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iiiABSTRACTCopula Dependen
e Stru
ture on Real Sto
k MarketsbyJan Lennartsson and Min ShuLinear 
orrelation is only an adequate means of des
ribing the dependen
e be-tween two random variables when they are jointly ellipti
ally distributed. When thejoint distribution is not ellipti
al the linear 
orrelation 
oeÆ
ient be
omes just one ofmany possible ways of summarizing the dependen
e stru
ture between the variables.In this thesis proje
t, based on both long term data and short term ti
k data, thesto
hasti
 dependen
ies among several sto
ks and risk-free bonds are investigated.One of the obje
tives of the thesis, besides improving the general understanding ofdependen
e stru
tures between di�erent assets, is to investigate what is the signif-i
an
e of 
orrelation analysis within those dependen
e stru
tures. The motivationfor fo
using in part on this problem, is that on the one hand 
orrelation analysis isused as an important tool in portfolio analysis, while on the other hand it is knownthat 
orrelation in general might give a very poor pi
ture of the the true dependen
estru
ture. One method in this thesis is to �t various kind of 
opulas found in theliterature as well as a new one 
onstru
ted by us to be suitable for the dependen
iesobserved.KEYWORDS: Copula; Time series; Dependen
e; Correlation.
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Chapter 1Introdu
tionConsider a portfolio of N sto
ks and bonds. Managers of su
h a portfolio aretypi
ally interested in the portfolio value at a 
ertain time T in the future. From astatisti
al point of view, a problem, dependen
e among default events, is fa
ed whenmodelling losses on portfolios.Dependen
e a
ross �nan
ial markets have been widely studied in the past de
ades.Three general alternative methods are available in multivariate analysis for studyingdependen
e:� One approa
h is to use a joint distribution based on the most 
ommonly usedjoint distribution in theoreti
al and empiri
al �nan
e being the multivariatenormal distribution.� The se
ond approa
h that has been used in empiri
al study is to 
ompute 
on-ditional 
orrelation.� The third alternative approa
h in multivariate analysis is to use a 
opula modelfor dire
tly modelling dependen
e.The third approa
h is adopted in this thesis. The study of 
opulas and theirappli
ation in �nan
ial markets is a rather modern phenomenon. Compared to thejoint distribution approa
h or 
orrelation-based approa
h, a 
opula model is a more
onvenient tool in studying the dependen
e stru
ture. In statisti
s, a 
opula is afun
tion that 
onne
ts marginal distributions to restore the joint distribution andvarious 
opula fun
tions represent various dependen
e stru
tures between variables.In a 
opula model, the primary task is to 
hoose an appropriate 
opula fun
tion anda 
orresponding estimation pro
edure. Marginal distributions are treated as nuisan
efun
tions. This reorientation has desirable advantages in empiri
al �nan
e. Oneof the primary goals is to investigate the dependen
e in order to better understandportfolio allo
ation. The marginal distributions of asset returns in individual marketsmay be very 
ompli
ated and may not easily �t within existing parametri
 models.In this proje
t, the dependen
e stru
ture of several sto
ks are estimated by usinga mixture 
opula approa
h. The purpose is to �nd a simple yet 
exible model tosummarize the dependen
e stru
ture. The mixture is 
omposed of the Joe survival
opula, the Gumbel 
opula and the AMH 
opula.The mixed method fa
ilitate the separation of the 
on
epts of degree of dependen
eand stru
ture of dependen
e, and these 
on
epts are embodied in two di�erent groupsof parameters-asso
iation parameters and weight parameters.



2The datasets of the proje
ts 
ome from typi
al investment funds in the market.There are not any extremely positive dependen
e stru
ture and negative dependen
estru
ture between the di�erent �nan
ial assets involed. Our basi
 problem is to �ndan appropriate 
opula model for the dependen
ies between these assets.The thesis report is organized as follow: Se
tion 2 reviews some basi
 
on
eptsabout 
opulas, and introdu
es mixture model. Se
tion 3 des
ribes some basi
 
opulamodels. Se
tion 4 dis
usses 
orrelation. Se
tion 5 shows how to generate randomnumbers from 
opula models. In Se
tion 6 our main statisti
al investigation is 
arriedout. Se
tion 7 des
ribes our resulting mixture 
opula model, to model the observeddepneden
ies. In Se
tion 8 we make 
on
lusions.



Chapter 2Basi
 Features of CopulasIn this 
hapter, we summarize the basi
 de�nitions that are ne
essary to under-stand the 
on
ept of 
opulas. We then illustrate the most important properties of
opulas that are needed to understand the usage of 
opulas in �nan
e.We follow the notation used in Nelsen (1999). Furthermore, we will restri
t our-selves to 
opulas in two dimensions. The generalization to n dimensions is not diÆ
ult.2.1 De�nition of the CopulaIn the statisti
s literature, the idea of a 
opula arose as early as the 19th 
enturyin the 
ontext of dis
ussions of non-normality in multivariate 
ases. Modern theoriesabout 
opulas 
an be dated to about forty years ago when Sklar (1959) de�ned 
opulasand showed some of their fundamental properties: By Sklar's theorem, for a 
opulaC, FX1;X2;:::;Xn(x1; x2; :::; xn) = C(FX1(x1); FX2(x2); :::; FXn(xn))�: (2.1)It is 
lear that a 
opula is a mapping from Iny to I, i.e. a multivariate distributionwith uniform marginals on I. From (2.1), it is evident that the marginal dependen
e
an be separated from the dependen
e stru
ture between the variates, and that itmakes sense to interpret C as the dependen
e stru
ture of the multivariate randomve
tor X.De�nition 2.1.1 A map C : In ! I is 
alled a 
opula if the following 
onditonshold:1. For all u = (u1; u2; :::; un) 2 In C(u) � 0;2. for every uk 2 I C(1; 1; :::uk; :::; 1) = uk;3. for every ui2; ui1 with ui2 � ui1 � 0 8iC(u12; u22; :::; un2)� Xi;j;:::;qnfi=j=:::=qgC(u1i; u2j ; :::; unq) + C(u11 ; u21; :::; un1) � 0:�X1; :::; Xn are random variables, FX1;X2;:::;Xn(x1; x2; :::; xn) denotes the joint distributionfun
tion and FXi(xi) denotes the marginal distribution fun
tion of Xi.yI denots the interval [0,1℄.



4Now we will restri
t ourselves to the bivariate 
opula.De�nition 2.1.2 A bivariate 
opula is a fun
tion C : I � I ! I with the followingproperties:1. For every u; v 2 I C(u; 0) = C(0; v) = 0;2. for every u; v 2 I C(u; 1) = uand C(1; v) = v;3. for every u1; u2; v1; v2 2 I with u1 � u2 and v1 � v2C(u2; v2)� C(u1; v2)� C(u2; v1) + C(u1; v1) � 0:

Figure 2.1 Example of a 
opula fun
tion.A fun
tion that ful�ls Property 1 is said to be grounded, Property 3 is the two-dimensional analogue of a nonde
reasing one-dimensional fun
tion. A fun
tion withthis feature is therefore 
alled 2-in
reasing, see Figure 2.1.



52.2 The Probability Density Fun
tion of CopulasDue to virtual similarity of all 
opula fun
tions, it is hard to visualize di�eren
esbetween these distribution fun
tions. So rather it is 
onvenient to study densityfun
tions of 
opulas.The density of a 
opula C is given by
(u; v) = �2�u�vC(u; v);if C is a 
ontinuously di�erentiable fun
tion of u and v.
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Figure 2.2 First 
olumn displays 
opula fun
tions, se
ond 
olumn probability densityfun
tions of these 
opulas, and third 
olumn density fun
tions of distributions with these
opulas and standard normal marginal distributions.From Figure 2.2, it seems that the the �rst 
olumn displays two almost equal 
op-ula fun
tion, but from the two 
olumns to the right, it is 
lear that their dependen
estru
tures are in fa
t quite di�erent.



6Theorem 2.2.1 Let C be a 
opula. For every u 2 I, the partial derivative �C=�vexists for almost all v 2 I. For su
h u and v one has0 � ��vC(u; v) � 1: (2.2)The analogous statement is true for the partial derivative �C=�u. In addition, thefun
tions u ! Cv(u) � �C(u; v)=�v and v ! Cu(v) � �C(u; v)=�u are well-de�nedand nonde
reasing almost everywhere on I.2.3 Fre
het BoundsDe�nition 2.3.1 The 
opulas W : I2 ! I and M : I2 ! I are given byW (u; v) = min(u; v)and M(u; v) = max(u+ v � 1; 0):Both W and M denote perfe
t dependen
e but in two 
ompletely di�erent ways.For every 
opula C and every (u; v) 2 I2W (u; v) � C(u; v) �M(u; v): (2.3)Inequality (2.3) is the 
opula version of the Fre
het-Hoe�ding inequality, whi
h referto M as the Fre
het-Hoe�ding upper bound and W as the Fre
het-Hoe�ding lowerbound, see Figure 2.3.2.4 Dependen
e Stru
tureWe begin with some "positive" and "negative" dependen
e properties: positivedependen
e properties expressing the notion that "large" (or "small") values of therandom variables tend to o

ur together, and negative dependen
e properties express-ing the notion that "large" values of one variables tend to o

ur with "small" valuesof the other.De�nition 2.4.1 The 
opula � : I2 ! I is given by�(u; v) = u v:



7De�nition 2.4.2 Two random variables X and Y are 
alled positively quadrantdependent (PQD) if for all (x; y)P [X � x; Y � y℄ � P [X � x℄P [Y � y℄; (2.4)or equivalently P [X > x; Y > y℄ � P [X > x℄P [Y > y℄: (2.5)Negative quadrant dependen
e (NQD) is de�ned analogously by reversing the inequal-ities in (2.4) and (2.5).If X and Y have joint distribution fun
tion H, with 
ontinuous marginal distri-butions F and G, respe
tively, and 
opula C, and (2.4) holds i.e.H(x; y) � F (x)G(y)for all (x; y), thenC(u; v) = H(F�1(u); G�1(v)) � F (F�1(u))G(G�1(v)) = uv = �(u; v)for all (u,v)=(F(x),G(y)), i.e. C(u; v) � �(u; v): (2.6)This proves that the � 
opula is the separator of PQD and NQD.For 
opulas, if (2.6) holds for all u; v 2 I, the 
opula is 
alled a PQD 
opula, andan NQD 
opula is de�ned analogously. Figure 2.3 shows a relation between PQD andNQD 
opulas.The 
on
ept of tail dependen
e is a way to des
ribe the amount of extremal valuedependen
e. It is method to measure strength of positive tail dependen
e. Here,
opula fun
tions may be used to 
ompute and investigate tail dependen
e assessingthe eviden
e of simultaneous booms and 
rashes on di�erent markets.De�nition 2.4.3 For a 
opula C the lower tail dependen
e is given by�L = limu!0 C(u; u)u ; (2.7)and the upper tail dependen
e by�U = limu!1 1� 2u+ C(u; u)1� u : (2.8)It 
an be veri�ed that 0 � �U ; �L � 1: When �U � 1 or �L � 1, there is a strongtail dependen
e.



82.5 Survival CopulasIn many appli
ation, the random variables of interest represent the lifetimes ofindividuals or obje
ts in some population. The probability of an individual living orsurviving beyond time x is given by the survival fun
tion (or survivor fun
tion, orreliability fun
tion).For a pair (X; Y ) of random variables with a joint distribution fun
tion H, thejoint survival fun
tion is given by H(x; y) = P [X > x; Y > y℄. The margins of H arethe univariate survival fun
tion F and G, respe
tively. Then we haveH(x; y) = 1� F (x)�G(y) +H(x; y) = F (x) +G(y)� 1 + C(1� F (x); 1�G(y));so we de�ne:De�nition 2.5.1 A bivariate 
opula Csurvival : I2 ! I is 
alled the survival 
opula ofa 
opula C if Csurvival(u; v) = u+ v � 1 + C(1� u; 1� v): (2.9)It 
an easily be veri�ed that Csurvival is a 
opula if C is a 
opula. The survival
opula swit
hes upper and lower tail dependen
e, see �gure 2.4.The density of the survival 
opula 
survival and the density of the original 
opula 
are related by 
survival(u; v) = 
(1� u; 1� v):Hen
e they are mirror images about (u; v) = (1=2; 1=2)For example, if a 
opula features positive upper tail dependen
e means, then theprobability of both variables being in the upper tail is relatively high. And thenits survival 
opula, its mirror image, has positive lower tail dependen
e, so that theprobability of both variables being in lower tails is high.2.6 Mixture CopulaDis
rete mixture models, see Hu (2004), arise in the theory of reliability whenindividuals belong to one of n distin
t distributions with 
ertain proportions.De�nition 2.6.1 Let C�11 ; : : : ; C�1n be 
opulas with parameters �1; : : : ; �n, and �1; : : :; �n � 0 numbers su
h that �1 + �2 + :::+ �n = 1. A mixture 
opula is given byCmixture(u; v) = �1C�11 (u; v) + ::: + �nC�nn (u; v): (2.10)



9Mixture models may be used to obtain more versatile 
opula models, for example,allowing asymmetri
 tail dependen
e.The method to �t mixture models fa
ilitates the separation of the 
on
epts ofdependen
e degree and dependen
e stru
ture, and these 
on
epts are embodied in twodi�erent groups of parameters- the asso
iation parameters � and the weight param-eters �. The asso
iation parameters are parameters in ea
h 
opula that 
ontrol thedegree of dependen
e, while the weight parameters re
e
ts the shape of the depen-den
e.2.7 Empiri
al CopulasThe empiri
al 
opula is obtained through empiri
al 
umulative density transform(rank transform) of the original data.De�nition 2.7.1 Let (xk; yk)nk=1 denote a sample of size n from a 
ontinuous bivari-ate distribution. The empiri
al 
opula is the fun
tion Ĉemp given by�Ĉemp(u; v) = ℄f(xk; yk) : FX(xk) � u; FY (yk) � vgn ;and the empiri
al 
opula density fun
tion 
̂emp is given by
̂emp(u; v) = 1n nXk=1 Æ(u� FX(xk); v � FY (yk)):

�℄ denotes the number of elements of a set.
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Figure 2.4 Upper �gures display the density of a 
opula and 
orresponding survival
opula density, lower �gures display density of the 
orresponding distribution that has this
opula and standard normal marginals.



Chapter 3Examples of CopulasThe 
opula W is 
alled 
omonotoni
 
opula sin
e it des
ribes perfe
t positivedependen
e, and M is 
alled 
ountermonotoni
 sin
e it des
ribes perfe
t negativedependen
e, see Figure 3.1.
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Figure 3.1 100 samples generated from W , � and M 
opulas.Table 3.1 shows that W has maximum upper and lower tail dependen
e, whereas� and M both have zero upper and lower tail dependen
e.In this se
tion, we will dis
uss several important 
lasses of 
opulas. The taildependen
e 
oeÆ
ients of 
opulas have been 
omputed in Appendix A.3.1 Ar
himedean CopulasIn this se
tion, we 
on
entrate on an important 
lass of 
opulas 
alled Ar
himed-ean 
opulas. If C(u1; u2; :::; un) = �(Pni=1 ��1(ui)) with generator � then the 
opulais 
alled ar
himedean. These 
opulas allow for a great variety of dependen
e stru
-W � M�U 1 0 0�L 1 0 0Table 3.1 Tail dependen
e of 
opulas W , � and M .



14tures. They have 
losed form expressions and they are not derived from multivariatedistribution using Sklar's Theorem. They �nd an appli
ation for a number of reasons:1. The ease with whi
h they 
an be 
onstru
ted;2. the great variety of fa
ilities of 
opulas whi
h belong to this 
lass;3. the many ni
e properties possessed by the members of this 
lass.For an a

ount of this history, see S
hweizer (1991) and the referen
es 
ited therein.Gaussian Copula One of the most frequently used 
opulas, espe
ially for �nan
ialmodelling, is the bivariate Gaussian 
opula CGauss. It is de�ned byC�Gauss(u; v) = Z ��1(u)�1 Z ��1(v)�1 exp��x2�2�xy+y22(1��2) � dxdy2�p1��2 = ��(��1(u);��1(v)):(3.1)Here ��1 is the inverse probability distribution fun
tion of the standard univariateGaussian distribution, while �� is the joint distribution fun
tion of a standard bivari-ate Gaussian with the 
orrelation 
oeÆ
ient �, whi
h is the only parameter of theGaussian 
opula (�1 < � < 1).Figure 3.2 
learly displays that a Gaussian dependen
e stru
ture is symmetri
.Two variates of a sto
k market with a Gaussian 
opula dependen
e stru
ture impliesthat the variates are equally likely to boom together as to 
rash together.A Gaussian dependen
e stru
ture with � > 0 means that the variates are positivequadrant dependent, analogous if � < 0 the variates are negative quadrant dependent.If � < 0 in the example of market returns, it implies that it is a higher probabilityfor the variates to move opposite ways, whi
h means that if one variate boom, theother variate exhibits higher probability to 
rash.The Gaussian 
opula's variates are only multivariate normal distributed if itsmarginal distributions are normal.We 
an 
he
k that the tail dependen
e 
oeÆ
ients are �U = 0 and �L = 0.Seebined with Figure 3.2, we de�ned the tail of Gaussian 
opula is normal tail.AMH Copula The bivariate AMH 
opula CAMH is de�ned asC�AMH(u; v) = u v1� �(1� u)(1� v) : (3.2)The only parameter of the AMH 
opula is the parameter �, 0 < � < 1.Figure 3.3 
learly displays that a AMH dependen
e stru
ture is asymmetri
 andthe lower tail is heavier than upper tail. Moreover, its tail dependen
e 
oeÆ
ients�U = �L = 0, so we 
on
lude the its upper tail is light tail and its lower tail is lighttail or normal tail.
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Figure 3.2 First row is the density of Gaussian 
opula with � = 0:5 and the se
ond rowis the density of Gaussian 
opula with � = �0:5. First 
olumn displays the 
ross se
tion ofthe density on diagonal u = v, se
ond 
olumn displays 
opula density fun
tion and third
olumn displays joint distribution if marginal distributions are normal.
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Figure 3.3 First 
olumn displays the 
ross se
tion of the density of C�AMH on diagonalu = v, se
ond 
olumn displays 
opula density fun
tion and third 
olumn displays jointdistribution when marginal distributions are standard normal.



16Frank Copula The bivariate Frank 
opula CFrank is de�ned asC�Frank(u; v) = log�(1 + (�u � 1)(�v � 1)�� 1 ): (3.3)The only parameter of the Frank 
opula is the parameter �, where 0 < � < 1 or� > 1.
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Figure 3.4 First 
olumn displays the 
ross se
tion of the density of C�Frank on diagonalu = v, se
ond 
olumn displays 
opula density fun
tion and third 
olumn displays jointdistribution when marginal distributions are standard normal.Figure 3.4 displays that a Frank 
opula's dependen
e stru
ture is symmetri
 andby Appendix I, its tail dependen
e 
oeÆ
ients are �U = �L = 0. Compared with aGaussian 
opula, the Frank 
opula has more probability in the middle region, so thatthe tails must be lighter.Gumbel Copula The bivariate Gumbel 
opula CGumbel is de�ned asC�Gumbel(u; v) = e�((� log(u))�+(� log(v))�)1=� : (3.4)The only parameter of the Gumbel 
opula is the parameter �, where � � 1. For� = 1, expression (3.4) redu
es to C1Gumbel(u; v) = �(u; v), the independent 
opula.From Figure 3.5, a Gumbel dependen
e stru
ture is asymmetri
 and the upper tailis heavier than the lower tail. A Gumbel 
opula implies that two markets are morelikely to boom together than to 
rash together. And its tail dependen
e 
oeÆ
ientsare �U = 2 � 21=�, �L = 0, so that its upper tail is heavy, and its lower tail lightor normal. The expression for �U also shows that the larger is �, the heavier is theupper tail.



17Joe Copula The bivariate Joe 
opula CJoe is de�ned asC�Joe(u; v) = 1� ((1� u)� + (1� v)� � (1� u)�(1� v)�)1=�: (3.5)The only parameter of the Joe 
opula is the parameter �, � > 1.Clearly a Joe 
opula's dependen
e stru
ture, see Figure 3.6, is asymmetri
 and itstail dependen
e 
oeÆ
ients are �U = 2� 21=� and �L = 0.Even though the tail dependen
e of C�Joe is equal to C�Gumbel, it 
learly does notmean equal dependen
e stru
tures apart from the tails. For example, the Joe 
opuladoes feature a mu
h lighter lower tail.Cook-Johnson Copula The bivariate Cook-Johnson (CJ) 
opula CCJ is de�nedas C�CJ(u; v) = (u�� + v�� � 1)�1=�: (3.6)The only parameter of the CJ 
opula is the parameter �, � > 0.The Cook-Johnson 
opula's dependen
e stru
ture is also asymmetri
 and its taildependen
e 
oeÆ
ients are �U = 0 and �L = 2�1=�, see Figure 3.7. If two variatesof the sto
k market follow the CJ 
opula, then they feature a larger probability ofsimultaneous 
rashing than simultaneous booming.BB1 Copula The bivariate BB1 
opula CBB1 is de�ned asC�1;�2BB1 (u; v) = (1 + ((u��1 � 1)�2 + (v��1 � 1)�2)1=�2)�1=�1 : (3.7)The parameters of the BB1 
opula are �1 > 0 and �2 � 1.The BB1 
opula's dependen
e stru
ture is asymmetri
, and the 
opula emphasizesboth tails. The density fun
tion of the 
opula is 
on
entrated 
losly to the line u = v,see Figure 3.8. The tail dependen
e 
oeÆ
ients are �U = 2�2 1�2 and �L = 2�1=(�1�2).BB6 Copula The bivariate BB6 
opula CBB6 is de�ned asC�1;�2BB6 (u; v) = 1� (1� e�((� log(1�(1�u)�1 ))�2+(� log(1�(1�v)�1 ))�2 )1=�2 ))�1 : (3.8)The parameters of the BB6 
opula are �1 > 0 and �2 � 1.The BB6 
opula's dependen
e stru
ture is asymmetri
 and looks like that of BB1,with the density 
on
entrated 
lose to the line u = v, see Figure 3.9. However, itsupper tail is heavier than its lower tail, and both these tails are heavy.
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Figure 3.5 First 
olumn displays the 
ross se
tion of the density of C�Gumbel on diagonalu = v, se
ond 
olumn displays 
opula density fun
tion and third 
olumn displays jointdistribution when marginal distributions are standard normal.
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Figure 3.6 First 
olumn displays the 
ross se
tion of the density of C�Joe on diagonalu = v, se
ond 
olumn displays 
opula density fun
tion and third 
olumn displays jointdistribution if marginal distributions are standard normal.
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Figure 3.7 First 
olumn displays the 
ross se
tion of the density of C�CJ on diagonalu = v, se
ond 
olumn displays 
opula density fun
tion and third 
olumn displays jointdistribution if marginal distributions are standard normal.
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Figure 3.8 First 
olumn displays the 
ross se
tion of the density of C�1;�2BB1 on diagonalu = v, se
ond 
olumn displays 
opula density fun
tion and third 
olumn displays jointdistribution if marginal distributions are standard normal.
0 0.5 1

0

0.2

0.4

0.6

0.8

1

0 0.5 1
0

0.2

0.4

0.6

0.8

1

−5 0 5
−5

0

5

Figure 3.9 First 
olumn displays the 
ross se
tion of the density of C�1;�2BB6 on diagonalu = v, se
ond 
olumn displays 
opula density fun
tion and third 
olumn displays jointdistribution if marginal distributions are standard normal.
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Figure 3.10 First 
olumn displays the 
ross se
tion of the density of C�1;�2BB7 on diagonalu = v, se
ond 
olumn displays 
opula density fun
tion and third 
olumn displays jointdistribution if marginal distributions are standard normal.



20BB7 Copula The bivariate BB7 
opula CBB7 is de�ned asC�1;�2BB4 (u; v) = 1� (1� ((1� (1� u)�1)��2 + (1� (1� v)�1)��2 � 1)�1=�2)1=�1 : (3.9)The parameters of the BB7 
opula are �1 > 0 and �2 � 1.The BB7 
opula's dependen
e stru
ture is almost symmetri
 and its density 
on-
entrated at the 
enter, but the tails are heavier than for the Gaussian 
opula, seeFigure 3.10.3.2 Extreme Value CopulasAnother important 
lass of 
opulas is the extreme value 
lass: A 
opula is saidto be an extreme value 
opula (EV) if for all t > 0 the s
aling property. C(ut; vt) =(C(u; v))t holds 8 u; v 2 I.EV 
opulas are max-stable, meaning that, if (X1; Y1), (X2; Y2); :::(Xn; Yn) are in-dependent identi
ally distributed (i.i.d.) random pairs from an EV 
opula C andMn = maxfX1; X2; :::Xng and Nn = maxfY1; Y2; :::Yng, then the 
opula for (Mn; Nn)is also C. The EV 
opulas 
an be represented in the form:CEV(u; v) = elog(uv)A(log(u) log(v)= log(uv)); (3.10)where the fun
tion A is 
alled the dependen
e fun
tion.Galambos Copula The Galambos 
opula has the following form:C�Galambos(u; v) = uve((�log(u))��+(�log(v))��)�1=� : (3.11)The only parameter of the Galambos 
opula is the parameter � � 0.Figure 3.11 shows that a Galambos 
opula's dependen
e stru
ture is asymmetri
.The tail dependen
e 
oeÆ
ients are �U = 2�1=� and �L = 0.BB5 Copula The BB5 
opula is a two-parameter extension of the Gumbel 
opulaand has the following form:C�1;�2BB5 (u; v) = e�(� log(u))��1�(� log(v))��1+((� log(u))��1�2+(� log(v))��1�2 ))�1=�2 : (3.12)The parameters of the BB5 
opula are �1 � 0 and �2 > 1.Clearly a BB5 
opula's dependen
e stru
ture is also asymmetri
. As illustrated inFigure 3.12, a BB5 
opula implies that two markets are more likely to boom togetherthan to 
rash together and its tails are heavy.
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Figure 3.11 First 
olumn displays the 
ross se
tion of the density of C�Galambos ondiagonal u = v, se
ond 
olumn displays 
opula density fun
tion and third 
olumn displaysjoint distribution if marginal distributions are standard normal.
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Figure 3.12 First 
olumn displays the 
ross se
tion of the density of C�1;�2BB5 on diagonalu = v, se
ond 
olumn displays 
opula density fun
tion and third 
olumn displays jointdistribution if marginal distributions are standard normal.



223.3 The Fre
het FamilyDe�nition 3.3.1 Let �; � 2 I with �+ � � 1, and setC�;�(u; v) = �M(u; v) + (1� �� �)�(u; v) + �W (u; v): (3.13)This 
omprehensive two-parameter 
opula is 
alled a Fre
het 
opulas.The parameters �, � are linked to non-parametri
 dependen
e measures by par-ti
ularly simple analyti
al formulas. For example, the 
orrelation of a Fre
het 
opulais � = �� �:A Fre
het 
opula with � = 0 is a PQD 
opula, and when � = 0, it is a NQD
opula.



Chapter 4CorrelationCorrelation is a statisti
al te
hnique whi
h 
an show whether and how stronglypairs of sto
hasti
 variables are related. Correlation is essentially founded on the as-sumption of multivariate normally distributed returns, in order to adequatly des
ribedependen
ies. Still, 
orrelation analysis feature as an important tool to measuredependen
ies on for example, returns in sto
k markets.We begin with 
onsidering pairs of real valued random variables X and Y with�nite varian
es.The linear 
orrelation 
oeÆ
ient between X and Y is�(X; Y ) = Cov(X; Y )qVar(X)Var(Y ) ;where Cov(X; Y ) is the 
ovarian
e between X and Y , Cov(X; Y ) = E[(X�E[X℄)(Y �E[Y ℄)℄, and Var(X) denotes the varian
e of X.Correlation is a measure of linear dependen
e. In the 
ase of perfe
t linear depen-den
e, i.e. Y = aX + b a:s:;or P [Y = aX + b℄ = 1, where a 6= 0, then �(X; Y ) = sign(a) is �1 or 1.The 
orrelation 
oeÆ
ient may take on any value between positive and negativeone, �1 � � � 1:The sign of the 
orrelation 
oeÆ
ient de�nes the dire
tion of the relationship, eitherpositive or negative. A positive 
orrelation 
oeÆ
ient, in the example of marketreturns, implies that it is a higher probability for the variates to move same ways,whi
h means that if one variate booms, it is a high probability that the other variatewould also boom.If two random variables X and Y are jointly normal distributed with 
ovarian
eCov(X; Y ), then all dependen
ies between these two variates are 
aptured in the
ovarian
e. This means thatX is independent from Y�Cov(X; Y )=Var(Y )X, be
auseCov(X; Y � Cov(X; Y )Var(X) X) = Cov(X; Y )� Cov(X; Y )Var(X) Cov(X;X) = 0:If two real world random variables X̂ and Ŷ have a dependen
e stru
ture that 
anbe des
ribed by 
orrelation analysis, then X̂ and Ŷ �Cov(X̂; Ŷ )=Var(Ŷ )X̂ should be



24independent, by the above argument, and the � 
opula should �t its empiri
al 
opulaperfe
tly.However, the 
orrelation, as well as being one of the most ubiquitous 
on
epts inmodern �nan
e, is also one the of the most misunderstood 
on
epts.Assume that the 
opula fun
tion of a pair of random variables X and Y is known.Then their 
ovarian
e is given byCov(X; Y ) = Z 1�1 Z 1�1 xyfX(x)fY (y) (
(FX(x); FY (y))� 1) dxdyor, substituting (x; y) = (F�1X (u); F�1Y (v)) and (dx; dy) = (du=fX(x); dv=fY (y)),Cov(X; Y ) = Z 10 Z 10 F�1X (u)F�1Y (v) (
(u; v)� 1) dudv: (4.1)It is now 
lear that all information of the 
opula is not 
aptured by the 
ovarian
e.Copulas de�ne the 
omplete dependen
e stru
ture while 
ovarian
e only is a measureof linear dependen
e: One 
annot 
ompute 
 given Cov(X; Y ) in (4.1)!Of 
ourse, by de�nition of the � 
opula, we have �2 �(u; v)=�u�v = 1. Then by(4.1), the 
ovarian
e is zero, as well as all other relations between the two randomvariables involved.



Chapter 5Generation of Random Number Using CopulaModelsIn Chapter 2, we presented the de�nition of 
opulas, their most important proper-ties and several 
lasses of 
opulas. So now we are ready to generate random numbers.The strategy is to give a general guide on how to generate pairs of random variableswhose dependen
e stru
ture is de�ned by a 
opula. Helpful for understanding, weexemplify with a Gumbel 
opula whi
h is dis
ussed in more detail.5.1 The General MethodAssume that all parameters of the joint distribution is known. The joint densityfun
tion is bounded, f(x; y) � M , and random variables 
ome from a 
losed box.Then a random variate (X; Y ) from this dependen
e stru
ture 
an be 
reated asfollows:1. Generate two uniform distributed random variables �; � from the box;2. generate a uniform variable, 
 from 0 to M ;3. if f(�; �) > 
, then a

ept (�; �) to the data set, otherwise go ba
k to 1.Sin
e 
(u; v) may not be bounded, the uniform random variables may have tobe transformed. Consider two random variables with normal marginal distributions,then F (x; y) = C(�(x);�(y)):Further, the joint density fun
tion is given byf(x; y) = �2�x�yF (x; y) = �2�x�yC(�(x);�(y)) = 
(�(x);�(y))�(x)�(y);where d�(x)=dx = �(x) and 
(�(x);�(y))�(x)�(y) � 
(0:5; 0:5) � M is bounded.Now the box is not 
losed sin
e normal distributed variables 
an take any value. Butassuming that no values lay outside some large perimiter, then all properties of theabove generating data model is ful�lled.The se
ond method, using 
onditional distributions, works for all 
opula fun
tions:Let 
v denote the 
onditional distribution fun
tion for the random variable U ata given value v of V , 
v(u) = P [U < ujV = v℄:



26From (2.1), and sin
e the density fun
tion of a uniform distribution 
onstantly equalto one, we have
v(u) = P [U�u jV =v℄ =Z u�1 f(x; v)fY (v) dx =Z u0 
(x; v) dx = ��yC(u; y)jy=v = Cv(u; v);(5.1)where Cv(u; v) is the partial derivative of the 
opula C. From (2.2), we know that
v(u) is nonde
reasing and exists for all u 2 I.With the result (5.1) at hand, we have the following se
ond method to generatethe data, as follows:1. Generate a uniformly distributed random variable � over I ;2. generate (U jV = �) from the 
onditional 
opula;3. now (�; (V jU = �)) will be a random variate with the distribution desired.5.2 Generation Random Numbers A

ording to the GumbelCopulaIn this se
tion, a detailed example is presented. For the sake of simpli
ity, weassume the parameter � of Gumbel 
opula equals 1.5, and use the 
onditonal 
opulamethod to generate 500 paired random numbers.
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Figure 5.1 First 
olumn displays variates with uniform marginal distributions from aGumbel 
opula and the 
opula density, se
ond 
olumn displays same variates with standardnormal marginal distribution and joint density.In Figure 5.1, the paired random numbers are displayed. And it is 
lear that thedata sets well �t the Gumbel 
opula model by 
omparing to its 
ontour lines.



275.3 Robust Estimation of Signi�
an
eThe bootstrap method will be used to measure the goodness of �t for the models.The detail method is:1. Generate pairs (�; �) from model of data sets sample size;2. �nd empiri
al 
opula fun
tion from the generated data;3. 
al
ulate the Kuiper distan
e of the empiri
al 
opula to the model 
opula (seeAppendix D);4. repeat the above pro
edure 1000 times;5. plot the empiri
al distribution fun
tion of the observed Kuiper distan
es.By 
he
king the empiri
al distribution fun
tion of the Kuiper distan
e, approxi-mate p-values for the Kuiper distan
e statisti
 
an be found.
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Chapter 6InvestigationThe investigation is diversi�ed into two parts. Firstly the dependen
e stru
turewith time of a single asset, and se
ondly the dependen
e stru
ture of two di�erentassets, whi
h is the major part.When modelling the pri
e pro
ess of an asset on a true market, normally thelogreturns of the asset are viewed as i.i.d. data. But how well does this assumptionhold? Are the logreturn really independent in time?A

ording to the distribution of portfolio enterprisers, the investment poli
y ofthe fund is re
e
ted in the stru
ture of its investment portfolio. What dependen
estru
ture between the real assets are preferable? The value of a fund is the sum ofall assets within the fund. So to avoid 
rashes, the assets should display negativedependen
e. Meanwhile, to allow maximum pro�t, the assets should display positivedependen
e.6.1 DataIn order to investigate the di�erent dependen
e stru
tures of assets on real-worldmarkets, long term data sets and short term data sets were gathered.Long term data were 
at
hed from the �nan
e homepage of Yahoo of the variatesin the ProFunds Ultra Tele
ommuni
ations Inv. fund (TCPIX).Five minutes short term ti
k data were 
at
hed from the OMX homepage of thevariates in the SEB Sverigefond 1.Statisti
al Presentation of Long Term Data Sets We brie
y present the basi
statisti
s of the logreturn� series of the holding of ProFunds Ultra Tele
ommuni
a-tions Inv. before investigating the distribution of their dependen
e. The series areCenturyTel In
. (CTL), SBC Communi
ations In
. (SBC) and Alltel Corp. (AT). (Ofthese, the fund does no longer hold CTL.)From inspe
tion of Figure 6.2, we see that all three data sets have a non-Gaussiandistribution and display heavy tails.In Table 6.1, we summarize the 
omputations of the �rst two empiri
al momentsof the logreturn series.From Figure 6.3, it is 
lear that the logreturns are time dependent. The datais 
rash dependent, and further investigation veri�es that the variates also displaysnegative dependen
e. This means that the data set is not i.i.d. The same property�We use the notation; S(t) sto
k pri
e, X(t) logreturn and A(t) devolatilized logreturn.



30Mean Varian
eCTL 3:032e� 04 4:318e� 04SBC 4:579e� 04 4:157e� 04AT 2:168e� 04 4:795e� 04Table 6.1 Statisti
s for three logreturn series on the period from 03-O
t-96 to 24-Sep-04with a total of N = 2000 data.
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Figure 6.1 At top sto
ks pri
es from 03-O
t-96 to 24-Sep-04, in middle logreturn valuesof same time period and at bottom histogram of the logreturn data.
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Figure 6.2 Normal quantile-quantile plot of logreturns of data.
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tion of time dependen
e stru
ture for logreturn CTL.



33holds for all long term data sets. This means that parameter estimation with standardmaximum likelihood method basi
ally is ina

urate.Filtering of Data By investigating data sets it 
an be veri�ed that the volatilityis not 
onstant, so the Ba
helier-Samuelson Bla
k-S
holes model, see Appendix F, isimproper. To avoid this property of a 
hanging market we employ a devolatilizationof the data set.Ome may generalize the Ba
helier-Samuelson Bla
k-S
holes model by making thevolatility time dependent and the noise pro
ess a L�evy pro
ess Lt, i.e.dS(t) = (�+ �t2 )S(t)dt + �tS(t) dLt: (6.1)The logreturn Xt of the sto
k pri
e is then, if assumed that �t moves slowly 
omparedto Lt,Xt = log(St)� log(St��) = ��+�tLt��t��Lt�� � ��+�t(Lt�Lt��) = ��+�tAt;where � is the time interval between sample points. The devolatlized logreturns Atis a random walk independent of the time 
hanging volatilityAt = Xt � ���t :By devolatilizing the 
hanging volatility, the data is made independent of market
hanges. The time dependent volatility is estimated by the Nadaraya-Watson algo-rithm, see Nadaraya (1964) and Watson (1964), together with Bengtsson and Olsbo(2002) and Drees and Stari
a (2002).6.2 Simulation of CopulaThe parameters in ea
h 
opula fun
tion 
ontrol the degree of dependen
e. InFigure 6.4, we 
an �nd how the parameters 
hange, for example, a PQD 
opula to aNQD 
opula, or the � 
opula to the W 
opula, and so on.6.3 Fitting Copulas to DataWe propose two di�erent diagnosti
s: A numeri
al method and a graphi
al method.Now, we 
onsider distan
es between �tted 
opuls and empiri
al 
opula, see Ap-pendix D, and the 
orresponding p-value, see Appendix E, of the three devolatilizedlogreturn series of CTL, SBC and AT, labeled series Ai, i 2 1; 2; 3. First, we look atthe dependen
e stru
ture among A1, A2 and A3. There are higher 
rash dependen
ethan boom dependen
e, see Figure 6.5.
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Figure 6.5 Empiri
al 
opulas and its density 
opula fun
tions of dependen
e stru
tureamong CTL, SBC and AT.



36Combined with Figure 6.5, it 
an be seen that there are many sensitive regionsin the 
entral part of the 
opulas. Kolmogorov-Smirnov distan
e (D.1) and Kuiperdistan
e (D.3) are sensitive to all data, while the Anderson-Darling distan
e (D.2)emphasizes the tails. We sele
ted to use the Kupier distan
e (D.3), whi
h 
onsidersthe greatest deviations upwards as well as downwards.For the various 
opulas and ea
h pair of logreturn series, by 
al
ulating the mini-mal Kuiper distan
e between the empiri
al 
opulas and theoreti
al models, the 
op-ula's parameters are found. Appendix B and Figure 6.6 show that Gumbel survival
opula is superior to all of the 
opulas that we investigated, whi
h means there is alower tail dependen
e in our data set.The p-values should be 
he
ked to see if the Gumbel survival 
opula is �t for thedata sets. When 
al
ulating p-values for the three pairs, A1&A2, A1&A3 and A2&A3,we found that the Gumbel 
opula is not a good model, be
ause all of them are smallerthan 5%.
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Figure 6.6 Kuiper distan
es of 
opulas to the empiri
al 
opulas of A1&A2, A1&A3 andA2&A3.Statisti
al Presentation of Short Term Data Sets Here, three �ve-minutesshort term ti
k data sets (Eri
son B, Volvo and H&M, see Figure 6.7), 
at
hed fromthe OMX homepage of the variates in the SEB Sverigefond 1 have been investigated.The short term ti
k data sets are not Gaussian distributed, see Figure 6.8. And the



37data sets have dis
rete distributions be
ause the time interval is too short to proje
texterior events. The short term data sets are not i.i.d as well as the long term data,see Figure 6.10. Moreover, the short term data sets feature a stronger negative timedependen
e than long term data.
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Figure 6.7 First row displays sto
k pri
es of Eri
son B, Volvo and H&M 02-O
t-04 to14-De
-04, se
ond row displays logreturn time series and third row displays histogram ofdata sets.By Figure 6.10, the dependen
e stru
ture is almost the � 
opula ex
ept for inthe tails. This means that the variates are indepdent everywhere ex
ept for extremeevents.The distan
e measure and p-value work here as for the long term data sets. TheJoe survival 
opula is better than all other 
opulas that we investigated, whi
h meansthere is a lower tail dependen
e in the short term data set, see Figure C.1.We 
he
k the p-value to see if the Joe survival 
opula is �t for the data sets. It
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son B, Volvo and H&M.
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al 
opula density fun
tion between short term data sets Eri
son Band Volvo.



40turned out that the p-value of the three pairs were smaller than 5%, so that the Joesurvival 
opula does not �t the short term data.
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Figure 6.11 Kuiper distan
es of 
opulas to empiri
al 
opula of short term data setsEri
son B, Volvo and H&M.6.4 Correlation as Measure of Dependen
eFor the observed data sets we now 
he
k how good 
orrelation is to des
ribe thedependen
e stru
ture.We introdu
e the new variate of non devolatilized logreturnsX�ji = Xi � Cov(Xi; Xj)Var(Xj) Xj;and then 
he
ked if Xj is independent from X�ji .There are too many outliers from the independent distribution for it to be thedependen
e stru
ture of the variates, see Figure 6.12. So we used the 
opula methodto �nd the dependen
e stru
ture of X1 and X�12 , see Figure 6.13.Clearly, the density fun
tion of the 
opula is not 
at, and the result displays thatthe dependen
e is mu
h more 
omplex than what the linear measure des
ribes.By the bootstrap method, the distan
es of the simulated data from the � 
opula isfound, see Figure 6.14. The distan
es of the three empiri
al 
opulas of the transformed
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Figure 6.12 Logreturns with normal marginals of X1 and X�12 and the density of theindependent distribution with standard normal marginals.

Figure 6.13 Copula density fun
tions of X1 & X�12 and X1 & X2.



42data sets are D12 = 0:103, D13 = 0:111 and D23 = 0:108. By inspe
tion of Figure6.14, this shows that there still is 
onsiderable dependen
e between the variates.
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Figure 6.14 Empiri
al distribution for Kuiper distan
es between empiri
al 
opula for1000 simulations of independent data and � 
opula.Although 
orrelation says something about dependen
e, 
orrelation is not enoughto des
ribe the dependen
e stru
ture between two variates. Equal 
orrelation doesnot imply same dependen
e stru
ture. Consider two 
opula models, Gumbel sur-vival 
opula and Gaussian 
opula. Generate two random normal ve
tors X1 and X2from Gumbel survival 
opula with the parameter �, giving � = 1:5. From (X1; X2),
al
ulate the 
orrelation � and then generate two ve
tors Y1 and Y2 of joint normaldistribution with 
orrelation �, see Figure 6.15.De�ne market 
rash as the event when both variates simultaneously is in thelowest 5% of their marginal distributions.Then the true risk for market 
rash is given byC1:5Gumbel survival(0:05; 0:05) = 2:2 %:And by simulating the variables (Y1; Y2) the estimated risk is found.By Figure 6.16, it is shown that the risk of market 
rash is far larger than whatis estimated by the normal assumption. This means that the risk of market 
rash isunderestimated.This kind of information is very important in, for instan
e, the �eld of hedging,spe
ially when the 
rash dependen
e property is displayed in the market.
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Figure 6.15 On left is 500 simulations of the Gumbel survival 
opula and on right is500 simulations of the Gaussian model with equal 
orrelation.
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Figure 6.16 Cal
ulated risk of market 
rash for the true market and the model of themarket by the Monte Carlo algorithm.



44All of this show that tail dependen
e is stronger than what the 
orrelation takenotion of. It is fairly obvious that data sets may 
ontain unsuspe
ted relations, butit is not known whi
h are the strongest. An intelligent dependen
e stru
ture analysis
an lead to good understanding of data sets. Copula model is one of the intelligentmethods.



Chapter 7Mixture of CopulasBy 
olle
ting the 
opulas that estimate lower tail, upper tail and 
entral depen-den
e and mixing them toghether in a mixing 
opula, we found our model 
opula.We 
onsidered three 
opulas, Joe survival 
opula, Gumbel 
opula and AMH 
opula.Appendix B displays the numeri
al results 
orresponding to the minimal Kuiperdistan
e between empiri
al 
opula and these three 
opulas, individually.With these three 
opulas, we are ready to de�ne a mixture model. Take �1; �2 2[0; 1℄, �3 = 1� �1 � �2 with �1 + �2 � 1 and de�ne a mixed 
opula asCmix(u; v;�; �) = �1CJoe survival(u; v;�1) + �2CGumbel(u; v;�2) + �3CAMH(u; v;�3);where � = (�1; �2; �3) are asso
iation parameters in mixture whi
h re
e
t the degreeof dependen
e, and � = (�1; �2) are weight or shape parameters whi
h re
e
t thedependen
e stru
tures. In Figure 7.1, we plot some mixtures as examples. For the�rst row �1 = 1=2, �2 = 0; for the middle row �1 = �2 = 1=3; for the last row �1 = 0,�2 = 1=2; for all �gure, �1 = 1:8, �2 = 1:4, �3 = 1We use a two-stage parameter estimation approa
h: First, we estimate the asso-
iation parameters by �nding the minimum Kuiper distan
e of every single 
opula.Then we use the minimum Kuiper distan
e to estimate the shape parameters of themixture 
opula. This approa
h makes optimization pro
ess quite simple. The resultsares shown in Table 7.1.Two di�erent diagnosti
s are used to test the goodness-of-�t; a Kuiper test and a
hi-square test.We 
al
ulated the Kuiper distan
es of the mixture 
opula for every pair of datasets, and got D12 = 0:036, D13 = 0:036 and D23 = 0:030.To �nd the approximate p-value of the data set 
oming from the 
opula model,the bootstrap method was used. The results are displayed in Figure 7.2, and showsthat the distan
es D12 = 0:036, D13 = 0:036 and D23 = 0:030 all are large enough toreje
t the �tted model.The other method to test a goodness of �t is a 
hi-square test, see Table 7.2.Be
ause the p-values of paired CTL & AT and SBC & AT are bigger than 5%, themodel is not reje
ted, that is, the mixture model �ts the real market data sets wellenough.The mixture 
opula is 
learly better than the Gumbel 
opula, see table 7.2.



46

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

−5 0 5
−5

0

5

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

−5 0 5
−5

0

5

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

−5 0 5
−5

0

5

Figure 7.1 The �rst 
olumn is the density of three 
opulas 
ross se
tions on the diagonalu=v, the se
ond 
olumn display 
opula density fun
tion and the third 
olumn show the jointdensity fun
tion with standard normal marginals.
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CTL & SBC CTL & AT SBC & AT�1 1:426 1:451 1:257�2 2:292 1:637 1:670�3 0:994 1:000 0:878�1 0:605 0:287 0:027�2 0:275 0:544 0:476�3 0:120 0:169 0:497Table 7.1 Parameters of mixture model 
opula for three paired sto
ks.
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Figure 7.2 Empiri
al distribution of Kuiper distan
es between empiri
al 
opula andempi
rial 
opuls for 1000 observations of the model 
opula.
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CTL & SBC CTL & AT SBC & ATCmixture with devolatilization 3:909e � 05 0:018 0:587Cmixture without devolatilization 0:015 0:054 0:145CGumbel with devolatilization 9:854e � 07 1:510e � 05 8:390e � 04CGumbel without devolatilization 0:004 6:796e � 05 9:389e � 04Table 7.2 p-values of mixture 
opula and Gumbel 
opula.



Chapter 8Con
lusionsBy employing empiri
al 
opulas, we have seen stronger negative time dependen
estru
ture for short term data than for long term data. The dependen
e stru
ture ofshort term data may be a�e
ted by the dis
ontinuous pri
e setting (in Sweden themarket only uses a resolution as low as 0.5SEK). Both short term data and long termdata exhibit stronger 
rash than boom dependen
e in time. This means good newsare momentare while bad news are 
onsistent.The dependen
e stru
ture between two variates in long and short term is notequal. Short term data sets exhibit equal 
rash and boom dependen
e while longterm data sets 
learly display stronger 
rash than boom dependen
e.A
tually it seems very unlikely to �nd any dependen
e between two short termvariates. From the ti
k data, two variates are almost independent ex
ept at extremevents. So the dependen
e in short term is probably entire market 
hanges.A Gaussian assumption for dependen
e stru
tures of variates is a bold one: Wehave found that the dependen
e stru
ture is far more 
omplex. Dependen
e in thetails is stronger than in 
entral regions of data. Unlike multivariate gaussian distri-butions, the true market has asymmetri
 dependen
e. This means that good newsare for minority while bad news are for majority.By simulation it is 
lear that 
orrelation is not a bad method to �r Gaussianpro
esses. However, we know that in the real market, the data 
omes from othermore 
omplex distributions. So 
orrelation 
annot des
ribe dependen
e among marketsto
ks, and we have shown that 
opula models give far better dependen
e des
riptions.Assume that the dataset 
ome from a Gumbel survival 
opula, and that someonemakes the mistake to think that it is jointly Gaussian distributed. Then a great riskis taken, sin
e for the real data's distribution one must 
onsidered its heavy lowertail, whi
h is 
rash dependent. And so risk be
ome greatly underestimated. The
orrelation is a linear estimate that is not versatile enough to take study the 
on
eptof risk.All 
opula models, whi
h we have been able to �nd in the literature, have beenused to investigate the dependen
e stru
ture for real sto
k data sets. And although a
ouple of 
opulas �t better than the Gaussian 
opula, none of them �t the dependen
estru
ture well enough to not show signi�
ant deviations from the empiri
al 
opula.This means the sto
k market dependen
e stru
ture is more 
omplex than a single
opula models' dependen
e stru
ture. Copulas in the literature just have asso
iationparameter and only 
ontrol the degree of dependen
e. So a mixture 
opula is used to�t the data and work well be
ause it has weight parameters, whi
h have an e�e
t on



50the stru
ture of dependen
e, besides asso
iation parameters.Sin
e the dependen
e stru
ture for logreturns is stronger before devolatilizationthan after devolatilization, real-world portfolios have time dependen
e stru
turesmore 
ompli
ated that suggested by the Ba
helier-Samuleson Bla
k-S
holes model.Hen
e some exterior event seem to a�e
t sto
ks pri
es then and then.



Appendix ATable of Tail Dependen
e CoeÆ
entsCopula �U �LGaussian 0 0AMH 0 0Frank 0 0Gumbel 2� 21=� 0Joe 2� 21=� 0Galambos 121=� 0CJ 0 121=�BB1 2� 2 1�2 121=(�1�2)Table A.1 Tail dependen
e of 
opulas.
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Appendix BTable of Distan
es and Parameters for Long TermDataCopula AT & CTL AT & SBC CTL & SBCGaussian D = 0:048 � = 0:366 D = 0:048 � = 0:420 D = 0:040 � = 0:449AMH D = 0:050 � = 1:000 D = 0:057 � = 1:000 D = 0:052 � = 1:000AMH Survival D = 0:060 � = 0:803 D = 0:065 � = 0:916 D = 0:064 � = 1:000Frank D = 0:045 � = 0:110 D = 0:047 � = 0:064 D = 0:039 � = 0:056Frank Survival D = 0:045 � = 0:110 D = 0:047 � = 0:064 D = 0:039 � = 0:056Gumbel D = 0:053 � = 1:441 D = 0:055 � = 1:439 D = 0:046 � = 0:896Gumbel Survival D = 0:040 � = 1:483 D = 0:042 � = 1:476 D = 0:037 � = 0:793Joe D = 0:070 � = 1:735 D = 0:070 � = 1:671 D = 0:065 � = 1:807Joe Survival D = 0:052 � = 1:740 D = 0:054 � = 1:849 D = 0:052 � = 1:795Galambos D = 0:054 � = 0:722 D = 0:056 � = 0:726 D = 0:047 � = 0:896Galambos Survival D = 0:056 � = 0:773 D = 0:056 � = 0:759 D = 0:048 � = 0:793CJ D = 0:047 � = 0:879 D = 0:052 � = 0:946 D = 0:048 � = 0:978CJ Survival D = 0:067 � = 0:833 D = 0:068 � = 0:756 D = 0:063 � = 0:920Table B.1 Minimal Kuiper distan
es and 
orresponding 
opula parameters for longterm data.



54



Appendix CTable of Distan
es and Parameters for Short TermDataEri
son B & Volvo Eri
son B & H&M Eri
son B & H&MAMH D = 0:013 � = 0:095 D = 0:012 � = 0:063 D = 0:011 � = 0:047AMH Survival D = 0:013 � = 0:095 D = 0:012 � = 0:063 D = 0:011 � = 0:047Frank D = 0:013 � = 0:823 D = 0:012 � = 0:880 D = 0:011 � = 0:910Gumbel D = 0:013 � = 1:027 D = 0:012 � = 1:015 D = 0:010 � = 1:013Gumbel Survival D = 0:012 � = 1:025 D = 0:010 � = 1:019 D = 0:011 � = 1:014Joe D = 0:014 � = 1:039 D = 0:013 � = 1:024 D = 0:009 � = 1:023Joe Survival D = 0:013 � = 1:019 D = 0:011 � = 1:027 D = 0:011 � = 1:005Galambos D = 0:015 � = 0:000 D = 0:014 � = 0:000 D = 0:012 � = 0:000Galambos Survival D = 0:015 � = 0:000 D = 0:014 � = 0:000 D = 0:012 � = 0:000CJ D = 0:013 � = 0:028 D = 0:011 � = 0:033 D = 0:012 � = 0:006CJ Survival D = 0:014 � = 0:051 D = 0:013 � = 0:029 D = 0:010 � = 0:029Table C.1 Minimal Kuiper distan
es and 
orresponding 
opula parameters for shortterm data.
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Appendix DGoodness of FitTo measure how 
lose, or how far, an empiri
al distribution is from a theoreti
aldistribution, several distan
es are use. Among them, we 
ite three: the Kolmogorov-Smirnov distan
e, the Anderson-Darling distan
e and the Kuiper distan
e.The Kolmogorov-Smirnov distan
e is the greatest distan
e between the empiri
aldistribution and a hypotheti
al theoreti
al distribution for the data, i.e. for us in thesense of 
opulas: DKS = maxu;v2[0;1℄ jCemp(u; v)� Ctheory(u; v)j; (D.1)where Cemp is the empiri
al 
opula and Ctheory the theoreti
al 
opula fun
tion.The Anderson-Darling distan
e, see Anderson-Darling (1954), is de�ned as as
aled version of the Kolmogorov-Smirnov distan
e:DAD = maxu;v2[0;1℄ jCemp(u; v)� Ctheory(u; v)jqCtheory(u; v)(1� Ctheory(u; v)) : (D.2)The Anderson-Darling distan
e emphasizes the �t in the tails, whi
h makes itinadequate for our purposes, sin
e we are interested in the entire distrbution.The Kuiper distan
e, see Kuiper (1962), 
onsiders greatest distan
es upwards aswell as downwards:DKuiper = maxu;v2[0;1℄ (Cemp(u; v)�Ctheory(u; v))+ maxu;v2[0;1℄ (Ctheory(u; v)�Cemp(u; v)): (D.3)
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Appendix Ep-valuesEa
h statisti
al test has an asso
iated null hypothesis, the p-value is the probabil-ity that the samples 
ould have been drawn from the model being tested, given theassumption that the null hypothesis is true. A p-value of .05, for example, indi
atesthat you would have only a 5% 
han
e of drawing the sample being tested if the nullhypothesis was a
tually true.A null hypothesis is typi
ally a statement of no di�eren
e. A p-value 
lose to zerosignals that the null hypothesis is false, and that a di�eren
e is very likely to exist.Large p-values 
loser to 1 imply that there is no dete
table di�eren
e for the samplesize used. A p-value of 0.05 is a typi
al threshold used in industry to evaluate thenull hypothesis.To show if 
opula models �t the logreturn data sets, we 
an 
al
ulate a p-valueby the 
hi-square statisti
 test.The 
hi-square statisti
 test of k boxes is given by�2 = kXj=1 (Oj � Ej)2Ej ;where Oj is observed frequen
y for box j, i.e., the number of observations that lies inthe box j, and whereEj = n[C(uj; vj)� C(uj�1; vj)� C(uj; vj�1) + C(uj�1; vj�1)℄is the expe
ted frequen
y for box j. Here uj > uj�1; vj > vj�1, u0 = v0 = 0 anduk = vk = 1 must hold.
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Appendix FBa
helier-Samuleson Bla
k-S
holes ModelSeveral models have been proposed to model the pri
e pro
ess, S(t), of an asset.The most widely used model is the Ba
helier-Samuleson Bla
k-S
holes model, whi
hgives the sto
k value at time t as the solution to the sto
hasti
 di�erential equationdS(t) = (�+ �2 )S(t)dt + �S(t) dBt; (F.1)where Bt is brownian motion.The solution to (F.1) is S(t) = S(0)e�t+�Bt ; (F.2)where S(0) is the asset value at the starting time, � is the drift 
oeÆ
ient and �2 > 0is the volatility.By 
onsidering the logreturn, X(t), of the asset value, the data set be
omes drivensimply by the in
rements of a Brownian motion:X(t) = log(S(t+�))� log(S(t)) = log(e�(t+�)+�Bt+���t��Bt) = ��+ �(Bt+� �Bt);where � is time inteval between sampling points. Hen
e, for the Ba
helier-Samuelsonmodel, the logreturns of sto
k values ares the in
rements of an Brownian motion, i.e.they are stationary and independent.
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