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Abstract
In this thesis we model electricity spot prices in the German electricity market.

The models being investigated incorporates mean-reversion, jumps, seasonality and
GARCH behavior. Several di�erent models were estimated to compare the relative
importance of the factors. The work with this thesis was done during my stay at
the Technical University of Munich.
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1 Introduction
Since the deregulation of electricity markets around the world, modeling of electricity
prices has become a growing research area. Electricity prices as well as many other
commodities exhibit strong seasonality. mean-reversion, jumps and stochastic volatility
are other characteristics of electricity prices. In this master thesis we will investigate
some models for electricity prices in the German market. In Section 2 the mathematical
background for our model is given. In Section 3 the concept of maximum likelihood
and the BHHH algorithm which is used for the parameter estimation are explained.
Section 4 gives a short introduction to electricity markets. A data analysis is performed
in Section 5 and in Section 6 we de�ne our model and test the parameter estimation.
In Section 7 several di�erent versions of the model are investigated and we also look at
how it behaves when simulating it. In Section 8 the pricing of futures is discussed. And
�nally in Section 9, we make some concluding remarks, as well as discuss future research
areas.
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2 Mathematical background
In this section we will go through some basic concepts that will be used through out the
thesis.

2.1 Compound Poisson process
Let N(t) be a Poisson process with intensity λ and let Y1, Y2, ... be a sequence of indepen-
dent identically distributed random variables with mean β = E[Yi] that are independent
of N(t). We de�ne the compound Poisson process J(t) as

J(t) =
Nt∑

i=1

Yi, t ≥ 0.

The mean of the compound Poisson process is

E[J(t)] =
∞∑

k=1

E[
k∑

i=1

Yi | N(t) = k]P[N(t) = k]

=
∞∑

k=1

βk
(λt)k

k!
e−λt

= βke−λt
∞∑

k=1

(λt)k−1

(k − 1)!

= βλt.

There are λt jumps in the time interval [0,t] on average and the average jump size is β

2.2 Vasicek interest rate model
In 1997 Vasicek [20] introduced a model for interest rates that captures the essential
mean-reversion characteristic for interest rates. Let W (t), t ≥ 0, be a Brownian motion.
The Vasicek model for the interest rate process R(t) is given by

drt = κ(θ − rt)dt + σdWt,

where κ , θ and σ are positive constants. Here κ is called the mean-reversion speed, θ is
the long-run equilibrium level and σ is the volatility. The stochastic di�erential equation
has an explicit solution given by

rt = rse
−κ(t−s) + θ(1− e−κ(t−s)) + σ

∫ t

s
e−κ(t−u)dWu,

where s ≤ t. It can easily be showed that

E[rt | rs] = rse
−κ(t−s) + θ(1− e−κ(t−s)),

V ar[rt | rs] =
σ2

2a
(1− e−2κ(t−s)).
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Since we now know the distribution we can use the maximum likelihood method, se
Section 3.1 to estimate the parameters of the model.See also for example the book by
Brigo and Mercurio [5].

2.3 GARCH models
Autoregressive conditional heteroscedasticity (ARCH) models were �rst introduced by
Engle [8]. Bollerslev [4] developed the generalized ARCH (GARCH). A stochastic process
Xt is called GARCH(p,q) if it follows the following equation

Xt = σtZt,

where Zt is i.i.d N (0,1) and σt comes from the equation

σ2
t = ω +

p∑

i=1

αiX
2
t−i +

q∑

j=1

βjσ
2
t−j ,

where the constants ω, αi, βj ≥ 0. The case q = 0 corresponds to ARCH(p) process.
Bollerslev showed in [4] that the GARCH process to is second-order stationary if and
only if

ω > 0,

p∑

i=0

αi +
q∑

j=1

βj < 1.

For further reading on GARCH we recommend Bollerslev [4] and the book by Straumann
[18]
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3 Parameter estimation methods
3.1 Maximum likelihood
The maximum likelihood is a method to estimate unknown parameters in statistical
model for a given data set. The method assumes that the probability density function
of the observed data is known, except for some unknown parameters. The parameters
are estimated through maximizing the probability of getting the observed data from
the given probability density function. Denote the probability density function for a
random variable Y , conditioned on a set of parameters θ ∈ Θ, where Θ is domain in
R by f(y | θ). Our observed sample values are y1, y2, ..., yn, the probability of getting
them is f(y1, y2, ..., yn | θ) which is the joint probability density function of the entire
sample. If the observations are independent and identically distributed (i.i.d.) we have

f(y1, y2, ...., yn | θ) =
n∏

i=1

f(yi | θ).

The likelihood function for the sample data is de�ned by

L(θ | y) =
n∏

i=1

f(yi | θ),

which we want to maximize, this maximization is however the same as maximizing the
logarithm of the likelihood function because the logarithm is a monotonic function. Set

l(θ | y) := ln(L(θ | y)).

It is for numerical reasons usually simpler to maximize the log-likelihood function and
it is used instead of likelihood function.

l(θ̂ | y) = arg max
θ∈Θ

l(θ | y).

To �nd the maximum likelihood estimate we take the partial derivatives and set them
equal to zero.

∂l(θ | y)
∂θ

=
∂(ln(L(θi | y)))

∂θi
= 0 i = 1, ..., k.

Since we want to �nd a maximum the following condition also has to be satis�ed

∂2l(θ | y)
∂θ2

=
∂2(ln(L(θi | y)))

∂θ2
i

< 0 i = 1, ..., k.

The set of parameters satisfying the two conditions above are a maximum likelihood
estimation. The calculation of the derivatives might be very hard and one often needs
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some special algorithm to do that. In the paper from Arnericit et al. [2] it is very good
explained how the maximization can be made, we will follow that work. We need an
algorithm that after each iteration moves to a new value of the parameters at which
ln(L(θ)) is higher than at the previous step. The current value at iteration k is denoted
by θk, how should then the next θk+1 be chosen to get a higher value. To determine
the best value of θk+1 , a second-order Taylor approximation of ln(L(θk+1)) around
ln(L(θk)) is used,

ln(L(θk+1))

= ln(L(θk)) + (θk+1 − θk)T ∂ln(L(θk))
∂θk︸ ︷︷ ︸
=gk

+
1
2
(θk+1 − θk)T ∂2ln(L(θk))

∂θ2
k︸ ︷︷ ︸

=Hk

(θk+1 − θk). (3.1)

Now we will maximize Equation 3.1 with respect to θk+1,

∂ln(L(θk+1))
∂θk+1

= gk + Hk(θk+1 − θk)

Hk(θk+1 − θk) = −gk

θk+1 = θk + (−Hk)−1gk. (3.2)

The Newton procedure uses Equation 3.2. From the current value of θk the step
(−Hk)−1gk is taken to get to the new value θk+1. However one normally also has a scalar
λk, that guaranties that each step of the procedure provides an increase in ln(L(θk))

θk+1 = θk + λk(−Hk)−1gk, (3.3)
where (−Hk)−1gk is called the direction, denoted dk, and λk is called the step size.
Equation 3.3 is often referred to as the Newton-Raphson algorithm when the Hessian
is determined analytically. Calculation of the Hessian is usually computation-intensive,
i.e. analytical Hessian is rarely available. Therefore we need an alternative calculation
of the Hessian which leads us to the BHHH algorithm which is described in the next
section.
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3.2 BHHH algorithm
The BHHH algorithm was introduced by Berndt, Hall, Hall and Hausman in [3] and
is an extension of the Newton-Raphson algorithm. In our description of the algorithm
we will follow the work from Arnericit et al. [2]. The algorithm uses an information
identity. The iterative procedure is de�ned as

θk+1 = θk + λkdk

dk = −H−1
k gk

Hk =
T∑

t=1

gtg
T

gk =
T∑

t=1

gt. (3.4)

According to the relations in Equation 3.4, the information identity means that minus
the expected Hessian at the true parameters is equal to the covariance matrix of the
�rst derivatives. Which means that minus the Hessian can be approximated as an outer
product of gradient (OPG). For further properties of the OPG see Arnericit et al. [2].
The numerical optimization procedure of the BHHH algorithm can be summarized in
following steps:

1. Determine initial vector of parameters θs and convergence criteria.

2. Calculate a direction vector [−H(θk)]−1 where H(θk) is calculated by the OPG

3. Calculate a new vector θk+1 = θk+1 + λdk , where λ is scalar. Start with λ = 1. If
f(θk + dk) > θk) try with λ = 2 . If f(θk + 2dk) > θk) try with λ = 3 , etc. until
a λ is found for which f(θk + λdk) is a maximum.

4. If the convergence criteria is satis�ed the algorithm stops, if not step 2 to 4 is
repeated

The BHHH algorithm is implemented in R in the package Maxlik. In this work that
package is used, therefore we will not go into further details of the algorithm.
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4 Electricity market
In the last two decades a lot of countries around the world have started to deregulate
their electric power sectors. Nowadays there are several countries with electricity market-
places. The Nordic power market Nordpool was the �rst market place, where electricity
could be traded across borders. In Germany electricity is traded at the European Energy
Exchange since 2000.

Electricity prices are determined by the supply (generation) and the demand (consump-
tion) on the market. Since electricity can not be stored in a direct way, generation and
consumption have to be continuously balanced. The demand of electricity is very inelas-
tic because consumers �nd it as a necessary commodity. Due to the inelastic demand
and non storability of electricity, electricity prices have extreme spikes. The way in
which electricity is generated varies between di�erent markets. The Nordic market has
a large part that comes from hydro and is therefore less in�uenced by fuel prices (coal,
oil, natural gas) as compared with the German market, see Table 4.1. It is possible
to save water for hydro generation in reservoirs, therefore the Nordic market have less
spikes and prices are highly depended on reservoir levels.

Table 4.1: Composition of generation in Germany and Sweden 2006 (Source: Nordel [14]
and VDEW [19])

Germany Sweden
Renewable 3.23% 46%
Nuclear 33.3% 44%
Thermal power 63.5% 10%

7



The supply and demand of electricity is in�uenced by a very large number of factors.
The in�uence from weather and business cycles are reasons for the seasonal patterns in
electricity markets. Political decisions also have a big in�uence on electricity markets.
In 2005 the European Union introduced a system for CO2- emissions which has a big
impact on electricity generation based on fuels. The list of factors in�uencing electricity
prices is very long and will not be discussed further, however we conclude that electricity
prices have some special characteristics such as

1. Seasonality.

2. Spikes.

3. Mean-reversion.

4. Stochastic volatility.

5 Data analysis
We will work with data from the European Energy Exchange (EEX). The data is daily
average spot prices base load from the period 1.1.2002-30.6.2008, which consists of 2373
data points. In Figure 5.1 our data set is plotted.
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Figure 5.1: The electricity spot prices from EEX 1.1.2002-30.6.2008

We notice that our data is extremely volatile. In Table 5.1 some descriptive statistics for
the data can be found. The data exhibits both positive and negative spikes/jumps. The
mean is higher than the median which indicates that the data is skewed to the right.
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Table 5.1: Descriptive statistics

Min Median Mean Max Var SD Skewness Kurtosis
3.12 37.03 37.80 301.5 400.7 20.02 2.712 22.30

The positive skewness value con�rms the possibility of a positively skewed distribution.
The positive kurtosis value indicates a relatively peaked distribution. In Figure 5.2 is a
plot of a kernel density estimate for the data. By looking at the kernel density estimate
we see that the distribution is peaked and skewed to the right.
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Figure 5.2: A kernel density estimate for the data

Figure 5.3 shows a normal qq-plot of the data. If the data would be normally distributed
the graph would be a straight line. We can clearly see that our data does not follow the
normal distribution since the tails are much heavier than the normal distribution.

Table 5.2: Median of data for weekdays and the di�erence from the median of the data

Weekday Mon Tue Wed Thu Fri Sat Sun
Median 35.72 37.03 38.38 37.21 34.8 27.83 21.08
Di� 2.82 4.13 5.48 4.31 1.9 -5.07 -11.82

From Table 5.2 we conclude that the data has a very strong weekly seasonality. Since
weekends have much lower prices it seems that the prices are very sensitive to the
demand. Therefore we also took a closer look at the data regarding if holidays could

9
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Figure 5.3: Normal qq-plot of the data

have the same e�ect. We found 11 holidays1 that seems to have major e�ect on the
prices. In Table 5.3 one can �nd the median for the holidays and also for the weekdays
when the holidays were removed. We see that the holiday also has a major e�ect on the
prices.

Table 5.3: Median of the data for weekdays and holidays

Mon Tue Wed Thu Fri Sat Sun Holiday
35.61 37.025 38.295 37.14 34.695 27.825 21.06 21.03

We also conclude that it seems like the weekly seasonality can not be modeled by a sinus
function and that dummy variables seem to be more appropriate.

In Table 5.4 it can be seen that the data has monthly seasonality but it is not as strong
as the weekly seasonality. It does not look like the monthly seasonality can be modeled
by a sinus function and that again dummy variables seem more appropriate.

1Neujahr, Karfreitag, Ostermontag, Maifeiertag, Christi Himmelfahrt, P�ngstmontag, Tag der
Deutschen Einheit,1. Weihnachtstag, 2. Weihnachtstag, Heiligabend, Silvester
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Table 5.4: Median of the data for months
Jan Feb Mar Apr May Jun
33.015 35.46 31.325 30.54 30.235 34.775
Jul Aug Sep Oct Nov Dec
31.69 31.36 34.08 35.78 35.28 34.87

In Figure 5.4 the running moving average for the median of the data with window size
91 days is plotted. As the running moving average at point j with window size k we use

MA(k) = median((Xi)
j
i=j−k).

One can see a trend in the data, which depends on factors in�uencing the electricity
prices. The long run trend has probably a high degree of dependence from CO2 and
fuel prices. The big downfall in 2006 was due to that the CO2 prices fell dramatically,
then in 2008 they rose quickly again. There has also been a large increase in fuel prices
over the last years. To be able to model the trend in a good way one probably needs to
consider both CO2 and fuel prices. Future prices might give an indication of the trend
expected on the market.
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Figure 5.4: Running moving average for the data set with window size 91
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Table 5.5 shows the result of a linear regression for the data. The R2 value is 0.3348,
which says that the linear trend can explain 33 percent of the �uctuations. In Figure
5.5 the trend together with the data is plotted. We see that a linear trend can be used
as an approximation of the trend but it is not a particulary good one.

Table 5.5: Estimation liner trend
Coe�cient Estimate Std.Error t value Pr(>|t|)
a 20.66 0.5112 40.41 <2e-16
b 0.01278 0.0003761 33.99 <2e-16
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Figure 5.5: Linear trend for the data
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6 Model setup
The model that we will investigate contains of two parts, a jump process and a di�usion
process with stochastic volatility. Similar models have been investigated in Knittel and
Roberts [11] and Escribano et al. [9].

Continuous time model
The di�usion process in continuous time without stochastic volatility is de�ned as

dDt = κ(θt −Dt)dt + σdWt,

where Wt is a Brownian motion. The process is a so called Vasicek process, see Section
2.2. The jump process is a compounded Poisson process, see Section 2.1.

Jt =
Nt∑

i=1

Yi,

where Yi are normally distributed with parameter µJ and σJ . Nt is poisson process with
intensity λ. Merging the two parts gives us

dSt = κ(θt − St)dt + σdWt + dJt.

Discrete time model
We will now derive the model in discrete time. The Euler scheme with discretization
factor ∆ for the di�usion part is

Dt = Dt−∆ + κ(θ −Dt−∆)∆ + σZt,

where Zt are i.i.d N (0,
√

∆).

If we look at the compounded Poisson process in a very short interval ∆ we will either
have a jump or do not a jump

∆Jt =
{

0
Yi.

The probability of exactly one jump in an interval ∆ is

P(Nt+∆ −Nt = 1) = e−λ∆︸ ︷︷ ︸
≈1

λ∆ = λ∆.

From Section 2.1 we also know that there is λt jumps in the time interval [0,t] on average,
which corresponds to the approximation above. Merging the two parts in discrete time
with θ = 0 gives us

St =
{

St−∆(1− κ∆) + σ
√

∆Z1,t, with probability 1− λ∆
St−∆(1− κ∆) + σ

√
∆Z1,t + µJ + σJZ2,t, with probability λ∆,

where Z1,t are i.i.d N (0,
√

∆) and Z2,t are i.i.d N (0,1).
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Setting ∆ = 1 and adding GARCH(1,1) behavior gives us the following model

St =
{

St−1(1− κ) + σtZ1,t, with probability 1− λ
St−1(1− κ) + σtZ1,t + µJ + σJZ2,t, with probability λ,

where Z2,t and Z1,t are i.i.d N (0,1) and σ2
t follows

σ2
t = w + α(σt−1Z1,t−1)2 + βσ2

t−1.

Due to independence of Z1,t and Z2,t and the convolution of the normal cumulative
distribution function we can write

St =

{
St−1(1− κ) + σtZt, with probability 1− λ

St−1(1− κ) + µJ +
√

σ2
t + σ2

JZt, with probability λ,
(6.1)

where Zt are i.i.d N (0,1) and σ2
t follows

σ2
t = w + α(σt−1Zt−1)2 + βσ2

t−1.

Remark The reason for setting θ = 0 is that we will incorporate θ in f(t), a determin-
istic function that adjust for the seasonality in the data.

Remark If we will work on a di�erent timescale than ∆ = 1 we must adjust the
parameters.

Remark The discrete time Vasicek model is actually nothing but an AR(1) model.

6.1 Parameter estimation
The probability density function for the model in Equation 6.1 is

f(St, St−1) = λ exp
[−(St − (1− κ)St−1 − µJ)2

2(σ2
t + σ2

J)
1√

2π(σ2
t + σ2

J)

]

+ (1− λ) exp
[−(St − (1− κ)St−1)2

2σ2
t

1√
2πσ2

t

]
.

We will use the BHHH algorithm, see Section 3.2 for the parameter estimation of the
model. We calculate σt iteratively with the approximation that we have λ jumps with
hight µJ on average. First an initialization has to be made for the �rst values of σt then
we use the following formula

σ2
t = ω + α(St−1 − (1− κ)St−2 − λµJ) + βσ2

t−1.

14



6.2 Simulation
We will now make an illustration of our model. We start by simulating a path of length
n = 2000 for the parameter vector (ω, α, β, κ, µJ , λ, σJ) = (5, 0.2, 0.45, 0.25, 10, 0.05, 25),
the path can be view in Figure 6.1.
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Figure 6.1: Simulation from the model

6.3 Restimation
Further on we will estimate the parameters in our model from the simulated paths. By
doing so one gets an idea how good the parameter estimation works. 100 simulations
with the following estimation were done then we take the 5%- and 95% quantile, the
result can be found in Table 6.1.

Table 6.1: Result from the parameter estimation

Parameter Original value 5% quantile 95% quantile
ω 5 4.375 6.370
α 0.2 0.1852 0.2937
β 0.45 0.3688 0.4875
κ 0.25 0.2285 0.2698
µJ 10 5.558 13.975
λ 0.05 0.04222 0.06541
σJ 25 22.00 28.04
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We notice that the original value is always between the two quantiles, therefore the
estimation procedure works very well. The procedure has been tested for lots of di�erent
values and also for di�erent starting values and the estimation works well.

6.4 Modeling seasonality
Electricity prices often has several seasonal patterns; daily, weekly and monthly season-
ality are common. Seasonal patterns are often described with a deterministic function,
which usually is done additive when the spot price is modeled directly and multiplica-
tive when ln S(t) is modeled. Sinusoidal functions with di�erent periodicity (yearly, half
yearly, weekly etc) are often used for the modeling. Another approach is to use dummy
variables for weekdays and months. In Lucia and Schwartz [7] both dummy variables
and sinusoidal functions were tested on the Nordic power market. The result was that
dummy variables increased the likelihood for the model. However dummy variables re-
quires more variables than sinusoidal modeling. Linear trend might also be incorporated
for modeling seasonality, this was done in Geman and Roncoroni [10]. In Burger et. al
[6] the seasonality is modeled using load forecasting and the availability for plants. Since
our initial data analysis does not indicate any sinusoidal patterns we will use dummy
variables to model the seasonality. The data analysis also indicated a linear trend which
will be incorporated in the model.

7 Model investigation
In this section several di�erent models on our data will be tested. We will both model
the spot price and the logarithm of the spot price. To be able to conclude which model
that performs best we will use several criteria:

1. Schwarz criterion, see Section 7.1.

2. Ex post goodness of �t criteria, see Section 7.5.

3. Comparing the distributional characteristics of the original data and simulated
prices from the models, see Section 7.6.

7.1 Schwarz criterion
Schwarz criterion (SC) was introduced in [17], it is sometimes called the Bayesian in-
formation criterion. Let n denote the number of observations, p the number of free
parameters to be estimated and LL the maximized value of the log-likelihood function
for the estimated model. The formula for the SC is

SC(model) = −2 · LL(model) + log(n) · p.

The criterion says that the model with the smallest SC-value should be selected. Lower
SC implies either fewer explanatory variables, better �t, or both. Another similar criteria
is the Akaike information criterion [1], where log(n) is replaced by 2. Since log(n) > 2 in
our case, the SC penalizes more parameters more strongly than the Akaike information
criterion.
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7.2 Modeling spot prices
Model 7.1.

Pt = St + ft

St =

{
St−1(1− κ) + σtZt, with probability 1− λ

St−1(1− κ) + µJ +
√

σ2
t + σ2

JZt, with probability λ

σ2
t = w + α(σt−1Z1,t−1)2 + βσ2

t−1,

where Zt are2 i.i.d N (0,1).

We will try four di�erent seasonality functions

fa,t = B0 + B1t +
7∑

i=1

(Di × weekday) + D8 × holiday,

fb,t = B0 + B1t +
6∑

i=1

(Di × weekday) + D7 × holiday/sunday,

fc,t = B0 + B1t + D0 × holiday/weekend,

fd,t = B0 + B1t +
6∑

i=1

(Di × weekday) + D7 × holiday/sunday +
12∑

i=1

(Mi ×month).

Remark In seasonality function fa,t the value for a holiday depends both on which
weekday it occurs and the dummy variable for holidays. But in fb,t the weekday that a
holiday occurs on does not in�uence the value.

The probability density function for Model 7.1 is

f(Pt, Pt−1) = λ exp
[−(Pt − ft − (1− κ)(Pt−1 − ft−1)− µJ)2

2(σ2
t + σ2

J)
1√

2π(σ2
t + σ2

J)

]

+ (1− λ) exp
[−(Pt − ft − (1− κ)(Pt−1 − ft−1))2

2σ2
t

1√
2πσ2

t

]
.

We will use the BHHH algorithm, see Section 3.2 for the parameter estimation. The
result from the parameter estimation can be found in Table 7.1.

2from now on Zt are always i.i.d N (0,1)
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Table 7.1: Estimated Parameters for Model 7.1
Variables Model 1 a Model 1 b Model 1 c Model 1 d
ω 3.814 3.752 3.345 3.891
α 0.2969 0.2913 0.1715 0.3010
β 0.5169 0.5273 0.7421 0.5163
κ 0.1546 0.1542 0.2292 0.1561
µJ 12.26 13.35 18.41 14.52
λ 0.04745 0.04421 0.02696 0.04199
σJ 21.86 21.86 28.70 22.013
B0 19.64 19.72 20.00 20.24
B1 0.01140 0.01136 0.01204 0.01125
D0 -9.412
D1 2.358 2.540 2.437
D2 3.864 3.734 3.937
D3 4.206 3.942 4.290
D4 3.857 3.579 3.953
D5 2.128 1.738 2.184
D6 -4.751 -4.867 -4.643
D7 -10.70 -10.50 -10.69
D8 -10.34
M1 -1.769
M2 -0.2800
M3 -1.353
M4 -0.7006
M5 -1.666
M6 0.1526
M7 -0.507
M8 -1.058
M9 0.9404
M10 2.712
M11 -1.695
M12 -2.775
LL -7645 -7631 -8208 -7621
SC 15347 15316 16453 15336

We conclude that Sundays and holidays should be treated in one dummy variable to-
gether. Adding the monthly seasonality dummy variables does not improve the model.
The second seasonality function fb,t had the lowest SC-value, therefore from now on we
will only work with the seasonality function fb,t.
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We will now remove the GARCH behavior from the model to be able to see how that
e�ects the model.

Model 7.2.

Pt = St + ft

St =

{
St−1(1− κ) + σ · Zt, with probability 1− λ

St−1(1− κ) + µJ +
√

σ2 + σ2
JZt, with probability λ

ft = B0 + B1t +
6∑

i=1

(Di × weekday) + D7 × holiday/sunday.

The result from the parameter estimation can be found in Table 7.2. We will now remove
the jump part and then later on also the GARCH behavior to see how that e�ects the
model.

Model 7.3.

Pt = St + ft

St = St−1(1− κ) + σtZt

σ2
t = w + α(σt−1Z1,t−1)2 + βσ2

t−1

ft = B0 + B1t +
6∑

i=1

(Di × weekday) + D7 × holiday/sunday.

Model 7.4.

Pt = St + ft

St = St−1(1− κ) + σ · Zt

ft = B0 + B1t +
6∑

i=1

(Di × weekday) + D7 × holiday/sunday.

The result from the parameter estimation can be found in Table 7.2
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Table 7.2: Estimated Parameters for Model 7.1b, 7.2, 7.3 and 7.4

Variables Model 7.1b Model 7.2 Model 7.3 Model 7.4
ω 3.752 4.195
α 0.2914 0.7116
β 0.5273 0.4886
σ 4.590 10.96
κ 0.1543 0.1883 0.1123 0.2922
µJ 13.36 7.976
λ 0.04421 0.1031
σJ 21.86 30.99
B0 19.72 18.39 18.37 19.58
B1 0.01136 0.01124 0.01501 0.01455
D1 2.541 4.902 3.726 4.435
D2 3.734 6.155 5.166 7.799
D3 3.942 6.594 5.052 6.878
D4 3.579 6.098 4.670 6.493
D5 1.738 4.000 2.535 2.763
D6 -4.867 -3.344 -4.000 -5.923
D7 -10.50 -9.473 -9.871 -13.16
LL -7631 -7900 -7874 -9049
SC 15316 15847 15792 18135

In Table 7.2 it can be seen that both the spikes and the GARCH behavior have large
e�ect on the log-likelihood value. We also notice that the stationarity condition α+β < 1
does not hold in Model 7.3. From the SC-value we conclude that Model 7.1 with fb,t

is the best one, which con�rms that a good model should incorporate both jumps and
GARCH behavior.
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Some di�erent GARCH processes were tested to see the e�ects on the model. The result
can be found in Table 7.3

Table 7.3: Estimated Parameters for di�erent GARCH models
Variables GARCH(1,1) ARCH(1) GARCH(2,2)
ω 3.752 13.24 5.818
α1 0.2914 0.3576 0.3020
β1 0.5273 -0.05123
α2 0.1494
β2 0.3171
κ 0.1543 0.1809 0.1553
µJ 13.36 9.715 13.23
λ 0.04421 0.08515 0.04458
σJ 21.86 19.65 21.77
B0 19.72 20.44 19.84
B1 0.01136 0.01011 0.01126
D1 2.541 2.625 2.500
D2 3.734 3.931 3.715
D3 3.942 4.441 3.937
D4 3.579 4.048 3.554
D5 1.738 1.949 1.701
D6 -4.867 -5.205 -4.926
D7 -10.50 -11.00 -10.55
LL -7631 -7709 -7631
SC 15316 15469 15320

The ARCH(1) improves the model a lot, compared to Model 7.2 with constant volatility
but the GARCH(1,1) outperforms ARCH(1). We further notice that our estimates for
the GARCH(2,2) fails the condition αi βj > 0, therefore our estimates is not a valid
GARCH process. Since the GARCH(2,2) model does not have better log-likelihood
value we will not try to change our estimator to obtain αi, βj > 0. We conclude that
GARCH(1,1) seems to be the best option.
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The next step in our investigation will be to see how good our estimation of the trend
is, we will now try a moving average instead of the linear trend. Figure 7.1 shows a plot
of the new data that we are modeling. We have removed the running moving average
for the median of the data using a window size of 91 days from the spot price.
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Figure 7.1: Spotprice-MA(91)

Model 7.5.

Pt = St + ft + MA(91, Pt)

St =

{
St−1(1− κ) + σtZt, with probability 1− λ

St−1(1− κ) + µJ +
√

σ2
t + σ2

JZt, with probability λ

σ2
t = w + α(σt−1Z1,t−1)2 + βσ2

t−1

ft = B0 +
6∑

i=1

(Di × weekday) + D7 × holiday/sunday,

where MA(91) is running moving average for the median of the data using a window
size of 91 days.
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Table 7.4: Estimated Parameters for Model 7.1 and 7.5
Variables Model 7.1 Model 7.5
ω 3.752 2.581
α 0.2914 0.2725
β 0.5273 .6027
κ 0.1543 0.2725
µJ 13.36 15.03
λ 0.04421 0.03316
σJ 21.86 25.13
B0 19.72 2.005
B1 0.01136
D1 2.541 0.05765
D2 3.734 1.122
D3 3.942 1.319
D4 3.579 0.9494
D5 1.738 -0.813
D6 -4.867 -7.295
D7 -10.50 -12.88
LL -7631 -7543

In Table 7.4 we see that Model 7.5 has a much higher log-likelihood value than Model
7.1. One can also notice that κ, the mean reversion has a much higher value for Model
7.5, this is due to that the moving average models the trend much better than our linear
trend in Model 7.1 does.

7.2.1 Simulation
Figure 7.2 shows a simulation of Model 7.1 using the estimated parameters. We see
that our simulated paths looks similar to the original data expect for that we also get
negative values from the model. This is a property that is highly unwanted because it
will not happen in reality. The reason for why the model easily get negative values is
that the model tries to model all jumps in the data in the same way but in reality most
of the negative jumps occur directly after a positive jump. This is a feature which the
model does not capture.
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Figure 7.2: Simulation of prices for Model 7.1
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7.3 Modeling log-prices
The next step in our investigation will be to model the logarithm of the prices. By
modeling the log-prices instead, we can make a transform back to get the real prices, by
doing so we will not get negative values from our model. However if we directly try to
model the log-prices, the seasonality will be transformed to a di�erent scale. Because of
the strong trend that we have in the data the weekly seasonality will be hard to model.
Therefore we will adjust for the weekly seasonality before we take the logarithm. The
adjustment for the weekly seasonality is done by adjusting for the median of the data
for each weekday. In Figure 7.3 a plot of the adjusted data can be viewed.
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Figure 7.3: Spot prices adjusted for weekly seasonality

In Figure 7.4 a plot of logarithm of the adjusted data can be viewed. As one can see the
new data shares the same characteristics as the data we modeled before but the trend
seems to have bigger impact.
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Figure 7.4: The logarithm of the adjusted data

The �rst model that we will test is

Model 7.6.

log(Pt − f1,t) = St + f2,t

St =

{
St−1(1− κ) + σtZt, with probability 1− λ

St−1(1− κ) + µJ +
√

σ2
t + σ2

JZt, with probability λ

σ2
t = w + α(σt−1Z1,t−1)2 + βσ2

t−1

f1,t = Median(Pt)−
7∑

i=1

(Median(weekday))−Median(holiday)

f2,t = B0 + B1t.

We will use the same estimation procedure as before and the results can be found in
Table 7.5. The next step is to try a moving average instead of the linear trend.
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Model 7.7.

St = log(Pt − f1,t)−MA(91, log(Pt − f1,t))

St =

{
St−1(1− κ) + σtZt, with probability 1− λ

St−1(1− κ) + µJ +
√

σ2
t + σ2

JZt, with probability λ

σ2
t = w + α(σt−1Z1,t−1)2 + βσ2

t−1

f1,t = Median(Pt)−
7∑

i=1

(Median(weekday))−Median(holiday),

where MA(91) is running moving average for the median of the data using a window
size of 91 days.

Table 7.5: Estimated Parameters for Model 7.6 and 7.7
Variables Model 7.6 Model 7.7
ω 0.004483 0.003993
α 0.2253 0.2030
β 0.5273 0.5480
κ 0.1641 0.2866
µJ 0.0514 0.07442
λ 0.1018 0.0947
σJ 0.3065 0.3273
B0 3.057
B1 0.0003976
LL 837 922

We notice that also here κ has a much larger value then we are working with the model
with the removed moving average.

Remark Since we are working on a di�erent data set now we can not compare this
model to the previous once. However we will do a post goodness of �t test to be able to
compare them later on.
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7.3.1 Simulation
In Figure 7.5 Model 7.6 is simulated using the estimated parameters. We see that it is
no longer possible to get negative values from the model. The simulated paths looks
very similar to our original data set.
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Figure 7.5: Simulation of prices for Model 7.5
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7.4 Extreme value approach
We will now take on a di�erent approach when modeling the jumps. Since the negative
jumps mostly come after a positive jump, we will ignore the negative jumps. Lets start
by de�ning the model in discrete time

Model 7.8.

Pt = St + ft

ft = Median(Pt)−
7∑

i=1

(Median(weekday))−Median(holiday)−MA(91, Pt)

St =
{

St−1(1− κ) + σtZt, with probability 1− λ
St−1(1− κ) + σtZt + Jt, with probability λ,

where Jt are the positive jumps with some distribution.

The estimation of the model is now more complex since we cannot use a mixed normal
model for the estimation. We will instead separate the estimation into three parts. First,
we adjust for the weekly seasonality and the moving average. Let (Xi)n

i=1 denote the
adjusted prices, which is plotted in Figure 7.6.

0 500 1000 1500 2000

0
50

10
0

15
0

20
0

25
0

Figure 7.6: Plot of the adjusted data (Xi)n
i=1
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From (Xi)n
i=1 we will extract the jumps (Ji)n

i=1 To do this we look at the price di�erences
(Xi − Xi−1)n

i=2, we �rst estimate the standard deviation from this series. If a price
changes deviates more than 1 st.dev we consider it as a jump. That gives us a jump
frequency of 0.094. All jumps is being placed of by the cut o� values, then we estimate
the parameters of mean-reverting di�usion from the �ltered series (Xi−Ji)n

i=1, which is
plotted in Figure 7.7. The result can be viewed in Table 7.6.
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Figure 7.7: Plot of the adjusted data (Xi − Ji)n
i=1

Table 7.6: Estimated parameters for Model 7.8

σ κ LL
6.119 0.1805 -7658
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From the series of removed jumps (Ji) we only consider the positive jumps, the positive
jumps has a jump frequency of 0.0476, a histogram of the jumps can be found in Figure
7.8.
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Figure 7.8: Histogram of the positive jumps
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The exponential distribution is often used to model the tails. Using Matlab we �tted
the data to the exponential distribution. In Figure 7.9 is a probability plot for the
exponential cumulative distribution function. We see that it is a poor �t.
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Figure 7.9: Probability plot for the exponential distribution
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The Generalized Pareto distribution (GPD) is another distribution that is often used to
model the tails. We use the R package POT when working with the GPD. The GPD
has three parameters µ (location), σ (scale) and ξ (shape). The cumulative distribution
function is de�ned as

G(x) = 1− [
1− ξ(x− µ)

σ

]−1/ξ

for 1− ξ(x− µ)/σ > 0, σ > 0 and x > µ. The mean is given by µ + σ/(1− ξ).

For location parameter µ = 1 we get the estimates σ = 7.6602 (scale) and ξ = 0.4941
(shape). In Figure 7.10 is a probability plot for the GDP. We see that it is a very good
�t.
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Figure 7.10: Probability plot for the Generalized Pareto distribution
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7.4.1 Simulation
In Figure 7.11 Model 7.8 with GDP jumps is simulated using the estimated parame-
ters. The simulated paths looks very similar to our original data set. We notice that
it is possible to get negative values therefore modeling the log prices might be more
appropriate.
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Figure 7.11: Simulation of prices for Model 7.8 GPD
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7.5 Ex post goodness of �t
To be able to compare the model for the log-prices with our other models we will use
two ex-post goodness-of-�t-criteria which we de�ne as

GoF1(mi) =
n∑

t=2

(Pt − Emi [Pt | Ft−1])2

GoF2(mi) =
n∑

t=2

abs(Pt − Emi [Pt | Ft−1]),

where mi is model i with parameters θi.

7.5.1 GoF for model 7.1
The GoF for Model 7.1 is

E[Pt | Ft−1] = E[ft + St | Ft−1] = ft + E[St | St−1]
= ft + E[λ(St−1(1− κ) + σtZt) | St−1]

+ E[(1− λ)(St−1(1− κ) + µJ + (σ2
t + σ2

J)1/2Zt) | St−1]
= ft + St−1(1− κ) + λµJ + λE[σtZt | St−1]︸ ︷︷ ︸

=0∗
+ (1− λ)E[(σ2

t + σ2
J)1/2Zt | St−1]︸ ︷︷ ︸
=0∗

= ft + St−1(1− κ) + λµJ .

* Since σt is known to the �ltration St−1 and Zt is N (0,1)

7.5.2 GoF for model 7.6
The GoF for Model 7.6 is

E[Pt | Ft−1] = f1,t + E[ef2,t+St | Ft−1] = ef2,tE[eSt | St−1]

= f1,t + ef2,tE[eλ(St−1(1−κ)+σtZt)+(1−λ)(St−1(1−κ)+µJ+(σ2
t +σ2

J )1/2Zt) | St−1]

= f1,t + ef2,t+St−1(1−κ)+λµJE[eλσtZt+(1−λ)(σ2
t +σ2

J )1/2Zt | St−1]

= f1,t + ef2,t+St−1(1−κ)+λµJE[e(λσt+(1−λ)(σ2
t +σ2

J )1/2)Zt | St−1]

= f1,t + ef2,t+St−1(1−κ)+λµJ+ 1
2
(λσt+(1−λ)(σ2

t +σ2
J )1/2)2 .

We used the fact that E[ec·Zt ] = e
1
2
c2 when Zt is i.i.d N (0,1) and that σt is known to

the �ltration St−1.
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7.5.3 Result GoF test
We used the exact same procedure to get the GoF for the other models. All the results
from the GoF tests can be viewed in Table 7.7.

Table 7.7: GoF values
Model GoF1 value GoF2 value
Model 7.1 308348 13033
Model 7.2 298539 12940
Model 7.3 312133 13053
Model 7.4 286149 13583
Model 7.5 285746 12536
Model 7.6 353598 13865
Model 7.7 300051 13716
Model 7.8 295320 12770

We notice that the result from the ex post GoF criteria for our �rst 5 models is quite
di�erent from the Schwarz criterion. The ex post GoF criteria is mainly for testing
how good prices can be forecasted. Jumps and GARCH behavior does not pay o� in
this criteria. Model 7.5 performs good in this test as expected because the trend is
much better modeled here compared to in Model 7.1. We notice the same di�erence
when comparing Model 7.7 with Model 7.6, especially in the GoF2 value. Model 7.8
performs best in the test and the models for the spot price outperforms the models for
the logarithm of the spot price, however the di�erence is not that large.

7.6 Distributional characteristics
To check if the models have the same distributional characteristics as the original data.
We simulated 1000 paths for each model using the estimated parameters. The result
can be found in Table 7.8. Model 7.3 is not stationary and is therefore not in this test.

Table 7.8: Distributional characteristics (st.dev of the estimates between parentheses)

Model Mean St.dev Skewness Kurtosis
Original data 37.80 20.02 2.712 22.30
Model 7.1 36.68 (1.760) 19.53 (1.224) 0.4158 (0.8130) 8.403 (6.744)
Model 7.2 37.87 (1.204) 21.48 (1.046) 0.4421 (0.2237) 5.230 (0.7324)
Model 7.4 37.74 (0.7425) 19.92 (0.5130) -0.04787 (0.0697) 2.901 (0.1075)
Model 7.5 37.16 (0.7412) 19.64 (1.685) 0.4737 (0.6208) 6.821 (6.827)
Model 7.6 38.17 (0.9842) 19.00 (5.098) 2.347 (3.301) 31.03 (105.2)
Model 7.7 37.50 (0.5775) 18.84 (1.977) 1.772 (1.757) 15.89 (58.90)
Model 7.8 39.58 (1.224) 22.38 (5.941) 2.517 (3.093) 33.08 (59.98)

The models for the log prices and Model 7.8 captures the skewness and kurtosis much
better than the others. Interesting to notice is the high st.dev for the estimation of
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kurtosis for the log price models and Model 7.8, which means that the kurtosis value
varies a lot. The mean and st.dev are very similar for all models and the original data
except Model 7.8 which seems to overestimate the mean and st.dev a little bit, this
might be due that the estimation is done in several steps.

7.7 Summary model investigation
First we conclude from Section 7.2 that the best model was Model 7.1 which incorpo-
rates jumps and GARCH(1,1) behavior. For modeling the seasonality dummy variables
for weekdays and holidays was the best option, monthly dummy variables did not im-
prove our model. We also notice that Model 7.5, where the moving average is removed
outperforms Model 7.1. It is especially the parameter κ, the mean reversion, that di�ers
in value when comparing Model 7.1 and Model 7.5. This is due to that in Model 7.1
the prices drifts away more from the expected trend than in Model 7.5. If we would like
to simulate future paths we need to have an opinion about how the future trend might
be. Since we do not know if our opinion on the future trend will be right, we should
probably chose a κ value lower than in the Model 7.5.

One problem when simulating Model 7.1 is that negative prices sometimes occur. The
reason for the negative values is that the model models all jumps in the data in the
same way, but in reality most of the negative jumps occur directly after a positive jump.
This is a feature that the model does not capture. However by modeling the log prices
instead, we do not get any negative spikes anymore. Another option is to only model
the positive jumps as we did in the extreme value approach. In Section 7.5 an ex post
goodness of �t test for the models were made, Model 7.8 performed the best. Further on
in Section 7.6 we tested if the models share the same distribution characteristics as the
original data when simulating them. Here the log price models and Model 7.8 performed
the best. The overall conclusion is that Model 7.8 performs best.
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8 Futures
In this chapter the valuation of electricity forwards/futures is discussed. There are two
general approaches to price electricity forwards/futures. The �rst one uses the spot price
as an underlying and de�nes the future price as the expected value under the market
consistent pricing measure. This approach is used by Lucia and Schwartz in [13], Cartea
and Figueroa in [7] and by Schmidt in [15]. The other approach is to model the future
curve directly without considering the underlying spot price, instead ideas from interest
rate theory is used. Koekebakker and Ollmar [12] modeled the forward/future curve
on Nord Pool using the Heath-Jarrow-Morton approach. In this thesis, only the �rst
approach will be discussed.

The price of a derivative is equal to the expected pay-o� under Q. For a future expiring
at time T the price is obtained as the expected value of the spot price at expiry under
an equivalent Q-martingale measure, conditional on the information set available up to
time t, that is

F (t, T ) = EQt (S(T ) | Ft).

The futures actually traded in electricity markets are not futures on a single spot rate.
Instead, they o�er electricity for a certain period of length ∆. More precisely, the future
o�ers delivery of electricity in the period [T, T + ∆], with the value

∑

ti∈[T,T+∆]

Sti ,

where ti ∈ [T, T + ∆] refers to the trading days in the period under consideration. We
will set ti − ti−1 = δ and approximate the sum by an integral

∑

ti∈[T,T+∆]

Sti ≈
1
δ

∫ T+∆

T
Sudu.

The expectation must be calculated under an equivalent Q-martingale measure. In a
complete market this measure is unique, ensuring only one arbitrage free price of the
future. But the electricity market is an incomplete market, therefore this measure is not
unique. There are several di�erent approaches how to overcome the problem of selecting
the pricing measure Q. One way is to have a model under the pricing measure Q and
estimate the parameters from derivative prices directly. Another approach is to use the
parameters under P and then add a risk premium to adjust for the price di�erence, that
is

F (t, T ) = EQt (S(T ) | Ft) = EPt (S(T ) | Ft) + π(t, T, T + ∆)

Forward prices are determined by supply and demand, and are not necessarily forecasts
of electricity prices. If more consumers want to buy protection than producers are willing
to sell it, π should be positive and the other way around. Therefore the risk premium
will be di�erent for di�erent maturities.
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Example 8.1. We will look at the Vasicek model to see how the pricing of futures work

dSt = κ(θt − St)dt + σdWt, (8.1)
where Wt is a Brownian motion.

The price of the future is given by the expectation under the risk-neutral martingale
measure Q

δ × F (t, T, T + ∆) = EQt
(∫ T+∆

T
Sudu

)
.

From Section 2.2 we know that Equation 8.1 has the following solution.

Su = Ste
−κ(u−t) + θ(1− eκ(u−t)) + σ

∫ u

t
e−κ(u−s)dWs.

Hence we get

EQt
(∫ T+∆

T
Sudu

)
=

∫ T+∆

T
EQt (Su)du = θ∆ +

θ − St

κ
(e−κ(T+∆−t) − e−κ(T−t)).
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9 Conclusions
In this thesis several models for electricity spot prices in the German market were tested.
We concluded that the data has very strong weekly seasonality, this is due to that the
market is very sensitive to the load. Modeling monthly seasonality did not improve
our model. The trend is a very important factor on the German market and research
on understanding the factors that drives the trend would be very interesting. We also
concluded that there is a strong GARCH(1,1) behavior on the German market but
modeling the GARCH behavior does only pay o� in one of our model selection criteria.
Modeling of the jumps is an interesting topic, we saw that the extreme value approach
models the upward jumps very good. A future research topic is to also model the
decline after the jumps in a good way. Another interesting question is which quantitative
measures that can be used to compare models. We used three di�erent measures here
and they does not give the same result. Pricing of derivatives is the main application
for a spot market model and therefore it would be interesting to compare how good the
models can price derivatives.
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