is explicitly stated which time period that
is considered.

Due to the aforementioned replacement and addition of media during the experiments the
analysis is generally performed for di�erent subsets of the data, days 1-8 and days 6-8. Recall
from Chapter 2 that there was no outside interference during days 6-8 of the experiments. Thus
we consider this speci�c time period to see if the data show any signs of di�erent behavior
compared to days 1-8. In one instance the time period days 1-6 is also analyzed separately.

Due to the type of data (repeated measurements data) the aim is to, following this ex-
ploratory analysis, use linear mixed model (LMM) methods for modeling. Therefore, as will be
further explained in the next chapter, the normality of the data is of particular interest and is
investigated here.

It should be noted that the analysis presented in this chapter is only meant as an introductory
one, used to give a sense of the data and to conclude what measures to be further concerned
with.

3.1 Number of aggregates

Days 1-8

Figure 3.1 shows the number of aggregates for each sample during days 1-8. Clearly there is a
decrease in the number of aggregates over time for all samples. However, the rate of decrease of
aggregates in the samples is higher in the initial state of the experiment than later on. Noticeable
is that the range of number of aggregates at day 1 for di�erent samples is substantially larger
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Figure 3.1: The number of aggregates, Ni,j , for each sample during days 1-8.

than the corresponding range at day 8. Furthermore, Figure 3.2 shows the total and relative
di�erence respectively in number of aggregates between day 8 and day 1 for all samples. The
di�erence is plotted against the amount of agarose in the cellular mixture and the letters A-F
indicates the corresponding population. For convenience, a smoother is also included in the
�gure. From Figure 3.2 we observe that populations with less amount agarose in their cellular
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Figure 3.2: Total (left) and relative (right) di�erence in number of aggregates, Ni,j , between
day 8 and day 1.

mixture have a larger total decrease of number of aggregates from day 1 to day 8. However, the
relative di�erence

Ni,j(8)−Ni,j(1)
Ni,j(1)

10



is larger (in magnitude) for populations with a higher percentage of agarose. As seen in Figure
3.1, the samples from these populations contain fewer aggregates on day 1, which explains the
di�erence between total and and relative di�erence when comparing populations. It should be
noted that the relative di�erences are still quite close for all populations, ranging from −0.88 to
−0.98.

Figure 3.3 shows a normal Q-Q plot for the number of aggregates during the days 1-8,
indicating a poor �t between the distribution of the response (Ni,j) and a theoretical normal
distribution. log(Ni,j) yields a better �t between the sample distribution and a theoretical
normal distribution, which also can be seen in Figure 3.3. However a Shapiro-Wilk test (used to
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Figure 3.3: Normal Q-Q plots for Ni,j (left) and log(Ni,j) (right) during the days 1-8.

test the null hypothesis of normally distributed observations) indicates, with a p-value of 0.0064,
that although transformed the data still cannot be considered to be normally distributed.

Days 1-6

Due to the di�erent rates of decrease in number of aggregates over days 1-8 an exploratory
analysis of the time period days 1-6 is performed (in addition to days 1-8 and 6-8). Figure 3.4
shows the number of aggregates for all samples during days 1-6. As was observed in Section
3.1, there is a larger decrease of aggregates during the �rst few days of the time period for all
samples. Also, the range of aggregate counts for the di�erent samples at day 1 is wide compared
to the range of counts at day 6. Figure 3.5 shows the total and relative di�erence respectively
in Ni,j between day 6 and day 1 for all samples. The total di�erence follows the same pattern
as for the time period days 1-8 while the relative di�erence of aggregates now seem to be quite
equal for all populations.

A normal Q-Q plot for days 1-6 is shown in Figure 3.6. Not surprising, since the data of days
1-8 showed similar tendencies, the number of aggregates is not normally distributed. Figure 3.6
also shows the normal Q-Q plot for log(Ni,j) and although the plot indicates heavy tails, the �t
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Figure 3.4: The number of aggregates for each sample during days 1-6.
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Figure 3.5: Total (left) and relative (right) di�erence in number of aggregates between day 6
and day 1.

to a normal distribution is better when using the transformation.

Days 6-8

Figure 3.7 shows the number of aggregates for all samples during days 6-8. With the excep-
tion of a few samples, there is a decrease in the number of aggregates during the time period.
Furthermore, Figure 3.8 shows the total and relative di�erence respectively in number of ag-
gregates between day 8 and day 6 for all samples. There is an obvious trend of both total and
relative decrease in number of aggregates. The decrease is larger for samples in populations
containing more agarose. Noticeable is that the relative decrease di�ers substantially between
populations with low respectively high percentage of agarose in the cellular mixture.
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6.0 6.5 7.0 7.5 8.0

0
20

40
60

80
10

0
12

0

Day

N
um

be
r 

of
 a

gg
re

ga
te

s

Population

A
B
C
D
E
F

Figure 3.7: The number of aggregates for each sample during days 6-8.

No transformations will be used for the data due to that both the log and square root
(common for count variables) transformations show a poor �t to a normal distribution.

3.2 Perimeter of aggregates

Days 1-8

Figure 3.9 shows the average aggregate perimeter, P̄i,j , for each sample during days 1-8. Over
time there is an increase in the average perimeter values, however the rate of the increase seems
to di�er for di�erent samples. Figure 3.10 shows the total and relative di�erence respectively in
average perimeter between day 8 and day 1 for all samples in each population. For convenience
there are again smoothers included in the �gures. Apart from the relatively low and high values
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Figure 3.8: Total (left) and relative (right) di�erence in number of aggregates between day 8
and day 6.
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Figure 3.9: The average perimeter of aggregates, P̄i,j , for each sample during days 1-8.

of average perimeter for populations B and C respectively, the �gures indicate an increasing
average perimeter for populations containing more agarose.

A Shapiro-Wilk test of the observations gives a p-value < 0.0001, hence at a signi�cance level
α = 0.05 it rejects the null hypothesis that the observations are normally distributed. This lack
of �t from a normal distribution is further indicated by the normal Q-Q plot of the perimeter
observations shown in Figure 3.11. The convex form of the data (with respect to the horizontal
axis) indicates a distribution that is skewed to the right. p-values obtained for log and square
root transformations of the data (0.0002 and < 0.0001 respectively) also indicate a lack of �t
from a normal distribution. Figure 3.11 also shows the normal Q-Q plot for log(P̄i,j). The
log transformation gives a better �t to a normal distribution, although some skewness is still
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Figure 3.10: Total (left) and relative (right) di�erence in average perimeter P̄i,j for each sample
between day 8 and day 1.
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Figure 3.11: Normal Q-Q plots for P̄i,j (left) and log(P̄i,j) (right) for days 1-8.

present.

Days 6-8

Figure 3.12 shows P̄i,j for each sample during days 6-8. Most noticeable is the high average
perimeter value for one of the samples from population F. Moreover, there are a few samples
that show very small or no increase at all in the average perimeter.

Figure 3.13 shows the total and relative di�erence respectively in average perimeter between
day 8 and day 6 for each sample from populations A-F. Overall the pattern of increase in perime-
ter seems to coincide with the one for days 1-8, suggesting that a log transformation is needed
for this time period as well. Figure 3.14 shows the normal Q-Q plots for the untransformed and
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Figure 3.12: The average perimeter of aggregates for each sample during days 6-8.
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Figure 3.13: Total (left) and relative (right) di�erence in average perimeter P̄i,j for each sample
between day 8 and day 6.

log transformed perimeter data respectively for days 6-8. The log transformed data is a better
�t to a normal distribution than the untransformed data, however the tails deviate from those
of a normal distribution. A Shapiro-Wilks test (for the transformed data) gives a p-value of
0.01368.

3.3 Area of aggregates

Days 1-8

Figure 3.15 shows the total coverage area of the aggregates, Ai,j , for each sample and the mean
total coverage area of the aggregates, Âi,j , for each population respectively during days 1-8.
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Figure 3.14: Normal Q-Q plots for P̄i,j (left) and log(P̄i,j) (right) for days 6-8.

It is observed that after day 3, all populations except B have an increase in their mean area.
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Figure 3.15: Total coverage area of aggregates, Ai,j , for each sample (left) and the mean total
coverage area of aggregates, Âi, for each population (right) during days 1-8.

Furthermore, several populations have a decrease in their mean between days 4 and 6, after
which an increase is seen for all populations except B. These tendencies may be due to the
additions to and replacement of the medium.

Figure 3.16 shows the total and relative di�erence in total coverage area respectively between
day 8 and day 1 for the di�erent samples. First, note that the total di�erence in coverage area
is positive for some samples and negative for others. E.g. all samples from populations A and B
have a decrease in their total coverage area from day 1 to 8 while all samples from populations
C and F have increases in theirs. Moreover, note the large total increase of coverage area for
population F and the almost as large total decrease for population B.
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Figure 3.16: Total (left) and relative (right) di�erence in Ai,j for each sample between days 8
and 1.

A Q-Q plot for the total coverage area of aggregates is shown in Figure 3.17. The plot
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Figure 3.17: Normal Q-Q plots for (left) Ai,j and (right)
√

Ai,j for days 1-8.

shows a slightly heavier left tail and indicates the presence of a few outliers (particularly from
population F). A Shapiro-Wilks test gives a p-value of 8.643 · 10−5. Figure 3.17 also shows a
Q-Q plot of the square root transformed area data. The outliers are still present but overall it
seems to be a slightly better �t to a normal distribution, further concluded by a S-W test which
gives a p-value of 0.0637.

Days 6-8

Figure 3.18 shows the total coverage area for each sample and the mean total coverage area for
each population respectively during days 6-8. Notice especially the large increase for population
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Figure 3.18: Total coverage area of aggregates, Ai,j , for each sample (left) and the mean total
coverage area of aggregates, Âi, for each population (right) during days 6-8.

F compared to the other populations. Studying the original and processed images (not shown
here) at day 8 for the samples from population F, it is observed that the large increase may be
due to the inclusion of �free space� mentioned in Chapter 2. This increase is further observed
in Figure 3.19 which shows the di�erence (both total and relative) between days 8 and 6 for
all populations. The �gure indicates that the total coverage area during days 6-8 increases
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Figure 3.19: Total (left) and relative (right) di�erence in Ai,j for each sample between days 8
and 6.

more for populations containing a higher percentage of agarose. Note that only two samples
(population B) decreased their coverage area during days 6-8 (compared to the eight samples
that were observed during days 1-8). Moreover, Figure 3.19 indicates the possible presence of
outliers amongst populations, particularly for populations C and E.
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A normal Q-Q plot for the total coverage area of aggregates during days 6-8 is shown in
Figure 3.20. The plot is very similar to the corresponding one for days 1-8, with a slightly
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Figure 3.20: A normal Q-Q plot for Ai,j for days 6-8.

heavier left tail and an indication of a few outliers. While a Shapiro-Wilk test rejects (at a
signi�cance level α = 0.05) the hypothesis of normally distributed observations, tests of both
log and square root transformations of the data give p-values > 0.05 (the latter transformation
providing the best �t).

3.4 Circularity of aggregates

Days 1-8

The circularity, Ck
i,j , of an aggregate is de�ned in terms of its area and perimeter. The measure

for a speci�c aggregate is between 0 and 1, with 1 meaning that the aggregate is shaped as a
perfect circle. When the circularity value approaches 0 it refers to an increasingly elongated
polygon. Figure 3.21 shows the average circularity of the aggregates for all samples (C̄i,j) and
populations (Ĉi,j) respectively during days 1-8. There seems to be a slight decrease in the
circularity from day 1 to day 8, however no obvious trends with respect to populations are
observed. The circularity ranges from 0.64 to 0.76 at day 1 and 0.52 to 0.77 at day 8.

Figure 3.22 shows the total and relative di�erence respectively in C̄i,j for each sample between
day 8 and day 1. Notice that (excluding population F) there are indications of a slightly larger
decrease in circularity for populations with a higher percentage of agarose. However, the decrease
(total as well as relative) for the samples is, for most populations, very scattered.

Figure 3.23 shows a Q-Q plot for the circularity data. The concave shape indicates that the
data is skewed to the right. Note that neither a log nor a square root transformation of the data
(not shown here) yields a better �t to a normal distribution.
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Figure 3.21: Average circularity of aggregates for samples (C̄i,j) and populations (Ĉi,j) respec-
tively during days 1-8.
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Figure 3.22: Total (left) and relative (right) di�erence respectively in C̄i,j for each sample
between day 8 and 1.

Days 6-8

The average circularity of aggregates for all samples (C̄i,j) and populations (Ĉi) respectively
for this time period are shown in Figure 3.24. For most samples and populations, there is a
decrease between days 6 and 7. Between days 7 and 8, all populations except C and F have
either a continued decrease or no change at all. For the di�erent samples, no general trends can
be observed; samples from the same population behave very di�erently during the time period.
Figure 3.25 shows the total and relative di�erence in C̄i,j during days 6-8. The observations are
very scattered and samples from the same populations (except A and E) di�er between increased
and decreased average circularity from day 6 to 8. No obvious trends with respect to populations
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Figure 3.23: A normal Q-Q plot for C̄i,j for days 1-8.
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Figure 3.24: Average circularity of aggregates for samples (C̄i,j) and populations (Ĉi,j) respec-
tively during days 6-8.

are observed.
In Figure 3.26 a Q-Q plot for the average circularity of aggregates, days 6-8, is shown. The

plot shows that the normal distribution is a good �t for the data. This is further indicated by
a Shapiro-Wilk test (p-value 0.9446, signi�cance level α = 0.05).

3.5 Comments

Population B behaves di�erent for all measures as compared to the rest of the populations; it
tends to not follow trends that seem to hold for the others. An explanation for this is that cells
have sunken through the cellular mixture upon which they have been placed, putting them out
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Figure 3.25: Total (left) and relative (right) di�erence respectively in C̄i,j for each sample
between day 8 and 6.
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Figure 3.26: A normal Q-Q plot for the average circularity of aggregates for days 6-8.

of focus of the images and thus excluding them from the data. Such cells then reappear and
disappear again during the time period of the experiment. This can be qualitatively observed
in the original images for the samples of population B.

With few exceptions, the di�erent data sets are not normally distributed. In some cases
a transformation of the data yields a better �t, however still with indications of heavy tails,
skewness etc.

The area data has been further investigated in [31] using regression analysis. Di�erent models
for total coverage area as a function of time and sti�ness1 are considered. Results indicate that a
higher percentage of agarose in the cellular mixture implies a larger total coverage area. However,

1Here sti�ness corresponds to what we have denoted as population
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it is in [31] noted that the increase in total coverage area for wells with a high percentage of
agarose is a�ected by the inclusion of �free space� when images are processed. This is consistent
with what have been mentioned here. Due to this discrepancy for some populations and the
previous investigation of the area data, we do not pursue any further analysis of this measure.

Moreover, due to the circularity measure being de�ned in terms of estimated area and perime-
ter, further investigations regarding this measure is omitted. For now focus is instead on the
perimeter data and the analysis of the number of aggregates in each sample.

As mentioned in Chapter 2 the data obtained from the experiments contained the position
of each aggregate for the di�erent days and samples. Attempts to quantify this information have
been made, however it has shown to be a task of great di�culty due to the fact that there is no
possibility to follow a certain cell or particle over time. For conclusions regarding cell movement,
it would be desirable to obtain data from tracking of distinct cells over a period of time, thus
enabling cell paths to be obtained for the di�erent samples. Mathematical models for single cell
movement (e.g. [15], [26]) may perhaps be adjusted to �t the speci�c characteristics of breast
cancer cells.
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Chapter 4

Repeated measurements for
longitudinal data

The concept of repeated measurements is found in a vast number of real life situations and
applications. In general, the term repeated measurements refers to the case when a characteristic
of a subject is observed a repeated number of times.

Repeated measurements data has certain characteristics that makes it hard to use conven-
tional methods and models for analysis. Perhaps the most signi�cant di�culty is that due to
multiple observations being made on the same subject there is a dependence between observa-
tions. Therefore, to fully investigate the data and obtain inference on it, it is necessary to take
this dependence into account. There are more complications that arise with repeated measure-
ments (unbalanced or missing data being others), however it is this dependence that is of most
concern for the experiments presented in this thesis.

Di�erent methods have been developed or altered for use on repeated measurements data.
Examples are univariate and multivariate, ANOVA and generalized linear model (GLM) meth-
ods. For an account on how they can be used in the setting of repeated measurements and what
their advantages and disadvantages are, see e.g. [11]. The perhaps most common approach to
analyze repeated measurements data is that of linear mixed models, methods from which are
used in this thesis. Using linear mixed models (LMM), it is possible to quantify and model the
dependence between observations on a speci�c subject.

In Section 4.1 the general linear mixed model is de�ned and the concept of covariance struc-
tures used in the model is discussed. Following mainly [11] and [29], in Section 4.2 it is brie�y
described how the linear mixed model is applied to repeated measurements data.

This is by no means an attempt to give a complete description of the model and its properties.
The interested reader is recommended to view e.g. [22] or [29] for a good and thorough treatment
of the theory of linear mixed models. [11] gives a more brief introduction to the theory and its
use for repeated measurements, including several examples.
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4.1 The linear mixed model

Suppose that n observations of some sort are available (e.g. responses from an experimental
unit, measurements of some kind etc.). One of the usual statistical approaches for analyzing
such experimental data is to try and �t a linear model of the form

y = Xβ + ε. (4.1)

Here y is an n × 1 vector of the independent observations, β is a m × 1 vector of unknown
regression coe�cients, X is an n × m matrix consisting of the proposed covariates and ε is
an n × 1 vector of independent errors. It is usually assumed that the components of ε are
independent with zero mean and some constant variance σ2. This is commonly known as a
general linear model.

The linear mixed model can instead be formulated as

y = Xβ + Zγ + ε. (4.2)

Here, with the same notation as in Equation 4.1, Z is a n×p design matrix of known covariates.
γ is a p × 1 random vector of subject speci�c e�ects and ε is a random vector of residual
components. While X is the design matrix for the �xed e�ects, Z is the design matrix for the
random e�ects between subjects. In the linear mixed model, the following assumptions are made
regarding the random vectors

E[γ] = 0p,

E[ε] = 0n,

Var(γ) = B,

Var(ε) = W,

where B and W are some arbitrary covariance matrices. Furthermore γ and ε are assumed to
be uncorrelated. With these assumptions on γ and ε it holds that

E[y] = Xβ,

Var(y) = ZBZ′ + W.

A main feature of the model is that the components εi, 1 ≤ i ≤ n, of ε are not necessarily
assumed to be independent. Note that when they are, i.e. W = σ2I, and Z = 0, the mixed
model becomes the standard linear model (4.1).

26



4.1.1 Covariance structures

Important properties of (4.2) are the covariance structures of γ and ε. Letting Σ denote the
covariance matrix of some random vector α = [α1, ..., αn], the following are examples of some
common covariance structures. Throughout, σ2 represents some variance and ρ represents cor-
relation.

The simplest covariance structure is the independent covariance model, i.e.

Σ = σ2I.

This structure corresponds to the elements of α being uncorrelated.
The simplest covariance structure that takes correlation into account is known as the com-

pound symmetry model (abbreviated CS). For this model (with the matrix symmetric with
respect to the diagonal)

Σ = σ2




1 ρ ρ ... ρ

1 ρ ... ρ

1 ... ρ

... ...

1




.

Hence CS implies that the correlation will be the same for any pair of (di�erent) elements of α.
The �rst-order autoregressive, AR(1), model is slightly more sophisticated, with the covari-

ance matrix given by

Σ = σ2




1 ρ ρ2 ... ρn−1

1 ρ ... ρn−2

1 ... ρn−3

... ...

1




.

The di�erence between this model and CS is that it implies that elements of α that are close
to each other (i.e. the di�erence |i − j| of their indices is small) tend to be higher correlated
than those farther apart. When α is a vector of observations over time, this corresponds to
observations close in time being more highly correlated than those farther apart in time. There
is a continuous time version of this structure as well, corresponding to letting the covariance
structure be a continuous time AR(1) process and obtaining the covariance between observations
according to such a process.

A covariance model similar to the AR(1) model is the Toeplitz model. The covariance matrix
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for this model is

Σ = σ2




1 ρ1 ρ2 ... ρn−1

1 ρ1 ... ρn−2

1 ... ρn−3

... ...

1




.

Thus the Toeplitz model, like the AR(1), gives the same correlation for pairs of elements of α

that are an equal distance apart. However, the Toeplitz model is more complex since there is
no known function between the distance |i− j| between elements, and the correlation ρ|i−j|.

The AR(1) and Toeplitz models take into account that correlation is di�erent for pairs of ele-
ments of α separated by di�erent distances. Another property to model for is di�erent variances
for di�erent elements. Examples of models that takes this into account are the Heterogeneous
AR(1), ARH(1), and Heterogeneous Toeplitz, TOEPH. Such models have covariance matrices
in which the (i,j):th elements are σiσjρ

|i−j| and σiσjρ|i−j| respectively. Thus the number of
parameters is n + 1 for the ARH(1) model and 2n− 1 for the TOEPH model.

The most complex structure available is the unstructured covariance model (UN). Each pair
of elements has its own unique covariance, thus making the matrix

Σ =




σ2
1 σ1,2 σ1,3 ... σ1,n

σ2
2 σ2,3 ... σ2,n

σ2
3 ... σ3,n

... ...

σ2
n




.

Therefore the UN model requires the estimation of n(n+1)
2 parameters.

The covariance structures described here are some examples of the most common structures,
but there is a wide variety of others to use. In (4.2), the di�erent Σ can be used for both B and
W. However, in most cases one of B and W is assigned an independent covariance structure,
i.e. σ2I, and only one is assigned a more complex covariance structure. That is, only one of
the vectors γ and ε has correlated elements. Which of B and W that is normally assigned σ2I

di�ers in reference literature, e.g. [25] uses B = σ2I in most cases while [29] uses W = σ2I as
standard.

4.2 Application of LMM to repeated measurements data

Assume that we have longitudinal data for n subjects (e.g. patients). Let, for subject i,

yi = (yi,1,...,yi,ti)
′,
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be the ti × 1 vector of observations. Applying (4.2) to each subject gives the equations

yi = Xiβ + Ziγi + εi, i = 1,2,...,n. (4.3)

It is assumed that, with g the dimension of the γi:s,

� the γi vectors are Ng(0g,B),

� the εi vectors are Nti(0ti ,Wi),

� γ1, ..., γn, ε1,...,εn independent.

Note that while Xi, Zi and Wi are subject-speci�c matrices, B is not. The assumptions give
that y1,...,yn are independent Nti(Xiβ,Vi), where

Vi = ZiBZ′i + Wi. (4.4)

The choice of structures for B and Wi is an essential part of the LMM. For longitudinal
data the CS structure is often considered unrealistic. Structures that allow for a decrease in
correlation as the distance (in time) between pairs of observations increase, such as AR(1) and
Toeplitz, are often a better �t. Note however that both AR(1) and Toeplitz require that the
time between adjacent observations is held constant for each subject (but can change between
subjects).

For analyzing repeated measurements data using LMM methods, the MIXED procedure in
SAS is often preferred. In particular, some 20 di�erent covariance structures (including those in
Section 4.1) are included in this procedure. See [25], [32] for more on how to use SAS.
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Chapter 5

Modeling of count and perimeter data

In Chapter 3 it was concluded that the number of aggregates and perimeter data seem suit-
able for further analysis. Recalling the de�nition in Chapter 4, it is clear that the experimental
data obtained as was described in Chapter 2 is of repeated measurements type. Therefore, it is
appropriate to analyze the data using methods from linear mixed models.

As stated in Chapter 4, the LMM approach to data analysis is developed for normal data.
However, in Chapter 3 it was concluded that even when using transformations, the data generally
cannot be considered as normally distributed. We have here used the convention to apply normal-
theory methods even when the assumption of a normal distribution does not hold.

Section 5.1 contains the analysis of the number of aggregates data and Section 5.2 the
corresponding analysis for the perimeter data. Emphasis is put on �nding appropriate covariance
structures (following methods described in [25]) and drawing inference on any di�erences between
the di�erent populations. Note that Population is always considered as a categorical variable.
Section 5.3 contains some comments about the modeling and the obtained results.

5.1 Analysis of aggregate count

Recall from Chapter 3 that the number of aggregates Ni,j in each sample j decreased over time.
We will with the results presented in this section try to determine whether the patterns of
change of aggregates are di�erent for di�erent populations. Section 5.1.1 presents the modeling
and selection of covariance structures for the di�erent time periods of the data and Section 5.1.2
presents the results from regression analysis using the selected covariance structures.

5.1.1 Modeling the covariance structure

To select an appropriate covariance model the patterns of correlation between observations
at di�erent times have been examined, as well as information criteria that measure the �t of
competing covariance models. In the following sections we model the covariance structures for
di�erent time periods of the data � days 1-8, days 1-6 and days 6-8.
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Days 1-8

Patterns of correlation structure can be visualized by plotting changes in covariance and cor-
relation among residuals on the same sample (here from the same well) at di�erent times over
distance between times of observation. Figure 5.1 shows such a covariance plot. The values

Figure 5.1: The covariance (left) and correlation (right) as a function of distance in time between
pairs of observations for days 1-8.

plotted at the distance 0 are the variances among the observations for each of the eight days.
Furthermore, the pro�le �From time 1� gives the covariance between pairs of measurements
whose �rst observation occurred at Day 1. The covariance between days 1 and 2 is plotted at
the distance 1, the covariance between days 1 and 3 at the distance 2 and so forth. The �gure
indicates that when the distance between pairs of observations increase the covariance tends
to decrease. However, notice the increase in variance (i.e. the value at distance 0) among the
observations for day 6, 7 and 8. This trend of increasing variance suggest that a heterogeneous
covariance model may be the best �t to the data.

Figure 5.1 also shows the correlation of residuals on the same subject at di�erent times
over the distance between times of observation. The concept of the reference times is the same
as for the covariance plot. At a distance 0 all correlations are 1 regardless of the variance
and therefore this plot cannot be used to determine if a heterogeneous covariance model is the
best �t. However, there is a trend of decreasing correlation when the distance between pairs of
observations increases. Hence Figure 5.1 indicates that a good �t could be a covariance structure
where adjacent observations are more correlated than observations farther apart.

Table 5.1 gives the Akaike information criterion (AIC) for the four covariance structures UN,
CS, AR(1) and ARH(1); the model that minimizes the information criterion is the preferred
one. If several models seem to be equally good, the simpler one is preferred. Comparing the
complexity of the models, UN is more complex than AR(1) since the number of parameters
needed to be estimated is far more. Furthermore, since a unique variance has to be estimated
for each day in the ARH(1) model, this is obviously a more complex model than AR(1).
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Table 5.1: Akaike information criterion for four plausible covariance structures for days 1-8.

Covariance structure AIC
Unstructured model -22.9
Compound symmetric model 5.1
First-order autoregressive model -8.5
Heterogeneous �rst-order autoregressive model -27.4

The smallest AIC is obtained for the heterogeneous �rst-order autoregressive model. Hence
the suspicion about a trend among variances, seen in the covariance and correlation plots, is
con�rmed. Therefore in the following analysis, the ARH(1) model will be used to model the
covariance structure for days 1-8.

Days 1-6

Figure 5.2 shows the covariance and correlation respectively among residuals from the same
sample at di�erent times over distance between times of observations for days 1-6. The concepts
of reference times and distances are the same as in the previous section. Not surprisingly, when
the distance between pairs of observations increases the covariance and correlation tends to
decrease. However, looking at the correlation plot there does not seem to be a trend of increasing
(or decreasing) variance with time of observation, suggesting that a model with constant variance
over time would be adequate.

Figure 5.2: The covariance (left) and correlation (right) as a function of distance in time between
pairs of observations for days 1-6.

Table 5.2 gives the Akaike information criterion (AIC) for the four covariance structures UN,
CS, AR(1) and ARH(1). What was indicated from the covariance and correlation plots is also
concluded by the AIC, i.e. an autoregressive covariance model is the best �t for the data. A
heterogeneous model gives a slightly smaller AIC value than a homogeneous model, however
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Table 5.2: Akaike information criterion for four plausible covariance structures for days 1-6.

Covariance structure AIC
Unstructured model -37.7
Compound symmetric model -30.3
First-order autoregressive model -38.0
Heterogeneous �rst-order autoregressive model -39.1

this di�erence is small and therefore the complexity of the models should be considered. As
mentioned above a heterogeneous model is far more complex than a homogeneous and therefore
the covariance structure during days 1-6 will be modeled by an AR(1) model.

Days 6-8

Due to the short time period, covariance and correlation plots would provide very limited infor-
mation about trends in covariance and correlation respectively and will therefore not be shown.
However, Akaike's information criterion for di�erent covariance models can still be considered,
the result is shown in Table 5.3. The model with the smallest AIC value is CS, indicating equal

Table 5.3: Akaike information criterion for four plausible covariance structures for days 6-8.

Covariance structure AIC
Unstructured model 295.7
Compound symmetric model 290.9
First-order autoregressive model 292.7
Heterogeneous �rst-order autoregressive model 293.7

correlation between pairs of measurements regardless of the distance between them. This is the
model that will be used in future analysis. Note however that here all the covariance structures
had AIC close to each other, making any one of them a valid choice � the CS is chosen due to
its simple form.

5.1.2 Regression analysis

The main focus is to establish whether or not there are any signi�cant di�erences in the patterns
of change in number of aggregates for di�erent populations at di�erent days. The following
sections present the results from regression analysis for the di�erent time periods (days 1-8,
days 1-6 and days 6-8) using the appropriate covariance structures modeled in previous sections.
The model selection has mainly been based on AIC. The models that have been tested include
Population and Day as covariates, and will consist of di�erent combinations of Population, Dayk

and interaction terms of the type Population×Dayk, k = 1,2. As mentioned earlier the variable
Population has been considered as categorical.
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Days 1-8

Figure 5.3 shows the average of log(Ni,j), for each population. As time goes, there is obviously

1 2 3 4 5 6 7 8

2
3

4
5

6
7

8

Day

A
ve

ra
ge

 lo
g(

nu
m

be
r 

of
 a

gg
re

ga
te

s)

Population

A
B
C
D
E
F

Figure 5.3: The average of log(Ni,j) for each population (A-F) during days 1-8.

a decrease in log(Ni,j) which seems to be linear with some curvature and almost the same for
all populations. Regression indicates that the best �tted model for the �xed e�ects is

log(Ni,j) = β0 + βPopulation + β1 ×Day + β2 ×Day2, (5.1)

where βPopulation is di�erent for each population (i corresponding to the speci�ed one). Notice
that the model does not include an interaction term between Population and Day, i.e. there are
no signi�cant di�erences in the decrease of the response variable for di�erent populations. This
coincides with what can be seen in Figure 5.3: The lines corresponding to di�erent populations
appear to be, for the most part, parallel. The solution (estimates of coe�cients and their
standard errors, t-test statistics and corresponding p-values) for this particular model is given
in Table 5.4.2 Thus, e.g. for a sample from population F, the model for the �xed e�ects would
be

log(N6,j) = 6.672︸ ︷︷ ︸
Intercept

− 0.852 Day + 0.0587 Day2.

Days 1-6

Figure 5.4 shows the average of log(Ni,j) for each population i during days 1-6. As for the days
1-8, a decrease in log(Ni,j) is observed. The decrease for all populations again seem to be linear
with some curvature. This is not very surprising since we are now considering a fairly large
subset of the observations for days 1-8. The model tests reveal that the best �t for the �xed

2The paired t-test for the populations compares the means of the �xed e�ects for two populations. Population
F is taken to be the reference category. The p-value corresponding to the t-statistic indicate whether or not the
di�erence in mean between the populations is statistically signi�cant (<0.05)
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Table 5.4: Solution for �xed e�ects of the model for days 1-8; estimates of coe�cients and their
standard error, t-test statistics and p-values.

E�ect Estimate St. error t value Pr > |t|
Intercept 6.6717 0.07780 85.75 <.0001 ***
Population A 0.5292 0.8899 5.95 <.0001 ***
Population B 0.4996 0.8899 5.61 0.0001 ***
Population C 0.1141 0.8899 1.28 0.2239 NS
Population D 0.3247 0.8899 3.65 0.0033 **
Population E 0.2065 0.8899 2.32 0.0387 *
Population F 0 . . .
Day -0.8516 0.03518 -24.21 <.0001 ***
Day2 0.05873 0.004682 12.54 <.0001 ***
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Figure 5.4: The average of log(Ni,j) for each population (A-F) during days 1-6.

e�ects was
log(Ni,j) = β0 + βPopulation + β1 ×Day + β2 ×Day2. (5.2)

Note that this corresponds to the model (5.1) that was selected for days 1-8. Again, the in-
teraction term between Population and Day is left out, indicating no signi�cant di�erences in
the patterns of change in aggregates over time between di�erent populations. The Day2 term
could explain the small curvature that is observed in Figure 5.4. This is further indicated by
the positive estimate of the corresponding coe�cient, given in Table 5.5 along with the rest of
the solution for (5.2). As in the previous section, the estimates in Table 5.5 can be used to
set up models of the �xed e�ects corresponding to di�erent populations (with F the reference
population).
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Table 5.5: Solution for �xed e�ects of the model for days 1-6; estimates of coe�cients and their
standard error, paired t-test statistics and p-values.

E�ect Estimate St. error t value Pr > |t|
Intercept 6.5778 0.1054 62.41 <.0001 ***
Population A 0.6523 0.09281 7.03 <.0001 ***
Population B 0.5374 0.09281 5.79 <.0001 ***
Population C 0.1182 0.09281 1.27 0.2268 NS
Population D 0.4879 0.09281 5.26 0.0002 ***
Population E 0.1776 0.09281 1.91 0.0798 .
Population F 0 . . .
Day -0.7905 0.05584 -14.16 <.0001 ***
Day2 0.05229 0.007769 6.73 <.0001 ***

Days 6-8

Figure 5.5 shows the average number of aggregates for each population. Note that in Figures
5.3-5.4 it was the average of log(Ni,j) that was plotted, thus explaining the di�erence in the
values on the y-axis. As opposed to the time periods 1-8 and 1-6, in Figure 5.5 no common

6.0 6.5 7.0 7.5 8.0

0
20

40
60

80
10

0

Day

A
ve

ra
ge

 n
um

be
r 

of
 a

gg
re

ga
te

s

Population

A
B
C
D
E
F

Figure 5.5: The average number of aggregates for each population (A-F) during days 6-8.

trends for the populations are observed, with the exception that they all exhibit small decreases.
Instead the behavior over time is very di�erent for di�erent populations. The model yielding
the best �t of the �xed e�ects to the data was

Ni,j = β0 + βPopulation + β1 ×Day + β2 ×Day2 + (5.3)

β3 × Population×Day + β4 × Population×Day2.
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This model is very di�erent from (5.1) and (5.2), this could be due to the limited number
of observations. Noticeable is that, although included in the model, tests show that neither
Population nor the two interaction terms are signi�cant. This non-signi�cance may arise from
the small number of samples. According to the AIC the model including interaction terms
explains the data the best (of those tested). The solution for the �xed e�ects obtained by SAS
for this model is not shown here due to the large number of parameters, making an interpretation
of the solution di�cult.

5.2 Analysis of the perimeter of the aggregates

In Chapter 3, �gures showed an obvious trend of increasing (average) perimeter over time. More-
over, the rate at which the perimeter increased seemed to be di�erent for di�erent populations.
Further analysis of the perimeter data, presented in the following sections, will conclude whether
or not this di�erence in rate between populations is statistically signi�cant. In Section 5.2.1 the
appropriate covariance structures for each time period are modeled and selected and in Section
5.2.2 the results of regression analysis of the data are presented. Note that it is the average
perimeter P̄i,j of all aggregates in a sample that is considered.

5.2.1 Modeling the covariance structure

As for the aggregate count, to select a covariance model for the perimeter data patterns of
correlation between observations at di�erent times are examined. Information criteria that
measure the �t of competing covariance models have been used to quantitatively select the most
appropriate model. As in Section 5.1.1 the correlation structure is visualized by plotting changes
in covariance and correlation among residuals on the same sample (here from the same well) at
di�erent times over distance between times of observation. In the following sections we model
the covariance structures for the di�erent time periods of the data � days 1-8 and days 6-8.

Days 1-8

Figure 5.6 shows the aforementioned covariance and correlation plots for days 1-8. There seems
to be a slight decrease in covariance when the distance between pairs of observation increases.
Also, the covariance plot shows indications of unequal variances for the days of observations.
Particulary, the variance tends to increase with day. However, no obvious patterns are observed
for neither the covariance nor the correlation.

Table 5.6 gives AIC and BIC (Schwarz's bayesian information criterion) for plausible covari-
ance structures for the perimeter data. From the information criteria we can conclude that:

� There exist correlation between observations (since the simple model yields a bad �t).

� The variances for di�erent times of observation do not seem to be equal (the heterogeneous
models yield a better �t than the homogeneous models).
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Figure 5.6: The covariance (left) and correlation (right) as a function of distance in time between
pairs of observations for days 1-8.

Table 5.6: Akaike information criterion (AIC) and Schwarz's bayesian information criterion
(BIC) for plausible covariance structures for days 1-8.

Covariance structure AIC BIC
Unstructured model -72.5 -40.4
Compound symmetric model -29.6 -27.8
First-order autoregressive model -36.9 -35.1
Toeplitz model -27.2 -20.1
Heterogeneous compound symmetric model -53.0 -45.0
Heterogeneous �rst-order autoregressive model -53.4 -45.4
Heterogeneous Toeplitz model -45.1 -31.7
Variance structure (simple model) -23.0 -22.1

These conclusions are supported by what was seen in Figure 5.6. Furthermore, ARH(1) and
CSH give similar AIC and BIC values. However, there is a contradiction in whether one of these
models or the UN model yield the better �t to the data. In [20] it is shown that AIC tends to
choose more complex models than BIC. This is in agreement with what is seen in Table 5.6.
Furthermore, selecting a too simple covariance structure increases the �xed e�ects type I error
rate and selecting a model that is too complex sacri�ces power. With this in mind we have
chosen to use the heterogeneous �rst-order autoregressive covariance structure in future analysis
of the data. Note that the same number of parameters is estimated for the CSH and ARH(1)
models and they are thus equally complex.

Days 6-8

Covariance and correlation plots are omitted due to the limited number of observations. Instead
the selection of covariance structure are based solely on the AIC and BIC. Table 5.7 gives the
AIC and BIC for plausible covariance structures for days 6-8. The UN model is the model
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Table 5.7: AIC and BIC for plausible covariance structures for days 6-8.

Covariance structure AIC BIC
Variance structure (simple model) 15.5 16.4
Unstructured model -6.2 -0.8
Compound symmetric model 7.6 9.3
First-order autoregressive model 7.0 8.8
Toeplitz model 8.7 11.4
Heterogeneous compound symmetric model 5.0 8.6
Heterogeneous �rst-order autoregressive model 3.1 6.6
Heterogeneous Toeplitz model 5.1 9.5

that minimizes both the AIC and the BIC. However, the di�erence between a UN model and
an ARH(1) model is rather small. By the same arguments as for Section 5.2.1 the ARH(1)
covariance structure has been chosen for further modeling of the perimeter data.

5.2.2 Regression analysis

The following sections present the results from regression analysis of the perimeter data for the
two time periods (days 1-8 and days 6-8) using the appropriate covariance structures modeled in
the previous sections. The model selection has mainly been based on AIC. The models that have
been tested included Population and Day as covariates, and consisted of di�erent combinations
of Population, Dayk and interaction terms of the type Population×Dayk, k = 1,2.

Days 1-8

Figure 5.7 shows the average of log(P̄i,j) for each population for days 1-8. As mentioned earlier
there is an increase in the average perimeter for each population over time. This increase seems
to di�er in rate for di�erent populations. Regression indicates that the best �tted model for the
data is

log(P̄i,j) = β0 + βPopulation + β1 ×Day + β2 × Population×Day, (5.4)

where βPopulation is di�erent for each population. The interaction term included in the model
concludes that the patterns of change for di�erent populations are signi�cantly di�erent. Also,
the lack of second degree terms indicate a linear increase in the average of the logarithm of
average perimeter value. This is in agreement with what is seen in Figure 5.7. The solution
(estimates of coe�cients and their standard errors, t-test statistics and corresponding p-values)
for this particular model is given in Table 5.8. Thus e.g. for a sample from population F, the
model would be

log(P̄6,j) = 3.066︸ ︷︷ ︸
Intercept

+ 0.490 Day.
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Figure 5.7: The average of log(P̄i,j) for each population (A-F) during days 1-8.

Table 5.8: Solution for �xed e�ects of the model for days 1-8; estimates of coe�cients and their
standard error, t-test statistics and p-values.

E�ect Estimate St. error t value Pr > |t|
Intercept 5.0307 0.04256 118.19 <.0001 ***
Population A 0.03435 0.06019 0.57 0.5788 NS
Population B 0.1129 0.06019 1.88 0.0852 .
Population C -0.2323 0.06019 -3.86 0.0023 **
Population D -0.1345 0.06019 -2.24 0.0452 *
Population E -0.04130 0.06019 -0.69 0.5057 NS
Population F 0 . . .
Day 0.2095 0.01363 15.37 <.0001 ***
Population A × Day -0.06953 0.01927 -3.61 0.0005 ***
Population B × Day -0.1332 0.01927 -6.91 <.0001 ***
Population C × Day 0.03157 0.01927 1.64 0.1041 NS
Population D × Day -0.02765 0.01927 -1.43 0.1541 NS
Population E × Day -0.04694 0.01927 -2.44 0.0163 *
Population F × Day 0 . . .

Days 6-8

Figure 5.8 shows the average of the logarithm of the average perimeter, at each day, for each
population. The model yielding the best �t to the data was

log(P̄i,j) = β0 + βPopulation + β1 ×Day + β2 × Population×Day, (5.5)

i.e. the same model as for days 1-8. This is not surprising since the rate of increase in the
perimeter for all populations seems to be steady over days 1-8 (except for the dip in average
perimeter value for population F at day 6). The solution for this particular model is given in
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Figure 5.8: The average of log(P̄i,j) for each population (A-F) during days 6-8.

Table 5.9. The estimates of the interaction term coe�cients (except for Population C) indicate

Table 5.9: Solution for �xed e�ects of the model for days 6-8; estimates of coe�cients and their
standard error, t-test statistics and p-values.

E�ect Estimate St. error t value Pr > |t|
Intercept 3.0659 0.4926 6.22 <.0001 ***
Population A 2.6141 0.6967 3.75 0.0028 **
Population B 2.4248 0.6967 3.48 0.0045 **
Population C 1.6936 0.6967 2.43 0.0317 *
Population D 1.9728 0.6967 2.83 0.0151 **
Population E 1.4620 0.6967 2.10 0.0577 .
Population F 0 . . .
Day 0.4895 0.07938 6.17 <.0001 ***
Population A × Day -0.4343 0.1123 -3.87 0.0005 ***
Population B × Day -0.4636 0.1123 -4.13 0.0003 ***
Population C × Day -0.2497 0.1123 -2.22 0.0338 *
Population D × Day -0.3177 0.1123 -2.83 0.0082 **
Population E × Day -0.2621 0.1123 -2.33 0.0265 *
Population F × Day 0 . . .

that the slope of the curves, corresponding to di�erent populations, becomes steeper when the
percentage of agarose in the cellular mixture increases. That is, the average aggregate perimeter
in populations containing more agarose increases in size faster than in populations with less
agarose.
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5.3 Comments

Even though we have presented results for the time period 6-8 in both analysis, the number
of observations during this period is so small that one should use them with caution. Results
indicating non-signi�cance may arise from the small number of both samples and observations
for each sample. Moreover, especially in the analysis of the number of aggregates, the graphics
corresponding to this time period as well as the models obtained are not easily interpreted. Still,
the results for days 6-8 should not be overlooked, as this is perhaps the most interesting time
period to observe due to no outside interference. Rather, more data for a corresponding time
period would be recommended in order to have more certainty in the results.

The covariance structures chosen for days 1-8 and 1-6 in the aggregate count analysis and
days 1-8 in the perimeter analysis, see Table 5.10, coincide well with what one would expect
for a process of this kind, with high correlation between observations at adjacent time points.
It is natural that a high aggregate count at time tk would imply a high count at time tk+1 as

Table 5.10: Modeled covariance structures for the di�erent time periods.

Analysis Time period Covariance structure model
Number of aggregates 1-8 Heterogeneous AR(1)

1-6 AR(1)
6-8 Compound symmetric

Perimeter of aggregates 1-8 Heterogeneous AR(1)
6-8 Heterogeneous AR(1)

well. Moreover, the AR(1) structure suggest that this correlation decreases as the observations
become farther apart in time, something that also coincides with what one would expect � e.g.
the aggregate count at day one is not expected to have a great e�ect on the count at day six.
Note that the di�erent covariance structures have been evaluated in a purely statistical fashion.
If there are any biological or physiological reasons or motivations for di�erent structures, these
should also be taken into consideration.

In the application of linear mixed model methods to repeated measurements one assumes
that the response variable is continuous and normally distributed. In the analysis of number of
aggregates the response is a count variable, this may have an e�ect on the results. However, the
transformed data for days 1-8 and 1-6 is close to normal (ignoring the heavy tails for days 1-6),
and the normal-theory methods applied here should therefore still be appropriate. Note that
instead of the square root transformation often used for count variables, we have here used a
log transformation which gave a better �t to a normal distribution. Furthermore, for both time
periods in the perimeter data analysis the response variable P̄i,j , although transformed, did show
a lack of �t to a normal distribution. Still we used the convention of applying normal-theory
methods to the data, keeping in mind that it might e�ect the results.

The number of aggregates is not solely connected to the cells' tendency to aggregate. It
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is of course also dependent on cell division and cell death - both processes obviously altering
the number of aggregates in a sample. Furthermore, there is an uncertainty in the process
of counting the number of aggregates in a sample, e.g. it can be unclear whether nearby cells
should be regarded as distinct or part of an aggregate. Also, it may be that aggregates shapes
di�erently depending on the composition of the cellular mixture. Thus to, from the data used
here, explicitly draw any conclusions regarding the cells' tendency to aggregate in di�erent
populations, such things must also be taken into consideration.
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Part II

Stochastic modeling of tumor growth
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Chapter 6

A mathematical model for initial tumor
growth

This chapter is meant as a summary of the model and the results in [28], which is the foundation
for the work on modeling in this thesis. In the article by Sherratt and Nowak, a mathematical
model for the initial growth of a tumor is developed. It is assumed that several regulatory
chemicals have an impact on the growth rate of normal and mutant cells and mutations that
either express an oncogene or causes the loss of an anti-oncogene are considered. We here present
the model and some of the results obtained in [28].

In Section 6.1 the model that Sherrat and Nowak develop in [28] is discussed. The di�erent
types of mutations and how they are included in the model are explained and the partial dif-
ferential equations that constitute the model are motivated . Some of the results obtained with
the model are then presented in Section 6.2. Note that these correspond to the results in [28],
thus ensuring that a successful scheme for obtaining numerical solutions has been implemented.
For the interested reader, [28] contains additional results that are not mentioned here and the
biology behind di�erent parts of the model is discussed in a bit more detail. Also, [28] contains
an extended list of references for further reading on related topics.

6.1 Model for initial tumor growth

The model developed by Sherratt and Nowak takes into account that several growth regulating
chemicals will have an e�ect on the division of both normal and mutant cells. With an e�ect of
crowding included, the division rate per normal cell is modeled as

R0r(n)s1(c1)...sj(cj). (6.1)

Here n = n(x,t) is the normal cell density at space and time coordinates x and t respectively
and r(n) is a function re�ecting the crowding e�ect. Furthermore, si is a function representing
the e�ect on cell division by the chemical concentration ci = ci(x,t), 1 ≤ i ≤ j (assuming
j regulatory chemicals), and R0 is the growth rate of normal cells in normal tissue when cell
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density and chemical concentrations are in an equilibrium. For (6.1) to have a valid physical
interpretation

� r(n) should be a decreasing function; an increased cell density should decrease the division
rate.

� for 1 ≤ i ≤ j, si(·) should be an increasing or decreasing function depending on whether
ci is a mitotic activator or mitotic inhibitor respectively.

As in [28], the equilibrium state present in normal tissue is denoted by

n = ne, ci = ce
i , 1 ≤ i ≤ j,

and it is assumed that in the equilibrium state the division rate per cell is equal to R0, i.e.

r(ne) = si(ce
i ) = 1, 1 ≤ i ≤ j.

The model includes the following �ve types of mutations (referenced to by the corresponding
roman numerals):

� Increased response to a mitotic activator (I).

� Decreased response to a mitotic inhibitor (II).

� Increased production of a mitotic activator (III).

� Decreased production of a mitotic inhibitor (IV).

� Escape from biochemical dependence (V).

Mutations of types I and II can be thought of as having the e�ect that mutant cells detect a
concentration of ξ times the real concentration of the corresponding chemical. Depending on
whether the mutation is of type I or II, ξ will be either > 1 or < 1. Mutations of types III and IV
have in [28] been taken to only a�ect the conservation equations of the chemical concentrations.
Mutations of type V are modeled by adding a constant term s0 to the �chemical� part of the
division rate per cell, i.e. the product s1(c1)...sj(cj).

Denote the mutant cell density by m(x, t). When considering a population mixed of both
normal and mutant cells, the function r(·) for crowding e�ects will depend on the sum n(x, t) +

m(x,t). Therefore, using that the cells are subject to a �rst order death rate R0, the conservation
equations for normal and mutant cells become

∂n

∂t
= D∇2n + R0nr(n + m)s1(c1)...sj(cj)−R0n, (6.2)

∂m

∂t
= D∇2m + R0mr(n + m)[s0 + s1(ξc1)...sj(cj)]− (R0 + δ)m.

The �rst term of the RHS of these equations corresponds to cell migration (i.e. cell migration
is assumed to follow a linear di�usion). The second term corresponds to the already introduced
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biochemically regulated cell division and the third term is the above mentioned cell death. It is
assumed that the e�ect of an immune response can be modeled by a �rst order representation,
δ being the rate at which the immune response kills mutant cells. The immune response is then
included by the −δm term on the RHS of the conservation equation for m(x,t). Moreover, note
that it is also assumed that any mutations with respect to the response of a regulatory chemical
(types I and II) occur with respect to chemical 1.

The regulatory chemicals can act in an either autocrine or paracrine way, or in a mix of the
two. Simply put, this corresponds to the chemical being created by the cells themselves or by
other cells respectively. For the general case, i.e. when chemical i acts in both an autocrine and
paracrine way, suppose that the chemical is produced at a constant rate Pi (thus independent
of cell density) and at a rate pi(n + m) per cell. Then, if the chemical decay is taken to be a
�rst order process (rate di), the chemical conservation equations become

∂ci

∂t
= Di∇2ci + (n + m)pi(n + m) + Pi − dici. (6.3)

The �rst term corresponds to chemical di�usion (with Di > 0 the chemical di�usion coe�cient),
the second term is the chemical production caused by cells, the third term the constant chemical
production and the last term the chemical decay. If chemical i is produced in a purely autocrine
way, then Pi = 0 since only the cell density is relevant. If it is instead produced in a purely
paracrine way, the production is completely independent of cell density and pi ≡ 0.

As previously mentioned, mutations of types III and IV have an e�ect on the conservation
equation (Equation (6.3)). Such mutations are in [28] modeled by adding a term Hmpi(n + m)

to the RHS of the equation. For a mutation of type III (i.e. an increased production of a mitotic
activator), H > 0. Note that in the purely autocrine or paracrine case, this term is interpreted
as the increased production of an autocrine factor and the triggering of the autoproduction of
a chemical normally produced only by other cell types respectively. For a mutation of type IV,
−1 < H < 0. Such a mutation is only relevant for chemicals that act in an autocrine way since
it is not possible for the cells to produce less of a paracrine chemical.

Equations (6.2) and (6.3) constitute the model for initial tumor growth. The space dimension
is taken to be one and the initial and boundary conditions are taken as follows, with 2L denoting
a typical cell length,

n(x,0) =

{
0 |x| < L

ne |x| > L
, m(x,0) =

{
ne |x| < L

0 |x| > L
, ci(x,0) ≡ ce

i , 1 ≤ i ≤ j,

(6.4)

n = ne, m = 0, ci = ce
i at x = ±∞, 1 ≤ i ≤ j.

The initial conditions correspond to a single cell mutation at the origin, whereas the boundary
conditions correspond to no disturbances far from the site of mutation, i.e. the equilibrium state.
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Taking the spatial domain to be in�nite is appropriate due to the fact that the tissue will be
much larger than any tumor that is considered with this model.

The conservation equations and their initial and boundary conditions are made dimensionless
using di�erent re-scalings (see [28] for the di�erent scalings), resulting in the system

∂n

∂t
= D

∂2n

∂x2
+ nr(n + m)s1(c1)...sj(cj)− n,

∂m

∂t
= D

∂2m

∂x2
+ nr(n + m) [s0 + s1(ξc1)s2(c2)...sj(cj)]− (1 + δ)m, (6.5)

∂c1

∂t
= D1

∂2c1

∂x2
+ P1 + (n + m(H + 1)) p1(n + m)− c1(P1 + p1(1)),

∂ci

∂t
= Di

∂2ci

∂x2
+ Pi + (n + m) pi(n + m)− ci(Pi + pi(1)), 2 ≤ i ≤ j,

subject to the constraints

n(x,0) =

{
0 |x| < 1

1 |x| > 1
, m(x,0) =

{
1 |x| < 1

0 |x| > 1
, ci(x,0) ≡ 1, 1 ≤ i ≤ j,

(6.6)

n = 1, m = 0, ci = 1 at x = ±∞, 1 ≤ i ≤ j.

Note that although all the parameters have been re-scaled, the same notation as before is used
in the system above (and henceforth). The following are used for the functions r(·), si(·) and
pi(·) :

r(n) =
N − n

N − 1
,

si(ci) =





αi + ci(1− αi), αi ∈ (0,1) chem. i a mitotic activator,

ki

1 + ci(ki − 1)
, ki ∈ (1,∞) chem. i a mitotic inhibitor,

pi(n) =





hi(1 + βi)

1 + βin2
, hi, βi ∈ (0,∞) chem. i a mitotic activator,

hi(1 + βin)

1 + βi
, hi, βi ∈ (0,∞) chem. i a mitotic inhibitor.

Thus N becomes an upper bound for the cell densities. These speci�c functions were used in [28]
due to earlier work by Sherratt and Nowak. The important conditions are that they satisfy the
constraint r(1) = si(1) = 1 and that they behave in a way that is consistent with the properties
of the corresponding chemicals. Other functions satisfying these conditions could be used as
well.
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6.2 Results for deterministic initial tumor growth

The following are reproductions of some of the results presented in [28]. As indicated above, the
results shown are closely connected to the work in upcoming chapters.

First, the immune response is assumed to have no e�ect on the initial tumor growth (i.e.
δ = 0). It is in [28] concluded that mutations of types I, II and V give similar solutions to the
system 6.5. Moreover, mutations of types III and IV give solutions of the same form, however
very di�erent from the other three mutations. Figures 6.1 and 6.2 show the change in normal and
mutant cell densities in the case of mutation that combines type I and type V and a mutation
of type III respectively. Here an equilibrium density ne = 1

2 has been used when obtaining a cell
count from the cell densities3. Note the large di�erence in time scale for the two cases.
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Figure 6.1: The initial growth of a tumor after a mutation that combines types I and V.
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Figure 6.2: The initial growth of a tumor after a mutation of type III.

Mutations of types I, II and V give rise to an advancing wave of mutant cells and a receding
wave of normal cells. For mutations of types III and IV, somewhat higher values of both
n(x,t) and m(x,t) are observed near the origin followed by a gradual outspread of both cell
types. Thus there are signi�cant di�erences in initial tumor growth for di�erent categories of

3This gives results similar to those in [28], thus enabling comparisons.
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mutations. Figure 6.3 further illustrates this by showing how mutations of types I, II and V
cause the normal cells to be replaced by mutant cells whereas for mutations III and IV both cell
types increase slowly over time. Again, the large di�erence in observation time for the two cases
should be pointed out.
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Figure 6.3: The change in normal, mutant and total number of cells for mutations of types I,
II, V (left) and III, IV (right).

Now assume that the immune response has an e�ect on the mutant cells, i.e. δ > 0. Figures
6.4-6.5 illustrate the solutions of (6.5) for mutations of types I, II and V. The di�erence between
Figures 6.4 and 6.5 is the value of δ.
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Figure 6.4: Normal and mutant cell densities respectively in the case of a combined mutation
(types I and V). Parameter values used were ξ = 2, s0 = 2 and δ = 2.8. The non-dimensional
time step was tstep = 7.5, with other parameters as before.

In Figure 6.4 an advancing wave of mutant cells (similar to what was seen for mutations of
types I, II and V when no immune response was taken into consideration) is observed, suggesting
that the immune response cannot suppress tumor growth. However in Figure 6.5 no such wave
is observed for mutant cells. Instead, the mutant cell density decreases rapidly to zero and the
normal cell density approaches one, thus �lling in the �gap�. The main result in [28] regarding
the immune response is that for this model there exist a critical value δcrit above which the
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Figure 6.5: Normal and mutant cell densities respectively in the case of a combined mutation
(types I and V). Parameter values used were ξ = 2, s0 = 2 and δ = 3.0. The non-dimensional
time step was tstep = 7.5, with other parameters as before.

immune response is �strong enough� to suppress tumor growth. The expression for this value is
(see the appendix of [28] for a derivation)

δcrit = s1(ξ) + s0 − 1. (6.7)

The existence of a critical value is clearly hinted when comparing Figures 6.4 and 6.5, although
δ is only changed a small amount the solutions look very di�erent. In biological terms, (6.7)
indicates that in order for the immune response to be able to suppress tumor growth it has
to have a rate that is greater than the di�erence between the proliferation rate of mutant and
normal cells. For the mutation used in Figures 6.4-6.5 the critical value is δcrit = 2.9.

6.3 Comments

The speci�c parameter values (hi, βi etc.), along with motivations for them, used to obtain the
results here can be found in the article by Sherratt and Nowak. In order to obtain comparable
results we will for the rest of this thesis continue to use these parameter values, should nothing
else be stated.

In upcoming chapters, it will be mutations of types I and V that are of special interest due
to the advancing wave of mutant cells that result from them. The time frame t ∈ [0,30] was here
used to study the mutations impact on cell densities. Henceforth, whenever a time interval [0,T ]

is observed and nothing else is explicitly stated, T = 30 will be used for numerical computations.
Moreover, the time step used will be tstep = 3 unless otherwise stated.
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Chapter 7

Stochastic behavior in the model for
tumor growth

In (6.5), i.e. the governing equations in the model for cell growth developed by Sherratt and
Nowak, all parameters are regarded as to be of a deterministic nature. In particular, the param-
eters describing di�erent mutations are all taken to be �xed constants. In this chapter di�erent
types of random behavior are introduced in the system, one being small random perturbations
with respect to mutation parameters. Furthermore, more signi�cant parameter randomness is
considered in the sense that random variables (or rather random processes) are used to assign
mutation parameters their values.

Recall mutations I-V in Chapter 6. The investigations in this chapter are restricted to
mutations with respect to the response of a mitotic activator (I) and biochemical escape (V)
respectively, due to their tendency to give rise to advancing waves of mutant cells as shown in
[28] and illustrated in Figure 6.1. In Section 7.1 mutations of types I and V are studied with
small stochastic perturbations in the characterizing parameter. In Section 7.2 the same types of
mutations are studied when ξ and s0 are random processes rather than �xed constants. The case
when ξ is allowed to take on values on both sides of one is particularly studied. This corresponds
to the mutant cells alternating between having an advantage and disadvantage respectively for
proliferation compared to normal cells.

Throughout the chapter the immune response is discarded from the model (i.e. δ = 0) in
order to not have its impact on the tumor growth interfere with the impact of the random
behavior of the mutation parameters.

7.1 Random perturbations

In this section the characterizing parameters of mutations are considered constant and the ran-
domness in the system is due to small random perturbations, the perturbations taken with
respect to the mutation parameters. Throughout the section all mutation parameters are con-
sidered as system parameters, i.e. one parameter is used for all mutant cells. If K represents the
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parameter for a speci�c mutation, consider

K + εψ(t),

where K is a constant, ε > 0 a small number and ψ(t) a random process of some sort. The
smallness of the perturbation thus comes from ε rather than the actual process ψ(t). A common
case is to consider ψ(t) a stationary Gaussian process [18]. Here, we consider ψ(t) to be de�ned
in terms of a discrete time Gaussian process in the following sense: Letting Zt, t ∈ T ⊆ N, be
such that Zt

D= N(0, σ2) for every discrete time point t and ∆t be the (desired) time between
changes in ψ(t), de�ne

ψ(t) ,
bt/∆tc∑

i=0

ZiI (t ∈ [i∆t, (i + 1)∆t)) , (7.1)

where bt/∆tc , supn∈N n ≤ t/∆t. We here let the Zi:s be iid. variables with some variance σ2.
Note that the stationarity of Zt is lost for ψ(t).

De�ne nε, mε and cε
i as the quantities of the system (6.5) but with a perturbation applied.

Applying the above to the mutation parameter ξ changes the conservation equation for mutant
cells to

∂mε

∂t
= D

∂2mε

∂x2
+ nεr(nε + mε) [s1((ξ + εψ(t))c1)s2(c2)...sj(cj)]−mε(δ + 1). (7.2)

When instead small perturbations are considered with respect to s0 the conservation equation
for mutant cells becomes

∂mε

∂t
= D

∂2mε

∂x2
+ nεr(nε + mε) [s0 + εψ(t) + s1(c1)s2(c2)...sj(cj)]−mε(δ + 1). (7.3)

Furthermore, let Xε(t) denote the number of normal cells in the perturbed system at time t,
Y ε(t) the corresponding number of mutant cells and x(t), y(t) the number of normal and mutant
cells respectively in the deterministic system at time t. When instead the number of cells at a
time T is of interest, Xε,T

k and Y ε,T
k are used to denote the number of normal and mutant cells

respectively for each realization, k indicating which realization that is considered.
Realizations of {Xε(t)}t∈[0,T ] and {Y ε(t)}t∈[0,T ] for a perturbation with respect to s0 (ε = 0.1

and σ2 = 2) are shown in Figure 7.1. Figure 7.2 shows a closer look of Y ε(t). It is clearly seen
how Y ε(t) �uctuates around (the deterministic) y(t), illustrating the e�ect a perturbation (with
respect to s0) has on the solution of the governing equations (6.5).

Consider a perturbation in the response to a mitotic activator. Figure 7.3 shows the variances
of {Xε,T

i }40
i=1 and {Y ε,T

i }40
i=1 respectively for di�erent ε and σ2. Clearly, perturbations of the sizes

here considered have little e�ect on the governing equations in terms of variability. Furthermore,
the average numbers of normal and mutant cells were almost constant (di�erences of magnitude
0.01) for a particular ξ and di�erent ε and σ2. Figure 7.4 shows variances of {Xε,T

i }40
i=1 and

{Y ε,T
i }40

i=1 when a perturbation with respect to s0 is assumed. As opposed to a perturbation
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Figure 7.1: Realizations of {Xε(t)}t∈[0,T ] and {Y ε(t)}t∈[0,T ] for a perturbation (ε = 0.1 and
σ2 = 2) with respect to s0. Also included is y(t) for the case when s0 = 1, i.e. the value
coincides with the expected value of s0 + εψ(t).
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Figure 7.2: A closer look at {Y ε(t)}t∈[0,T ] and y(t) from Figure 7.1.
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Figure 7.3: Variance in number of normal and mutant cells respectively at time T for di�erent
ξ and ε, with respect to σ2.
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Figure 7.4: Variance in number of normal and mutant cells respectively at time T for di�erent
s0 and ε, with respect to σ2.

with respect to ξ, changes in ε and σ2 now have relatively large e�ects on the variance in number
of mutant cells at time T . The observed variance in number of normal cells is still negligible.
Moreover, the average number of cells (normal as well as mutant) was close to constant for �xed
s0 with di�erent values for ε and σ2.

7.2 Random mutation parameters

The parameters characterizing mutations of types I and V are now subject to more signi�cant
parameter randomness than just small random perturbations. As for the case of perturbations,
mutation parameters are considered as system parameters. Mutation parameter randomness is
considered for time, rather than spatial coordinates. Suppose t ∈ [0,T ] for some T < ∞. In
order for the physical interpretation of the mutations to be valid it must hold that

ξ(t), s0(t) ≥ 0, ∀t ∈ [0,T ].

For a mutation of type V, any such s0(t) will give an oncogenic mutation. However, for mutations
of type I it is only when ξ(t) > 1 that mutant cells have a proliferation advantage compared to
normal cells. ξ(t) < 1 instead gives the normal cells a proliferation advantage. If a decreased
response to a mitotic inhibitor (mutation type II) is considered, it is values in [0,1) that give a
proliferation advantage for mutant cells.

Consider the random process {φ(t)}t∈[0,T ] de�ned as

φ(t) =

{
φ0 + Zi if t ∈ [ti,ti+1),

φ0 + Zn−1 if t = T ,
(7.4)

where 0 ≤ i ≤ n − 1 and the ti:s are the times of change in φ(t), t0 = 0, tn = T . The times
t1, ..., tn−1 may be �xed or random, with 0 = t0 < t1 < t2 < ... < tn = T . The Zi:s are some
random variables in R and Z is used throughout the section to denote a generic random variable
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of the same (in each case speci�ed) type. {φ(t)}t∈[0,T ] can be written as

φ(t) =

{
φ0 +

∑n−1
i=0 ZiI (t ∈ [ti, ti+1)) if t ∈ [0,T ),

φ0 + Zn−1 if t = T .
(7.5)

Thus {φ(t)}t∈[0,T ] looks similar to a continuous-time jump process, with the di�erences that
the jump at a time tk is taken from φ0 rather than the current value of φ(t−k ) and φ(0) is not
necessarily 0. This type of process is used to model random parameters for mutations of types
I and V respectively.

The distributions here used for the Zi:s in (7.5) are exponential and uniform and the Zi:s
will be considered as iid. Both �xed and random times of change are used. The �xed times
are taken so that |ti − tj | = ∆t for any i,j such that |i − j| = 1, i.e. adjacent time points
are a constant distance ∆t apart. The case of random times is considered for exponentially
distributed interarrival times, i.e. (ti+1 − ti)

D= Exp (λ) for some λt > 0. Figure 7.5 shows four
realizations of {φ(t)}t∈[0,T ] when Z

D= Exp (λ) and Z
D= Uni ([a,b]), two for �xed times and two

for random times with λt = 1. Throughout the section Z
D= Exp (λφ) is referred to as the
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Figure 7.5: Realizations of {φ(t)}t∈[0,10], φ0 = 0, when Z
D= Exp (λ) (left column) and

Z
D= Uni ([a,b]) (right column). The top row shows realizations for �xed times, ∆t = 0.5, and

the bottom row for random times, λt = 1.
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exponential case with λφ and Z
D= Uni ([a,b]) is referred to as the uniform case with Iφ

a,b, where
φ is used to identify the relevant mutation parameter. When a realization of φ(t) is used for a
mutation parameter, X(i)(t) and Y (i)(t) are used to denote the number of normal and mutant
cells respectively at time t, i ∈ {1,2} with 1 referring to the exponential case and 2 to the
uniform case. When instead the number of cells at a time T is of interest, X

(i),T
k and Y

(i),T
k

are used to denote the number of normal and mutant cells respectively for each realization, i

again denoting the type of distribution that has been used for the Zj :s and k indicates which
realization that is considered. Thus {X(i),T

k }l
k=1 and {Y (i),T

k }l
k=1 are random sequences (l the

number of realizations in a particular case). Similarly, in the case of one realization on [0,T ],
{X(i)(t)}t∈[0,T ] and {Y (i)(t)}t∈[0,T ] are random processes describing the number of normal and
mutant cells respectively. Note that how the sequences are produced (i.e. which distribution
parameters have been used and what types of times of change) is not indicated in the notations.

7.2.1 Increased response to a mitotic activator

Consider a mutation of type I, i.e. an increased response to a mitotic activator. Use (7.5) for
ξ = ξ(t):

ξ(t) =

{
ξ0 +

∑n−1
i=0 XiI (t ∈ [ti, ti+1)) if t ∈ [0,T ),

ξ0 + Xn−1 if t = T ,
(7.6)

with everything as previously de�ned. First, consider �xed times of change. Table 7.1 shows
the di�erent values of λξ, ξ0 and Table 7.2 shows the values of a,b used in simulations for the
exponential and uniform cases respectively; ξ0 = 0 for the latter. Note that ξ(t) is always ≥ ξ0

Table 7.1: Combinations of λξ and ξ0 used for simulations of the exponential case together with
the corresponding E[ξ(t)] and Var(ξ(t)). Note that some cases satisfy the E[ξ(t)] = 1 �normal�
condition.

λξ ξ0 E[ξ(t)] Var(ξ(t))
2 1/2 1 1/4
4/3 1/4 1 9/16
8/7 1/8 1 49/64
1 0 1 1
1/2 0 2 4
1/3 0 3 9
1/4 0 4 16

but allowed to take values on both sides of one due to the properties of the exponential and
uniform distributions. Moreover, some cases satisfy the E[ξ(t)] = 1 �normal condition�, i.e. the
system looks normal (referring to the case ξ(t) = ξ = 1) on average.

Figure 7.6 shows the mean number of normal and mutant cells for the di�erent λξ in Table
7.1 and Figure 7.7 shows the corresponding variances. Figures 7.8-7.9 are the corresponding
plots for the uniform cases with Iξ

a,b as in Table 7.2. For both the exponential and uniform
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Table 7.2: Iξ
a,b used for simulations of the uniform case together with corresponding E[ξ(t)] and

Var(ξ(t)). Note that some cases satisfy the E[ξ(t)] = 1 �normal� condition.

Iξ
a,b E[ξ(t)] Var(ξ(t))

[0.75,1.25] 1 1/48
[0.5,1.5] 1 1/12
[0.25,1.75] 1 3/16
[0,2] 1 1/3
[0,3] 1.5 3/4
[0,4] 2 4/3
[0,6] 3 3
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Figure 7.6: Average number of normal and mutant cells with respect to Var(ξ(t)) for the expo-
nential case with λξ as in Table 7.1.
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Figure 7.7: Variance in number of normal and mutant cells respectively with respect to Var(ξ(t))
for the exponential case with λξ as in Table 7.1.
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Figure 7.8: Average number of normal and mutant cells with respect to Var(ξ(t)) for the uniform
case with Iξ

a,b as in Table 7.2.
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Figure 7.9: Variance in number of normal and mutant cells with respect to Var(ξ(t)) for the
uniform case with Iξ

a,b as in Table 7.2.

case, it is clearly seen that when E[ξ(t)] = 1 there are only small di�erences between the di�erent
X̂(i),T and Ŷ (i),T (the means of the random sequences arising from numerical solutions of (6.5)).
However, as the expected value and Var(ξ(t)) increase, there is a rapid change in the observed
average and variance for both normal and mutant cells.

Using stepwise regression analysis for the simulated data, models (7.7) are obtained for the
number of normal (α(i)(T )) and mutant (β(i)(T )) cells at T when Z

D= Exp (λξ) (i = 1) and
Z
D= Uni ([a,b]) (i = 2). The explanatory variables were taken to be E[ξ(t)] and Var(ξ(t)).

α(1)(T ) = 44.53− 5.28 E[ξ(t)]) + 0.2891 E[ξ(t)]2,

β(1)(T ) = −6.25 + 6.67 E[ξ(t)], (7.7)

α(2)(T ) = 45.15− 6.42 E[ξ(t)] + 0.54 E[ξ(t)]2,

β(2)(T ) = −6.57 + 7.37 E[ξ(t)].
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Furthermore, models (7.8) were obtained when the type of distribution also was used as an
explanatory variable.

α(T ) = 44.92− 5.69 E[ξ(t)]− 0.43 Dist + 0.37 E[ξ(t)]2, (7.8)

β(T ) = −4.66 + 4.81 E[ξ(t)]− 0.71 Dist + 1.03 E[ξ(t)]×Dist + 0.39 E[ξ(t)]2.

Here Dist is de�ned as

Dist =

{
0 if Z

D= Exp(λξ) ,

1 if Z
D= Uni([a,b]) .

Var(ξ(t)) is not included in any model whereas E[ξ(t)] is included in all, suggesting that it is
the expected value of the parameter that has the most impact on the outcome. Moreover, the
inclusion of the categorical variable corresponding to the type of distribution (Dist) is consistent
with the very di�erent characteristics of the exponential and uniform probability distributions.
The R2 values for the models are given in Table 7.3, being consistently higher for models for the
number of normal cells. This may be explained by the randomness being explicitly introduced

Table 7.3: R2 values for the models in equations (7.7) and (7.8). The last two entries correspond
to models in which Dist was used as an explanatory variable.

Cell type Distribution R2

Normal Exp(λ) 0.859
Mutant Exp(λ) 0.665
Normal Uni([a,b]) 0.897
Mutant Uni([a,b]) 0.760
Normal - 0.872
Mutant - 0.698

in the conservation equation for mutant cells. The randomness should lower the possibility to
explain the outcome with a deterministic model, hence lowering the R2 values.

A realization of {Y (1),T
k }40

k=1, λξ = 1
2 and ξ0 = 0, is shown in Figure 7.10. An interest is here

put on the empirical cumulative distribution functions (CDF's) of {X(i),T
k }40

k=1 and {Y (i),T
k }40

k=1.
The cases in Tables 7.1-7.2 give rise to empirical CDF's and the Kolmogorov distance can be
used to test how well theoretical CDF's �t them.

De�nition 7.2.1 The Kolmogorov distance between an empirical cumulative distribution func-
tion Femp and a theoretical cumulative distribution function F is

dK = max
x∈R

|Femp(x)− F (x)|.

Figure 7.11 shows the empirical CDF for the {Y (1),T
k }40

k=1 in Figure 7.10. Table 7.4 shows the
result of comparisons between the �t of di�erent theoretical CDF's to the empirical CDF's of
the di�erent {X(i),T

k }40
k=1 and {Y (i),T

k }40
k=1 using the Kolomogorov distance dK as test statistic.
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Figure 7.10: A realization of the random sequence {Y (1),T
k }40

k=1 for λξ = 1
2 and ξ0 = 0.
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Figure 7.11: Empirical CDF for {Y (1),T
k }40

k=1, λξ = 1
2 and ξ0 = 0.

Note that for the exponential case with λξ = 1
2 the Weibull distribution was also a (relatively)

good �t. Hence the Weibull distribution was a good �t for the distribution of mutant cells in
each exponential case. Moreover, for normal cells several cases had relatively large values of dK

for all tested distributions.
Now let the ti:s in (7.6) (except for t0 = 0 and tn = T ) be random according to an �ex-

ponential clock�, i.e. (ti+1 − ti)
D= Exp(λt). Figures 7.12-7.13 show the mean of {X(1),T

k }40
k=1,

{Y (1),T
k }40

k=1 for three λξ and λt = 0.5, 1, 2. It is observed that, with the exception of λξ = 1,
a decrease in λt (hence an increase in variance of interarrival times) causes a decrease and an
increase in the average number of normal and mutant cells respectively. Paired t-tests are used
to test the hypothesis that the true mean for normal and mutant cells respectively (for some λξ)
are equal for di�erent λt, i.e. the tests are used to conclude whether or not the di�erent expected
interarrival times (λ−1

t ) have any signi�cant e�ects on the number of normal and mutant cells.
Table 7.5 shows the resulting p-values. For λξ = 1 di�erent values of λt does not give rise to
any signi�cant di�erences in the average number of cells. However, for λξ = 0.25, 0.5 there are
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Table 7.4: Theoretical CDF's which �t the di�erent ξ(t)'s the best according to the Kolmogorov
distance.

Distribution of X ξ0 Distribution with lowest dK

Normal Mutant
Exp(2) 1/2 Weibull Weibull
Exp(4/3) 1/4 Weibull Weibull
Exp(8/7) 1/8 Weibull Weibull
Exp(1) 0 Weibull Weibull
Exp(1/2) 0 Log-normal Normal
Exp(1/3) 0 Normal Weibull
Exp(1/4) 0 Normal Weibull
Uni([0.75,1.25]) 0 Weibull Log-normal
Uni([0.5,1.5]) 0 Weibull Weibull
Uni([0.25,1.75]) 0 Weibull Normal
Uni([0,2]) 0 Weibull Weibull
Uni([0,3]) 0 Log-normal Normal
Uni([0,4]) 0 Log-normal Weibull
Uni([0,6]) 0 Log-normal Normal
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Figure 7.12: Mean of a realization {X(1),T
k }40

k=1 for three di�erent λξ when random times for ξ(t)
are considered.

Table 7.5: p-values from paired t-tests with the hypothesis that for di�erent λt the average
number of normal and mutant cells respectively are equal.

λξ = 0.25 λξ = 0.5 λξ = 1
Normal Mutant Normal Mutant Normal Mutant

λt = 0.5 vs. λt = 1 <0.0001 0.0139 0.00867 0.0340 0.775 0.485
λt = 0.5 vs. λt = 2 <0.0001 <0.0001 0.000274 0.00309 0.994 0.680
λt = 1 vs. λt = 2 <0.0001 0.00187 0.0517 0.170 0.753 0.177
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Figure 7.13: Mean of a realization {Y (1),T
k }40

k=1 for three di�erent λξ when random times for ξ(t)
are considered.

signi�cant di�erences in the average number of cells for almost every choice of λt.
To investigate any di�erence in number of cells at time T between �xed and random times,

realizations of {X(1),T
k }40

k=1 and {Y (1),T
k }40

k=1 for the two cases with λ−1
t = ∆t are used. Figure

7.14 shows an example of a scatter plot of the residuals of two realizations of {X(1),T
k }40

k=1, one
with �xed times of change and one with random, λξ = 1. Figure 7.15 shows the corresponding
scatter plot for mutant cells. The �gures show relatively small di�erences, indicated by the
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Figure 7.14: Residuals from comparison of �xed and random times for realizations of {X(1),T
k }40

k=1

when λt = ∆t = 1 and λξ = 1.

mean of the residuals. The residuals seem to be evenly distributed around the mean (with one
possible outlier) and according to a Lilliefors test they are normally distributed for the case of
normal cells. Table 7.6 gives the p-values obtained from paired t-tests regarding equal mean for
realizations with �xed and random times respectively. The p-values are all signi�cant, hence the
hypothesis that realizations from �xed and random times have equal means is rejected.

Mutations considered up to this point have not been purely oncogenic, i.e. mutant cells have
not necessarily had a proliferation advantage compared to normal cells at all times t. Therefore,
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Figure 7.15: Residuals from comparison of �xed and random times for realizations of {Y (1),T
k }40

k=1

when λt = ∆t = 1 and λξ = 1.

Table 7.6: p-values from paired t-tests of equal mean for realizations with �xed and random
times respectively.

Normal Mutant
λξ = 0.25 <0.0001 <0.0001
λξ = 0.5 <0.0001 <0.0001
λξ = 1 0.0021 0.0047

the case with �xed times and ξ0 = 1 is now considered, making all values of ξ(t) give the mutant
cells a proliferation advantage. Figure 7.16 shows the mean number of normal and mutant
cells for realizations of the purely oncogenic case with di�erent λξ and Figure 7.17 shows the
corresponding variances. Clearly, the average number of mutant cells is increased compared
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Figure 7.16: Average number of normal and mutant cells respectively with respect to Var(ξ(t)),
for purely oncogenic mutations with ξ0 = 1.

to the case where ξ(t) can take values on both sides of one. The variance in number of mutant
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Figure 7.17: Variance in number of normal and mutant cells respectively with respect to
Var(ξ(t)), for purely oncogenic mutations with ξ0 = 1.

cells is also increased for the purely oncogenic case. However the number of normal cells is less
a�ected, being similar to the previous case.

7.2.2 Escape from chemical control

Applying (7.5) to the parameter for a type V mutation yields

s0(t) =

{ ∑n−1
i=0 ZiI (t ∈ [ti, ti+1)) if t ∈ [0,T ),

Zn−1 if t = T ,
(7.9)

with everything as previously de�ned. No deterministic component is included due to the mu-
tation giving mutant cells a proliferation advantage at time t if s0(t) > 0, which is guaranteed
by the Zi:s for exponential and uniform distributions.

Figure 7.18 shows the average number of normal and mutant cells for the di�erent λs0 in
Table 7.7 and Figure 7.19 shows the corresponding averages for the uniform cases in Table 7.8.

In both cases the average number of mutant cells increases quite rapidly as Var(s0(t)) is

Table 7.7: Combinations of λs0 used for simulations of the exponential case together with the
corresponding E[s0(t)] and Var(s0(t)).

λs0 E[s0(t)] Var(s0(t))
4 1/4 1/16
2 1/2 1/4
1 1 1
3/4 4/3 16/9
2/3 3/2 9/4

increased, whereas the average number of normal cells exhibits a slow decrease of less than ten
cells. For the exponential case, the variance in number of normal and mutant cells respectively
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Table 7.8: Is0
a,b used for simulations of the uniform case together with corresponding E[s0(t)] and

Var(s0(t)).

Iξ
a,b E[s0(t)] Var(s0(t))

[0,0.5] 0.25 1/48
[0,1] 0.5 1/12
[0,1.5] 0.75 3/16
[0,2] 1 1/3
[0,2.5] 1.25 25/48
[0,3] 1.5 3/4
[0,4] 2 4/3
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Figure 7.18: Average number of normal and mutant cells respectively with respect to Var(s0(t)),
for the exponential case with λξ as in Table 7.7.
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Figure 7.19: Average number of normal and mutant cells respectively with respect to Var(s0(t)),
for the uniform case with Is0

a,b as in Table 7.8.

were in the (approximate) ranges 0− 2 and 0− 500. The corresponding ranges for the uniform
cases were 0− 0.7 and 0− 500.

As for mutations with respect to the response of a mitotic activator, stepwise regression
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analysis is used to obtain models for the number of normal and mutant cells respectively at time
T . With E[s0(t)] and Var(s0(t)) as explanatory variables, the following models were obtained
(with notations as in the case of a type I mutation)

α(1)(T ) = 39.79− 11.89 E[s0(t)] + 6.60 Var(s0(t))− 1.07 Var(s0(t))2,

β(1)(T ) = −0.99 + 16.60 E[s0(t)] + 2.83 Var(s0(t))2, (7.10)

α(2)(T ) = 38.88− 7.52 E[s0(t)] + 5.97 Var(s0(t))− 1.31 Var(s0(t))2,

β(2)(T ) = 2.57 + 52.59 Var(s0(t))− 12.60 Var(s0(t))2.

When distribution is also used as an explanatory variable, the models for normal and mutant
cells respectively become

α(T ) = 39.73− 11.62 E[s0] + 6.34 Var(s0)− 0.80 Dist− 1.03 Var(s0)2

+3.93 E[s0]×Dist− 0.41 Var(s0)2 ×Dist, (7.11)

β(T ) = 2.35 + 0.41 Dist + 17.19 E[s0]2 − 0.66 Var(s0)2 − 11.23 Var(s0)2 ×Dist.

Note that each model contains Var(s0(t)) in some form (�rst or second order), di�erent than for a
mutation with respect to the response of a mitotic activator. Also, due to the lack of deterministic
components in the process for s0, for the exponential case it holds that E[s0(t)]2 = Var(s0(t)).

Table 7.9 shows the R2 value for each of the models. The same behavior in R2 as for a
mutation of type I is observed, the values being consistently higher for models for the number
of normal cells.

Table 7.9: R2 values for the models in Equations (7.10)-(7.11), obtained from stepwise regression
analysis for {X(i),T

j }40
j=1 and {Y (i),T

j }40
j=1 as randomness is introduced in s0, i = 1,2. The last

two entries correspond to models in which Dist was used as an explanatory variable.

Cell type Distribution R2

Normal Exp(λ) 0.840
Mutant Exp(λ) 0.465
Normal Uni([a,b]) 0.949
Mutant Uni([a,b]) 0.639
Normal - 0.910
Mutant - 0.567

Distributions that best �t the empirical CDF's obtained from repeated numerical solutions
of (6.5) are found using the Kolmogorov distance dK . Table 7.10 shows the distribution with
the lowest dK for di�erent distributions of Z when compared to the empirical CDF's. For a
mutation of type I (exponential case) a Weibull distribution was usually the best �t for the
empirical CDF corresponding to the number of mutant cells . As seen in Table 7.10 this is
not the case for a type V mutation, where instead a log-normal distribution tends to have the
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Table 7.10: Theoretical CDF's that best �t the di�erent empirical CDF's, when s0(t) is random,
according to the Kolmogorov distance.

Distribution of Z Distribution with lowest dK

Normal Mutant
Exp(4) Normal Log-normal
Exp(2) Normal Log-normal
Exp(1) Log-normal Log-normal
Exp(3/4) Normal Log-normal
Exp(2/3) Log-normal Weibull
Uni([0,0.5]) Log-normal Log-normal
Uni([0,1]) Log-normal Log-normal
Uni([0,1.5]) Log-normal Log-normal
Uni([0,2]) Normal Log-normal
Uni([0,2.5]) Log-normal Weibull
Uni([0,3]) Normal Weibull
Uni([0,4]) Normal Normal

smallest dK (for the number of mutant cells in the exponential case). Also, whereas a Weibull
distribution was the most common one in general when considering a mutation of type I, here
it is instead a log-normal distribution that is most common.

Now consider the interarrival times to be exponentially distributed with parameter λt. Figure
7.20 shows numerical solutions of (6.5) for three di�erent λξ for λt = 0.5, 1, 2. The non-constant
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Figure 7.20: Mean of a realization {X(1),T
k }40

k=1 for three di�erent λξ when random times for
s0(t) are considered.

averages (with respect to λ−2
t ) for di�erent λs0 observed in the �gures indicate that the value

of λt has an e�ect on the average number of cells. p-values for paired t-tests of this e�ect are
shown in Table 7.11. The results further indicate that the expected interarrival time indeed has
an e�ect on the average number of cells (two cases excluded, consistent with what is seen in the
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Figure 7.21: Mean of a realization {Y (1),T
k }40

k=1 for three di�erent λξ when random times for
s0(t) are considered.

Table 7.11: p-values for paired t-tests for the hypothesis that for di�erent λt the average number
of normal and mutant cells respectively are equal.

λs0 = 0.5 λs0 = 1 λs0 = 2
Normal Mutant Normal Mutant Normal Mutant

λt = 0.5 vs. λt = 1 0.00074 0.00068 <0.0001 0.29 <0.0001 0.012
λt = 0.5 vs. λt = 2 0.00031 <0.0001 <0.0001 0.00030 <0.0001 0.0043
λt = 1 vs. λt = 2 <0.0001 0.0090 <0.0001 <0.0001 0.00015 0.22

�gures). Next, compare for random and �xed times, ∆t = λ−1
t , realizations of {X(1),T

k }40
k=1 and

{Y (1),T
k }40

k=1 (for λs0 = 1
2 ,1,2). Figures 7.22-7.23 show examples of scatter plots resulting from

such comparisons, λs0 = 1. Figure 7.22 indicates a di�erence in average number of normal
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Figure 7.22: Di�erence in normal cells when the times of change in s0 are considered as �xed
and random respectively, with λ−1

t = ∆t = 1 and λs0 = 1.

cells when times of change are �xed as compared to random, with the variance of the residuals
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Figure 7.23: Di�erence in mutant cells when the times of change in s0 are considered as �xed
and random respectively, with λ−1

t = ∆t = 1 and λs0 = 1.

being very small. The small variance suggest that the number of normal cells is fairly constant
in each case. Figure 7.23 indicates the same thing for mutant cells, although now the variance of
the residuals is very large. Furthermore, the residuals were normally distributed (according to a
Lilliefors test) for normal cells when λs0 = 1,2 and for mutant cells when λs0 = 2. Paired t-tests
are used to test whether or not there are signi�cant di�erences between the average number of
cells (normal and mutant) for �xed and random times for di�erent λs0 ; the resulting p-values
are presented in Table 7.12. Tests conclude that there are signi�cant di�erences for both normal
and mutant cells for the λs0 considered.

Table 7.12: p-values from paired t-tests regarding equal mean number of cells when times of
change are �xed and random respectively.

Normal Mutant
λs0 = 0.5 <0.0001 <0.0001
λs0 = 1 <0.0001 <0.0001
λs0 = 2 <0.0001 <0.0001

7.3 Comments

The case of random perturbations with respect to mutation parameters is in accordance with
how one usually adds a random component to an otherwise deterministic system of equations,
and has a straightforward biological interpretation. Random mutation parameters are perhaps
not as easily to motivate from a biological perspective. However, it is a fact that cancer cells
behave in very �strange� ways and this randomness may be used to exhibit such �strangeness�
in the model [9]. Moreover, it is interesting to see how the model equations are a�ected by a
random component that is of greater magnitude than the small perturbations �rst considered,
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thus motivating the study of the impact of the type of processes here being used for the mutation
parameters.

The exponential and uniform distributions were used for random mutation parameters due
to them being easy to realize while still satisfying the conditions imposed by biological interpre-
tations of parameter values. More exotic distributions that satisfy such conditions could also be
used, should there be any biological reasons for it.
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Chapter 8

Comparison of random and
deterministic system

In Chapter 7 random behavior was introduced in the model for initial tumor growth developed
in [28]. Here, comparisons are made between the stochastic case and the deterministic approach
originally used. In particular, large deviations theory is used to conclude on the asymptotic
behavior of probabilities of some improbable events for the model that includes some random
component. From this, approximate probabilities regarding initial tumor growth in the random
case are obtained.

Section 8.1 presents a short introduction to the mathematical framework of large deviations.
Although it is but a very brief introduction to the theory, it is presented in a technical way. In
Section 8.2 the theory is used to analyze the case of small random perturbations in the system,
a particular case of perturbations with respect to s0 is shown. Section 8.3 gives comparisons
between the stochastic and deterministic system from a large deviations perspective, as well as
numerical comparisons of sample paths, as mutation parameters are de�ned using a stochastic
process as in Section 7.2. Here, a particular case of a random ξ is shown.

For those interested in further reading on large deviations [14] is recommended. Being a very
technical and somewhat dense account of the theory, readers more interested in the applications
of large deviations may instead want to consult [33]. Moreover, [21] gives a very nice account of
large deviations theory, perhaps somewhat more easily accessible than [14]. A good account on
how large deviation techniques can be used in the context of randomness in dynamical systems
is given in [18], some of which has inspired the work in this chapter.

8.1 Introduction to large deviations theory

Large deviations theory is a part of probability theory and deals with so called rare events and
their probabilities. The importance of the subject is re�ected by the Abel prize awarded to
Professor S.R.S. Varadhan in 2007 for [24]
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�his fundamental contributions to probability theory and in particular for creating a
uni�ed theory of large deviations.�

To get an idea of what a rare event is, let X1, X2, ... ∈ [−1,1] be iid. random variables and
de�ne Sn = 1

2

∑n
i=1 Xi. By the weak law of large numbers (WLLN) a well known fact is

Sn → 0 in probability,

i.e. ∀δ > 0, P (Sn > δ) and P (Sn < −δ) both tend to zero as n →∞. Hence in this sense, the
events {Sn > δ}, {Sn < −δ} are rare when n is large. Moreover, Hoe�ding's inequality gives
that ∀n ≥ 1

P (Sn ≥ δ), P (Sn ≤ −δ) ≤ e−n(δ2/2).

Thus {Sn > δ}, {Sn < −δ} are even exponentially rare, i.e. for a �xed δ their probabilities
decrease exponentially as n grows. This gives a hint of what a rare event is and also a hint of
the context of the theory of large deviations.

Henceforth, let X be a topological space. The following concepts are essential for large
deviations theory.

De�nition 8.1.1 A function f : X → R is lower semicontinuous if ∀α ∈ [0,∞), the level set
{x : f(x) ≤ α} is closed. In particular, if X is a metric space f is lower semicontinuous if and
only if xn → x implies lim inf f(xn) ≥ f(x).

De�nition 8.1.2 A function I : X → R is a rate function if it is ≥ 0 and lower semicontinuous.
The e�ective domain of I is de�ned as DI = {x : I(x) < ∞}.

Now let B be the Borel σ-algebra on X . Consider probability measures µ1, µ2, ... on (X ,B). For
some set A, let A be the closure of A and Ao the interior of A. The backbone of large deviations
theory is the so-called large deviations principle, given in De�nition 8.1.3.

De�nition 8.1.3 The family of probability measures {µn} satis�es the large deviations principle
(LDP) with rate function I if:
(i) For all closed sets F ⊆ X ,

lim sup
n→∞

1
n

log µn(F ) ≤ − inf
x∈F

I(x).

(ii) For all open sets G ⊆ X ,

lim inf
n→∞

1
n

log µn(F ) ≥ − inf
x∈G

I(x).

An equivalent de�nition is that a family {µn} of probability measures satisfy LDP with rate
function I if

− inf
x∈Ao

I(x) ≤ lim inf
1
n

log µn(A) ≤ lim sup
1
n

log µn(A) ≤ − inf
x∈Ā

I(x)

76



for all A ⊆ B.
It can be seen that the LDP characterizes the family {µn} of probability measures in the

sense that it states how their limit will behave for di�erent types of sets. It is now easy to
understand why it is called a rate function - it basically determines the rate of the exponential
decrease for the probability measures. However, one should note that although stating how the
µn:s will behave as n increases, the LDP gives no hint of how to �nd the rate function I. In
certain settings the rate function can be determined by using Cramer's theorem, which is here
stated for the R1-case. For this some additional de�nitions are in place. Especially essential is
the Fenchel-Legendre transformation in De�nition 8.1.5.

De�nition 8.1.4 For any law µ (here on R) and values λ ∈ R where it is de�ned and �nite,

M(λ) =
∫ ∞

−∞
eλxdµ(x),

is called the moment generating function of µ. The logarithmic moment generating function
associated with the law µ is then de�ned as

Λ(λ) = log M(λ).

Let DΛ , {λ : Λ(λ) < ∞}. Since Λ(0) = 0, DΛ is never empty.

De�nition 8.1.5 The Fenchel-Legendre transformation of Λ(·) is de�ned as

Λ∗(x) = sup
λ∈R

(λx− Λ(λ)) .

Furthermore, DΛ∗ , {x : Λ∗(x) < ∞}.

Both Λ(·) and Λ∗(·) have some interesting properties, see e.g. [14] for more on this.
Now consider X1, X2, ... ∈ R iid. Xi ∼ µ and let Sn =

∑n
i=1 Xi. Furthermore, let µn =

L(Sn) denote the probability law of Sn. Cramer's theorem (in R) is stated in Theorem 8.1.6.

Theorem 8.1.6 (Cramer's theorem in R) In the above setting, {µn} satis�es the LDP with
convex rate function Λ∗(·), i.e.
(i) for all closed sets F ⊆ R,

lim sup
n→∞

1
n

log µn(F ) ≤ − inf
x∈F

Λ∗(x).

(ii) for all open sets G ⊆ R,

lim inf
n→∞

1
n

log µn(G) ≥ − inf
x∈G

Λ∗(x).

Cramer's theorem thus gives a way of �nding the rate function for the empirical mean of iid.
random variables. Moreover, one obtains Corollary 8.1.7.
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Corollary 8.1.7 For any y ∈ R,

lim
n→∞

1
n

log µn ([y,∞)) = − inf
x≥y

Λ∗(x).

8.2 Random perturbations

Random perturbations with respect to ξ and s0 were considered in Section 7.1. The resulting
perturbed system is now compared to the deterministic system. As in the previous chapter,
mutation parameters are always considered as system parameters. Adopting the ideas of Section
7.1, if K represents a mutation parameter, consider

K + εψ(t), (8.1)

where ε > 0 is a small number and ψ(t) is derived from a Gaussian process as previously
described. Recall that applying this to the mutation parameter characterizing either a type I or
a type V mutation changes the equation for mutant cell density to

∂mε

∂t
= D

∂2mε

∂x2
+ nεr(nε + mε) [s1((ξ + εψ(t))c1)s2(c2)...sj(cj)]−mε(δ + 1), (8.2)

for the case of a mutation that alters the response to a mitotic chemical and

∂mε

∂t
= D

∂2mε

∂x2
+ nεr(nε + mε) [s0 + εψ(t) + s1(c1)s2(c2)...sj(cj)]−mε(δ + 1), (8.3)

for a mutation causing escape from biochemical control.
It has been numerically observed that the stochastic system can be compared to the deter-

ministic version with the corresponding empirical mean K + εψ̄ as mutation parameter value.
By the law of large numbers, ψ̄ → E[Z] = 0 almost surely as n → ∞. With the above, this
implies that the stochastic system tends to the deterministic (with mutation parameter value
K) as ∆t → 0 and/or T →∞. Using large deviation techniques, it is possible to obtain the rate
of the decrease in probability of the rare events for ψ̄ causing a noticeable di�erence between
the stochastic and deterministic versions. It should be noted that the estimate using ψ̄ holds
for all t = k∆t, k ∈ N su�ciently large, if the empirical mean is adjusted accordingly.

Consider a realization of (8.1) for [0,T ]. The empirical mean of the process up to a time n∆t

is
Sn =

1
n

n∑

j=1

(K + εZj) = K +
1
n

n∑

j=1

εZj , (8.4)

where the Zi:s are the random variables of Section 7.1 and n represents the number of changes
in ψ(t). Cramer's theorem (or rather Corollary 8.1.7) is well suited to give the limiting behavior
of µn , L(Sn −K). For Z

D= N(0, σ2) the moment generating function becomes

M(λ) = eλ2(σ2/2).
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Thus the log moment generating function is

Λ(λ) =
λ2σ2

2
.

Recalling De�nition 8.1.5 for the Fenchel-Legendre transformation, it holds that

Λ∗(x) = sup
λ∈R

(
λx− λ2σ2

2

)
.

Letting g(λ) , λx− λ2σ2/2 yields

d

dλ
g(λ) = x− λσ2 =⇒ d

dλ
g(λ) = 0 ⇔ λ =

x

σ2
.

Moreover, (d2/dλ2)g(λ) = −σ2 < 0 and thus λ = x/σ2 yields a maximum of g(λ) ∀x ∈ R.
Therefore the explicit expression for the Fenchel-Legendre transformation in this case is

Λ∗(x) =
x2

2σ2
.

Applying Corollary 8.1.7 for the set [y,∞),

lim
n→∞

1
n

logP

(
1
n

n∑

i=1

Xi ∈ [y,∞)

)
= − inf

x≥y

x2

2σ2
.

With f(x) , x2/2σ2, f is clearly increasing in x (x ≥ 0 only interesting) and thus

inf
x≥y

x2

2σ2
=

y2

2σ2
.

Hence for n ∈ N su�ciently large,

P

(
1
n

n∑

i=1

Zi ∈ [y,∞)

)
≈ e−n(y2/2σ2), (8.5)

which gives the approximate rate (holds asymptotically) of the exponential decrease of the
probability of

{
Z̄ ∈ [y,∞)

}
, where Z̄ is the mean of Z1,...,Zn. Hence it gives the rate at which the

random system approaches, in the sense discussed earlier, the deterministic one with mutation
parameter K.

The above deals with the stochastic systems tendency to deviate from the deterministic
system at speci�c times n∆t. Next, consider instead the sample paths (adopting the notation of
Chapter 7) {Y ε(t)}t∈[0,T ] and {y(t)}t∈[0,T ] for the random and deterministic system respectively.
A realization of {Y ε(t)}t∈[0,T ] (ε = 0.1 and σ2 = 2), when the perturbation is with respect
to s0 = 1, is shown in Figure 8.1. The corresponding {y(t)}t∈[0,T ] is also included, as are
{Xε(t)}t∈[0,T ] and {(Xε + Y ε)(t)}t∈[0,T ]. Figure 8.2 shows a closer look of {Y ε(t)}t∈[0,T ] and
{y(t)}t∈[0,T ]. It is clearly seen how Y ε(t) �uctuates around y(t), illustrating the e�ect a
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Figure 8.1: A realization of {Xε(t)}t∈[0,T ] and {Y ε(t)}t∈[0,T ] for a perturbation (ε = 0.1 and
σ2 = 2) with respect to s0 = 1. The corresponding trajectory for {y(t)}t∈[0,T ] is also included.
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Figure 8.2: A closer look at {Y ε(t)}t∈[0,T ] and {y(t)}t∈[0,T ] from Figure 8.1.

perturbation with respect to s0 has on the system (6.5) of governing equations. An interesting
property of the realization of the stochastic system is the maximum �distance� (in number of
cells) between it and the deterministic system, determined by

||Y ε − y|| = sup
t∈[0,T ]

|Y ε(t)− y(t)|. (8.6)

For the particular realization shown in Figure 8.1, ||Y ε−y|| = 1.57. Now consider 40 realizations
of {Y ε(t)}t∈[0,T ], each labeled as Y ε

i , 1 ≤ i ≤ 40. Here

sup
1≤i≤40

||Y ε
i − y|| = 6.41,

a rather large di�erence since y(T ) = 17.10. Figure 8.3 shows a scatter plot of ||Y ε
i − y||,

1 ≤ i ≤ 40, thus indicating the maximal distance between the random and deterministic systems
for di�erent sample paths. The average di�erence is 2.98 and the observations have a variance
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Figure 8.3: Scatter plot of ||Y ε
i − y||, 1 ≤ i ≤ 40 for a perturbation with respect to s0; s0 = 1,

ε = 0.1 and σ2 = 2.

1.06. Moreover, Figure 8.4 shows the di�erence Y ε
i (t)−y(t) for all i, 1 ≤ i ≤ 40 and all t ∈ [0,T ]

(an observation was made every ∆t = 0.1). This clearly shows how the randomness due to the
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Figure 8.4: Sample paths for the di�erence Y ε
i (t) − y(t), 1 ≤ i ≤ 40, for a perturbation with

respect to s0; s0 = 1, ε = 0.1 and σ2 = 2.

perturbation has a greater e�ect on the number of mutant cells as t is increased. The di�erence
between Y ε(t) and y(t) is sometimes as large as 40% (compared to the corresponding y(t)),
indicating the possibility of a sample path of {Y ε(t)}t∈[0,T ] that is quite di�erent from that of
{y(t)}t∈[0,T ].

Remark One should note that due to the properties of normal random variables, the sum of
the Zi:s is a normal random variable as well. Hence it is possible to use standard techniques
to obtain the probability that 1

n

∑n
j=1 εZi belongs to some set. However, the large deviations

approach shows a di�erent route to obtain bounds on the probabilities of certain sets without
having to estimate error functions and similar.
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8.3 Random mutation parameters

In Chapter 7, a process {φ(t)}t∈[0,T ] was de�ned according to (7.5) and was used for the char-
acterizing parameters for mutations of types I and V. Suggested distributions for the Zi:s were
exponential and uniform. Here it is investigated how the resulting stochastic system compares
to the deterministic.

As for random perturbations, it has been numerically observed that the empirical mean
obtained from a realization of {Y (i)(t)}t∈[0,T ] can be used to represent the random system.
Adapting the notation of Chapter 7 and letting φ̄ denote the empirical mean of the speci�ed
mutation parameter, the y(T ) produced with mutation parameter value φ̄ gives a good estimate
of the corresponding Y (i)(T ). As in the previous section, this holds not only for time t = T , but
also for any t = k∆t where k ∈ N is su�ciently large.

Consider Z
D= Exp (λ). The moment generating function for Z is

M(α) =
∫ ∞

0
eαtλe−λtdt =

{
+∞ α = λ,

λ
λ−α otherwise.

Omitting the case α = λ, the log moment generating function is

Λ(α) = log M(α) = log(λ)− log(λ− α),

yielding a Fenchel-Legendre transformation

Λ∗(x) = sup
α∈R

(αx− log(λ) + log(λ− α)) .

Letting g(α) , (αx− log(λ) + log(λ− α)), for x ≥ 0

d

dα
g(α) = x− 1

λ− α
=⇒ d

dα
g(α) = 0 ⇔ α = λ− 1

x
.

Moreover (d2/dα2)g(α) = −1/(α− λ)2 < 0, α = λ− 1/x thus yielding a maximum for g(α) for
x ≥ 0. Therefore the explicit expression for the Fenchel-Legendre transform is

Λ∗(x) =

{
λx− 1− log(λx) if x > 0,
+∞ otherwise.

Applying Corollary 8.1.7 for the set [y,∞), some y > λ−1 (for other y the result holds but is
uninteresting), then gives

lim
n→∞

1
n

log P

(
1
n

n∑

i=1

Zi ∈ [y,∞)

)
= − inf

x≥y
(λx− 1− log(λx)) .
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Moreover, it is easily derived that

inf
x≥y

(λx− 1− log(λx)) =

{
1
λ + log(λ)− 1 if 1

λ2 ≥ y,

λy − 1− log(λy) if 1
λ2 < y.

Thus for n ∈ N large

P

(
1
n

n∑

i=1

Zi ∈ [y,∞)

)
≈

{
e−n( 1

λ
+log(λ)−1) if 1

λ2 ≥ y,

e−n(λy−1−log(λy)) if 1
λ2 < y,

(8.7)

which gives the rate of the exponential decrease of the probability of
{
Z̄ ∈ [y,∞)

}
for di�erent

y:s.
As for random perturbations, the sample paths of realizations of {{Xε(t)}t∈[0,T ] and {{Y ε(t)}t∈[0,T ]

are compared to those of {x(t)}t∈[0,T ], {y(t)}t∈[0,T ]. Figure 8.5 shows a realization of the sam-
ple paths of {X(1)(t)}t∈[0,T ] and {Y (1)(t)}t∈[0,T ] for a mutation of type I with ξ0 = 1, λξ = 2

3

(thus comparable to the deterministic case ξ = 2.5 used in [28] and also included in the �gure).
Compared to the case of random perturbations, �uctuations in Y (1)(t) are now more obvious.
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Figure 8.5: Sample paths for X(1)(t), Y (1)(t) and y(t) (ξ = 2.5) for t ∈ [0,T ]; ξ0 = 1 and λξ = 2
3 .

For this sample path ||Y (1)−y|| = 7.24, a large increase compared to Section 8.2 (especially since
y(T ) is now approximately four units smaller). Figure 8.6 shows a scatter plot of ||Y (1)

i − y||,
1 ≤ i ≤ 40 representing di�erent realizations. For the {Y (1)

i (t)}t∈[0,T ]:s observed here

sup
1≤i≤40

||Y (1)
i − y|| = 14.75.

The observations in Figure 8.6 have a mean 6.12 and a variance 5.24. In Figure 8.7 all sample
paths Y

(1)
i (t) − y(t), 1 ≤ i ≤ 40, are shown. The impact of the randomness becomes stronger

as t is increased and the largest di�erence at any t is 70% of y(t). Figure 8.7 indicates, just as
Figure 8.4 did for the random perturbations, that a sample path of {Y (1)(t)}t∈[0,T ] can di�er
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signi�cantly from that of the corresponding {y(t)}t∈[0,T ].

8.4 Comments

Numerical solutions show that the estimate of Xε(T ) and Y ε(T ) using x(T ) and y(T ) respectively
are better when the mutation parameter is set to the corresponding empirical mean rather than
the expected value of the stochastic process. Furthermore, the estimations improve when ∆t

is decreased and/or T is increased. Such changes will decrease the relative time any �extreme�
values can a�ect the system, possibly explaining the more accurate approximations.

The results obtained using large deviation theorems are asymptotic in n. Thus for small
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values of n the approximate probabilities will not necessarily hold. However, it has been observed
that n does not need to increase too much before the approximate probabilities obtained will
di�er very little from those estimated from realizations of 1

n

∑n
i=1 Zi. For example for the

probability of {Z̄ ∈ [y,∞)}, most tried combinations of Z̄, y and λ start to give close results for
numerical estimations and approximate probabilities when n is in the range 30− 80.

An alternative approach to studying randomness would be to add a (scaled) Brownian motion
B(t) to the mutation parameters. This would give a continuous change in the parameter value
instead of the jumps considered here. Results such as Schilder's theorem (see e.g. [14]) can be
used to conclude on the probability of the process crossing certain thresholds related to tumor
growth. Instead of the empirical mean one would then be interested in the occupation time (see
e.g. [23]) of certain sets and results such as those due to Budhiraja and Dupuis [7] could perhaps
be used to conclude on the related probabilities.
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Chapter 9

Conclusions

In Part I, experimental data related to the dependence of breast cancer cell behavior on surround-
ing tissue sti�ness is analyzed. An exploratory analysis of the data shows the characteristics
of the aggregates and their morphological parameters. While the number of aggregates in each
sample decreases with time, the aggregates average perimeter is found to increase. Moreover,
di�erent populations seem to have di�erent patterns of change. The rates of change seem to be
either increasing or decreasing with respect to the percentage of agarose in the cellular mixture.

The number of aggregates and perimeter data has been analyzed from a repeated measure-
ments perspective, using methods from the theory of linear mixed models. Using the obtained
covariance structures, the data is modeled for the di�erent time periods days 1-8, 1-6 and 6-8 us-
ing regression analysis. For days 1-8 and 1-6, there are signi�cant di�erences in the logarithm of
the number of aggregates for di�erent populations, but no signi�cant di�erences in the patterns
of change. Furthermore, models suggest signi�cant di�erences in the logarithm of the aggregates
average perimeter as well as the patterns of change of this logarithm for di�erent populations.

The data is still too preliminary for a de�nite conclusion regarding the aggregates tendency
to cluster. Biological aspects such as the rate of cell mitosis and death rate must be considered.
In addition, more experimental data from a time period with no outside interference is desirable
due to the suspected large impact of media addition/replacement on aggregate formation.

In Part II, stochastic modeling related to a mathematical model for initial tumor growth
(Sherratt and Nowak, [28]) is considered. It is investigated numerically how the model responds
to stochastic behavior of the parameters de�ning mutation characteristics. First, small random
perturbations are introduced, causing small �uctuations around a speci�c parameter value. Then
a more pronounced randomness of parameters is studied by letting stochastic processes represent
the mutation parameters.

The model for tumor growth is observed to be rather stable with respect to small random
perturbations. For the case of signi�cant parameter randomness, the average number of cells
(normal and mutant) at a time T is highly dependent on the expected value of the stochastic
process representing the corresponding parameter value. Especially the number of mutant cells
is greatly a�ected by changes in the expected value and variability of the process, whereas the
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number of normal cells is less sensitive. Randomness in s0 is shown to a�ect the model more than
randomness in ξ. When random jump times are considered, results indicate that the expected
value of the interarrival times has a signi�cant e�ect on the average number of cells at time T .
Furthermore, there is a signi�cant di�erence between random and �xed jump times in the sense
of average number of cells.

It is studied how the stochastic system compares to the deterministic one. In particular, large
deviations theory is used to obtain asymptotic probabilities for certain rare events connected to
tumor growth, describing the convergence of the stochastic system to the deterministic case.

What is presented in Chapters 7 and 8 is meant as a �survey� of what happens to numerical
solutions of the governing equations that constitute the model for initial tumor growth, as
di�erent types of randomness are included. Rather than to give very speci�c results, an attempt
has been made to try and characterize the behavior that the model exhibits. As experiments
become more and more speci�c and/or relatable to the model, the speci�c cases one wants to
consider can more easily be expressed and the analysis can be more focused on them.

Future work Experiments regarding normal and cancer cells' response to oxygen levels are
currently being developed at Clemson University. The aim is to adapt the model by letting
oxygen take the place of a biochemical and relate this to experimental results. To that end, a
�rst step is to simplify the model to account for the rather coarse measurements that will be
available at �rst and the fact that oxygen behaves di�erently from a biochemical. Furthermore,
new versions of the experiments described in Section 2, complying with our suggestions for
improvements, have recently been �nished and data should be available for analysis in the near
future.
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