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iiiABSTRACTCopula Dependene Struture on Real Stok MarketsbyJan Lennartsson and Min ShuLinear orrelation is only an adequate means of desribing the dependene be-tween two random variables when they are jointly elliptially distributed. When thejoint distribution is not elliptial the linear orrelation oeÆient beomes just one ofmany possible ways of summarizing the dependene struture between the variables.In this thesis projet, based on both long term data and short term tik data, thestohasti dependenies among several stoks and risk-free bonds are investigated.One of the objetives of the thesis, besides improving the general understanding ofdependene strutures between di�erent assets, is to investigate what is the signif-iane of orrelation analysis within those dependene strutures. The motivationfor fousing in part on this problem, is that on the one hand orrelation analysis isused as an important tool in portfolio analysis, while on the other hand it is knownthat orrelation in general might give a very poor piture of the the true dependenestruture. One method in this thesis is to �t various kind of opulas found in theliterature as well as a new one onstruted by us to be suitable for the dependeniesobserved.KEYWORDS: Copula; Time series; Dependene; Correlation.
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Chapter 1IntrodutionConsider a portfolio of N stoks and bonds. Managers of suh a portfolio aretypially interested in the portfolio value at a ertain time T in the future. From astatistial point of view, a problem, dependene among default events, is faed whenmodelling losses on portfolios.Dependene aross �nanial markets have been widely studied in the past deades.Three general alternative methods are available in multivariate analysis for studyingdependene:� One approah is to use a joint distribution based on the most ommonly usedjoint distribution in theoretial and empirial �nane being the multivariatenormal distribution.� The seond approah that has been used in empirial study is to ompute on-ditional orrelation.� The third alternative approah in multivariate analysis is to use a opula modelfor diretly modelling dependene.The third approah is adopted in this thesis. The study of opulas and theirappliation in �nanial markets is a rather modern phenomenon. Compared to thejoint distribution approah or orrelation-based approah, a opula model is a moreonvenient tool in studying the dependene struture. In statistis, a opula is afuntion that onnets marginal distributions to restore the joint distribution andvarious opula funtions represent various dependene strutures between variables.In a opula model, the primary task is to hoose an appropriate opula funtion anda orresponding estimation proedure. Marginal distributions are treated as nuisanefuntions. This reorientation has desirable advantages in empirial �nane. Oneof the primary goals is to investigate the dependene in order to better understandportfolio alloation. The marginal distributions of asset returns in individual marketsmay be very ompliated and may not easily �t within existing parametri models.In this projet, the dependene struture of several stoks are estimated by usinga mixture opula approah. The purpose is to �nd a simple yet exible model tosummarize the dependene struture. The mixture is omposed of the Joe survivalopula, the Gumbel opula and the AMH opula.The mixed method failitate the separation of the onepts of degree of dependeneand struture of dependene, and these onepts are embodied in two di�erent groupsof parameters-assoiation parameters and weight parameters.



2The datasets of the projets ome from typial investment funds in the market.There are not any extremely positive dependene struture and negative dependenestruture between the di�erent �nanial assets involed. Our basi problem is to �ndan appropriate opula model for the dependenies between these assets.The thesis report is organized as follow: Setion 2 reviews some basi oneptsabout opulas, and introdues mixture model. Setion 3 desribes some basi opulamodels. Setion 4 disusses orrelation. Setion 5 shows how to generate randomnumbers from opula models. In Setion 6 our main statistial investigation is arriedout. Setion 7 desribes our resulting mixture opula model, to model the observeddepnedenies. In Setion 8 we make onlusions.



Chapter 2Basi Features of CopulasIn this hapter, we summarize the basi de�nitions that are neessary to under-stand the onept of opulas. We then illustrate the most important properties ofopulas that are needed to understand the usage of opulas in �nane.We follow the notation used in Nelsen (1999). Furthermore, we will restrit our-selves to opulas in two dimensions. The generalization to n dimensions is not diÆult.2.1 De�nition of the CopulaIn the statistis literature, the idea of a opula arose as early as the 19th enturyin the ontext of disussions of non-normality in multivariate ases. Modern theoriesabout opulas an be dated to about forty years ago when Sklar (1959) de�ned opulasand showed some of their fundamental properties: By Sklar's theorem, for a opulaC, FX1;X2;:::;Xn(x1; x2; :::; xn) = C(FX1(x1); FX2(x2); :::; FXn(xn))�: (2.1)It is lear that a opula is a mapping from Iny to I, i.e. a multivariate distributionwith uniform marginals on I. From (2.1), it is evident that the marginal dependenean be separated from the dependene struture between the variates, and that itmakes sense to interpret C as the dependene struture of the multivariate randomvetor X.De�nition 2.1.1 A map C : In ! I is alled a opula if the following onditonshold:1. For all u = (u1; u2; :::; un) 2 In C(u) � 0;2. for every uk 2 I C(1; 1; :::uk; :::; 1) = uk;3. for every ui2; ui1 with ui2 � ui1 � 0 8iC(u12; u22; :::; un2)� Xi;j;:::;qnfi=j=:::=qgC(u1i; u2j ; :::; unq) + C(u11 ; u21; :::; un1) � 0:�X1; :::; Xn are random variables, FX1;X2;:::;Xn(x1; x2; :::; xn) denotes the joint distributionfuntion and FXi(xi) denotes the marginal distribution funtion of Xi.yI denots the interval [0,1℄.



4Now we will restrit ourselves to the bivariate opula.De�nition 2.1.2 A bivariate opula is a funtion C : I � I ! I with the followingproperties:1. For every u; v 2 I C(u; 0) = C(0; v) = 0;2. for every u; v 2 I C(u; 1) = uand C(1; v) = v;3. for every u1; u2; v1; v2 2 I with u1 � u2 and v1 � v2C(u2; v2)� C(u1; v2)� C(u2; v1) + C(u1; v1) � 0:

Figure 2.1 Example of a opula funtion.A funtion that ful�ls Property 1 is said to be grounded, Property 3 is the two-dimensional analogue of a nondereasing one-dimensional funtion. A funtion withthis feature is therefore alled 2-inreasing, see Figure 2.1.



52.2 The Probability Density Funtion of CopulasDue to virtual similarity of all opula funtions, it is hard to visualize di�erenesbetween these distribution funtions. So rather it is onvenient to study densityfuntions of opulas.The density of a opula C is given by(u; v) = �2�u�vC(u; v);if C is a ontinuously di�erentiable funtion of u and v.
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Figure 2.2 First olumn displays opula funtions, seond olumn probability densityfuntions of these opulas, and third olumn density funtions of distributions with theseopulas and standard normal marginal distributions.From Figure 2.2, it seems that the the �rst olumn displays two almost equal op-ula funtion, but from the two olumns to the right, it is lear that their dependenestrutures are in fat quite di�erent.



6Theorem 2.2.1 Let C be a opula. For every u 2 I, the partial derivative �C=�vexists for almost all v 2 I. For suh u and v one has0 � ��vC(u; v) � 1: (2.2)The analogous statement is true for the partial derivative �C=�u. In addition, thefuntions u ! Cv(u) � �C(u; v)=�v and v ! Cu(v) � �C(u; v)=�u are well-de�nedand nondereasing almost everywhere on I.2.3 Frehet BoundsDe�nition 2.3.1 The opulas W : I2 ! I and M : I2 ! I are given byW (u; v) = min(u; v)and M(u; v) = max(u+ v � 1; 0):Both W and M denote perfet dependene but in two ompletely di�erent ways.For every opula C and every (u; v) 2 I2W (u; v) � C(u; v) �M(u; v): (2.3)Inequality (2.3) is the opula version of the Frehet-Hoe�ding inequality, whih referto M as the Frehet-Hoe�ding upper bound and W as the Frehet-Hoe�ding lowerbound, see Figure 2.3.2.4 Dependene StrutureWe begin with some "positive" and "negative" dependene properties: positivedependene properties expressing the notion that "large" (or "small") values of therandom variables tend to our together, and negative dependene properties express-ing the notion that "large" values of one variables tend to our with "small" valuesof the other.De�nition 2.4.1 The opula � : I2 ! I is given by�(u; v) = u v:



7De�nition 2.4.2 Two random variables X and Y are alled positively quadrantdependent (PQD) if for all (x; y)P [X � x; Y � y℄ � P [X � x℄P [Y � y℄; (2.4)or equivalently P [X > x; Y > y℄ � P [X > x℄P [Y > y℄: (2.5)Negative quadrant dependene (NQD) is de�ned analogously by reversing the inequal-ities in (2.4) and (2.5).If X and Y have joint distribution funtion H, with ontinuous marginal distri-butions F and G, respetively, and opula C, and (2.4) holds i.e.H(x; y) � F (x)G(y)for all (x; y), thenC(u; v) = H(F�1(u); G�1(v)) � F (F�1(u))G(G�1(v)) = uv = �(u; v)for all (u,v)=(F(x),G(y)), i.e. C(u; v) � �(u; v): (2.6)This proves that the � opula is the separator of PQD and NQD.For opulas, if (2.6) holds for all u; v 2 I, the opula is alled a PQD opula, andan NQD opula is de�ned analogously. Figure 2.3 shows a relation between PQD andNQD opulas.The onept of tail dependene is a way to desribe the amount of extremal valuedependene. It is method to measure strength of positive tail dependene. Here,opula funtions may be used to ompute and investigate tail dependene assessingthe evidene of simultaneous booms and rashes on di�erent markets.De�nition 2.4.3 For a opula C the lower tail dependene is given by�L = limu!0 C(u; u)u ; (2.7)and the upper tail dependene by�U = limu!1 1� 2u+ C(u; u)1� u : (2.8)It an be veri�ed that 0 � �U ; �L � 1: When �U � 1 or �L � 1, there is a strongtail dependene.



82.5 Survival CopulasIn many appliation, the random variables of interest represent the lifetimes ofindividuals or objets in some population. The probability of an individual living orsurviving beyond time x is given by the survival funtion (or survivor funtion, orreliability funtion).For a pair (X; Y ) of random variables with a joint distribution funtion H, thejoint survival funtion is given by H(x; y) = P [X > x; Y > y℄. The margins of H arethe univariate survival funtion F and G, respetively. Then we haveH(x; y) = 1� F (x)�G(y) +H(x; y) = F (x) +G(y)� 1 + C(1� F (x); 1�G(y));so we de�ne:De�nition 2.5.1 A bivariate opula Csurvival : I2 ! I is alled the survival opula ofa opula C if Csurvival(u; v) = u+ v � 1 + C(1� u; 1� v): (2.9)It an easily be veri�ed that Csurvival is a opula if C is a opula. The survivalopula swithes upper and lower tail dependene, see �gure 2.4.The density of the survival opula survival and the density of the original opula are related by survival(u; v) = (1� u; 1� v):Hene they are mirror images about (u; v) = (1=2; 1=2)For example, if a opula features positive upper tail dependene means, then theprobability of both variables being in the upper tail is relatively high. And thenits survival opula, its mirror image, has positive lower tail dependene, so that theprobability of both variables being in lower tails is high.2.6 Mixture CopulaDisrete mixture models, see Hu (2004), arise in the theory of reliability whenindividuals belong to one of n distint distributions with ertain proportions.De�nition 2.6.1 Let C�11 ; : : : ; C�1n be opulas with parameters �1; : : : ; �n, and �1; : : :; �n � 0 numbers suh that �1 + �2 + :::+ �n = 1. A mixture opula is given byCmixture(u; v) = �1C�11 (u; v) + ::: + �nC�nn (u; v): (2.10)



9Mixture models may be used to obtain more versatile opula models, for example,allowing asymmetri tail dependene.The method to �t mixture models failitates the separation of the onepts ofdependene degree and dependene struture, and these onepts are embodied in twodi�erent groups of parameters- the assoiation parameters � and the weight param-eters �. The assoiation parameters are parameters in eah opula that ontrol thedegree of dependene, while the weight parameters reets the shape of the depen-dene.2.7 Empirial CopulasThe empirial opula is obtained through empirial umulative density transform(rank transform) of the original data.De�nition 2.7.1 Let (xk; yk)nk=1 denote a sample of size n from a ontinuous bivari-ate distribution. The empirial opula is the funtion Ĉemp given by�Ĉemp(u; v) = ℄f(xk; yk) : FX(xk) � u; FY (yk) � vgn ;and the empirial opula density funtion ̂emp is given bŷemp(u; v) = 1n nXk=1 Æ(u� FX(xk); v � FY (yk)):

�℄ denotes the number of elements of a set.
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Figure 2.4 Upper �gures display the density of a opula and orresponding survivalopula density, lower �gures display density of the orresponding distribution that has thisopula and standard normal marginals.



Chapter 3Examples of CopulasThe opula W is alled omonotoni opula sine it desribes perfet positivedependene, and M is alled ountermonotoni sine it desribes perfet negativedependene, see Figure 3.1.
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Figure 3.1 100 samples generated from W , � and M opulas.Table 3.1 shows that W has maximum upper and lower tail dependene, whereas� and M both have zero upper and lower tail dependene.In this setion, we will disuss several important lasses of opulas. The taildependene oeÆients of opulas have been omputed in Appendix A.3.1 Arhimedean CopulasIn this setion, we onentrate on an important lass of opulas alled Arhimed-ean opulas. If C(u1; u2; :::; un) = �(Pni=1 ��1(ui)) with generator � then the opulais alled arhimedean. These opulas allow for a great variety of dependene stru-W � M�U 1 0 0�L 1 0 0Table 3.1 Tail dependene of opulas W , � and M .



14tures. They have losed form expressions and they are not derived from multivariatedistribution using Sklar's Theorem. They �nd an appliation for a number of reasons:1. The ease with whih they an be onstruted;2. the great variety of failities of opulas whih belong to this lass;3. the many nie properties possessed by the members of this lass.For an aount of this history, see Shweizer (1991) and the referenes ited therein.Gaussian Copula One of the most frequently used opulas, espeially for �nanialmodelling, is the bivariate Gaussian opula CGauss. It is de�ned byC�Gauss(u; v) = Z ��1(u)�1 Z ��1(v)�1 exp��x2�2�xy+y22(1��2) � dxdy2�p1��2 = ��(��1(u);��1(v)):(3.1)Here ��1 is the inverse probability distribution funtion of the standard univariateGaussian distribution, while �� is the joint distribution funtion of a standard bivari-ate Gaussian with the orrelation oeÆient �, whih is the only parameter of theGaussian opula (�1 < � < 1).Figure 3.2 learly displays that a Gaussian dependene struture is symmetri.Two variates of a stok market with a Gaussian opula dependene struture impliesthat the variates are equally likely to boom together as to rash together.A Gaussian dependene struture with � > 0 means that the variates are positivequadrant dependent, analogous if � < 0 the variates are negative quadrant dependent.If � < 0 in the example of market returns, it implies that it is a higher probabilityfor the variates to move opposite ways, whih means that if one variate boom, theother variate exhibits higher probability to rash.The Gaussian opula's variates are only multivariate normal distributed if itsmarginal distributions are normal.We an hek that the tail dependene oeÆients are �U = 0 and �L = 0.Seebined with Figure 3.2, we de�ned the tail of Gaussian opula is normal tail.AMH Copula The bivariate AMH opula CAMH is de�ned asC�AMH(u; v) = u v1� �(1� u)(1� v) : (3.2)The only parameter of the AMH opula is the parameter �, 0 < � < 1.Figure 3.3 learly displays that a AMH dependene struture is asymmetri andthe lower tail is heavier than upper tail. Moreover, its tail dependene oeÆients�U = �L = 0, so we onlude the its upper tail is light tail and its lower tail is lighttail or normal tail.
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Figure 3.2 First row is the density of Gaussian opula with � = 0:5 and the seond rowis the density of Gaussian opula with � = �0:5. First olumn displays the ross setion ofthe density on diagonal u = v, seond olumn displays opula density funtion and thirdolumn displays joint distribution if marginal distributions are normal.
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Figure 3.3 First olumn displays the ross setion of the density of C�AMH on diagonalu = v, seond olumn displays opula density funtion and third olumn displays jointdistribution when marginal distributions are standard normal.



16Frank Copula The bivariate Frank opula CFrank is de�ned asC�Frank(u; v) = log�(1 + (�u � 1)(�v � 1)�� 1 ): (3.3)The only parameter of the Frank opula is the parameter �, where 0 < � < 1 or� > 1.
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Figure 3.4 First olumn displays the ross setion of the density of C�Frank on diagonalu = v, seond olumn displays opula density funtion and third olumn displays jointdistribution when marginal distributions are standard normal.Figure 3.4 displays that a Frank opula's dependene struture is symmetri andby Appendix I, its tail dependene oeÆients are �U = �L = 0. Compared with aGaussian opula, the Frank opula has more probability in the middle region, so thatthe tails must be lighter.Gumbel Copula The bivariate Gumbel opula CGumbel is de�ned asC�Gumbel(u; v) = e�((� log(u))�+(� log(v))�)1=� : (3.4)The only parameter of the Gumbel opula is the parameter �, where � � 1. For� = 1, expression (3.4) redues to C1Gumbel(u; v) = �(u; v), the independent opula.From Figure 3.5, a Gumbel dependene struture is asymmetri and the upper tailis heavier than the lower tail. A Gumbel opula implies that two markets are morelikely to boom together than to rash together. And its tail dependene oeÆientsare �U = 2 � 21=�, �L = 0, so that its upper tail is heavy, and its lower tail lightor normal. The expression for �U also shows that the larger is �, the heavier is theupper tail.



17Joe Copula The bivariate Joe opula CJoe is de�ned asC�Joe(u; v) = 1� ((1� u)� + (1� v)� � (1� u)�(1� v)�)1=�: (3.5)The only parameter of the Joe opula is the parameter �, � > 1.Clearly a Joe opula's dependene struture, see Figure 3.6, is asymmetri and itstail dependene oeÆients are �U = 2� 21=� and �L = 0.Even though the tail dependene of C�Joe is equal to C�Gumbel, it learly does notmean equal dependene strutures apart from the tails. For example, the Joe opuladoes feature a muh lighter lower tail.Cook-Johnson Copula The bivariate Cook-Johnson (CJ) opula CCJ is de�nedas C�CJ(u; v) = (u�� + v�� � 1)�1=�: (3.6)The only parameter of the CJ opula is the parameter �, � > 0.The Cook-Johnson opula's dependene struture is also asymmetri and its taildependene oeÆients are �U = 0 and �L = 2�1=�, see Figure 3.7. If two variatesof the stok market follow the CJ opula, then they feature a larger probability ofsimultaneous rashing than simultaneous booming.BB1 Copula The bivariate BB1 opula CBB1 is de�ned asC�1;�2BB1 (u; v) = (1 + ((u��1 � 1)�2 + (v��1 � 1)�2)1=�2)�1=�1 : (3.7)The parameters of the BB1 opula are �1 > 0 and �2 � 1.The BB1 opula's dependene struture is asymmetri, and the opula emphasizesboth tails. The density funtion of the opula is onentrated losly to the line u = v,see Figure 3.8. The tail dependene oeÆients are �U = 2�2 1�2 and �L = 2�1=(�1�2).BB6 Copula The bivariate BB6 opula CBB6 is de�ned asC�1;�2BB6 (u; v) = 1� (1� e�((� log(1�(1�u)�1 ))�2+(� log(1�(1�v)�1 ))�2 )1=�2 ))�1 : (3.8)The parameters of the BB6 opula are �1 > 0 and �2 � 1.The BB6 opula's dependene struture is asymmetri and looks like that of BB1,with the density onentrated lose to the line u = v, see Figure 3.9. However, itsupper tail is heavier than its lower tail, and both these tails are heavy.
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Figure 3.5 First olumn displays the ross setion of the density of C�Gumbel on diagonalu = v, seond olumn displays opula density funtion and third olumn displays jointdistribution when marginal distributions are standard normal.
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Figure 3.6 First olumn displays the ross setion of the density of C�Joe on diagonalu = v, seond olumn displays opula density funtion and third olumn displays jointdistribution if marginal distributions are standard normal.
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Figure 3.7 First olumn displays the ross setion of the density of C�CJ on diagonalu = v, seond olumn displays opula density funtion and third olumn displays jointdistribution if marginal distributions are standard normal.
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Figure 3.8 First olumn displays the ross setion of the density of C�1;�2BB1 on diagonalu = v, seond olumn displays opula density funtion and third olumn displays jointdistribution if marginal distributions are standard normal.
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Figure 3.9 First olumn displays the ross setion of the density of C�1;�2BB6 on diagonalu = v, seond olumn displays opula density funtion and third olumn displays jointdistribution if marginal distributions are standard normal.
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Figure 3.10 First olumn displays the ross setion of the density of C�1;�2BB7 on diagonalu = v, seond olumn displays opula density funtion and third olumn displays jointdistribution if marginal distributions are standard normal.



20BB7 Copula The bivariate BB7 opula CBB7 is de�ned asC�1;�2BB4 (u; v) = 1� (1� ((1� (1� u)�1)��2 + (1� (1� v)�1)��2 � 1)�1=�2)1=�1 : (3.9)The parameters of the BB7 opula are �1 > 0 and �2 � 1.The BB7 opula's dependene struture is almost symmetri and its density on-entrated at the enter, but the tails are heavier than for the Gaussian opula, seeFigure 3.10.3.2 Extreme Value CopulasAnother important lass of opulas is the extreme value lass: A opula is saidto be an extreme value opula (EV) if for all t > 0 the saling property. C(ut; vt) =(C(u; v))t holds 8 u; v 2 I.EV opulas are max-stable, meaning that, if (X1; Y1), (X2; Y2); :::(Xn; Yn) are in-dependent identially distributed (i.i.d.) random pairs from an EV opula C andMn = maxfX1; X2; :::Xng and Nn = maxfY1; Y2; :::Yng, then the opula for (Mn; Nn)is also C. The EV opulas an be represented in the form:CEV(u; v) = elog(uv)A(log(u) log(v)= log(uv)); (3.10)where the funtion A is alled the dependene funtion.Galambos Copula The Galambos opula has the following form:C�Galambos(u; v) = uve((�log(u))��+(�log(v))��)�1=� : (3.11)The only parameter of the Galambos opula is the parameter � � 0.Figure 3.11 shows that a Galambos opula's dependene struture is asymmetri.The tail dependene oeÆients are �U = 2�1=� and �L = 0.BB5 Copula The BB5 opula is a two-parameter extension of the Gumbel opulaand has the following form:C�1;�2BB5 (u; v) = e�(� log(u))��1�(� log(v))��1+((� log(u))��1�2+(� log(v))��1�2 ))�1=�2 : (3.12)The parameters of the BB5 opula are �1 � 0 and �2 > 1.Clearly a BB5 opula's dependene struture is also asymmetri. As illustrated inFigure 3.12, a BB5 opula implies that two markets are more likely to boom togetherthan to rash together and its tails are heavy.
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Figure 3.11 First olumn displays the ross setion of the density of C�Galambos ondiagonal u = v, seond olumn displays opula density funtion and third olumn displaysjoint distribution if marginal distributions are standard normal.

0 0.5 1
0

0.2

0.4

0.6

0.8

1

0 0.5 1
0

0.2

0.4

0.6

0.8

1

−5 0 5
−5

0

5

Figure 3.12 First olumn displays the ross setion of the density of C�1;�2BB5 on diagonalu = v, seond olumn displays opula density funtion and third olumn displays jointdistribution if marginal distributions are standard normal.



223.3 The Frehet FamilyDe�nition 3.3.1 Let �; � 2 I with �+ � � 1, and setC�;�(u; v) = �M(u; v) + (1� �� �)�(u; v) + �W (u; v): (3.13)This omprehensive two-parameter opula is alled a Frehet opulas.The parameters �, � are linked to non-parametri dependene measures by par-tiularly simple analytial formulas. For example, the orrelation of a Frehet opulais � = �� �:A Frehet opula with � = 0 is a PQD opula, and when � = 0, it is a NQDopula.



Chapter 4CorrelationCorrelation is a statistial tehnique whih an show whether and how stronglypairs of stohasti variables are related. Correlation is essentially founded on the as-sumption of multivariate normally distributed returns, in order to adequatly desribedependenies. Still, orrelation analysis feature as an important tool to measuredependenies on for example, returns in stok markets.We begin with onsidering pairs of real valued random variables X and Y with�nite varianes.The linear orrelation oeÆient between X and Y is�(X; Y ) = Cov(X; Y )qVar(X)Var(Y ) ;where Cov(X; Y ) is the ovariane between X and Y , Cov(X; Y ) = E[(X�E[X℄)(Y �E[Y ℄)℄, and Var(X) denotes the variane of X.Correlation is a measure of linear dependene. In the ase of perfet linear depen-dene, i.e. Y = aX + b a:s:;or P [Y = aX + b℄ = 1, where a 6= 0, then �(X; Y ) = sign(a) is �1 or 1.The orrelation oeÆient may take on any value between positive and negativeone, �1 � � � 1:The sign of the orrelation oeÆient de�nes the diretion of the relationship, eitherpositive or negative. A positive orrelation oeÆient, in the example of marketreturns, implies that it is a higher probability for the variates to move same ways,whih means that if one variate booms, it is a high probability that the other variatewould also boom.If two random variables X and Y are jointly normal distributed with ovarianeCov(X; Y ), then all dependenies between these two variates are aptured in theovariane. This means thatX is independent from Y�Cov(X; Y )=Var(Y )X, beauseCov(X; Y � Cov(X; Y )Var(X) X) = Cov(X; Y )� Cov(X; Y )Var(X) Cov(X;X) = 0:If two real world random variables X̂ and Ŷ have a dependene struture that anbe desribed by orrelation analysis, then X̂ and Ŷ �Cov(X̂; Ŷ )=Var(Ŷ )X̂ should be



24independent, by the above argument, and the � opula should �t its empirial opulaperfetly.However, the orrelation, as well as being one of the most ubiquitous onepts inmodern �nane, is also one the of the most misunderstood onepts.Assume that the opula funtion of a pair of random variables X and Y is known.Then their ovariane is given byCov(X; Y ) = Z 1�1 Z 1�1 xyfX(x)fY (y) ((FX(x); FY (y))� 1) dxdyor, substituting (x; y) = (F�1X (u); F�1Y (v)) and (dx; dy) = (du=fX(x); dv=fY (y)),Cov(X; Y ) = Z 10 Z 10 F�1X (u)F�1Y (v) ((u; v)� 1) dudv: (4.1)It is now lear that all information of the opula is not aptured by the ovariane.Copulas de�ne the omplete dependene struture while ovariane only is a measureof linear dependene: One annot ompute  given Cov(X; Y ) in (4.1)!Of ourse, by de�nition of the � opula, we have �2 �(u; v)=�u�v = 1. Then by(4.1), the ovariane is zero, as well as all other relations between the two randomvariables involved.



Chapter 5Generation of Random Number Using CopulaModelsIn Chapter 2, we presented the de�nition of opulas, their most important proper-ties and several lasses of opulas. So now we are ready to generate random numbers.The strategy is to give a general guide on how to generate pairs of random variableswhose dependene struture is de�ned by a opula. Helpful for understanding, weexemplify with a Gumbel opula whih is disussed in more detail.5.1 The General MethodAssume that all parameters of the joint distribution is known. The joint densityfuntion is bounded, f(x; y) � M , and random variables ome from a losed box.Then a random variate (X; Y ) from this dependene struture an be reated asfollows:1. Generate two uniform distributed random variables �; � from the box;2. generate a uniform variable,  from 0 to M ;3. if f(�; �) > , then aept (�; �) to the data set, otherwise go bak to 1.Sine (u; v) may not be bounded, the uniform random variables may have tobe transformed. Consider two random variables with normal marginal distributions,then F (x; y) = C(�(x);�(y)):Further, the joint density funtion is given byf(x; y) = �2�x�yF (x; y) = �2�x�yC(�(x);�(y)) = (�(x);�(y))�(x)�(y);where d�(x)=dx = �(x) and (�(x);�(y))�(x)�(y) � (0:5; 0:5) � M is bounded.Now the box is not losed sine normal distributed variables an take any value. Butassuming that no values lay outside some large perimiter, then all properties of theabove generating data model is ful�lled.The seond method, using onditional distributions, works for all opula funtions:Let v denote the onditional distribution funtion for the random variable U ata given value v of V , v(u) = P [U < ujV = v℄:



26From (2.1), and sine the density funtion of a uniform distribution onstantly equalto one, we havev(u) = P [U�u jV =v℄ =Z u�1 f(x; v)fY (v) dx =Z u0 (x; v) dx = ��yC(u; y)jy=v = Cv(u; v);(5.1)where Cv(u; v) is the partial derivative of the opula C. From (2.2), we know thatv(u) is nondereasing and exists for all u 2 I.With the result (5.1) at hand, we have the following seond method to generatethe data, as follows:1. Generate a uniformly distributed random variable � over I ;2. generate (U jV = �) from the onditional opula;3. now (�; (V jU = �)) will be a random variate with the distribution desired.5.2 Generation Random Numbers Aording to the GumbelCopulaIn this setion, a detailed example is presented. For the sake of simpliity, weassume the parameter � of Gumbel opula equals 1.5, and use the onditonal opulamethod to generate 500 paired random numbers.
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Figure 5.1 First olumn displays variates with uniform marginal distributions from aGumbel opula and the opula density, seond olumn displays same variates with standardnormal marginal distribution and joint density.In Figure 5.1, the paired random numbers are displayed. And it is lear that thedata sets well �t the Gumbel opula model by omparing to its ontour lines.



275.3 Robust Estimation of Signi�aneThe bootstrap method will be used to measure the goodness of �t for the models.The detail method is:1. Generate pairs (�; �) from model of data sets sample size;2. �nd empirial opula funtion from the generated data;3. alulate the Kuiper distane of the empirial opula to the model opula (seeAppendix D);4. repeat the above proedure 1000 times;5. plot the empirial distribution funtion of the observed Kuiper distanes.By heking the empirial distribution funtion of the Kuiper distane, approxi-mate p-values for the Kuiper distane statisti an be found.
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Chapter 6InvestigationThe investigation is diversi�ed into two parts. Firstly the dependene struturewith time of a single asset, and seondly the dependene struture of two di�erentassets, whih is the major part.When modelling the prie proess of an asset on a true market, normally thelogreturns of the asset are viewed as i.i.d. data. But how well does this assumptionhold? Are the logreturn really independent in time?Aording to the distribution of portfolio enterprisers, the investment poliy ofthe fund is reeted in the struture of its investment portfolio. What dependenestruture between the real assets are preferable? The value of a fund is the sum ofall assets within the fund. So to avoid rashes, the assets should display negativedependene. Meanwhile, to allow maximum pro�t, the assets should display positivedependene.6.1 DataIn order to investigate the di�erent dependene strutures of assets on real-worldmarkets, long term data sets and short term data sets were gathered.Long term data were athed from the �nane homepage of Yahoo of the variatesin the ProFunds Ultra Teleommuniations Inv. fund (TCPIX).Five minutes short term tik data were athed from the OMX homepage of thevariates in the SEB Sverigefond 1.Statistial Presentation of Long Term Data Sets We briey present the basistatistis of the logreturn� series of the holding of ProFunds Ultra Teleommunia-tions Inv. before investigating the distribution of their dependene. The series areCenturyTel In. (CTL), SBC Communiations In. (SBC) and Alltel Corp. (AT). (Ofthese, the fund does no longer hold CTL.)From inspetion of Figure 6.2, we see that all three data sets have a non-Gaussiandistribution and display heavy tails.In Table 6.1, we summarize the omputations of the �rst two empirial momentsof the logreturn series.From Figure 6.3, it is lear that the logreturns are time dependent. The datais rash dependent, and further investigation veri�es that the variates also displaysnegative dependene. This means that the data set is not i.i.d. The same property�We use the notation; S(t) stok prie, X(t) logreturn and A(t) devolatilized logreturn.



30Mean VarianeCTL 3:032e� 04 4:318e� 04SBC 4:579e� 04 4:157e� 04AT 2:168e� 04 4:795e� 04Table 6.1 Statistis for three logreturn series on the period from 03-Ot-96 to 24-Sep-04with a total of N = 2000 data.
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Figure 6.1 At top stoks pries from 03-Ot-96 to 24-Sep-04, in middle logreturn valuesof same time period and at bottom histogram of the logreturn data.
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Figure 6.2 Normal quantile-quantile plot of logreturns of data.
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Figure 6.3 Copula density funtion of time dependene struture for logreturn CTL.



33holds for all long term data sets. This means that parameter estimation with standardmaximum likelihood method basially is inaurate.Filtering of Data By investigating data sets it an be veri�ed that the volatilityis not onstant, so the Bahelier-Samuelson Blak-Sholes model, see Appendix F, isimproper. To avoid this property of a hanging market we employ a devolatilizationof the data set.Ome may generalize the Bahelier-Samuelson Blak-Sholes model by making thevolatility time dependent and the noise proess a L�evy proess Lt, i.e.dS(t) = (�+ �t2 )S(t)dt + �tS(t) dLt: (6.1)The logreturn Xt of the stok prie is then, if assumed that �t moves slowly omparedto Lt,Xt = log(St)� log(St��) = ��+�tLt��t��Lt�� � ��+�t(Lt�Lt��) = ��+�tAt;where � is the time interval between sample points. The devolatlized logreturns Atis a random walk independent of the time hanging volatilityAt = Xt � ���t :By devolatilizing the hanging volatility, the data is made independent of markethanges. The time dependent volatility is estimated by the Nadaraya-Watson algo-rithm, see Nadaraya (1964) and Watson (1964), together with Bengtsson and Olsbo(2002) and Drees and Staria (2002).6.2 Simulation of CopulaThe parameters in eah opula funtion ontrol the degree of dependene. InFigure 6.4, we an �nd how the parameters hange, for example, a PQD opula to aNQD opula, or the � opula to the W opula, and so on.6.3 Fitting Copulas to DataWe propose two di�erent diagnostis: A numerial method and a graphial method.Now, we onsider distanes between �tted opuls and empirial opula, see Ap-pendix D, and the orresponding p-value, see Appendix E, of the three devolatilizedlogreturn series of CTL, SBC and AT, labeled series Ai, i 2 1; 2; 3. First, we look atthe dependene struture among A1, A2 and A3. There are higher rash dependenethan boom dependene, see Figure 6.5.
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Figure 6.4 Simulation Copulas's PQD and NQD properties by hanging parameters.
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Figure 6.5 Empirial opulas and its density opula funtions of dependene strutureamong CTL, SBC and AT.



36Combined with Figure 6.5, it an be seen that there are many sensitive regionsin the entral part of the opulas. Kolmogorov-Smirnov distane (D.1) and Kuiperdistane (D.3) are sensitive to all data, while the Anderson-Darling distane (D.2)emphasizes the tails. We seleted to use the Kupier distane (D.3), whih onsidersthe greatest deviations upwards as well as downwards.For the various opulas and eah pair of logreturn series, by alulating the mini-mal Kuiper distane between the empirial opulas and theoretial models, the op-ula's parameters are found. Appendix B and Figure 6.6 show that Gumbel survivalopula is superior to all of the opulas that we investigated, whih means there is alower tail dependene in our data set.The p-values should be heked to see if the Gumbel survival opula is �t for thedata sets. When alulating p-values for the three pairs, A1&A2, A1&A3 and A2&A3,we found that the Gumbel opula is not a good model, beause all of them are smallerthan 5%.
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Figure 6.6 Kuiper distanes of opulas to the empirial opulas of A1&A2, A1&A3 andA2&A3.Statistial Presentation of Short Term Data Sets Here, three �ve-minutesshort term tik data sets (Erison B, Volvo and H&M, see Figure 6.7), athed fromthe OMX homepage of the variates in the SEB Sverigefond 1 have been investigated.The short term tik data sets are not Gaussian distributed, see Figure 6.8. And the



37data sets have disrete distributions beause the time interval is too short to projetexterior events. The short term data sets are not i.i.d as well as the long term data,see Figure 6.10. Moreover, the short term data sets feature a stronger negative timedependene than long term data.
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Figure 6.7 First row displays stok pries of Erison B, Volvo and H&M 02-Ot-04 to14-De-04, seond row displays logreturn time series and third row displays histogram ofdata sets.By Figure 6.10, the dependene struture is almost the � opula exept for inthe tails. This means that the variates are indepdent everywhere exept for extremeevents.The distane measure and p-value work here as for the long term data sets. TheJoe survival opula is better than all other opulas that we investigated, whih meansthere is a lower tail dependene in the short term data set, see Figure C.1.We hek the p-value to see if the Joe survival opula is �t for the data sets. It
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40turned out that the p-value of the three pairs were smaller than 5%, so that the Joesurvival opula does not �t the short term data.
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Figure 6.11 Kuiper distanes of opulas to empirial opula of short term data setsErison B, Volvo and H&M.6.4 Correlation as Measure of DependeneFor the observed data sets we now hek how good orrelation is to desribe thedependene struture.We introdue the new variate of non devolatilized logreturnsX�ji = Xi � Cov(Xi; Xj)Var(Xj) Xj;and then heked if Xj is independent from X�ji .There are too many outliers from the independent distribution for it to be thedependene struture of the variates, see Figure 6.12. So we used the opula methodto �nd the dependene struture of X1 and X�12 , see Figure 6.13.Clearly, the density funtion of the opula is not at, and the result displays thatthe dependene is muh more omplex than what the linear measure desribes.By the bootstrap method, the distanes of the simulated data from the � opula isfound, see Figure 6.14. The distanes of the three empirial opulas of the transformed
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Figure 6.12 Logreturns with normal marginals of X1 and X�12 and the density of theindependent distribution with standard normal marginals.

Figure 6.13 Copula density funtions of X1 & X�12 and X1 & X2.



42data sets are D12 = 0:103, D13 = 0:111 and D23 = 0:108. By inspetion of Figure6.14, this shows that there still is onsiderable dependene between the variates.
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Figure 6.14 Empirial distribution for Kuiper distanes between empirial opula for1000 simulations of independent data and � opula.Although orrelation says something about dependene, orrelation is not enoughto desribe the dependene struture between two variates. Equal orrelation doesnot imply same dependene struture. Consider two opula models, Gumbel sur-vival opula and Gaussian opula. Generate two random normal vetors X1 and X2from Gumbel survival opula with the parameter �, giving � = 1:5. From (X1; X2),alulate the orrelation � and then generate two vetors Y1 and Y2 of joint normaldistribution with orrelation �, see Figure 6.15.De�ne market rash as the event when both variates simultaneously is in thelowest 5% of their marginal distributions.Then the true risk for market rash is given byC1:5Gumbel survival(0:05; 0:05) = 2:2 %:And by simulating the variables (Y1; Y2) the estimated risk is found.By Figure 6.16, it is shown that the risk of market rash is far larger than whatis estimated by the normal assumption. This means that the risk of market rash isunderestimated.This kind of information is very important in, for instane, the �eld of hedging,speially when the rash dependene property is displayed in the market.
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Figure 6.15 On left is 500 simulations of the Gumbel survival opula and on right is500 simulations of the Gaussian model with equal orrelation.
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Figure 6.16 Calulated risk of market rash for the true market and the model of themarket by the Monte Carlo algorithm.



44All of this show that tail dependene is stronger than what the orrelation takenotion of. It is fairly obvious that data sets may ontain unsuspeted relations, butit is not known whih are the strongest. An intelligent dependene struture analysisan lead to good understanding of data sets. Copula model is one of the intelligentmethods.



Chapter 7Mixture of CopulasBy olleting the opulas that estimate lower tail, upper tail and entral depen-dene and mixing them toghether in a mixing opula, we found our model opula.We onsidered three opulas, Joe survival opula, Gumbel opula and AMH opula.Appendix B displays the numerial results orresponding to the minimal Kuiperdistane between empirial opula and these three opulas, individually.With these three opulas, we are ready to de�ne a mixture model. Take �1; �2 2[0; 1℄, �3 = 1� �1 � �2 with �1 + �2 � 1 and de�ne a mixed opula asCmix(u; v;�; �) = �1CJoe survival(u; v;�1) + �2CGumbel(u; v;�2) + �3CAMH(u; v;�3);where � = (�1; �2; �3) are assoiation parameters in mixture whih reet the degreeof dependene, and � = (�1; �2) are weight or shape parameters whih reet thedependene strutures. In Figure 7.1, we plot some mixtures as examples. For the�rst row �1 = 1=2, �2 = 0; for the middle row �1 = �2 = 1=3; for the last row �1 = 0,�2 = 1=2; for all �gure, �1 = 1:8, �2 = 1:4, �3 = 1We use a two-stage parameter estimation approah: First, we estimate the asso-iation parameters by �nding the minimum Kuiper distane of every single opula.Then we use the minimum Kuiper distane to estimate the shape parameters of themixture opula. This approah makes optimization proess quite simple. The resultsares shown in Table 7.1.Two di�erent diagnostis are used to test the goodness-of-�t; a Kuiper test and ahi-square test.We alulated the Kuiper distanes of the mixture opula for every pair of datasets, and got D12 = 0:036, D13 = 0:036 and D23 = 0:030.To �nd the approximate p-value of the data set oming from the opula model,the bootstrap method was used. The results are displayed in Figure 7.2, and showsthat the distanes D12 = 0:036, D13 = 0:036 and D23 = 0:030 all are large enough torejet the �tted model.The other method to test a goodness of �t is a hi-square test, see Table 7.2.Beause the p-values of paired CTL & AT and SBC & AT are bigger than 5%, themodel is not rejeted, that is, the mixture model �ts the real market data sets wellenough.The mixture opula is learly better than the Gumbel opula, see table 7.2.



46

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

−5 0 5
−5

0

5

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

−5 0 5
−5

0

5

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

−5 0 5
−5

0

5

Figure 7.1 The �rst olumn is the density of three opulas ross setions on the diagonalu=v, the seond olumn display opula density funtion and the third olumn show the jointdensity funtion with standard normal marginals.
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CTL & SBC CTL & AT SBC & AT�1 1:426 1:451 1:257�2 2:292 1:637 1:670�3 0:994 1:000 0:878�1 0:605 0:287 0:027�2 0:275 0:544 0:476�3 0:120 0:169 0:497Table 7.1 Parameters of mixture model opula for three paired stoks.
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Figure 7.2 Empirial distribution of Kuiper distanes between empirial opula andempirial opuls for 1000 observations of the model opula.



48

CTL & SBC CTL & AT SBC & ATCmixture with devolatilization 3:909e � 05 0:018 0:587Cmixture without devolatilization 0:015 0:054 0:145CGumbel with devolatilization 9:854e � 07 1:510e � 05 8:390e � 04CGumbel without devolatilization 0:004 6:796e � 05 9:389e � 04Table 7.2 p-values of mixture opula and Gumbel opula.



Chapter 8ConlusionsBy employing empirial opulas, we have seen stronger negative time dependenestruture for short term data than for long term data. The dependene struture ofshort term data may be a�eted by the disontinuous prie setting (in Sweden themarket only uses a resolution as low as 0.5SEK). Both short term data and long termdata exhibit stronger rash than boom dependene in time. This means good newsare momentare while bad news are onsistent.The dependene struture between two variates in long and short term is notequal. Short term data sets exhibit equal rash and boom dependene while longterm data sets learly display stronger rash than boom dependene.Atually it seems very unlikely to �nd any dependene between two short termvariates. From the tik data, two variates are almost independent exept at extremevents. So the dependene in short term is probably entire market hanges.A Gaussian assumption for dependene strutures of variates is a bold one: Wehave found that the dependene struture is far more omplex. Dependene in thetails is stronger than in entral regions of data. Unlike multivariate gaussian distri-butions, the true market has asymmetri dependene. This means that good newsare for minority while bad news are for majority.By simulation it is lear that orrelation is not a bad method to �r Gaussianproesses. However, we know that in the real market, the data omes from othermore omplex distributions. So orrelation annot desribe dependene among marketstoks, and we have shown that opula models give far better dependene desriptions.Assume that the dataset ome from a Gumbel survival opula, and that someonemakes the mistake to think that it is jointly Gaussian distributed. Then a great riskis taken, sine for the real data's distribution one must onsidered its heavy lowertail, whih is rash dependent. And so risk beome greatly underestimated. Theorrelation is a linear estimate that is not versatile enough to take study the oneptof risk.All opula models, whih we have been able to �nd in the literature, have beenused to investigate the dependene struture for real stok data sets. And although aouple of opulas �t better than the Gaussian opula, none of them �t the dependenestruture well enough to not show signi�ant deviations from the empirial opula.This means the stok market dependene struture is more omplex than a singleopula models' dependene struture. Copulas in the literature just have assoiationparameter and only ontrol the degree of dependene. So a mixture opula is used to�t the data and work well beause it has weight parameters, whih have an e�et on



50the struture of dependene, besides assoiation parameters.Sine the dependene struture for logreturns is stronger before devolatilizationthan after devolatilization, real-world portfolios have time dependene struturesmore ompliated that suggested by the Bahelier-Samuleson Blak-Sholes model.Hene some exterior event seem to a�et stoks pries then and then.



Appendix ATable of Tail Dependene CoeÆentsCopula �U �LGaussian 0 0AMH 0 0Frank 0 0Gumbel 2� 21=� 0Joe 2� 21=� 0Galambos 121=� 0CJ 0 121=�BB1 2� 2 1�2 121=(�1�2)Table A.1 Tail dependene of opulas.
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Appendix BTable of Distanes and Parameters for Long TermDataCopula AT & CTL AT & SBC CTL & SBCGaussian D = 0:048 � = 0:366 D = 0:048 � = 0:420 D = 0:040 � = 0:449AMH D = 0:050 � = 1:000 D = 0:057 � = 1:000 D = 0:052 � = 1:000AMH Survival D = 0:060 � = 0:803 D = 0:065 � = 0:916 D = 0:064 � = 1:000Frank D = 0:045 � = 0:110 D = 0:047 � = 0:064 D = 0:039 � = 0:056Frank Survival D = 0:045 � = 0:110 D = 0:047 � = 0:064 D = 0:039 � = 0:056Gumbel D = 0:053 � = 1:441 D = 0:055 � = 1:439 D = 0:046 � = 0:896Gumbel Survival D = 0:040 � = 1:483 D = 0:042 � = 1:476 D = 0:037 � = 0:793Joe D = 0:070 � = 1:735 D = 0:070 � = 1:671 D = 0:065 � = 1:807Joe Survival D = 0:052 � = 1:740 D = 0:054 � = 1:849 D = 0:052 � = 1:795Galambos D = 0:054 � = 0:722 D = 0:056 � = 0:726 D = 0:047 � = 0:896Galambos Survival D = 0:056 � = 0:773 D = 0:056 � = 0:759 D = 0:048 � = 0:793CJ D = 0:047 � = 0:879 D = 0:052 � = 0:946 D = 0:048 � = 0:978CJ Survival D = 0:067 � = 0:833 D = 0:068 � = 0:756 D = 0:063 � = 0:920Table B.1 Minimal Kuiper distanes and orresponding opula parameters for longterm data.
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Appendix CTable of Distanes and Parameters for Short TermDataErison B & Volvo Erison B & H&M Erison B & H&MAMH D = 0:013 � = 0:095 D = 0:012 � = 0:063 D = 0:011 � = 0:047AMH Survival D = 0:013 � = 0:095 D = 0:012 � = 0:063 D = 0:011 � = 0:047Frank D = 0:013 � = 0:823 D = 0:012 � = 0:880 D = 0:011 � = 0:910Gumbel D = 0:013 � = 1:027 D = 0:012 � = 1:015 D = 0:010 � = 1:013Gumbel Survival D = 0:012 � = 1:025 D = 0:010 � = 1:019 D = 0:011 � = 1:014Joe D = 0:014 � = 1:039 D = 0:013 � = 1:024 D = 0:009 � = 1:023Joe Survival D = 0:013 � = 1:019 D = 0:011 � = 1:027 D = 0:011 � = 1:005Galambos D = 0:015 � = 0:000 D = 0:014 � = 0:000 D = 0:012 � = 0:000Galambos Survival D = 0:015 � = 0:000 D = 0:014 � = 0:000 D = 0:012 � = 0:000CJ D = 0:013 � = 0:028 D = 0:011 � = 0:033 D = 0:012 � = 0:006CJ Survival D = 0:014 � = 0:051 D = 0:013 � = 0:029 D = 0:010 � = 0:029Table C.1 Minimal Kuiper distanes and orresponding opula parameters for shortterm data.
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Appendix DGoodness of FitTo measure how lose, or how far, an empirial distribution is from a theoretialdistribution, several distanes are use. Among them, we ite three: the Kolmogorov-Smirnov distane, the Anderson-Darling distane and the Kuiper distane.The Kolmogorov-Smirnov distane is the greatest distane between the empirialdistribution and a hypothetial theoretial distribution for the data, i.e. for us in thesense of opulas: DKS = maxu;v2[0;1℄ jCemp(u; v)� Ctheory(u; v)j; (D.1)where Cemp is the empirial opula and Ctheory the theoretial opula funtion.The Anderson-Darling distane, see Anderson-Darling (1954), is de�ned as asaled version of the Kolmogorov-Smirnov distane:DAD = maxu;v2[0;1℄ jCemp(u; v)� Ctheory(u; v)jqCtheory(u; v)(1� Ctheory(u; v)) : (D.2)The Anderson-Darling distane emphasizes the �t in the tails, whih makes itinadequate for our purposes, sine we are interested in the entire distrbution.The Kuiper distane, see Kuiper (1962), onsiders greatest distanes upwards aswell as downwards:DKuiper = maxu;v2[0;1℄ (Cemp(u; v)�Ctheory(u; v))+ maxu;v2[0;1℄ (Ctheory(u; v)�Cemp(u; v)): (D.3)
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Appendix Ep-valuesEah statistial test has an assoiated null hypothesis, the p-value is the probabil-ity that the samples ould have been drawn from the model being tested, given theassumption that the null hypothesis is true. A p-value of .05, for example, indiatesthat you would have only a 5% hane of drawing the sample being tested if the nullhypothesis was atually true.A null hypothesis is typially a statement of no di�erene. A p-value lose to zerosignals that the null hypothesis is false, and that a di�erene is very likely to exist.Large p-values loser to 1 imply that there is no detetable di�erene for the samplesize used. A p-value of 0.05 is a typial threshold used in industry to evaluate thenull hypothesis.To show if opula models �t the logreturn data sets, we an alulate a p-valueby the hi-square statisti test.The hi-square statisti test of k boxes is given by�2 = kXj=1 (Oj � Ej)2Ej ;where Oj is observed frequeny for box j, i.e., the number of observations that lies inthe box j, and whereEj = n[C(uj; vj)� C(uj�1; vj)� C(uj; vj�1) + C(uj�1; vj�1)℄is the expeted frequeny for box j. Here uj > uj�1; vj > vj�1, u0 = v0 = 0 anduk = vk = 1 must hold.
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Appendix FBahelier-Samuleson Blak-Sholes ModelSeveral models have been proposed to model the prie proess, S(t), of an asset.The most widely used model is the Bahelier-Samuleson Blak-Sholes model, whihgives the stok value at time t as the solution to the stohasti di�erential equationdS(t) = (�+ �2 )S(t)dt + �S(t) dBt; (F.1)where Bt is brownian motion.The solution to (F.1) is S(t) = S(0)e�t+�Bt ; (F.2)where S(0) is the asset value at the starting time, � is the drift oeÆient and �2 > 0is the volatility.By onsidering the logreturn, X(t), of the asset value, the data set beomes drivensimply by the inrements of a Brownian motion:X(t) = log(S(t+�))� log(S(t)) = log(e�(t+�)+�Bt+���t��Bt) = ��+ �(Bt+� �Bt);where � is time inteval between sampling points. Hene, for the Bahelier-Samuelsonmodel, the logreturns of stok values ares the inrements of an Brownian motion, i.e.they are stationary and independent.
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