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Abstract

In this thesis we brie�y discuss simulation techniques for stochastic di�erential equations.
The method of transforming stochastic di�erential equations with non-Lipschitz coe�cients
onto a new stochastic di�erential equation which is easier to simulate will be discussed and its
scope will be analyzed.
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1 Introduction

This thesis is mainly concerned with exploring the scope of the Euler-Maruyama method and the
so-called stochastic theta method. For an autonomous stochastic di�erential equation (SDE)

dXt = µ(Xt)dt+ σ(Xt)dBt

where {Bt} represents Brownian motions with globally Lipschitz drift and di�usion coe�cients
the Euler-Maruyama scheme is strongly convergent (see e.g. [8]).

A strategy for simulating a solution to a SDE with non-Lipschitz coe�cients which is ex-
plored in this thesis is to apply the Itô lemma to it with a bijective transformation f ∈ C2 to
obtain a new transformed SDE Yt = f(Xt). Which may be easier to simulate with the Euler-
Maruyama scheme or some of its variants and then transform the simulated solution back onto
the original SDE using the inverse transformation f−1.
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2 Numerical solutions to SDEs

A (one dimensional autonomous) stochastic di�erential equation (SDE) is an equation on the
form

dXt = µ(Xt)dt+ σ(Xt)dBt, X0 = ζ,

for t ∈ [0, T ], where µ and σ are the measurable coe�cient functions, {Bt}t≥0 is Brownian
motion and ζ is a random variable that is independent of the Brownian motions B. A solution
to the preceding SDE is any process {Xt}t∈[0,T ] that satis�es

Xt = ζ +

∫ t

0

µ(Xs)ds+

∫ t

0

σ(Xs)dBs,

for t ∈ [0, T ]. The theory of SDEs guarantees the existence of solutions to a speci�c class of
SDEs. However, although we may know that such a process exists it might not be trivial to
�nd an analytical expression for it. This is where numerical methods for solving SDEs come
in. If we know that a certain SDE has a solution we can try to use numerical methods to
simulate the solution. All equations that feature in this thesis have well-de�ned and unique so
called-strong solutions, since the conditions that ensure convergence of simulation schemes will
also ensure the existence of unique strong solutions. For more information see e.g. [7] and [8].
Before considering a family of Euler schemes we introduce and discuss the Lipschitz condition.

2.1 The Lipschitz condition

A function f : I → R, where I ⊂ R, is globally Lipschitz if there exists some C > 0 such that

|f(x)− f(y)| ≤ C|x− y|

for all x, y ∈ I. If the Lipschitz condition holds for all compact subsets of I then f is locally
Lipschitz. Finally if f : I → R satis�es

(x− y)(f(x)− f(y)) ≤ C|x− y|2

then it called one-sided Lipschitz. The following lemma is presented as an exercise in [3], and
its proof is given here for the convenience of the reader:

Lemma 2.1. A function f : R→ R is globally Lipschitz with Lipschitz constant M if and only
if f is absolutely continuous and |f ′| ≤M almost everywhere.

Proof. Suppose that f is Lipschitz with Lipschitz constant M > 0, i.e. that |f(x) − f(y)| ≤
M |x− y| for all x, y ∈ R. Then f is absolutely continuous since if ε > 0 and {(ai, bi)}i≥1 is any
sequence of disjoint intervals that satis�es

∑
i≥1 |bi − ai| < ε/M then∑

i≥1

|f(bi)− f(ai)| ≤
∑
i≥1

M |bi − ai| < ε.

3



Since f is absolutely continuous its derivative f ′ is de�ned almost everywhere. But the Lipschitz
condition gives us that

|f(x)− f(y)|
|x− y|

≤M for all x, y ∈ R,

so taking limits yields |f ′| ≤M almost everywhere. Now suppose conversely that f is absolutely
continuous and that |f ′| ≤M almost everywhere. Then by absolute continuity f(x) = f(x0) +∫ x
x0
f ′(t)dt, so

|f(x)− f(y)| =
∣∣∣∣∫ x∨y

x∧y
f ′(t)dt

∣∣∣∣ ≤ ∫ x∨y

x∧y
|f ′(t)|dt ≤M |x− y|.

Now as we are also going to consider one-sided Lipschitz functions, it would nice have some
sort of a result that describes the character of one-sided Lipschitz functions. Notice �rst that
a function can be one-sided Lipschitz without being absolutely continuous. This can be seen
by noting that any decreasing function is one-sided Lipschitz, which is due the left hand side
of the one-sided Lipschitz inequality being negative in that case. So a decreasing function that
is not absolutely continuous is one-sided Lipschitz.

Lemma 2.2. Suppose that f : R→ R is an absolutely continuous function, then f is one-sided
Lipschitz with the constant M if and only if f ′ ≤M almost everywhere.

Proof. If f is absolutely continuous and one-sided Lipschitz with the Lipschitz constant M > 0
then by absolute continuity f ′ exists almost everywhere. If x 6= y we may divide through the
one-sided Lipschitz continuity inequality for f with |x− y|2 to obtain the inequality

f(x)− f(y)

x− y
≤M.

So taking limits yields f ′ ≤M almost everywhere. If on the other hand f is absolutely contin-
uous and f ′ ≤M almost everywhere then by absolute continuity f(x) = f(x0) +

∫ x
x0
f ′(t)dt, so

if sgn denotes the sign function

(x− y)(f(x)− f(y)) = (x− y) sgn(x− y)

(∫ x∨y

x∧y
f ′(t)dt

)
≤ (x− y) sgn(x− y)M |x− y|
= M |x− y|2.
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2.2 A family of Euler schemes

Suppose we have an autonomous SDE:

dXt = µ(Xt)dt+ σ(Xt)dBt, X0 = ζ,

where {Bt}t≥0 is the Brownian motion. The stochastic theta method computes approximates
Zk ≈ X∆k starting at Z0 = ζ:

Zn+1 = Zn + (1− θ)∆µ(Zn) + θ∆µ(Zn+1) + σ(Zn)∆Bn, (1)

for n = 1, . . . , N where 0 = t0 < t1 < · · · < tN are equidistant with a constant step size ∆ > 0,
∆Bn = Btn+1 − Btn and θ ∈ [0, 1]. If θ = 0 we get the Euler-Maruyama method and if θ = 1
we get the so-called backward Euler scheme. Another variant of the Euler method is the split
step backward Euler scheme which is given by the rule

Z∗n = Zn + ∆µ(Z∗n)
Zn+1 = Z∗n + σ(Z∗n)∆Bn.

For the sake of completeness we present the following result, which is taken from the liter-
ature, the reader is referred to Theorem 10.2.2 in [8] for the proof of the result.

Theorem 2.3. Consider the Euler-Maruyama (θ = 0) approximation scheme (1). Suppose
that

E(|X0|2) <∞,

E
(
|X0 − Z0|2

)1/2 ≤ K∆1/2

and that µ and σ are globally Lipschitz, then there exists a constant C such that

E (|XT − ZT |) ≤ C∆1/2.

A version of this result for the split step backward Euler method applied on a SDE with one-
sided Lipschitz drift coe�cient and a globally Lipschitz di�usion coe�cient exists, the reader
is referred to Theorem 3.3. in [5] for the statement and proof of that result.
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3 Transformed processes

SDEs with ill behaved (non-Lipschitz) coe�cients are more challenging to simulate than SDEs
with well behaved (Lipschitz) coe�cients. For such ill behaved SDEs the Euler scheme may
diverge. One way to get around this problem is to transform the ill behaved SDE to obtain
a new SDE which in turn is hopefully easier to simulate, simulate the new SDE and then
transform it back using the inverse transformation. By an SDE that is easier to simulate the
most usual criterion is that it has globally Lipschitz coe�cients, or if that fails then a SDE that
has a globally Lipschitz di�usion coe�cient and a one-sided Lipschitz drift coe�cient.

3.1 The Itô lemma

Consider a SDE, which is a stochastic process {Xt} which can be written as the sum of a
Lebesgue integral and an integral with respect to Brownian motion

Xt = ζ +

∫ t

0

µsds+

∫ t

0

σsdBs.

For such an SDE the Itô lemma (in di�erential form) states that for a function f that is twice
continuously di�erentiable (which will be denoted by f ∈ C2 henceforth)

df(Xt) =

(
f ′(Xt)µt +

1

2
f ′′(Xt)σ

2
t

)
dt+ f ′(Xt)σtdBt.

In what follows we will apply the Itô lemma on a SDE and investigate whether or not we can
get Lipschitz coe�cients.

3.2 Transforming SDEs

Let's consider transforming a SDE

dXt = µ(Xt)dt+ σ(Xt)dBt X0 = ζ.

By transforming we mean that we consider the process Yt = f(Xt) where f ∈ C2 is a bijective
function. By the Itô lemma

dYt =

(
g(Yt)µf (Yt) +

1

2
g(Yt)g

′(Yt)σ
2
f (Yt)

)
dt+ g(Yt)σf (Yt)dBt Y0 = f(ζ),

where g(y) = f ′(f−1(y)), µf (y) = µ(f−1(y)) and σf (y) = σ(f−1(y)). Now what do we want
to achieve by this transformation? First of all it would be interesting to see when we can
�nd a transformation f that gives us globally Lipschitz drift and di�usion coe�cients, so that
the transformed process may be simulated using the Euler-Maruyama method. Secondly it
is interesting to see when we can obtain a one-sided Lipschitz drift coe�cient and a globally
Lipschitz di�usion coe�cient which may in turn make the split step backward Euler method
appealing for simulating the transformed process.
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3.2.1 The di�usion coe�cient

Now let's suppose that this new SDE has a globally Lipschitz di�usion coe�cient b(y) =
g(y)σf (y) and try to infer what that means in terms of the transformation f . Since b is
Lipschitz it must by Lemma 2.1 have an essentially bounded derivative, in other words we can
equate the derivative of b with an essentially bounded function:

b′(y) =
f ′′(f−1(y))

f ′(f−1(y))
σ(f−1(y)) + σ′(f−1(y)) = ϕ(f−1(y)),

where ϕ◦f−1 is an essentially bounded function. Assuming that σ is non-zero almost everywhere
we may rewrite this as

f ′′(x)

f ′(x)
=
ϕ(x)− σ′(x)

σ(x)
,

and since f ′ is either strictly positive or strictly negative f ′′/f ′ equals either the derivative of
log f ′ if f ′ > 0 or the derivative of log(−f ′) if f ′ < 0. Using this fact and assuming that σ is
non-zero almost everywhere and solving for f yields

f(x) = C

∫ x

x0

exp

(∫ t

t0

ϕ(s)− σ′(s)
σ(s)

ds

)
dt (2)

almost everywhere, where C ∈ R is a non-zero constant. If σ is strictly positive then f can be
written as

f(x) = C

∫ x

x0

k(t)

σ(t)
dt (3)

almost everywhere, where

k(x) = exp

(∫ x

x0

ϕ(t)/σ(t)dt

)
.

Thus our choice of ϕ a�ects the slope of f , that is if it grows fast or slow.

3.2.2 The drift coe�cient

Assuming that f has the form (2) which makes the di�usion coe�cient globally Lipschitz, the
drift coe�cient a(y) = g(y)µf (y) + 1

2
g(y)g′(y)σ2

f (y) takes the form

a(y) = g(y)µf (y) +
1

2
f ′′(f−1(y))σ2(f−1(y))

= C exp

(∫ f−1(y)

x0

ϕ(s)− σ′(s)
σ(s)

ds

)(
µf (y) +

1

2

(
ϕ(f−1(y))− σ′(f−1(y))

)
σ(f−1(y))

)
.
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Now if furthermore we assume that σ is strictly positive then we may use (3) to obtain

a(y) = g(y)µf (y) +
1

2
f ′′(f−1(y))σ2(f−1(y))

= Ck(f−1(y))

(
µf (y)

σf (y)
+

1

2

(
ϕ(f−1(y))− σ′(f−1(y))

))
.

Now the question is when we can select ϕ that makes the drift coe�cient a either globally
Lipschitz or one-sided Lipschitz. Di�erentiating a yields

a′(y) = C

(
ϕ(f−1(y))

(
µf (y)

σf (y)
+

1

2

(
ϕ(f−1(y))− σ′(f−1(y))

))
+ µ′(f−1(y))− µf (y)σ′(f−1(y))

σf (y)

+
σf (y)

2

(
ϕ′(f−1(y))− σ′′(f−1(y))

))
.

Now if this derivative is bounded and a is absolutely continuous then by Lemma 2.1 a is globally
Lipschitz. Likewise if this derivative is bounded from above then a is one-sided Lipschitz by
Lemma 2.2. In what remains of of this section we will present our results, regarding when there
exists a transformation that gives us globally Lipschitz drift and di�usion coe�cients on the
one hand and one-sided Lipschitz drift and globally Lipschitz di�usion on the other hand.

3.3 General processes

The following result is the most general result of this thesis.

Proposition 3.1. A SDE dXt = µ(Xt)dt+σ(Xt)dBt where µ ∈ C1 is absolutely continuous and
σ ∈ C2 is absolutely continuous with an absolutely continuous derivative σ′ can be transformed
onto a new SDE dYt = a(Yt)dt+ b(Yt)dBt with globally Lipschitz drift and di�usion coe�cients
if and only if there exists some essentially bounded ψ such that the function

x 7→ exp

(
−
∫ x

x0

2µ(t)

σ2(t)
− σ′(t)

σ(t)
dt

)∫ x

x0

q(t) exp

(∫ t

t0

2µ(s)

σ2(s)
− σ′(s)

σ(s)
ds

)
dt

is essentially bounded, where

q(x) =
2µ(x)σ′(x)

σ2(x)
+

2(ψ(x)− µ′(x))

σ(x)
+ σ′′(x).

If furthermore σ > 0 then we may rewrite this function in the following way

x 7→ σ(x) exp

(
−
∫ x

x0

2µ(t)

σ2(t)
dt

)∫ x

x0

q(t)

σ(t)
exp

(∫ t

t0

2µ(s)

σ2(s)
ds

)
dt,

where we have the same q as before.
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Proof. Let us assume that such a transformation f ∈ C2 exists, i.e. that there exists some
essentially bounded ϕ such that f is like in equation (2) that transforms onto dYt = a(Yt)dt+
b(Yt)dBt, where as before

a(y) = C exp

(∫ f−1(y)

x0

ϕ(s)− σ′(s)
σ(s)

ds

)(
µf (y) +

1

2

(
ϕ(f−1(y))− σ′(f−1(y))

)
σ(f−1(y))

)
and

b(y) = C exp

(∫ f−1(y)

x0

ϕ(s)− σ′(s)
σ(s)

ds

)
σ(f−1(y)).

Now b should be absolutely continuous and b′(y) = ϕ(f−1(y)) must be essentially bounded by
Lemma 2.1. By that same Lemma we must have that a is absolutely continuous and that a′ is
essentially bounded, but

a′(y) = C

(
ϕ(f−1(y))

(
µf (y)

σf (y)
+

1

2

(
ϕ(f−1(y))− σ′(f−1(y))

))
+ µ′(f−1(y))− µf (y)σ′(f−1(y))

σf (y)

+
σf (y)

2

(
ϕ′(f−1(y))− σ′′(f−1(y))

))
.

Which in turn means that the function

ϕ

(
µ

σ
+

1

2
(ϕ− σ′)

)
+ µ′ − µσ′

σ
+
σ

2
(ϕ′ − σ′′)

is essentially bounded. Now since we know that ϕ is essentially bounded we may exclude the
term 1

2
ϕ2 from the previous equation and it will still have to be essentially bounded. So let us

write

ϕ

(
µ

σ
− 1

2
σ′
)

+ µ′ − µσ′

σ
+
σ

2
(ϕ′ − σ′′) = ψ

where ψ is some essentially bounded function. But this can rewritten as

ϕ′ +

(
2µ

σ2
− σ′

σ

)
ϕ =

(
2µσ′

σ2
+

2(ψ − µ′)
σ

+ σ′′
)
.

This �rst degree ordinary di�erential equation can be solved using an integrating factor: It has
the solution

ϕ(x) = exp

(
−
∫ x

x0

2µ(t)

σ2(t)
− σ′(t)

σ(t)
dt

)∫ x

x0

q(t) exp

(∫ t

t0

2µ(s)

σ2(s)
− σ′(s)

σ(s)
ds

)
dt (4)
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where

q(x) =
2µ(x)σ′(x)

σ2(x)
+

2(ψ(x)− µ′(x))

σ(x)
+ σ′′(x).

So if the right hand side of equation (4) were unbounded for all essentially bounded ψ it would
contradict our selection of a essentially bounded ϕ. Therefore we may conclude that it is
essentially bounded. If on the other hand there exists some essentially bounded ψ such that
the right hand side of equation (4) is essentially bounded then for an f as in equation (2) with
ϕ equal to the right hand side of equation (4) we get globally Lipschitz a and b.

If in stead of having an essentially bounded ψ in the preceding proposition, we have a ψ
that is bounded above, i.e. ψ < M for some M ∈ R. Then the drift coe�cient a would be
one-sided Lipschitz, so we get the following result.

Proposition 3.2. A SDE dXt = µ(Xt)dt+σ(Xt)dBt where µ ∈ C1 is absolutely continuous and
σ ∈ C2 is absolutely continuous with an absolutely continuous derivative σ′ can be transformed
onto a new SDE dYt = a(Yt)dt + b(Yt)dBt with a one-sided Lipschitz drift coe�cient and a
globally Lipschitz di�usion coe�cients if and only if there exists some ψ that is bounded above,
i.e. ψ < M for some constant M ∈ R such that the function

x 7→ exp

(
−
∫ x

x0

2µ(t)

σ2(t)
− σ′(t)

σ(t)
dt

)∫ x

x0

q(t) exp

(∫ t

t0

2µ(s)

σ2(s)
− σ′(s)

σ(s)
ds

)
dt

is essentially bounded, where

q(x) =
2µ(x)σ′(x)

σ2(x)
+

2(ψ(x)− µ′(x))

σ(x)
+ σ′′(x).

If furthermore σ > 0 then we may rewrite this function in the following way

x 7→ σ(x) exp

(
−
∫ x

x0

2µ(t)

σ2(t)
dt

)∫ x

x0

q(t)

σ(t)
exp

(∫ t

t0

2µ(s)

σ2(s)
ds

)
dt,

where we have the same q as before.

Proof. This is done in the same manner as the proof of the previous proposition apart from the
fact that in the preceding proof ψ is essentially bounded, whereas here it is bounded above:
ψ < M for some constant M , yielding a one-sided Lipschitz drift coe�cient by Lemma 2.2.
Thus giving us an essentially bounded derivative for the di�usion coe�cient and a derivative
that is bounded from above for the drift coe�cient. If conversely there exists some ψ that is
bounded above such that the right hand side of equation (4) is essentially bounded then for
an f as in equation (3) with ϕ equal to the right hand side of equation (4) we get one-sided
Lipschitz a and globally Lipschitz b.

11



3.4 Di�usions in natural scale

For the special case of a SDEs with zero drift coe�cients, i.e. µ = 0 we get the following
conditions.

Corollary 3.3. A di�usion in natural scale dXt = σ(Xt)dBt where σ ∈ C2 is absolutely
continuous with an absolutely continuous derivative σ′ can be transformed onto a new SDE
dYt = a(Yt)dt + b(Yt)dBt with globally Lipschitz coe�cients if and only if there exists some
essentially bounded function ψ such that the function

ϕ(x) = exp

(∫ x

x0

σ′(t)

σ(t)
dt

)∫ x

x0

(
2ψ(t)

σ(t)
+ σ′′(t) exp

(∫ t

t0

σ′(s)

σ(s)
ds

))
dt

is essentially bounded. If furthermore σ > 0 we may rewrite ϕ as

ϕ(x) = σ(x)

∫ x

x0

(
2ψ(t)

σ2(t)
+
σ′′(t)

σ(t)

)
dt.

It is also worth stating the corresponding corollary for the case of transforming to a one-sided
drift coe�cient and globally Lipschitz di�usion coe�cient. For the special case of a di�usions
in natural scale process, i.e. µ = 0 we get the following conditions.

Corollary 3.4. A di�usion in natural scale dXt = σ(Xt)dBt where σ ∈ C2 is absolutely
continuous with an absolutely continuous derivative σ′ can be transformed onto a new SDE
dYt = a(Yt)dt + b(Yt)dBt with globally Lipschitz coe�cients if and only if there exists some
function ψ that is bounded from above, i.e. ψ < M such that the function

ϕ(x) = exp

(∫ x

x0

σ′(t)

σ(t)
dt

)∫ x

x0

(
2ψ(t)

σ(t)
+ σ′′(t) exp

(∫ t

t0

σ′(s)

σ(s)
ds

))
dt

is essentially bounded. If furthermore σ > 0 we may rewrite ϕ as

ϕ(x) = σ(x)

∫ x

x0

(
2ψ(t)

σ2(t)
+
σ′′(t)

σ(t)

)
dt.

3.5 Constant di�usion processes

In this section we turn our attention to yet another special case of SDEs, namely SDEs with
constant non-zero di�usion coe�cients. Our results on this class of equations are the following.

Proposition 3.5. A SDE dXt = µ(Xt)dt + σdBt where µ ∈ C1 is absolutely continuous and
σ is a non-zero constant can be transformed onto a new SDE dYt = a(Yt)dt + b(Yt)dBt with
globally Lipschitz coe�cients if and only if |µ− µ′| is bounded on the set {|µ| < |µ′|}.
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Proof. Suppose that f ∈ C2 is bijective and write Yt = f(Xt), then by the Itô lemma

dYt =

(
g(Yt)µf (Yt) +

1

2
g(Yt)g

′(Yt)σ
2

)
dt+ g(Yt)σdBt,

where g(y) = f ′(f−1(y) and µf (y) = µ(f−1(y). Now in order for the di�usion coe�cient b(y) =
g(y)σ to be globally Lipschitz by Lemma 2.1 g should be absolutely continuous and g′ needs
to be essentially bounded. Writing g′(y) = f ′′(f−1(y))/f ′(f−1(y) = ϕ(f−1(y)) where ϕ ◦ f−1 is
some essentially bounded function yields the following expression for the transformation f :

f(x) = C

∫ x

x0

exp

(∫ t

t0

ϕ(s)ds

)
dt,

where C is some constant. Plugging this into the drift coe�cient a(y) = (g(y)µf (y)+1
2
g(y)g′(y)σ2)

yields

a(y) = C exp

(∫ f−1(y)

x0

ϕ(s)ds

)(
µf (y) +

σ2

2
ϕ(f−1(y))

)
,

and di�erentiating a to check if a′ is essentially bounded yields:

a′(y) = ϕ(f−1(y))

(
µf (y) +

σ2

2
ϕ(f−1(y))

)
+ µ′(f−1(y)) +

σ2

2
ϕ′(f−1(y)). (5)

Now if |µ− µ′| is bounded on the set {|µ| < |µ′|} then we can let

ϕ(x) =

{
−µ′(x)/µ(x) if |µ(x)| ≥ |µ′(x)|
ψ(x) if |µ(x)| < |µ′(x)|

where ψ is some non-zero globally Lipschitz function which is equal to −µ′/µ on the set {|µ| =
|µ′|}, and a′ will be bounded. If on the other hand |µ−µ′| is unbounded on the set {|µ| < |µ′|}
we can conclude that a′ will be unbounded for any bounded ϕ.

Now that we have established that not all SDE with a constant di�usion coe�cient can be
transformed onto a new SDE with globally Lipschitz drift and di�usion coe�cients a new
question arises. Can we transform a SDE with a constant di�usion coe�cient onto a new SDE
with a one-sided Lipschitz drift coe�cient and a globally Lipschitz di�usion coe�cient?

Proposition 3.6. A SDE dXt = µ(Xt)dt + σdBt where µ ∈ C1 is absolutely continuous and
σ is a non-zero constant can be transformed onto a new SDE dYt = a(Yt)dt + b(Yt)dBt with a
one-sided Lipschitz drift coe�cient and a globally Lipschitz di�usion coe�cient if and only if
|µ− µ′| is bounded on the set {µ < µ′, µ′ > 0}.

Proof. By arguing in the same manner as in the previous proposition we see that a′ in equation
(5) will be bounded from above if and only if |µ − µ′| is bounded on the set {µ < µ′, µ′ > 0}.
So by Lemma 2.2 the result follows.
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As an immediate corollary to Propositions 3.1 and 3.5, we get the following result for the
case of a non-zero constant di�usion coe�cient.

Corollary 3.7. For an absolutely continuous µ ∈ C1 and a non-zero constant σ the following
two conditions are equivalent and imply that for an SDE dXt = µ(Xt)dt + σdBt we may �nd
a transformation f such that Yt = f(Xt), Yt = a(Yt)dt + b(Yt)dBt and a and b are globally
Lipschitz.

1. |µ− µ′| is bounded on the set {|µ| < |µ′|}.

2. There exists some essentially bounded function ψ such that the function

ϕ(x) = exp

(
−
∫ x

x0

2µ(t)

σ2
dt

)∫ x

x0

2(ψ(t)− µ′(t))
σ

exp

(∫ t

t0

2µ(s)

σ2
ds

)
dt

is essentially bounded.

We get a corresponding corollary from Propositions 3.2 and 3.6.

Corollary 3.8. For an absolutely continuous µ ∈ C1 and a non-zero constant σ the following
two conditions are equivalent and imply that for an SDE dXt = µ(Xt)dt + σdBt we may �nd
a transformation f such that Yt = f(Xt), Yt = a(Yt)dt+ b(Yt)dBt and a is one-sided Lipschitz
and b is globally Lipschitz.

1. |µ− µ′| is bounded on the set {|µ| < |µ′|, µ′ > 0}.

2. There exists some function ψ that is bounded above such that the function

ϕ(x) = exp

(
−
∫ x

x0

2µ(t)

σ2
dt

)∫ x

x0

2(ψ(t)− µ′(t))
σ

exp

(∫ t

t0

2µ(s)

σ2
ds

)
dt

is essentially bounded.
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4 Examples

In this section we will look at examples of SDE models that have non-Lipschitz coe�cients and
explore how the method of transforming can be applied on them.

4.1 A double-well potential

The following model has its name from [6], it satis�es

dXt = (Xt −X3
t )dt+ dBt, X0 = ζ.

Notice that the drift coe�cient µ(x) = x− x3 is non-Lipschitz. However |µ′(x)| = |1− 3x2| is
bounded on the bounded set {x : |x − x3| < |1 − 3x2|}, so by Proposition 3.5 there exists a
bijective transformation f ∈ C2 such that Yt = f(Xt), dYt = a(Yt)dt + b(Yt)dBt with a and b
globally Lipschitz. Indeed, by taking

f(x) = C

∫ x

x0

exp

(∫ t

t0

ϕ(s)ds

)
dt,

where

ϕ(x) =

{
ψ(x) if −2 < x < 2
−(1− 3x2)/(x− x3) otherwise

and ψ is an interpolation function between the points (−2, 11/6) and (2,−11/6) we get globally
Lipschitz drift and di�usion coe�cients a and b:

a(y) = C exp

(∫ f−1(y)

x0

ϕ(s)ds

)(
µf (y) +

σ2

2
ϕ(f−1(y))

)
,

and

b(y) = C exp

(∫ f−1(y)

t0

ϕ(s)ds

)
,

since their derivatives

a′(y) = C

(
ϕ(f−1(y))

(
µf (y) +

σ2

2
ϕ(f−1(y))

)
+ µ′(f−1(y)) +

σ2

2
ϕ′(f−1(y))

)
and b′(y) = Cϕ(f−1(y)) are bounded.

Finally we remark that the drift coe�cient µ(x) = x−x3 is actually one-sided Lipschitz since
its derivative is bounded from above and it is absolutely continuous. Thus an alternative to
transforming the double-well potential for simulating with the Euler-Maruyama method would
be to simulate it with the split step backward Euler method.
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4.2 Di�usion with constant di�usion coe�cient

Consider the SDE
dXt = (1 +X2

t )dt+ dBt X0 = 1.

The drift coe�cient for this SDE is neither globally Lipschitz nor one-sided Lipschitz, since its
derivative is unbounded in both directions. We can however transform it onto the SDE

dYt =

(
1− tanYt

(1 + tan2 Yt)2

)
dt+

1

1 + tan2 Yt
dBt Y0 = arctan(1)

using the transformation f(x) = arctan(x). But the coe�cient functions of this SDE are both
globally Lipschitz since

a(y) = 1− tan y

(1 + tan2 y)2
= 1− sin(y) cos3(y)

and

b(y) =
1

1 + tan2 y
= cos2(y)

are absolutely continuous functions with bounded derivatives

a′(y) = 3 sin2(y) cos2(y)− cos4(y)

and
b′(y) = −2 sin(y) cos(y).

So this is an example of a SDE with non-Lipschitz coe�cients that can be transformed onto a
SDE with Lipschitz coe�cients.

4.3 A hyperbolic di�usion

The following SDE is taken from [1] and it has the form

dXt = τ exp

(
1

2

(
α
√
δ2 + (Xt − µ)2 − β(Xt − µ)

))
dBt, X0 = ζ,

where the the parameters satisfy α > |β| ≥ 0, δ, τ > 0. Since this hyperbolic di�usion is
a di�usion in natural scale we may use Corollary 3.3 to deduce whether or not it may be
transformed onto a process with globally Lipschitz coe�cients. Notice that the test function
from the corollary

x 7→ σ(x)

∫ x

x0

(
2ψ(t)

σ2(t)
+
σ′′(t)

σ(t)

)
dt. (6)

is unbounded for each choice of a bounded ψ, since

lim
x→+∞

τ exp

(
1

2

(
α
√
δ2 + (x− µ)2 − β(x− µ)

))
= +∞
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so ψ(x)/σ2(x) will tend to zero as x→∞, and

σ′′(x)

σ(x)
=

1

4

(
α(x− µ)√
δ2 + (x− µ)2

− β

)2

+
1

2

(
α√

δ2 + (x− µ)2
− α(x− µ)2

(δ2 + (x− µ)2)3/2

)

tends to (α−β)2/4 as x→∞. From all this we can conclude that the integrand 2ψ/σ2 +σ′′/σ
is certainly not zero at in�nity so the function (6) is unbounded for all bounded ψ. Thus we
conclude from Corollary 3.3 that there exists no transformation f that transforms the hyperbolic
di�usion onto a SDE with globally Lipschitz coe�cients.

On the other hand there exists a transformation f that transforms the hyperbolic di�usion
onto a SDE with one-sided Lipschitz drift and globally Lipschitz di�usion. Indeed we can take

ψ = −σ
2

2

σ′′

σ

so that the integrand 2ψ/σ2 + σ′′/σ = 0. But ψ is bounded from above and thus we may
use Corollary 3.4 to conclude that there exists some transformation f that transforms the
hyperbolic di�usion onto a SDE with one-sided Lipschitz drift and globally Lipschitz di�usion.

4.4 A family of heavy tailed SDEs

For a given constant c < 0 this model is taken from [9] and it has the form

dXt = 3Xc
t dt+ 3X

2/3
t dBt, X0 = ζ > 0.

The Euler-Maruyama scheme turns out to be unstable for this scheme. Transforming this model
with a bijective f ∈ C2 yields

dYt =

(
3g(Yt)(f

−1(Yt))
c +

9

2
g(Yt)g

′(Yt)(f
−1(Yt))

4/3

)
dt+ 3g(Yt)(f

−1(Yt))
2/3dBt,

where g(y) = f ′(f−1(y)). If we take our ϕ = 0 so that k = 1 and thus f(x) =
∫ x
x0

1/σ = x1/3

this yields
dYt = (Y 3c−2

t − Y −1
t )dt+ dBt.

The drift coe�cient is not globally Lipschitz but it is one-sided Lipschitz so we can simulate
{Yt} with the backward Euler method, by simulating Ỹn = Yn + ∆Bn and then solving Yn+1 −
(Y 3c−2

n+1 − Y −1
n+1)∆ = Ỹn for Yn+1. A trajectory for {Xt} can then be obtained by transforming

the {Yt} trajectory back using the inverse transformation f−1(y) = y3.
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Now it would be interesting to see if we could get any further than this, that is if there
exists an transformation f such that the resulting SDE has globally Lipschitz drift and di�u-
sion coe�cients. Supposing that ϕ is non-negative and essentially bounded we obtain a drift
coe�cient on the form

a(y) = k(f−1(y))

(
(f−1(y))c−2/3 − 1

2
ϕ(f−1(y))− (f−1(y))−1/3

)
,

where as before k(x) = exp
(∫ x

x0
ϕ(t)/(3t2/3)dt

)
and its derivative has the form

a′(y) = ϕ(f−1(y))

(
(f−1(y))c−2/3 − 1

2
ϕ(f−1(y))− (f−1(y))−1/3

)
+

3

2
(f−1(y))2/3ϕ′(f−1(y)) + (3c− 2)(f−1(y))c−1 + (f−1(y))−2/3.

For y's such that f−1(y) is close to zero a′ tends to in�nity regardless of our choice of ϕ, since
ϕ ◦ f−1 is essentially bounded. Similarly for y's such that f−1(y) tends to in�nity a′ will tend
to in�nity regardless of which essentially bounded ϕ we choose. Our conclusion is that we can
not transform this SDE onto a new SDE with globally Lipschitz drift and di�usion coe�cients.

4.5 The CKLS model

The CKLS model, which was �rst introduced in [2] is a model on the form

dXt = (α + βXt)dt+ σXγ
t dBt X0 = ζ > 0,

where α, β ∈ R and σ, γ > 0. Transforming the CKLS model with a bijective f ∈ C2 yields

dYt =

(
g(Yt)(α + βf−1(Yt)) +

1

2
g(Yt)g

′(Yt)σ
2(f−1(Yt))

2γ

)
dt+ g(Yt)σ(f−1(Yt))

γdBt,

where g(y) = f ′(f−1(y)). If we allow only positive values for the original CKLS process {Xt}
then the di�usion coe�cient x 7→ σxγ is strictly positive. From section 3.2.1 we can deduce that
in order for the transformed di�usion coe�cient b(y) = g(y)σ(f−1(y))γ to be globally Lipschitz,
f needs to have the form

f(x) =

∫ x

x0

k(t)

σtγ
dt,

almost everywhere, where k(x) = exp
(∫ x

x0
ϕ(t)/σtγdt

)
and ϕ is some essentially bounded

function. Taking ϕ = 0 yields the transformation f(x) = x1−γ/σ(1 − γ), γ 6= 1 and gives us
the following form for {Yt}.

dYt = ασ1/(γ−1)((1− γ)Yt)
γ/(γ−1) + β(1− γ)Yt −

γ

2(1− γ)
Y −1
t dt+ dBt.
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Let's take a closer look at the drift coe�cient

a(y) = ασ1/(γ−1)((1− γ)y)γ/(γ−1) + β(1− γ)y − γ

2(1− γ)
y−1,

its derivative is

a′(y) = αγ(σ(1− γ)y)1/(γ−1) + β(1− γ) +
γ

2(1− γ)
γσy−2

which is clearly not bounded, the y−2 term tends to in�nity for low values of y and y1/(γ−1) tends
to in�nity for high values of y. We can conclude that choosing ϕ = 0 as our essentially bounded
function does not yield a global Lipschitz drift coe�cient. What can however be done is to
notice that a is one-sided Lipschitz and simulate the transformed equation with the split step
backward method. But it would be interesting to see if we can �nd some essentially bounded
ϕ that makes the resulting a globally Lipschitz. If we consider non-zero ϕ the drift coe�cient
takes the following form

a(y) = k(f−1(y))

(
α + βf−1(y)

σ(f−1(y))γ
+

1

2

(
ϕ(f−1(y))− γσ(f−1(y))γ−1

))
and its derivative has the following form

a′(y) = ϕ(f−1(y))

(
α + βf−1(y)

σ(f−1(y))γ
+

1

2

(
ϕ(f−1(y))− γσ(f−1(y))γ−1

))
+ k(f−1(y))

(
β

g(y)σ(f−1(y))γ
− γ α + βf−1(y)

g(y)σ(f−1(y))γ+1

)
+
k(f−1(y))

2

(
ϕ′(f−1(y))

g(y)
− γ(γ − 1)σ

(f−1(y))γ−2

g(y)

)
= ϕ(f−1(y))

(
α + βf−1(y)

σ(f−1(y))γ
+

1

2

(
ϕ(f−1(y))− γσ(f−1(y))γ−1

))
+ β − γ(α + βf−1(y))

f−1(y)
+

1

2

(
σ(f−1(y))γϕ′(f−1(y))− γ(γ − 1)σ2(f−1(y))2γ−2

)
.

If γ < 1 then the (α + βf−1(y))/σ(f−1(y))γ and γ(α + βf−1(y))/f−1(y) terms push a′ toward
in�nity for y's such that f−1(y) is close to zero. The former one of those can be handled by
making ϕ tend to zero as f−1(y) tends to zero, but that does not really improve the situation
as the latter still tends to in�nity for as f−1(y) tends to zero. In the case of γ > 1 these two
terms along with the term γ(γ−1)σ2(f−1(y))2γ−2 pushes to zero as f−1(y) tends to zero, so the
the situation is no better here. Finally we have assumed that γ 6= 1, in that case the original
CKLS equation is globally Lipschitz in both coe�cients. We conclude that there does not exist
a transformation f that transforms the CKLS model onto a new SDE with globally Lipschitz
drift and di�usion coe�cients.
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5 Conclusion

In this thesis we have explored the scope of the method of transforming a SDE with non-
Lipschitz coe�cients onto another SDE with either globally Lipschitz coe�cients or a one-sided
Lipschitz di�usion coe�cient and a globally Lipschitz di�usion coe�cient using a bijective
transformation. We have seen that such a transformation does not necessarily exist. We have
proven general results on when such a transformation exists, as well as some results on more
speci�c cases.
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