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ABSTRACT

Copula Dependence Structure on Real Stock Markets

by

Jan Lennartsson and Min Shu

Linear correlation is only an adequate means of describing the dependence be-
tween two random variables when they are jointly elliptically distributed. When the
joint distribution is not elliptical the linear correlation coefficient becomes just one of
many possible ways of summarizing the dependence structure between the variables.
In this thesis project, based on both long term data and short term tick data, the
stochastic dependencies among several stocks and risk-free bonds are investigated.
One of the objectives of the thesis, besides improving the general understanding of
dependence structures between different assets, is to investigate what is the signif-
icance of correlation analysis within those dependence structures. The motivation
for focusing in part on this problem, is that on the one hand correlation analysis is
used as an important tool in portfolio analysis, while on the other hand it is known
that correlation in general might give a very poor picture of the the true dependence
structure. One method in this thesis is to fit various kind of copulas found in the
literature as well as a new one constructed by us to be suitable for the dependencies
observed.

KEYWORDS: Copula; Time series; Dependence; Correlation.
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Chapter 1
Introduction

Consider a portfolio of N stocks and bonds. Managers of such a portfolio are
typically interested in the portfolio value at a certain time 7" in the future. From a
statistical point of view, a problem, dependence among default events, is faced when
modelling losses on portfolios.

Dependence across financial markets have been widely studied in the past decades.
Three general alternative methods are available in multivariate analysis for studying
dependence:

e One approach is to use a joint distribution based on the most commonly used
joint distribution in theoretical and empirical finance being the multivariate
normal distribution.

e The second approach that has been used in empirical study is to compute con-
ditional correlation.

e The third alternative approach in multivariate analysis is to use a copula model
for directly modelling dependence.

The third approach is adopted in this thesis. The study of copulas and their
application in financial markets is a rather modern phenomenon. Compared to the
joint distribution approach or correlation-based approach, a copula model is a more
convenient tool in studying the dependence structure. In statistics, a copula is a
function that connects marginal distributions to restore the joint distribution and
various copula functions represent various dependence structures between variables.
In a copula model, the primary task is to choose an appropriate copula function and
a corresponding estimation procedure. Marginal distributions are treated as nuisance
functions. This reorientation has desirable advantages in empirical finance. One
of the primary goals is to investigate the dependence in order to better understand
portfolio allocation. The marginal distributions of asset returns in individual markets
may be very complicated and may not easily fit within existing parametric models.

In this project, the dependence structure of several stocks are estimated by using
a mixture copula approach. The purpose is to find a simple yet flexible model to
summarize the dependence structure. The mixture is composed of the Joe survival
copula, the Gumbel copula and the AMH copula.

The mixed method facilitate the separation of the concepts of degree of dependence
and structure of dependence, and these concepts are embodied in two different groups
of parameters-association parameters and weight parameters.



The datasets of the projects come from typical investment funds in the market.
There are not any extremely positive dependence structure and negative dependence
structure between the different financial assets involed. Our basic problem is to find
an appropriate copula model for the dependencies between these assets.

The thesis report is organized as follow: Section 2 reviews some basic concepts
about copulas, and introduces mixture model. Section 3 describes some basic copula
models. Section 4 discusses correlation. Section 5 shows how to generate random
numbers from copula models. In Section 6 our main statistical investigation is carried
out. Section 7 describes our resulting mixture copula model, to model the observed
depnedencies. In Section 8 we make conclusions.



Chapter 2
Basic Features of Copulas

In this chapter, we summarize the basic definitions that are necessary to under-
stand the concept of copulas. We then illustrate the most important properties of
copulas that are needed to understand the usage of copulas in finance.

We follow the notation used in Nelsen (1999). Furthermore, we will restrict our-
selves to copulas in two dimensions. The generalization to n dimensions is not difficult.

2.1 Definition of the Copula

In the statistics literature, the idea of a copula arose as early as the 19th century
in the context of discussions of non-normality in multivariate cases. Modern theories
about copulas can be dated to about forty years ago when Sklar (1959) defined copulas
and showed some of their fundamental properties: By Sklar’s theorem, for a copula
C,

Fxhxzy___yxn (.T] y Loy ey Tn) = C(Fxl (.T]), Fx2 (.’I,'Q), ceey Fxn (Tn))* (21)

It is clear that a copula is a mapping from 1t to I, i.e. a multivariate distribution
with uniform marginals on I. From (2.1), it is evident that the marginal dependence
can be separated from the dependence structure between the variates, and that it
makes sense to interpret C as the dependence structure of the multivariate random
vector X.

Definition 2.1.1 A map C : I — 1 is called a copula if the following conditons
hold:

1. For all u = (uy, ug, ..., u,) € I
C(u) > 0;

2. for every uy € 1
C(1,1, gy oy 1) = g

3. for every u,,, u;, with u;, —u;; > 0 Vi

C Uy, Uy, ooy Upy) — > C(ua,, Uz, s ooy n,) + C (U, sy, oovy Upy) > 0,
iy g\{i=j=...=q}

*X1,..., X, are random variables, Fx, x, . x,(71,%2,...,2,) denotes the joint distribution
function and FY, (z;) denotes the marginal distribution function of Xj;.

11 denots the interval [0,1].



Now we will restrict ourselves to the bivariate copula.

Definition 2.1.2 A bivariate copula is a function C : I x I — T with the following
properties:

1. For every u,v €1

2. for every u,v € 1
C(u,1) =u

and

C(1,v) = v;

3. for every uy, ug, v1,v9 € I with uy < uy and v1 < vy

C(UQ,UQ) — C(Ul,Ug) — C(Ug,?)l) + C(Ul,Ul) Z 0.

0.9
0.8
1
F 0.7
0.8
r40.6
0.8 o84
06 - 105
04 0.4 i
T - 04
0.2 L 027 0.8
0.3
o 0.2 0.4 06
o 02 04 06 08 1 © 08 0o
01

Figure 2.1 Example of a copula function.

A function that fulfils Property 1 is said to be grounded, Property 3 is the two-
dimensional analogue of a nondecreasing one-dimensional function. A function with
this feature is therefore called 2-increasing, see Figure 2.1.



2.2 The Probability Density Function of Copulas

Due to virtual similarity of all copula functions, it is hard to visualize differences
between these distribution functions. So rather it is convenient to study density
functions of copulas.

The density of a copula C'is given by

2

Oudv

if C' is a continuously differentiable function of v and v.

C(u,v),

c(u,v) =

1 1 @ 5
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0
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Figure 2.2  First column displays copula functions, second column probability density
functions of these copulas, and third column density functions of distributions with these
copulas and standard normal marginal distributions.

From Figure 2.2, it seems that the the first column displays two almost equal cop-
ula function, but from the two columns to the right, it is clear that their dependence
structures are in fact quite different.



Theorem 2.2.1 Let C be a copula. For every u € 1, the partial derivative 0C /0v
exists for almost all v € 1. For such u and v one has

0< 3C’(u, v) < 1. (2.2)
v

The analogous statement is true for the partial derivative OC /Ou. In addition, the
functions u — C,(u) = 0C(u,v)/0v and v — Cy(v) = C(u,v)/0u are well-defined

and nondecreasing almost everywhere on 1.

2.3 Frechet Bounds

Definition 2.3.1 The copulas W : 12 — 1 and M : 12 — 1 are given by
W (u,v) = min(u, v)

and
M(u,v) = mazx(u+v — 1,0).

Both W and M denote perfect dependence but in two completely different ways.
For every copula C' and every (u,v) € I?

W(u,v) > C(u,v) > M(u,v). (2.3)

Inequality (2.3) is the copula version of the Frechet-Hoeffding inequality, which refer
to M as the Frechet-Hoeffding upper bound and W as the Frechet-Hoeffding lower
bound, see Figure 2.3.

2.4 Dependence Structure

We begin with some ”positive” and "negative” dependence properties: positive
dependence properties expressing the notion that ”large” (or "small”) values of the
random variables tend to occur together, and negative dependence properties express-
ing the notion that "large” values of one variables tend to occur with ”small” values
of the other.

Definition 2.4.1 The copula I1 : 12 — 1 is given by

[I(u,v) = uw.



Definition 2.4.2 Two random wvariables X and Y are called positively quadrant
dependent (PQD) if for all (z,vy)

P[X <z,Y <y|] > P[X <|P[Y <y, (2.4)
or equivalently

PX >z,Y >y|] > P[X > z|P[Y > y]. (2.5)
Negative quadrant dependence (NQD) is defined analogously by reversing the inequal-
ities in (2.4) and (2.5).

If X and Y have joint distribution function H, with continuous marginal distri-
butions F' and G, respectively, and copula C, and (2.4) holds i.e.

H(z,y) > F(2)G(y)
for all (z,y), then
Clu,v) = HF~ (1), G~ (v) > F(F~ (u))G(G™(0) = uo = Ti(u, 0)
for all (u,v)=(F(x),G(y)), i.e.
O(u,v) > T1(u, v). (2.6)

This proves that the II copula is the separator of PQD and NQD.

For copulas, if (2.6) holds for all u,v € I, the copula is called a PQD copula, and
an N@D copula is defined analogously. Figure 2.3 shows a relation between PQD and
NQD copulas.

The concept of tail dependence is a way to describe the amount of extremal value
dependence. It is method to measure strength of positive tail dependence. Here,
copula functions may be used to compute and investigate tail dependence assessing
the evidence of simultaneous booms and crashes on different markets.

Definition 2.4.3 For a copula C the lower tail dependence is given by

Ay = Tim S48 (2.7)

u—0 u

and the upper tail dependence by

Ny = lim 1 —2u+ C(u, u).
u—1 1—u

(2.8)

It can be verified that 0 < Ay, A\, < 1. When Ay & 1 or A\, & 1, there is a strong
tail dependence.



2.5 Survival Copulas

In many application, the random variables of interest represent the lifetimes of
individuals or objects in some population. The probability of an individual living or
surviving beyond time z is given by the survival function (or survivor function, or
reliability function).

For a pair (X,Y) of random variables with a joint distribution function H, the
joint survival function is given by H(x,y) = P[X > x,Y > y]. The margins of H are
the univariate survival function F' and G, respectively. Then we have

H(z,y)=1-F(z) = G(y) + H(z,y) = F(z) + G(y) =1+ C(1 = F(z),1 - G(y)),
so we define:

Definition 2.5.1 A bivariate copula Csyrvivar : 12 — I is called the survival copula of
a copula C if

Csurviva](u, U) =u-+v— 1 + C(l —Uu, 1-— U). (29)

It can easily be verified that Cg,ival 1S a copula if C' is a copula. The survival
copula switches upper and lower tail dependence, see figure 2.4.

The density of the survival copula cgyvival and the density of the original copula ¢
are related by

Courvival (4, V) = ¢(1 —u, 1 —v).

Hence they are mirror images about (u,v) = (1/2,1/2)

For example, if a copula features positive upper tail dependence means, then the
probability of both variables being in the upper tail is relatively high. And then

its survival copula, its mirror image, has positive lower tail dependence, so that the
probability of both variables being in lower tails is high.

2.6 Mixture Copula

Discrete mixture models, see Hu (2004), arise in the theory of reliability when
individuals belong to one of n distinct distributions with certain proportions.

Definition 2.6.1 Let C7", ..., C2* be copulas with parameters ay, ..., oy, and [y, . ..
, Bn > 0 numbers such that By + B2 + ... + 5, = 1. A mixture copula s given by

Chixture(1, v) = S1C (u, v) + ... + 8,08 (u, v). (2.10)



Mixture models may be used to obtain more versatile copula models, for example,
allowing asymmetric tail dependence.

The method to fit mixture models facilitates the separation of the concepts of
dependence degree and dependence structure, and these concepts are embodied in two
different groups of parameters- the association parameters a and the weight param-
eters . The association parameters are parameters in each copula that control the
degree of dependence, while the weight parameters reflects the shape of the depen-
dence.

2.7 Empirical Copulas

The empirical copula is obtained through empirical cumulative density transform
(rank transform) of the original data.

Definition 2.7.1 Let (x4, yx),_, denote a sample of size n from a continuous bivari-
ate distribution. The empirical copula is the function Cem, given by*

A x Py () <, F <
Comp (1, 1) = tH{(k, yk) X(Tk;/ u, By (yg) < v}

3

and the empirical copula density function Cemp s given by

N 1 &
Cemp (1, v) = = 6(u — Fx(zx),v — Fy(yx))-
k=1

ni

*# denotes the number of elements of a set.



10



0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Figure 2.3

Frechet Hoeffding bounds

11



12

Copula survival Copula

L

0.8 0.8

0.6 0.6
04 0.4

0.2 0.2

O%J)N\H

0.5 1 0 0.5 1

5 5
0 0
-5 -5
-5 0 5 -5 0 5

Figure 2.4  Upper figures display the density of a copula and corresponding survival
copula density, lower figures display density of the corresponding distribution that has this
copula and standard normal marginals.



Chapter 3
Examples of Copulas

The copula W is called comonotonic copula since it describes perfect positive
dependence, and M is called countermonotonic since it describes perfect negative
dependence, see Figure 3.1.

n
Y A=re) S o)
% o 00° OOc@ o0
0.8 @o o%c??
® Oéac@ @8
0.6 O@ o 0©
O ° o
0.4 & 0 0 &
© o 00
8 90,
02, ~ o © B “5
8 OOO o0© 0 @
O Q
0 0.5 1

Figure 3.1 100 samples generated from W, IT and M copulas.

Table 3.1 shows that W has maximum upper and lower tail dependence, whereas
IT and M both have zero upper and lower tail dependence.

In this section, we will discuss several important classes of copulas. The tail
dependence coefficients of copulas have been computed in Appendix A.

3.1 Archimedean Copulas

In this section, we concentrate on an important class of copulas called Archimed-
ean copulas. If C(uy,ug, ..., u,) = ¢(3X7_, ¢ '(u;)) with generator ¢ then the copula
is called archimedean. These copulas allow for a great variety of dependence struc-

w I M

Ay 10 0

A, 10 0

Table 3.1  Tail dependence of copulas W, IT and M.
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tures. They have closed form expressions and they are not derived from multivariate
distribution using Sklar’s Theorem. They find an application for a number of reasons:

1. The ease with which they can be constructed;
2. the great variety of facilities of copulas which belong to this class;
3. the many nice properties possessed by the members of this class.

For an account of this history, see Schweizer (1991) and the references cited therein.

Gaussian Copula One of the most frequently used copulas, especially for financial
modelling, is the bivariate Gaussian copula Caauss- It 1s defined by

O (u) po1(v) T2*2ﬂry+y2 dey B -
Clusalnr) = [ e T g = (07 (), @7 ()
(3.1)

Here ® ! is the inverse probability distribution function of the standard univariate
Gaussian distribution, while @, is the joint distribution function of a standard bivari-
ate Gaussian with the correlation coefficient p, which is the only parameter of the
Gaussian copula (-1 < p < 1).

Figure 3.2 clearly displays that a Gaussian dependence structure is symmetric.
Two variates of a stock market with a Gaussian copula dependence structure implies
that the variates are equally likely to boom together as to crash together.

A Gaussian dependence structure with p > 0 means that the variates are positive
quadrant dependent, analogous if p < 0 the variates are negative quadrant dependent.

If p < 0in the example of market returns, it implies that it is a higher probability
for the variates to move opposite ways, which means that if one variate boom, the
other variate exhibits higher probability to crash.

The Gaussian copula’s variates are only multivariate normal distributed if its
marginal distributions are normal.

We can check that the tail dependence coefficients are Ay = 0 and A\, = 0.
Seebined with Figure 3.2, we defined the tail of Gaussian copula is normal tail.

AMH Copula The bivariate AMH copula Cayg is defined as

C/(\XMH(UJ U) = 1 — a(l ﬁq;)(l . U). (32)

The only parameter of the AMH copula is the parameter a, 0 < a < 1.

Figure 3.3 clearly displays that a AMH dependence structure is asymmetric and
the lower tail is heavier than upper tail. Moreover, its tail dependence coefficients
Av = Ar, = 0, so we conclude the its upper tail is light tail and its lower tail is light
tail or normal tail.
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Figure 3.2  First row is the density of Gaussian copula with p = 0.5 and the second row
is the density of Gaussian copula with p = —0.5. First column displays the cross section of
the density on diagonal u = v, second column displays copula density function and third
column displays joint distribution if marginal distributions are normal.

1 1 5
0.8 0.8 \
0.6 06
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Figure 3.3  First column displays the cross section of the density of C'{,;q on diagonal
u = v, second column displays copula density function and third column displays joint
distribution when marginal distributions are standard normal.
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Frank Copula The bivariate Frank copula Crrank is defined as

(0"~ 1)(a” — 1)
a—1

Clz‘lrank(ui U) = loga(l +

). (3.3)

The only parameter of the Frank copula is the parameter «, where 0 < a < 1 or
a>1.

1 1 5
0.8 0.8 \
0.6 0.6
0

0.4 0.4
0.2 0.2 \

0 0 -5

0 05 1 0 05 1 5 0 5

Figure 3.4 First column displays the cross section of the density of C2., , on diagonal
u = v, second column displays copula density function and third column displays joint
distribution when marginal distributions are standard normal.

Figure 3.4 displays that a Frank copula’s dependence structure is symmetric and
by Appendix I, its tail dependence coefficients are \yy = A;, = 0. Compared with a
Gaussian copula, the Frank copula has more probability in the middle region, so that
the tails must be lighter.

Gumbel Copula The bivariate Gumbel copula Cgumper 18 defined as

e (u,v) = o~ ((—log(u))* +(—log(v))*) /= (3.4)
The only parameter of the Gumbel copula is the parameter «, where o > 1. For
a = 1, expression (3.4) reduces to Ck,.(u,v) = I(u,v), the independent copula.

From Figure 3.5, a Gumbel dependence structure is asymmetric and the upper tail
is heavier than the lower tail. A Gumbel copula implies that two markets are more
likely to boom together than to crash together. And its tail dependence coefficients
are \y = 2 — 2'/% X\, = 0, so that its upper tail is heavy, and its lower tail light
or normal. The expression for Ay also shows that the larger is a, the heavier is the
upper tail.
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Joe Copula The bivariate Joe copula C},e is defined as

C(X

oo (1,0) = 1= (1 =) + (1 = 0)* = (1 = u)*(1 = v)") /™. (3.5)
The only parameter of the Joe copula is the parameter a;, o > 1.

Clearly a Joe copula’s dependence structure, see Figure 3.6, is asymmetric and its
tail dependence coefficients are \;y = 2 — 21/ and N\, = 0.
Even though the tail dependence of C¥F,, is equal to C& ., it clearly does not
mean equal dependence structures apart from the tails. For example, the Joe copula

does feature a much lighter lower tail.

Cook-Johnson Copula The bivariate Cook-Johnson (CJ) copula Cq; is defined
as
C8(u,v) = (u 40— 1)""e, (3.6)

The only parameter of the CJ copula is the parameter o, o > 0.

The Cook-Johnson copula’s dependence structure is also asymmetric and its tail
dependence coefficients are Ay = 0 and A\, = 272, see Figure 3.7. If two variates
of the stock market follow the CJ copula, then they feature a larger probability of
simultaneous crashing than simultaneous booming.

BB1 Copula The bivariate BB1 copula Cgg; is defined as
Cg]lﬁm (U,U) _ (1 + ((ufm - 1)(12 4 (Ufm - 1)(12)1/(12)71#11_ (37)

The parameters of the BB1 copula are a; > 0 and ay > 1.
The BB1 copula’s dependence structure is asymmetric, and the copula emphasizes
both tails. The density function of the copula is concentrated closly to the line u = v,

see Figure 3.8. The tail dependence coefficients are A\jy = 2 — 2$ and \; = 2~ V/(maz),

BB6 Copula The bivariate BB6 copula Cggg is defined as

Cibs (u,v) =1—(1— 67((7log(]f(lfu)al))a”(*]Og(]f(lfv)al))QQ)WZ))C”- (3.8)
The parameters of the BB6 copula are a; > 0 and ay > 1.

The BB6 copula’s dependence structure is asymmetric and looks like that of BBI,
with the density concentrated close to the line u = v, see Figure 3.9. However, its
upper tail is heavier than its lower tail, and both these tails are heavy.
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Figure 3.5 First column displays the cross section of the density of C& . on diagonal
u = v, second column displays copula density function and third column displays joint
distribution when marginal distributions are standard normal.
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Figure 3.6 First column displays the cross section of the density of Cf., on diagonal
u = v, second column displays copula density function and third column displays joint
distribution if marginal distributions are standard normal.
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Figure 3.7  First column displays the cross section of the density of C¢&; on diagonal
u = v, second column displays copula density function and third column displays joint
distribution if marginal distributions are standard normal.
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Figure 3.8 First column displays the cross section of the density of Ci5 ™ on diagonal
u = v, second column displays copula density function and third column displays joint
distribution if marginal distributions are standard normal.
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Figure 3.9  First column displays the cross section of the density of Cpg” on diagonal
u = v, second column displays copula density function and third column displays joint
distribution if marginal distributions are standard normal.
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Figure 3.10 First column displays the cross section of the density of Cj17” on diagonal
u = v, second column displays copula density function and third column displays joint
distribution if marginal distributions are standard normal.
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BB7 Copula The bivariate BB7 copula Cgpy is defined as
Cab®(u,v) =1 — (1 — (1 — (1 —u)®) ™ @2 4 (1 — (1)) o2 1)~ e)l/er (39)

The parameters of the BB7 copula are a; > 0 and ay > 1.

The BB7 copula’s dependence structure is almost symmetric and its density con-
centrated at the center, but the tails are heavier than for the Gaussian copula, see
Figure 3.10.

3.2 Extreme Value Copulas

Another important class of copulas is the extreme value class: A copula is said
to be an extreme value copula (EV) if for all ¢ > 0 the scaling property. C(u',v") =
(C(u,v))" holds Yu,v € L

EV copulas are max-stable, meaning that, if (X1,Y7), (X3, Y3),...(X,,Y,) are in-
dependent identically distributed (i.i.d.) random pairs from an EV copula C' and
M, = max{X;, X,,.. X, } and N, = max{Y7,Y5,...Y,,}, then the copula for (M,, N,)
is also C'. The EV copulas can be represented in the form:

Crv(u,v) = J1og(uv) A(log(u) log(v)/ log(uv)) (3.10)
where the function A is called the dependence function.

Galambos Copula The Galambos copula has the following form:

Cgalamboq(u; U) = U’UB((ilOg(u))ia+(7log(v))7a)71/0‘- (311)
The only parameter of the Galambos copula is the parameter oo > 0.
Figure 3.11 shows that a Galambos copula’s dependence structure is asymmetric.

The tail dependence coefficients are Ay = 2~/ and \;, = 0.

BB5 Copula The BB copula is a two-parameter extension of the Gumbel copula
and has the following form:

O (y, ) = ¢ (~10B() 71 ~(=Tog(n)) =1 +((~ Tog(u)) ~192 +(~log(v)) ~192)) =2 (3 19
The parameters of the BB5 copula are a; > 0 and ay > 1.

Clearly a BB5 copula’s dependence structure is also asymmetric. As illustrated in

Figure 3.12, a BB5 copula implies that two markets are more likely to boom together
than to crash together and its tails are heavy.
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Figure 3.11  First column displays the cross section of the density of C&, . 1os O0
diagonal 4 = v, second column displays copula density function and third column displays
joint distribution if marginal distributions are standard normal.
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Figure 3.12  First column displays the cross section of the density of Cqs~ on diagonal
u = v, second column displays copula density function and third column displays joint
distribution if marginal distributions are standard normal.
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3.3 The Frechet Family
Definition 3.3.1 Let o, € T with o+ < 1, and set

C*P(u,v) = BM (u,v) + (1 — a — B)(u,v) + aW (u,v): (3.13)
This comprehensive two-parameter copula is called a Frechet copulas.

The parameters «, 3 are linked to non-parametric dependence measures by par-
ticularly simple analytical formulas. For example, the correlation of a Frechet copula
is

p=a—[f.

A Frechet copula with § = 0 is a PQD copula, and when o = 0, it is a NQD

copula.



Chapter 4
Correlation

Correlation is a statistical technique which can show whether and how strongly
pairs of stochastic variables are related. Correlation is essentially founded on the as-
sumption of multivariate normally distributed returns, in order to adequatly describe
dependencies. Still, correlation analysis feature as an important tool to measure
dependencies on for example, returns in stock markets.

We begin with considering pairs of real valued random variables X and Y with
finite variances.

The linear correlation coefficient between X and Y is

Cov(X,Y)
\/Var )Var( )

p(X,Y) =

where Cov(X,Y) is the covariance between X and Y, Cov(X,Y) = E[( X —E[X])(Y —
E[Y])], and Var(X) denotes the variance of X.

Correlation is a measure of linear dependence. In the case of perfect linear depen-
dence, i.e.

Y=aX+bas.,

or P[Y = aX 4 b] =1, where a # 0, then p(X,Y) = sign(a) is —1 or 1.
The correlation coefficient may take on any value between positive and negative
one,
~-1<p<1L

The sign of the correlation coefficient defines the direction of the relationship, either
positive or negative. A positive correlation coefficient, in the example of market
returns, implies that it is a higher probability for the variates to move same ways,
which means that if one variate booms, it is a high probability that the other variate
would also boom.

If two random variables X and Y are jointly normal distributed with covariance
Cov(X,Y), then all dependencies between these two variates are captured in the
covariance. This means that X is independent from Y —Cov(X,Y)/Var(Y) X, because

- Cov(X,Y)

Cov(X,Y)
Var(X) )

Cov(X,Y Var(X)

= Cov(X,Y) — Cov(X,X) =0.

If two real world random variables X and Y have a dependence structure that can
be described by correlation analysis, then X and ¥ — Cov(X,Y")/Var(Y)X should be
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independent, by the above argument, and the II copula should fit its empirical copula
perfectly.

However, the correlation, as well as being one of the most ubiquitous concepts in
modern finance, is also one the of the most misunderstood concepts.

Assume that the copula function of a pair of random variables X and Y is known.
Then their covariance is given by

Coo(X,Y) = [~ [~ ayfx(@)fr(y) (e(Fx(a). Fy(y)) = 1) dady
or, substituting (z,y) = (Fx'(u), Fy '(v)) and (dz, dy) = (du/fx(x),dv/fy (1)),
Cov(X,Y) / / Fy'(u)Fy ' (v) (e(u,v) — 1) dudv. (4.1)

It is now clear that all information of the copula is not captured by the covariance.
Copulas define the complete dependence structure while covariance only is a measure
of linear dependence: One cannot compute ¢ given Cov(X,Y) in (4.1)!

Of course, by definition of the IT copula, we have 9% I(u,v)/0udv = 1. Then by
(4.1), the covariance is zero, as well as all other relations between the two random
variables involved.



Chapter 5
Generation of Random Number Using Copula
Models

In Chapter 2, we presented the definition of copulas, their most important proper-
ties and several classes of copulas. So now we are ready to generate random numbers.
The strategy is to give a general guide on how to generate pairs of random variables
whose dependence structure is defined by a copula. Helpful for understanding, we
exemplify with a Gumbel copula which is discussed in more detail.

5.1 The General Method

Assume that all parameters of the joint distribution is known. The joint density
function is bounded, f(z,y) < M, and random variables come from a closed box.
Then a random variate (X,Y’) from this dependence structure can be created as
follows:

1. Generate two uniform distributed random variables &, 7 from the box;
2. generate a uniform variable, v from 0 to M;
3. if f(&,m) > v, then accept (£,n) to the data set, otherwise go back to 1.

Since ¢(u,v) may not be bounded, the uniform random variables may have to
be transformed. Consider two random variables with normal marginal distributions,
then

F(z,y) = C(®(x), ®(y))-

Further, the joint density function is given by

0? 0?
F =
Ox0y (z.9) Ox0y

fla,y) = C(P(x), ®(y)) = c(®(x), P(y)) d(z) B(y),
where d®(z)/dx = ¢(z) and ¢(P(x), P(y)) ¢(x) d(y) < ¢(0.5,0.5) < M is bounded.
Now the box is not closed since normal distributed variables can take any value. But
assuming that no values lay outside some large perimiter, then all properties of the
above generating data model is fulfilled.

The second method, using conditional distributions, works for all copula functions:

Let ¢, denote the conditional distribution function for the random variable U at
a given value v of V,

cy(u) = PlU < ulV = ).
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From (2.1), and since the density function of a uniform distribution constantly equal
to one, we have

cy(u) = PlU<u|V=uv] = v ) drx = /u c(x,v)dr = 2C’(u,y)\yzv = Cy(u,v),
Jo

J-o fy(v) Jy
(5.1)

where C,(u,v) is the partial derivative of the copula C. From (2.2), we know that
¢y(u) is nondecreasing and exists for all u € I.

With the result (5.1) at hand, we have the following second method to generate
the data, as follows:

1. Generate a uniformly distributed random variable £ over I ;
2. generate (U|V = £) from the conditional copula;
3. now (&, (V|U = £)) will be a random variate with the distribution desired.

5.2 Generation Random Numbers According to the Gumbel
Copula

In this section, a detailed example is presented. For the sake of simplicity, we
assume the parameter a of Gumbel copula equals 1.5, and use the conditonal copula
method to generate 500 paired random numbers.

3
038
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Figure 5.1 First column displays variates with uniform marginal distributions from a
Gumbel copula and the copula density, second column displays same variates with standard
normal marginal distribution and joint density.

In Figure 5.1, the paired random numbers are displayed. And it is clear that the
data sets well fit the Gumbel copula model by comparing to its contour lines.
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5.3 Robust Estimation of Significance

The bootstrap method will be used to measure the goodness of fit for the models.
The detail method is:

1. Generate pairs (§,n) from model of data sets sample size;

2. find empirical copula function from the generated data;

3. calculate the Kuiper distance of the empirical copula to the model copula (see
Appendix D);

4. repeat the above procedure 1000 times;

5. plot the empirical distribution function of the observed Kuiper distances.

By checking the empirical distribution function of the Kuiper distance, approxi-
mate p-values for the Kuiper distance statistic can be found.
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Chapter 6
Investigation

The investigation is diversified into two parts. Firstly the dependence structure
with time of a single asset, and secondly the dependence structure of two different
assets, which is the major part.

When modelling the price process of an asset on a true market, normally the
logreturns of the asset are viewed as i.i.d. data. But how well does this assumption
hold? Are the logreturn really independent in time?

According to the distribution of portfolio enterprisers, the investment policy of
the fund is reflected in the structure of its investment portfolio. What dependence
structure between the real assets are preferable?” The value of a fund is the sum of
all assets within the fund. So to avoid crashes, the assets should display negative
dependence. Meanwhile, to allow maximum profit, the assets should display positive
dependence.

6.1 Data

In order to investigate the different dependence structures of assets on real-world
markets, long term data sets and short term data sets were gathered.

Long term data were catched from the finance homepage of Yahoo of the variates
in the ProFunds Ultra Telecommunications Inv. fund (TCPIX).

Five minutes short term tick data were catched from the OMX homepage of the
variates in the SEB Sverigefond 1.

Statistical Presentation of Long Term Data Sets We briefly present the basic
statistics of the logreturn® series of the holding of ProFunds Ultra Telecommunica-
tions Inv. before investigating the distribution of their dependence. The series are
CenturyTel Inc. (CTL), SBC Communications Inc. (SBC) and Alltel Corp. (AT). (Of
these, the fund does no longer hold CTL.)

From inspection of Figure 6.2, we see that all three data sets have a non-Gaussian
distribution and display heavy tails.

In Table 6.1, we summarize the computations of the first two empirical moments
of the logreturn series.

From Figure 6.3, it is clear that the logreturns are time dependent. The data
is crash dependent, and further investigation verifies that the variates also displays
negative dependence. This means that the data set is not i.i.d. The same property

*We use the notation; S(t) stock price, X (t) logreturn and A(t) devolatilized logreturn.
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Mean Variance

CTL 3.032e — 04 4.318e — 04

SBC 4.579¢ — 04 4.157e — 04

AT 2.168e — 04 4.795e — 04

Table 6.1  Statistics for three logreturn series on the period from 03-Oct-96 to 24-Sep-04
with a total of N = 2000 data.
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Figure 6.1 At top stocks prices from 03-Oct-96 to 24-Sep-04, in middle logreturn values
of same time period and at bottom histogram of the logreturn data.
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Copula density function of time dependence structure for logreturn CTL.



33

holds for all long term data sets. This means that parameter estimation with standard
maximum likelihood method basically is inaccurate.

Filtering of Data By investigating data sets it can be verified that the volatility
is not constant, so the Bachelier-Samuelson Black-Scholes model, see Appendix F, is
improper. To avoid this property of a changing market we employ a devolatilization
of the data set.

Ome may generalize the Bachelier-Samuelson Black-Scholes model by making the
volatility time dependent and the noise process a Lévy process L, i.e.

dS(t) = (u + %)S(t)dt + 0,8(t) dL,. (6.1)

The logreturn X; of the stock price is then, if assumed that o; moves slowly compared
to Lt;

X =log(Si) — log(Si—a) = pué+ oLy — 0y ALt pn = p&+01(Li—Li_A) = uA + o0 Ay,

where A is the time interval between sample points. The devolatlized logreturns A,
is a random walk independent of the time changing volatility

_Xt*,LLA

oF

Ay

By devolatilizing the changing volatility, the data is made independent of market
changes. The time dependent volatility is estimated by the Nadaraya-Watson algo-
rithm, see Nadaraya (1964) and Watson (1964), together with Bengtsson and Olsbo
(2002) and Drees and Starica (2002).

6.2 Simulation of Copula

The parameters in each copula function control the degree of dependence. In
Figure 6.4, we can find how the parameters change, for example, a PQD copula to a
NQD copula, or the II copula to the W copula, and so on.

6.3 Fitting Copulas to Data

We propose two different diagnostics: A numerical method and a graphical method.

Now, we consider distances between fitted copuls and empirical copula, see Ap-
pendix D, and the corresponding p-value, see Appendix E, of the three devolatilized
logreturn series of CTL, SBC and AT, labeled series A;, 7 € 1,2, 3. First, we look at
the dependence structure among A;, A, and As. There are higher crash dependence
than boom dependence, see Figure 6.5.
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Combined with Figure 6.5, it can be seen that there are many sensitive regions
in the central part of the copulas. Kolmogorov-Smirnov distance (D.1) and Kuiper
distance (D.3) are sensitive to all data, while the Anderson-Darling distance (D.2)
emphasizes the tails. We selected to use the Kupier distance (D.3), which considers
the greatest deviations upwards as well as downwards.

For the various copulas and each pair of logreturn series, by calculating the mini-
mal Kuiper distance between the empirical copulas and theoretical models, the cop-
ula’s parameters are found. Appendix B and Figure 6.6 show that Gumbel survival
copula is superior to all of the copulas that we investigated, which means there is a
lower tail dependence in our data set.

The p-values should be checked to see if the Gumbel survival copula is fit for the
data sets. When calculating p-values for the three pairs, A;& Ay, A1& Az and A& A3,
we found that the Gumbel copula is not a good model, because all of them are smaller
than 5%.

0.08 T
VZ&CTL

I:I VZ&SBS
Il CTL&SBS

0.07
0.06 g
0.05}- |
0.04 g
0.03F g
0.02 |
0.01 g
0 c c c c
Al

Cs C Cs Cs Cs S Gaussian
Gumbel MH Galambos Frank

Figure 6.6 Kuiper distances of copulas to the empirical copulas of A;& Ay, A1& A3 and
Ax & As.

Statistical Presentation of Short Term Data Sets Here, three five-minutes
short term tick data sets (Ericson B, Volvo and H&M, see Figure 6.7), catched from
the OMX homepage of the variates in the SEB Sverigefond 1 have been investigated.
The short term tick data sets are not Gaussian distributed, see Figure 6.8. And the
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data sets have discrete distributions because the time interval is too short to project
exterior events. The short term data sets are not i.i.d as well as the long term data,
see Figure 6.10. Moreover, the short term data sets feature a stronger negative time
dependence than long term data.

Eric B Volvo H&M

24 290 240
23 280 230

22 270
220

21 260
20 250 210
19 240 200
0.05 0.05 0.05
0 0 0
-0.05 -0.05 -0.05
6000 6000 8000
6000

4000 4000
4000

2000 2000
2000
0 0 0

-0.1 0 01 -0.02 0 002 004 -0.05 0 0.05

Figure 6.7 First row displays stock prices of Ericson B, Volvo and H&M 02-Oct-04 to
14-Dec-04, second row displays logreturn time series and third row displays histogram of
data sets.

By Figure 6.10, the dependence structure is almost the II copula except for in
the tails. This means that the variates are indepdent everywhere except for extreme
events.

The distance measure and p-value work here as for the long term data sets. The
Joe survival copula is better than all other copulas that we investigated, which means
there is a lower tail dependence in the short term data set, see Figure C.1.

We check the p-value to see if the Joe survival copula is fit for the data sets. It
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Normal quantile-quantile plots for Ericson B, Volvo
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Figure 6.9 Copula density function of time dependence structure for short term data
set Ericson B.
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Figure 6.10 Empirical copula density function between short term data sets Ericson B
and Volvo.
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turned out that the p-value of the three pairs were smaller than 5%, so that the Joe
survival copula does not fit the short term data.
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Figure 6.11 Kuiper distances of copulas to empirical copula of short term data sets
Ericson B, Volvo and H&M.

6.4 Correlation as Measure of Dependence

For the observed data sets we now check how good correlation is to describe the
dependence structure.
We introduce the new variate of non devolatilized logreturns

COV(Xi’ X7) Y

‘Xv'p‘j = Xz — i
: Var(X;)

and then checked if X; is independent from X/”.

There are too many outliers from the independent distribution for it to be the
dependence structure of the variates, see Figure 6.12. So we used the copula method
to find the dependence structure of X; and X5, see Figure 6.13.

Clearly, the density function of the copula is not flat, and the result displays that
the dependence is much more complex than what the linear measure describes.

By the bootstrap method, the distances of the simulated data from the II copula is
found, see Figure 6.14. The distances of the three empirical copulas of the transformed
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Figure 6.12 Logreturns with normal marginals of X; and X5' and the density of the
independent distribution with standard normal marginals.

Figure 6.13 Copula density functions of X; & X&' and X; & X,.
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data sets are Dy, = 0.103, D3 = 0.111 and D,3 = 0.108. By inspection of Figure
6.14, this shows that there still is considerable dependence between the variates.

Empirical CDF
1 T T

0.9 -

06 . . . . . 4

F()

05F : : : : : -

0.4 -

0.3 -

0.2r- 4

0.1 4

1 1 1 1 1 1 1 1
09014 0.016 0.018 0.02 0.022 0.024 0.026 0.028 0.03 0.032
Kuiper Distance
Figure 6.14 Empirical distribution for Kuiper distances between empirical copula for
1000 simulations of independent data and II copula.

Although correlation says something about dependence, correlation is not enough
to describe the dependence structure between two variates. Equal correlation does
not imply same dependence structure. Consider two copula models, Gumbel sur-
vival copula and Gaussian copula. Generate two random normal vectors X; and X,
from Gumbel survival copula with the parameter «, giving o = 1.5. From (X, X5),
calculate the correlation p and then generate two vectors Y; and Y5 of joint normal
distribution with correlation p, see Figure 6.15.

Define market crash as the event when both variates simultaneously is in the
lowest 5% of their marginal distributions.

Then the true risk for market crash is given by

C4s (0.05,0.05) = 2.2 %.

Gumbel survival

And by simulating the variables (Y7, Y5) the estimated risk is found.

By Figure 6.16, it is shown that the risk of market crash is far larger than what
is estimated by the normal assumption. This means that the risk of market crash is
underestimated.

This kind of information is very important in, for instance, the field of hedging,
specially when the crash dependence property is displayed in the market.
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Figure 6.15 On left is 500 simulations of the Gumbel survival copula and on right is
500 simulations of the Gaussian model with equal correlation.
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Figure 6.16  Calculated risk of market crash for the true market and the model of the
market by the Monte Carlo algorithm.
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All of this show that tail dependence is stronger than what the correlation take
notion of. It is fairly obvious that data sets may contain unsuspected relations, but
it is not known which are the strongest. An intelligent dependence structure analysis
can lead to good understanding of data sets. Copula model is one of the intelligent
methods.



Chapter 7
Mixture of Copulas

By collecting the copulas that estimate lower tail, upper tail and central depen-
dence and mixing them toghether in a mixing copula, we found our model copula.
We considered three copulas, Joe survival copula, Gumbel copula and AMH copula.

Appendix B displays the numerical results corresponding to the minimal Kuiper
distance between empirical copula and these three copulas, individually.

With these three copulas, we are ready to define a mixture model. Take 3, 85 €
[0,1], B3 =1~ By — [ with 1 + S < 1 and define a mixed copula as

Cmix(“‘a U] &, 5) = [1C0e survival(“a v; 051) + ﬁzceumbel(% v; 042) + ﬁgcAMH(U, v 043)7

where a = (ay, i, a3) are association parameters in mixture which reflect the degree
of dependence, and 8 = ([, 52) are weight or shape parameters which reflect the
dependence structures. In Figure 7.1, we plot some mixtures as examples. For the
first row ) = 1/2, By = 0; for the middle row f; = By = 1/3; for the last row 3; = 0,
fo = 1/2; for all figure, a1 = 1.8, ap = 1.4, ag =1

We use a two-stage parameter estimation approach: First, we estimate the asso-
ciation parameters by finding the minimum Kuiper distance of every single copula.
Then we use the minimum Kuiper distance to estimate the shape parameters of the
mixture copula. This approach makes optimization process quite simple. The results
ares shown in Table 7.1.

Two different diagnostics are used to test the goodness-of-fit; a Kuiper test and a
chi-square test.

We calculated the Kuiper distances of the mixture copula for every pair of data
sets, and got Dy = 0.036, D3 = 0.036 and Dy3 = 0.030.

To find the approximate p-value of the data set coming from the copula model,
the bootstrap method was used. The results are displayed in Figure 7.2, and shows
that the distances D5 = 0.036, D3 = 0.036 and Dy3 = 0.030 all are large enough to
reject the fitted model.

The other method to test a goodness of fit is a chi-square test, see Table 7.2.
Because the p-values of paired CTL & AT and SBC & AT are bigger than 5%, the
model is not rejected, that is, the mixture model fits the real market data sets well
enough.

The mixture copula is clearly better than the Gumbel copula, see table 7.2.
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Figure 7.1 The first column is the density of three copulas cross sections on the diagonal
u=v, the second column display copula density function and the third column show the joint
density function with standard normal marginals.
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CTL & SBC CTL & AT SBC & AT

o 1.426 1.451 1.257
o 2.292 1.637 1.670
o3 0.994 1.000 0.878
b1 0.605 0.287 0.027
B2 0.275 0.544 0.476
B3 0.120 0.169 0.497

Table 7.1 Parameters of mixture model copula for three paired stocks.
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Figure 7.2  Empirical distribution of Kuiper distances between empirical copula and
empicrial copuls for 1000 observations of the model copula.



CTL & SBC CTL & AT SBC & AT

Chnixture With devolatilization 3.909¢ — 05 0.018 0.587
Chnixture Without devolatilization 0.015 0.054 0.145
CGumbel With devolatilization 9.854e¢ — 07  1.510e — 05 8.390e — 04
CGumbel Without devolatilization 0.004 6.796e — 05  9.389¢ — 04

Table 7.2  p-values of mixture copula and Gumbel copula.
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Chapter 8
Conclusions

By employing empirical copulas, we have seen stronger negative time dependence
structure for short term data than for long term data. The dependence structure of
short term data may be affected by the discontinuous price setting (in Sweden the
market only uses a resolution as low as 0.5SEK). Both short term data and long term
data exhibit stronger crash than boom dependence in time. This means good news
are momentare while bad news are consistent.

The dependence structure between two variates in long and short term is not
equal. Short term data sets exhibit equal crash and boom dependence while long
term data sets clearly display stronger crash than boom dependence.

Actually it seems very unlikely to find any dependence between two short term
variates. From the tick data, two variates are almost independent except at extrem
events. So the dependence in short term is probably entire market changes.

A Gaussian assumption for dependence structures of variates is a bold one: We
have found that the dependence structure is far more complex. Dependence in the
tails is stronger than in central regions of data. Unlike multivariate gaussian distri-
butions, the true market has asymmetric dependence. This means that good news
are for minority while bad news are for majority.

By simulation it is clear that correlation is not a bad method to fir Gaussian
processes. However, we know that in the real market, the data comes from other
more complex distributions. So correlation cannot describe dependence among market
stocks, and we have shown that copula models give far better dependence descriptions.

Assume that the dataset come from a Gumbel survival copula, and that someone
makes the mistake to think that it is jointly Gaussian distributed. Then a great risk
is taken, since for the real data’s distribution one must considered its heavy lower
tail, which is crash dependent. And so risk become greatly underestimated. The
correlation is a linear estimate that is not versatile enough to take study the concept
of risk.

All copula models, which we have been able to find in the literature, have been
used to investigate the dependence structure for real stock data sets. And although a
couple of copulas fit better than the Gaussian copula, none of them fit the dependence
structure well enough to not show significant deviations from the empirical copula.
This means the stock market dependence structure is more complex than a single
copula models’” dependence structure. Copulas in the literature just have association
parameter and only control the degree of dependence. So a mixture copula is used to
fit the data and work well because it has weight parameters, which have an effect on
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the structure of dependence, besides association parameters.

Since the dependence structure for logreturns is stronger before devolatilization
than after devolatilization, real-world portfolios have time dependence structures
more complicated that suggested by the Bachelier-Samuleson Black-Scholes model.
Hence some exterior event seem to affect stocks prices then and then.



Appendix A
Table of Tail Dependence Coeflicents

Copula AU AL
Gaussian 0 0
AMH 0 0
Frank 0 0

Gumbel 2 — 2!/ 0

Joe 2 — 9l/a 0

Galambos 21]/a 0
1
= 1

BB1 2-2% oo

Table A.1  Tail dependence of copulas.
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Appendix B
Table of Distances and Parameters for Long Term

Data
Copula AT & CTL AT & SBC CTL & SBC
Gaussian D=0.048 p=0.366 D —=0.048 p=0.420 D = 0.040 p = 0.449
AMH D =0.050 a=1.000 D=0057a=1.000 D=0.052a=1.000

AMH Survival D =0.060 a=0.803 D =0.060a=0916 D =0.064 o= 1.000

Frank D =0.045 a=0.110 D =0.047 o« =0.064 D = 0.039 a = 0.056

Frank Survival D =10.045 a =0.110 D =0.047 a =0.064 D =0.039 o = 0.056

Gumbel D =0053a=1441 D =0.005 « =1439 D =0.046 o = 0.896

Gumbel Survival D =0.040 o =1.483 D =0.042 o« =1.476 D = 0.037 o =0.793

Joe D =0070 a=1.735 D =0.070 o =1.671 D =0.065 a = 1.807

Joe Survival D=0052a=1740 D =0.054 a=1.849 D =0.052 o = 1.795

Galambos D =0054 a=0.722 D =0.056 a=0.726 D =0.047 o = 0.896

Galambos Survival D =0.056 o =0.773 D =0.056 « =0.759 D = 0.048 o = 0.793

CJ D =0.047 «=0879 D =0.0020=0.946 D =0.048 o = 0.978

CJ Survival D =0.067a=0833 D =0.068a=0.76 D=0.063ca=0.920

Table B.1  Minimal Kuiper distances and corresponding copula parameters for long
term data.
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Appendix C

Table of Distances and Parameters for Short Term
Data

Ericson B & Volvo

Ericson B & H&M

Ericson B & H&M

AMH

AMH Survival

Frank

Gumbel

Gumbel Survival

Joe

Joe Survival

Galambos

Galambos Survival

CJ

CJ Survival

D =0.013 a = 0.095

D =0.013 a = 0.095

D =0.013 a = 0.823

D =0.013 a = 1.027

D =0.012 a =1.025

D =0.014 o =1.039

D =0.013 a=1.019

D =0.015 a = 0.000

D =0.015 a = 0.000

D =0.013 a = 0.028

D =0.014 a = 0.051

D =0.012 a = 0.063

D =0.012 a = 0.063

D =0.012 a« = 0.880

D =0.012 a = 1.015

D =0.010 « =1.019

D =0.013 a =1.024

D =0.011 a = 1.027

D =0.014 a = 0.000

D =0.014 a = 0.000

D =0.011 « = 0.033

D =0.013 a = 0.029

D = 0.011 o = 0.047

D = 0.011 o = 0.047

D =0.011 a = 0.910

D =0.010 o =1.013

D =0.011 « =1.014

D =0.009 a =1.023

D =0.011 « = 1.005

D =0.012 a = 0.000

D =0.012 a = 0.000

D =0.012 a = 0.006

D =0.010 a = 0.029

Table C.1

term data.

Minimal Kuiper distances and corresponding copula parameters for short
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Appendix D
Goodness of Fit

To measure how close, or how far, an empirical distribution is from a theoretical
distribution, several distances are use. Among them, we cite three: the Kolmogorov-
Smirnov distance, the Anderson-Darling distance and the Kuiper distance.

The Kolmogorov-Smirnov distance is the greatest distance between the empirical
distribution and a hypothetical theoretical distribution for the data, i.e. for us in the
sense of copulas:

Dks = max |Cemp(u, v) — Ciheory (1, V)], (D.1)

u,we[0,1]

where Cepp is the empirical copula and Cipeory the theoretical copula function.
The Anderson-Darling distance, see Anderson-Darling (1954), is defined as a
scaled version of the Kolmogorov-Smirnov distance:

Cem 3 - C eor 3
Dir — max Comp(;0) = Cineory (4, 0)| (D.2)

uwel0,1] \/Ctheory(u’ 0)(1 — Cineory (14, )

The Anderson-Darling distance emphasizes the fit in the tails, which makes it
inadequate for our purposes, since we are interested in the entire distrbution.

The Kuiper distance, see Kuiper (1962), considers greatest distances upwards as
well as downwards:

Dxyiper = max (Cemp (1, V) —Chheory (1, 1))+ max  (Cineory (1, V) —Cemp(u, v)). (D.3)

u,we0,1] u,v€e(0,1]



58



Appendix E
p-values

Each statistical test has an associated null hypothesis, the p-value is the probabil-
ity that the samples could have been drawn from the model being tested, given the
assumption that the null hypothesis is true. A p-value of .05, for example, indicates
that you would have only a 5% chance of drawing the sample being tested if the null
hypothesis was actually true.

A null hypothesis is typically a statement of no difference. A p-value close to zero
signals that the null hypothesis is false, and that a difference is very likely to exist.
Large p-values closer to 1 imply that there is no detectable difference for the sample
size used. A p-value of 0.05 is a typical threshold used in industry to evaluate the
null hypothesis.

To show if copula models fit the logreturn data sets, we can calculate a p-value
by the chi-square statistic test.

The chi-square statistic test of £ boxes is given by

where O; is observed frequency for box j, i.e., the number of observations that lies in
the box j, and where

Ej =nlC(uj,v;) — Cluj—1,v;) = Clug, i) + Cluja, vj1)]

is the expected frequency for box j. Here w; > u;_1,v; > vj_1, ug = v9 = 0 and
u = v, = 1 must hold.
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Appendix F
Bachelier-Samuleson Black-Scholes Model

Several models have been proposed to model the price process, S(t), of an asset.
The most widely used model is the Bachelier-Samuleson Black-Scholes model, which
gives the stock value at time ¢ as the solution to the stochastic differential equation

dS(t) = (u + g)S(t)dt + 0S(t)dB, (F.1)

where B; is brownian motion.
The solution to (F.1) is
S(t) = S(0)ert+oBr (F.2)

where S(0) is the asset value at the starting time, p is the drift coefficient and o2 > 0
is the volatility.

By considering the logreturn, X (¢), of the asset value, the data set becomes driven
simply by the increments of a Brownian motion:

X(t) = log(S(t + A)) — log(S(t)) = log(eH+7Bisa—t=rh) — yA 4 5(By,s — B),

where A is time inteval between sampling points. Hence, for the Bachelier-Samuelson
model, the logreturns of stock values ares the increments of an Brownian motion, i.e.
they are stationary and independent.
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