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ABSTRACT

The aim of this thesis was to capture the stylized facts of the classical Black-Scholes model
by utilizing exponential Lévy models. European-style call option prices were retrieved by
applying the fractional fast Fourier transform via the characteristic functions of the under-
lying assets. The underlying assets were the three indices Nasdaq-100, Dow Jones Indus-
trial Average, and Standard & Poor 500. The following exponential Lévy models together
with the Black-Scholes model were used to model the price processes of the underlying
assets: Merton’s and Kou’s jump-diffusion models, the variance-gamma model, and the
normal-inverse Gaussian model. Furthermore, the method of steepest descent was used to
calibrate model prices to market quotes.

It was shown that the exponential Lévy models were better at approximating market
quotes than the classical Black-Scholes model. That is, by modeling the possibility of sud-
den jumps in the asset price process, the exponential Lévy models outperformed the Black-
Scholes model.
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PREFACE

The Black-Scholes model is a mathematical model of financial markets on which deriva-
tives are being traded. From the model, the Black-Scholes formula can be retrieved which
in turn can be used to estimate the price of European-style options based on geometric
Brownian motion. However, it has consistently been shown that utilizing the Black-Scholes
model in option pricing yields results that are inconsistent with options data. Even though
versions of the Black-Scholes model based on the implied volatility are able to perform
better, these models are made up of the wrong building blocks. In the late 1980s and early
1990s, Lévy models were proposed as an alternative in order to improve on the results of
the Black-Scholes model. A huge benefit of utilizing Lévy models is that they take into ac-
count the stylized characteristics of the markets.

This thesis is mainly about the pricing of index options by market models based on Lévy
processes. The theory and application of Lévy processes have had a major impact on the
finance industry.

This thesis is structured as follows. In Chapter 1 we introduce some basic theory of finan-
cial derivatives. We talk about which option markets are included and look at the elements
influencing the price of an option.

Chapter 2 deals with basic theory of stochastic calculus. We briefly introduce topics such
as measures, filtrations, characteristics of the Brownian motion, and Itô’s lemma.

In Chapter 3 we look at the Black-Scholes model. We derive the Black-Scholes equation
and talk about the stylized facts of the Black-Scholes model.

In Chapter 4 we derive the price of a European call option based on the fast Fourier trans-
form algorithm. We look at a caveat which concerns the fast Fourier transform which leads
us to the introduction of the fractional fast Fourier transform.

Chapter 5 introduces Lévy processes. We talk about Merton’s and Kou’s jump-diffusion
models. We also talk about infinite activity pure jump processes, such as the variance-
gamma process and the normal-inverse Gaussian process. An integral part of this chapter
concerns with risk-neutral characteristic functions.

Chapter 6 gives a brief overview of the simulation techniques utilized when modeling the
various processes.

In Chapter 7 we explain the methods used for estimating the parameters when calibrat-
ing the models. We also discuss and list the various model inputs.

In Chapter 8 we present the results. We compare the derived model prices to given mar-
ket quotes for both the Black-Scholes model and the exponential Lévy models.

Finally, Chapter 9 concludes with a discussion about the results and possible extensions
to this work.
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1 BASIC THEORY OF FINANCIAL DERIVATIVES

We begin by presenting an elementary introduction to the world of financial derivatives. A
more thorough and rigorous treatment of the subject can be found in [10] (Hull, 2011).

1.1 FINANCIAL DERIVATIVES

A derivative is a financial instrument whose value depends on, or derives from, the values
of other underlying variables. The variables underlying the derivative are often the prices
of traded assets. In other words, a derivative is a financial contract whose value at the expi-
ration date, T say, is determined by the price process of the underlying assets up to time T .

Derivatives have become progressively more important in finance. The market of deriva-
tives is huge, and it is a significant component when transferring risks in the economy from
one entity to another ([10], p. 1). In terms of underlying assets, the market of derivatives is
much larger than, for example, the stock market.

1.1.1 ASSETS UNDERLYING THE FINANCIAL DERIVATIVES

The underlying assets in this thesis are stock indices. A stock index is a measurement of the
value of a section of the stock market and is generally computed as a weighted average of
the underlying stock prices.

A speculator might trade financial derivatives on indices to bet on an overall market de-
velopment without exposing himself to a particular asset. Furthermore, stock indices are
often used by investors and financial managers to describe the market, and to compare the
return on particular investments.

1.1.2 INTEREST RATES

An interest rate defines the amount of money a borrower promises to pay to a lender and is
a factor in the pricing of nearly all derivatives.

The rates an investor earns on Treasury bills and Treasury bonds are called Treasury rates.
Governments use these instruments to borrow in their own currencies. Treasury rates are
considered to be risk-free rates since it is usually assumed that the risk of a government
defaulting on an obligation denominated in its own currency is negligible. When pricing
derivatives, the risk-free rate is used extensively.

In theory, rising interest rates should increase the stock price because a growing econ-
omy should yield growing corporate earnings. However, in reality, rising interest rates tend
to be detrimental for stocks for various reasons such as [19]:

• When interest rates increase, investors who had previously been buying stocks tend
to settle on bonds because their yields are rising.

• When interest rates increase, companies that borrow money have to pay more result-
ing in a reduction in their earnings.
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• Also consumers have to pay more to borrow money when the interest rates increase.
This deters them from buying houses, cars, etc. Thus, companies that are dependent
on the consumers take a blow.

1.1.3 CASH AND STOCK DIVIDENDS

A dividend is an individual share of earnings handed out among stockholders in propor-
tion to their holdings. Usually they are payable in cash, but sometimes also in the form of
additional shares of stocks. Most secure and stable companies provide their stockholders
with dividends. Even though the companies’ share prices might not move much, dividends
aim to compensate for this.

1.2 EUROPEAN CALL AND PUT OPTIONS

There are two types of options: call options and put options. A call option gives the holder
the right to buy the underlying asset by a certain date for a certain price. A put option gives
the holder the right to sell the underlying asset by a certain date for a certain price. The
buyer’s profit or loss is the reverse of that for the seller of the option.

The fixed price at which the holder of the option can buy or sell the underlying asset is
called the strike price, or the exercise price. The date at which the option expires is called
the maturity, or the expiration date.

European options can be exercised only on the expiration date, whereas American op-
tions can be exercised at any time up to the expiration date. European call and put options
are often known as plain vanilla options since they are so basic. More advanced options are
largely called exotic.

1.2.1 EXCHANGE-TRADED MARKETS

As was mentioned, the underlying assets in this thesis are stock indices. Throughout the
world, many different options trade both on over-the-counter markets and on exchange-
traded markets. In the United States, the most popular exchange-traded contracts are those
on the S & P 500 Index (SPX), the S & P 100 Index (OEX), the Nasdaq-100 Index (NDX), and
the Dow Jones Industrial Average (DJX) ([10], p. 199) . The contracts are mostly European,
the exception being the OEX contract on the S & P 100 Index, which is American. Since this
thesis solely covers European contracts, this index will be excluded.

1.2.2 VOLATILITY AS A MEASURE OF UNCERTAINTY

The volatility is, roughly speaking, a measure of the uncertainty about future asset price
movements. A higher volatility implies that the value of an asset has the potential to reach
a larger range of values, while a lower volatility implies that the value of an asset undergoes
minor fluctuations.
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1.2.3 MONEYNESS AS A MEASURE OF THE INTRINSIC VALUE OF AN OPTION

Moneyness expresses whether or not exercising an option will produce a profit. It is the
relative position of the current price of an underlying asset with respect to the strike price
of a derivative. The derivative is said to be in-the-money if it was to expire today and yield
a profit. It is said to be out-of-the-money if it was to expire today and yield a loss. Further-
more, it is said to be at-the-money if the current price and the strike price are equal.

1.2.4 ELEMENTS INFLUENCING OPTION PRICES

Six primary factors influence option prices. These are ([10], pp. 214-218):

• The underlying price: the most prominent factor influencing an option price is the
current market price of the underlying asset. As the price of the underlying asset
increases, generally the price of a call option increases while the price of a put option
decreases, and vice versa if the price of the underlying asset decreases.

• The strike price: the price of an option generally increases as the option gets closer
to being in-the-money. This is because the strike price becomes more favorable rel-
ative to the current price of the underlying asset. In the same way, the price of an
option decreases as the option gets closer to being out-of-the-money, because the
strike price is less favorable relative to the price of the underlying asset.

• The time to expiration: the longer time an option has until maturity, the better the
chances are that it will end up in-the-money. Hence, as the maturity emerges, the
time value of the option decreases. Furthermore, the underlying asset’s volatility in-
fluences the time value because if the the underlying asset is highly volatile, the price
movements are expected to be plentiful.

• Volatility of the underlying asset: the price of an option will typically increase if the
underlying asset has higher volatility since the expected price changes will be greater.

• The interest rate: as interest rates increase, the call option premium generally in-
creases, while the put option premium generally decreases, and vice versa if the in-
terest rates decrease. This has to do with the cost connected with owning the under-
lying asset. If money is borrowed to make the purchase, there is an interest expense.
If existing funds are used to make the purchase, there is a loss of interest income. In
any case, the buyer will have interest expenses.

• The dividends: the price of the underlying asset typically drops by the amount of any
cash dividend on the ex-dividend date. Thus, if the dividend of the underlying asset
increases, the price of a call option will decrease, while the price of a put option will
increase and vice versa.
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1.2.5 PROS AND CONS OF TRADING OPTIONS

Option strategies can be very risky, but if they are used wisely they can be very helpful.
One reason is that the stock leverage can drastically be increased. Another reason is the
emerging hedging opportunities against unfavorable markets.

1.3 EXPLOITING THE IMBALANCES IN MARKETS

Arbitrage is the practice of taking advantage of a price difference between two or more
markets. The imbalance can be capitalized upon, yielding a risk-free profit where the profit
is the difference between the market prices.

The essential part of a no-arbitrage assumption is that with no initial capital, making a
profit without exposure to risk should not be possible. If it would be possible, arbitageurs
would take advantage of it and use the market as a money-pump to extract arbitrarily large
amounts of riskless profit ([9], p. 13).

1.4 NUMBER OF TRADING DAYS IN A YEAR

Research has shown that when the market is open, the volatility is much higher compared
to when the market is closed. As a consequence, days when the market is closed tend to
be ignored by practitioners when estimating the volatility from historical data and when
valuating an option ([10], pp. 306-307).

Usually the number of trading days in a year is assumed to be 252 for stocks. The remain-
ing life of an option, T , is measured in years and is given by

T = Number of trading days until option maturity

252
.
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2 BASIC THEORY OF STOCHASTIC CALCULUS

To be able to understand the evolution of asset prices, particularly in the world of Black-
Scholes, one needs a few tools from stochastic calculus. In this section, an overview of the
main ideas from a probabilistic perspective will be given. These ideas will later on be used
when deriving prices of derivatives within the Black-Scholes setting.

Hence, the aim of this section is to build stochastic processes in continuous time that are
able to represent the probabilistic and dynamic performance of assets ([11], p. 21) .

2.1 THE STATE SPACE

A stochastic process is thought of as the result of the state of nature, where each state has
the capability to influence the value of the stochastic process. An example of a stochastic
process is an asset price process.

DEFINITION 3.1. The set of all states is denoted by Ω and is called the state space. An ele-
ment ofΩ is denoted by ω and is called a sample path.

DEFINITION 3.2. A random variable is a variable whose value is subject to randomness. It
assigns numeric values to the outcomes of an experiment. Hence, it is just a function

X :Ω→Rn :ω→ X (ω).

If the state space is continuous, then the probability that a random variable will assume
a particular value will almost always be zero for elements ω ∈ Ω, which is of little or no
interest ([5], p. 2). Thus, probabilities have to be given to subsets ofΩ instead of to elements
ofΩ. Subsets ofΩ on which probabilities can be assigned are called σ-algebras.

2.1.1 σ-ALGEBRAS AND INFORMATION

DEFINITION 3.3. LetΩ be some set, and let 2Ω denote its power set. Then a subset F ⊂ 2Ω is
called a σ-algebra if it fulfils the following properties:

• F is non-empty. That is, there is at least one A ⊂Ω ∈F .

• F is closed under complementation. That is, if A ∈F , then also Ac =Ω\A ∈F holds.

• F is closed under countable unions. That is, if A1, A2, . . . ∈F , then also
⋃∞

i=1 Ai ∈F .

Probabilities are just particular instances of an immense class of set functions called
measures. Generally, measures are defined onσ-algebras. Elements ofσ-algebras are called
measurable sets. To reflect that the pair (Ω,F ) can be measured, it is called a measurable
space.

The smallest σ-algebra containing all open sets of Rn is called the Borel σ-algebra.

5



DEFINITION 3.4. Let A be an arbitrary family of subsets of Ω. Then there exists a unique
smallest σ-algebra which contains every set in A, namely the intersection of all σ-algebras
containing A. This σ-algebra is denoted by σ(A) =σA and is called the σ-algebra generated
by A.

An area that is directly connected toσ-algebras is information. This is because the infor-
mation obtained by the realizations of a random variable X is reproduced by the generated
σ-algebra σX .

2.2 PROPERTIES OF MEASURES

DEFINITION 3.5 Let (Ω,F ) be a measurable space. A function µ from F to the extended
real number line is called a measure if it fulfils the following properties:

• The measure of the empty set is zero, that is, µ(;) = 0.

• Non-negativity, that is, ∀A ∈F , µ(A) ≥ 0 holds.

• Countable additivity, that is, for all countable collections {Ai }i∈N of pairwise disjoint
sets in F the following holds:

µ

(⋃
i∈N

Ai

)
= ∑

i∈N
µ(Ai ).

The everyday equivalent of a measure is, for example, the length of a rod, the volume of
a ball, etc.

The triplet (Ω,F ,µ) is called a measure space which is an augmentation of the measur-
able space with a measure. The reason why the elements of F that are subsets of Ω are
called measurable sets is that they have the possibility of being able to be measured by µ.

2.2.1 PROBABILITY MEASURES

DEFINITION 3.6 A function P :Ω→ R is a probability measure on a probability space if it
fulfils the following properties:

• P must return results in the unit interval [0,1]. Furthermore, P (;) = 0 and P (Ω) = 1
must hold.

• Countable additivity, that is, if {Ai }i∈N is a countable, pairwise disjoint collection of
events, then the following holds:

P

(⋃
i∈N

Ai

)
= ∑

i∈N
P (Ai ).
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A crucial property to keep in mind is that separate probability measures on Rn , derived
from separate probability spaces, can be produced by the same random variable.

A typical case where this is applied is when investors are curious about the probabilistic
performance of an asset price process. Even though the investors might concur with the
true probability measure, they might act as if the probability measure was another one. As
will be seen, this can be the result of, for example, the risk aversion among investors or
market frictions.

2.2.2 EQUIVALENCY BETWEEN PROBABILITY MEASURES

As was mentioned earlier, random variables can produce a vast number of separate prob-
ability measures. These probability measures can be grouped in accordance with some of
their properties. One significant property describes the sets which the probability mea-
sures attribute zero probability. Measures that concur on these sets are said to be equiva-
lent ([20], p. 17).

Furthermore, if a probability measure Q is absolutely continuous with respect to another
probability measure P , then unfeasible events under P are also unfeasible under Q.

2.3 STOCHASTIC PROCESSES AND THE DYNAMICS OF ASSET PRICES

A random variable is adequate if only the uncertainty at a single point in time needs to be
described. However, when considering asset prices also the dynamics are vital. By assem-
bling a number of random variables, a stochastic process can be constructed.

DEFINITION 3.7. A stochastic process is a family of random variables X = {X t }t∈T defined
on a given probability space, indexed by a totally ordered set T representing time.

2.3.1 FILTRATION AND INFORMATION FLOW

As was previously mentioned, information is connected with σ-algebras. However, in the
setting of stochastic processes information undergoes a change. Generally a filtration is
defined to reflect the accumulation or destruction of information. As time passes, more
information is revealed to the observer. In the example of the price of a stock, a filtration
characterizes how the stock price information is brought to light.

DEFINITION 3.8. Given a probability space (Ω,F ,P ), a filtration is a non-decreasing family
{Ft }0≤t≤T of sub-σ-algebras of F satisfying

Fs ⊂Ft ⊂FT ⊂F , 0 ≤ s < t ≤ T,

where Ft represents the information available at time t , and {Ft }0≤t≤T represents the infor-
mation flow evolving with time.
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If all random variables X t are Ft -measurable, the stochastic process is said to be adapted.
Furthermore, each collection of random variables {Xs}0≤s≤t gives rise to a collection of σ-
algebras called the natural filtration of the stochastic process, which is denoted by Ft =
σ ({Xs}0≤s≤t ) ([5], p. 13). The natural filtration is the smallest filtration causing the stochas-
tic process to be adapted. It embodies the accumulated information by monitoring the
stochastic process up to time t . In a sense, it is the simplest filtration available for monitor-
ing the stochastic process since only the information regarding the process is included and
nothing else.

2.4 BROWNIAN MOTION

A Brownian motion is a continuous-time stochastic process and is one of the best known
Lévy processes. It often occurs in both pure and applied mathematics. A Brownian motion
Bt is characterized by three properties, namely ([9], p. 56):

• B0 = 0.

• The function t → Bt is continuous everywhere almost surely.

• Bt has independent increments with Bt −Bs ∼N (0, t − s), where N (µ,σ2) denotes a
Gaussian distribution with expected value µ and variance σ2.

Note that, by its definition, Brownian motion is Gaussian. A realization of a Brownian mo-
tion B = {Bt }t≥0 started at zero is displayed in Figure 1. Even though it is a process lead by
pure chance with zero mean, it has regions where it acts as if it has trends.

Figure 1: A realization, or path, of a Brownian motion Bt with µ= 0 and σ= 1.
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2.4.1 CHARACTERISTICS OF BROWNIAN MOTION

It is assumed that the Brownian motion B = {Bt }t≥0 has a natural filtration Ft . Furthermore,
the Brownian motion is a martingale.

DEFINITION 3.9. Let (Ω,F , {Ft }t≥0,P ) be a filtered space. A stochastic process X t is a mar-
tingale if it fulfils the following properties:

• X t is adapted to the filtration.

• E[|X t |] <∞∀t ≥ 0. That is, the process is integrable.

• E[Xu |Ft ] = X t ∀u ≥ t ≥ 0.

Given an adapted functionα, every continuous martingale can be represented as a time-
changed Brownian motion Bαt .

Additionally, the Brownian motion is a Markov process. Hence, if the present state of the
Brownian motion is known, then its future behavior is independent of its past.

DEFINITION 3.10. A stochastic process X = {X t }t≥0 is a Markov process if for any s, t > 0 the
following property holds:

P (X t+s ≤ x|Ft ) = P (X t+s ≤ x|X t ) almost surely.

2.4.2 BROWNIAN MOTION AND DIFFUSION

A diffusion is a Markov process with continuous sample paths and is characterized by its
local drift µ and volatility σ. Let X = {X t }t≥0 be a diffusion and let ∆t be a small time incre-
ment. Its instantaneous drift is given by

E[X t+∆t −X t |Ft ] =µ(X t )∆t +o(∆t ),

while its instantanteous volatility is given by

E
[(

X t+∆t −X t −µ(X t )∆t
)2 |Ft

]
=σ2(X t )∆t +o(∆t ).

Given a Brownian motion B = {Bt }t≥0, the process X t = µ+σBt is a diffusion if both the
drift and the volatility are constant. However, in general, the instantaneous drift and the
instantaneous volatility do not have to be constant but can depend on both the time t and
the location X t ([5], p. 19).

2.4.3 THE ERRATIC BEHAVIOR OF BROWNIAN MOTION

Let t 7→ B(t ,ω) be a Brownian motion defined as a function of time with a fixed sample
point ω ∈Ω. A sample path of this function is continuous almost everywhere but nowhere
differentiable.

Let 0 = t (n)
0 ≤ t (n)

1 ≤ . . . ≤ t (n)
k(n)−1 ≤ t (n)

k(n) = t be a nested sequence of partitions of the time
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interval [0, t ]. That is, at each step one or more partition points are added and the mesh
given by

∆(n) = sup
1≤ j≤k(n)

{
t (n)

j − t (n)
j−1

}
,

converges to zero. Then, almost surely, the total variation of a sample path of the Brownian
motion is unbounded, and its quadratic variation is finite ([11], p. 63):

lim
n→∞

k(n)∑
j=1

∣∣Bt (n)
j

−Bt (n)
j−1

∣∣=∞,

lim
n→∞

k(n)∑
j=1

(
Bt (n)

j
−Bt (n)

j−1

)2

= t .

Hence, when examining a path of a Brownian motion, there is no way to find a mono-
tonic interval. A realization of a Brownian motion B = {Bt }t≥0 started at zero and zoomed
in three times is displayed in Figure 2.

Figure 2: A realization of a Brownian motion Bt zoomed in three times.

2.5 STOCHASTIC DIFFERENTIAL EQUATIONS AND BROWNIAN MOTION

A stochastic differential equation is given by

dX t

dt
=µ(t , X t )+noise.
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Let the noise be represented by a Brownian motion Bt . Given the drift µ and the volatility
σ, the resulting process is called an Itô diffusion and is denoted by

dX t =µ(t , X t )+σ(t , X t )dBt .

This can also be written as

X t = X0 +
∫ t

0
µ(s, Xs)ds +

∫ t

0
σ(s, Xs)dBs ,

where the last integral term is called an Itô integral with respect to Brownian motion.

2.5.1 ITÔ’S LEMMA AND GEOMETRIC BROWNIAN MOTION

One of the most fundamental tools in stochastic calculus is Itô’s formula or Itô’s lemma.
Consider an Itô process ([11], pp. 91-124)

dX t =µ(t , x)dt +σ(t , x)dBt ,

and a function h(t , x) ∈C (1,2) defining a new Itô process via Yt = h(t , X t ). What Itô’s formula
does is to characterize the dynamics of Yt in connection with the drift and the volatility of
X t and the derivatives of h such that

dYt = ∂t h(t , X t )dt +∂X t h(t , X t )dX t + 1

2
∂X t X t h(t , X t )(dX t )2

=
(
∂t h(t , X t )+µ(t , X t )∂X t h(t , X t )+ 1

2
σ2(t , X t )∂X t X t h(t , X t )

)
dt

+σ(t , X t )∂X t h(t , X t )dBt ,

since (dt )2 = dt dBt = 0 and (dBt )2 = dt .

A common model for an asset price process S = {St }t≥0 comply with the stochastic dif-
ferential equation for a geometric Brownian motion given by

dSt =µSt dt +σSt dBt ,

with constant expected return µ and volatility σ. Applying Itô’s formula to the logarithm of
the asset price lnSt yields

dlnSt =
(
µ− 1

2
σ2

)
dt +σdBt .

Hence,

lnSt = lnS0 +
(
µ− 1

2
σ2

)
t +σBt ,

which gives the result

St = S0e
(
µ− 1

2σ
2
)
t+σBt .

The geometric Brownian motion and the log-normal distribution which it entails form
the basis for the Black-Scholes model for asset price dynamics in continuous time. A real-
ization of a geometric Brownian motion S = {St }t≥0 started at one is displayed in Figure 3.
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Figure 3: A realization of a geometric Brownian motion St where µ= 0,σ= 1, and S0 = 1.
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3 THE BLACK-SCHOLES MODEL

The groundbreaking work of Fischer Black and Myron Scholes laid the foundation for the
in-depth study of the theory of option pricing. In this section we will study the theory of the
Black-Scholes model in some detail due to its monumental significance in the discipline of
option pricing.

However, the Black-Scholes model is not perfect since some of its assumptions are not
entirely fulfilled in practice. Therefore we will also discuss its imperfections.

3.1 UNDERLYING PRESUMPTIONS OF THE BLACK-SCHOLES MODEL

When deriving the Black-Scholes partial differential equation, several presumptions are
made. In able to understand the limitations of the underlying theory, it is vital to correctly
apprehend these presumptions. The Black-Scholes model assumes that the market con-
sists of at least one risky asset and one riskless asset.

The presumptions are ([10], p. 309):

• The rate of return on the riskless asset is constant and is known as the risk-free inter-
est rate.

• The underlying risky asset price process St is assumed to follow a geometric Brown-
ian motion such that

dSt =µSt dt +σSt dBt ,

where the drift µ and the volatility σ are assumed to be constant.

• The risky asset pays no dividend.

• There is no way to make a riskless profit, hence the market has no arbitrage opportu-
nities.

• It is feasible to borrow and to lend fractional amounts of cash at the risk-free rate.

• It is feasible to buy and to sell fractional amounts of the risky asset. Also short-selling
is allowed.

• There are neither taxes nor transaction costs, hence the market is frictionless.

Clearly these presumptions cannot be perfectly satisfied in the real world. For example,
transaction costs do exist in all markets, and all securities are traded in discrete units.

Despite the imperfections of the Black-Scholes model, it is still important to be able to
grasp the theory because the concepts behind the model provide the framework for basic
option pricing.
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3.1.1 A SELF-FINANCING, REPLICATING HEDGING STRATEGY

Setting up a self-financing, replicating hedging strategy is one way of deriving the Black-
Scholes equation [21]. A self-financing portfolio is an important concept in financial math-
ematics. A portfolio is self-financing if there is no exogenous infusion or withdrawal of
money. Hence the sale of an old asset must finance the purchase of every new asset. The
initial investment will be the price of the derivative that the strategy is replicating.

A replicating strategy is a dynamic trading strategy that varies the exposure of a portfolio
between a risky asset and a riskless asset in order to yield the same payoff function as the
derivative being priced.

Furthermore, irrespective of the price changes in the underlying security, the portfolio
should consistently produce the same outcome. Hence, besides the stochastic components
of the derivative’s underlying securities, the portfolio should be deterministic.

By the no-arbitrage concept, any portfolio that is able to replicate the payoff of a deriva-
tive is compelled to have the same value as the derivative.

3.1.2 THE CONCEPT OF RISK-NEUTRAL VALUATION

The most pivotal concept in derivative valuation is the concept of risk-neutral valuation,
which says that the value of a derivative is equal to its expected future value discounted
at the risk-free interest rate. This is equivalent to assuming a risk-neutral world. In a risk-
neutral world, investors do not crave compensation for risk-taking which implies that the
expected return on all securities is the risk-free interest rate. This is an example of a pivotal
result known as Girsanov’s theorem which says that if we move from a world with one set
of risk preferences to another world with a different set of risk preferecens, the expected
growth rates in variables alter, but their volatilities stay the same. Occasionally, moving
from one set of risk preferences to another set of risk preferences is called changing the
measure. Moreover, the real-world measure is usually called the P-measure, while the risk-
neutral measure is usually called the Q-measure.

3.2 DERIVING THE BLACK-SCHOLES EQUATION

Let f be a derivative whose value is a function of the underlying asset S = {St }t≥0 and the
time t . The underlying asset is assumed to follow a geometric Brownian motion

dSt =µSt dt +σSt dBt , (1)

where the average growth rate µ of the underlying asset and the volatility σ are constant.
Applying Itô’s formula to f yields ([10], pp. 309-310)

d f = ∂t f dt +∂St f dSt + 1

2
∂St St f (dSt )2

=
(
∂t f +µSt∂St f + 1

2
σ2S2

t ∂St St f

)
dt +σSt∂St f dBt .

(2)
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Since d f contains a stochastic term, f cannot be directly valuated. Let the value of a
portfolio be denoted byΠ and assume that the portfolio is composed of a short position in
the derivative f and a long position in ∆ units of the underlying asset S at time t , that is

Π=− f +∆St .

In an infinitesimally small time interval, the value of the portfolio changes by

dΠ=−d f +∆dSt .

The equation for dSt is given by Equation (1), whereas the equation for d f is given by
Equation (2). Thus,

dΠ=−
(
∂t f +µSt∂St f + 1

2
σ2S2

t ∂St St f

)
dt −σSt∂St f dBt +∆µSt dt +∆σSt dBt

=
(
−∂t f −µSt∂St f − 1

2
σ2S2

t ∂St St f +∆µSt

)
dt + (−σSt∂St f +∆σSt

)
dBt .

To produce a riskless portfolio, the source of randomness has to be taken out. It is clear
that the Brownian motion is the source of randomness. Hence, by letting ∆ = ∂St f , the
equation for dΠ becomes

dΠ=
(
−∂t f − 1

2
σ2S2

t ∂St St f

)
dt .

Without a stochastic component,Π is a riskless investment and must thus offer the same
return as any other riskless investment, that is, there are no arbitrage opportunities. This
implies that the diffusion of the riskless portfolio is equal to dΠ = rΠdt , where r is the
risk-free interest rate. Hence,

dΠ= rΠdt ,(
−∂t f − 1

2
σ2S2

t ∂St St f

)
dt = r

(− f +St∂St f
)

dt .

Dropping the dt term from both sides and rearranging yields the Black-Scholes partial
differential equation

∂t f + 1

2
σ2S2

t ∂St St f + r St∂St f − r f = 0.

The final condition f (T,ST ) governs what kind of derivative is being priced. For example,
for a European call option, the final condition is f (T,ST ) = (ST −K )+, where K is the strike
price of the option.

Since the Black-Scholes equation is independent of the expected growth rate µ of the un-
derlying asset price, it is clear that the risk-neutral valuation property holds.

The portfolioΠ corresponds to a self-financing, replicating hedging strategy since it repli-
cates a riskless investment and its value is deterministic.

The main financial insight behind the Black-Scholes equation is that it is possible to
completely hedge the option by buying and selling the underlying asset in a way to elim-
inate risk. Consequently, this hedge implies that there is solely one correct price for the
option, namely the price returned by the Black-Scholes equation.
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3.2.1 SOLVING THE BLACK-SCHOLES EQUATION

There are many ways of solving the Black-Scholes equation. One way is to solve it numer-
ically using standard methods of numerical analysis. Another way of solving it, which will
be demonstrated below, is to apply the risk-neutral valuation property ([10], pp. 311-315).

Employing Itô’s formula to lnSt yields

dlnSt = 1

St
dSt + 1

2

(
− 1

S2
t

)
(dSt )2 =

(
µ− σ2

2

)
dt +σdBt .

Hence,

lnSt ∼N

(
lnS0 +

(
µ− σ2

2

)
t ,σ2t

)
,

since B is a standard Brownian motion. Thus, St follows a log-normal distribution which is
in agreement with the process being a geometric Brownian motion.

The risk-neutral valuation property implies that the present value of the derivative is
equal to its expected future value discounted at the risk-free interest rate. In obedience to
the risk-neutral valuation property, µ is substituted with the risk-free interest rate r . It is
given that ST = S0eXT , where

XT =
(
r − σ2

2

)
T +σBT =

(
r − σ2

2

)
T +σ

p
T Y , Y ∼N (0,1).

The value of a European call option C is derived by

C = e−r TE
[
(ST −K )+

]
= e−r T

∫ ∞

ln(K /S0)

(
S0ex −K

)
fX (x)dx

= e−r T

(
S0

∫ ∞
ln(K /S0)−(r−σ2/2)T

σ
p

T

e(r−σ2/2)T+σpT y fY (y)dy −K
∫ ∞

ln(K /S0)
fX (x)dx

)
,

which yields, after some algebraic manipulation,

C = S0Φ(d1)−K e−r TΦ(d2) = e−r T (
er T S0Φ(d1)−KΦ(d2)

)
, (3)

where

d1 = ln(S0/K )+ (r +σ2/2)T

σ
p

T
, d2 = ln(S0/K )+ (r −σ2/2)T

σ
p

T
= d1 −σ

p
T ,

andΦ(x) is the standard Gaussian cumulative probability distribution function.
Equation (3) can easily be interpreted. The probability that the European call option will

be exercised in a risk-neutral world is equal to Φ(d2), hence KΦ(d2) is simply the strike
price times the probability that the strike price will be paid. In a risk-neutral world,
er T S0Φ(d1) is the expected value of a variable that is equal to ST if ST > K , otherwise it is
equal to zero. Hence, er T S0Φ(d1)−KΦ(d2) is the expected value of the option at maturity
and Equation (3) is simply a demonstration of the risk-neutral valuation property.
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3.3 STYLIZED FACTS OF THE BLACK-SCHOLES MODEL

By assumption, all parameters of the Black-Scholes equation are F0-measurable. But even
though the current price, the strike price, the maturity, and the interest rate are observed at
time t = 0, the volatility σ of the asset price is not. However, by inverting the Black-Scholes
formula, a series of implied volatilities across different maturities and strike prices can be
obtained.

The Black-Scholes model bring about many theoretical and practical problems ([5], pp.
66-68). Many of these problems are encapsulated by the patterns of the implied volatilities.

If the underlying presumptions of the Black-Scholes formula were to be true, then all
prices would be priced in agreement with the Black-Scholes formula. Therefore, it would
be assumed that the implied volatility would be the same across all maturities and all strike
prices. However, as it turns out, the implied volatilities are not constant but display evident
patterns. These patterns could be the result of the volatilities actually being time varying.
Another reason for the patterns to appear could be discontinuities in the asset price pro-
cess, which is something that will be studied in more detail in subsequent sections.

A plot of the implied volatility with respect to different measures of moneyness is called
an implied volatility smile. Furthermore, an implied volatility surface can be constructed
by plotting the implied volatility with respect to both moneyness and time to maturity. An
example of a realization of an implied volatility surface is displayed in Figure 4.

Possible sources of the implied volatility patterns will subsequently be presented.

Figure 4: A realization of an implied volatility surface.

3.3.1 LEPTOKURTOSIS OF THE DISTRIBUTION OF RETURNS

It has been shown that asset returns display an extensive degree of excess kurtosis resulting
in a higher peak than the curvature found in the Gaussian distribution. The high peak and
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the corresponding fat tails yield a more clustured distribution around the mean compared
to a mesokurtic or platykurtic distribution. For short maturity investments, the fat tails
seem to be more pronounced, while for longer maturity investments they seem to dimin-
ish.

A distribution with excess kurtosis is in tune with the existence of an implied volatility
smile. The reason is that it gives rise to higher probabilities of extreme events in contrast
to the Gaussian distribution. If at-the-money implied volatilities are used then the Black-
Scholes formula will consistently undervalue out-of-the-money put and call options.

3.3.2 SKEWNESS OF THE DISTRIBUTION OF RETURNS

Asset return series can also display considerable skewness. Stocks and indices generally
have negative skewness. The reason is that in general the decline rate of stock prices is
higher than the growth rate. However, stock prices are apt to grow for longer periods of
time than they fall.

The asymmetries displayed in the implied volatility smile can be ascribed to the skew-
ness of the underlying asset returns. In fact, Black [2] argued that falling stock prices can
lead to increased volatility. This asymmetry can cause skewed returns. However, this is not
enough to shed light on the very steep implied volatility skews observed in option mar-
kets. One must also accommodate for sudden jumps in the asset price process resulting in
market crashes.

3.3.3 VOLATILITY CLUSTERING

Empirical studies have shown that the volatility tend to come in cycles, where periods of
low volatility are superseded by periods of high volatility. This can be linked to the surfacing
of new information and high trading volume. Since trading does not occur uniformly across
time, the arrival of new information will lead to a denser trading pattern with higher trading
volumes; the outcome being higher volatilities.

3.3.4 JUMPS IN THE ASSET PRICE PROCESS

Simply permitting the volatilities to be time varying is not enough to accommodate for sud-
den jumps in the asset price process. Even if the volatility would be permitted to fluctuate
ferociously, a model with continuous paths such as the Black-Scholes model, would still
not be able to accommodate for sudden jumps.

To expand on the Black-Scholes model, Robert Merton introduced in 1976 a jump-diffusion
model. In this model, the asset price behavior is modeled by incorporating small day-to-
day diffusive movements together with larger, randomly occuring jumps. The upside of
including jumps is that it allows for more realistic crash scenarios. The downside is that
the standard dynamic replicating hedging strategy of the Black-Scholes model is no longer
applicable. Compared to the Black-Scholes model, this tends to increase the option prices.
It also causes the option prices to depend on the risk aversion among investors.

This and other models will further be explained in Section 5.
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4 BEYOND THE BLACK-SCHOLES MODEL

Despite the fact that the Black-Scholes model is neat and easy-to-use, it is somewhat con-
fining in its postulations. For example, one postulation that evidently confute empirical
studies is based on the premise that the log-returns are i.i.d. Gaussian ([5], p. 107).

When researchers attempted to find models that tempered with these postulations they
realized that scarcely any model, aside from the Black-Scholes model, provided for exam-
ple European option prices in closed form. It is of great interest to expeditiously be able to
determine European option prices since a theoretical model generally is calibrated on a set
of prices originating from option markets.

Even though prices of derivatives or risk-neutral densities might not be able to be deriv-
ied explicitly, researchers did, however, discover that the characteristic function of the log-
returns is unmistakably easy to obtain. Furthermore, via Fourier transforms, researchers
such as Carr and Madan [3] connected the characteristic function with European option
prices.

4.1 FOURIER TRANSFORMS AND CHARACTERISTIC FUNCTIONS

Let St denote the process of an asset price and let r denote the deterministic rate of return
on a riskless asset. Furthermore, let XT = ln(ST /S0) denote the logarithmic return over the
maturity T . Since XT is a random variable, it is distributed in obedience to a probability
measure P . It is assumed that an equivalent probability measure Q, also called the risk-
neutral probability measure, exists. Under this measure, the discounted price embodies a
martingale:

e−r TEQ [ST ] = S0.

Unless the market is complete, Q does not have to be unique. However, every single
derivative contract will have a no-arbitrage price corresponding to their discounted ex-
pected payoff under Q. Thus, the price of a European call option, for example, is given
by

C = e−r TEQ
[
(ST −K )+

]
.

4.1.1 THE FOURIER TRANSFORM

The most general form of the Fourier transform of a function f is given by

f̂ (ω) =F [ f (x)](ω) =
√

|b|
(2π)1−a

∫
R

eibωx f (x)dx, (4)

where a and b are two arbitrary constants [17]. Furthermore, the inverse Fourier transform
is given by

f (x) =F−1[ f̂ (ω)](x) =
√

|b|
(2π)1+a

∫
R

e−ibωx f̂ (ω)dω. (5)
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Since the forthcoming aim is to calculate characteristic functions, the Fourier transform
parameters are both set equal to 1. Thus, Equation (4) and Equation (5) become

f̂ (ω) =F [ f (x)](ω) =
∫
R

eiωx f (x)dx,

f (x) =F−1[ f̂ (ω)](x) = 1

2π

∫
R

e−iωx f̂ (ω)dω.

4.1.2 THE CHARACTERISTIC FUNCTION

Let fX be the probability density function measuring a random variable X . The Fourier
transform of fX is equal to the characteristic function of X given by

φX (ω) = E[eiωX ] =
∫
R

eiωx fX (x)dx.

Characteristic functions possess ample information to recover the probability distribu-
tion of a random variable because functions and their Fourier transforms uniquely define
each other. In particular, the inverse Fourier transform reclaims the probability density
function through

fX (x) = 1

π

∫
R+

Re
[
e−iωxφX (ω)

]
dω.

Often it is feasible to solve for the characteristic function of a random variable or a pro-
cess, as opposed to solving for the probability density itself. In fact, as shall be seen in Sec-
tion 5, there is a large class of processes, called Lévy processes, which are defined through
their characteristic functions.

A valuable feature of the characteristic function is that the moments of a random variable
can easily be obtained through

E[X k ] = (−i)k ∂
kφX (ω)

∂ωk

∣∣∣
ω=0

.

As a consequence, the volatility, skewness, and excess kurtosis can straightforwardly be
obtained from the characteristic function ([5], p. 110).

4.2 PRICING A EUROPEAN CALL OPTION

The characteristic function of the log-return can be used to obtain European option prices.
Let the logarithm of the asset price under the risk-neutral measure1 Q be given by

lnST = lnS0 +XT .

The reason why the risk-neutral measure is used is that the market might be or is ex-
pected to be incomplete. If the market is incomplete, it is not possible to cite no-arbitrage

1Also known as the equivalent martingale measure.
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option prices based wholly on information under the true measure P .
To set up a risk-neutral measure, several techniques can be used. Øksendal [29] utilized

Girsanov’s theorem, whereas Gerber and Shin [8] employed the Esscher transform. Risk-
neutral valuation is described in Subsection 3.1.2.

By assuming that the process lnST is defined under Q, the only necessary restriction is

e−r TEQ [ST ] = S0 ⇔ EQ
[
eXT

]= er T .

4.2.1 THE FOURIER TRANSFORM OF A EUROPEAN CALL OPTION

Let k = lnK denote the log-strike price of a European call option maturing at time T . Fur-
thermore, let the risk-neutral density of the log-price sT = lnST be denoted by q(s) whose
characteristic function is given by

φ(ω) =
∫
R

eiωs q(s)ds.

The initial call value is linked to the risk-neutral density by [3]

C (k) = e−r TEQ
[
(ST −K )+

]= e−r T
∫ ∞

k
(es −ek )q(s)ds.

However, C (k) is not square-integrable because as k tends to−∞, C (k) tends to S0. To make
C (k) square-integrable, it is multiplied by eηk for some damping parameter η> 0 such that

Cη(k) = eηkC (k).

The Fourier transform of Cη(k) is given by

ψη(ω) =
∫
R

eiωkCη(k)dk.

By applying the inverse Fourier transform, the original call option price can now be ob-
tained:

C (k) = e−ηk

2π

∫
R

e−iωkψη(ω)dω= e−ηk

π

∫
R+

e−iωkψη(ω)dω, (6)

where the second equality holds because C (k) is real, which implies that the functionψη(ω)
is even in its real part and odd in its imaginary part.

The analytic expression for the Fourier transform of the modified call price is derived as
follows:

ψη(ω) =
∫
R

eiωkCη(k)dk

=
∫
R

eiωk
∫ ∞

k
eηk e−r T (es −ek )q(s)ds dk

=
∫
R

e−r T q(s)
∫ s

−∞

(
es+ηk −e(1+η)k

)
eiωk dk ds

=
∫
R

e−r T q(s)

(
e(η+1+iω)s

η+ iω
− e(η+1+iω)s

η+1+ iω

)
ds

= e−r Tφ(ω− (η+1)i)

(η+ iω)(η+1+ iω)
.

(7)
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By substituting Equation (7) into Equation (6), call option values can numerically be ob-
tained for some appropriate value of the damping parameter ηwhich regulates how quickly
the integrand converges to zero. For the modified call option value to be square-integrable
ψη(0) must be finite, which implies that φ(−(η+1)i) must be finite. Hence, η must satisfy

EQ

[
Sη+1

T

]
<∞.

To find an upper limit of integration in Equation (6) we note that, since the modulus of φ

is bounded by EQ

[
Sη+1

T

]
, it follows that

|ψη(ω)|2 ≤
EQ

[
Sη+1

T

]
(η2 +η−ω2)2 + (2η+1)2ω2

≤ D

ω4
,

for some constant D . Hence,

|ψη(ω)| ≤
p

D

ω2
.

The integral of the upper tail can be bounded by∫ ∞

ω̄
|ψη(ω)|dω<

p
D

ω̄
,

making it possible to set up a truncation procedure. Thus, the integral of the tail in Equa-
tion (6) is bounded by

p
D/ω̄ which yields a bound for the truncation error equal to

e−ηk

π

p
D

ω̄
.

This bound can be made smaller than any ε> 0 by choosing

ω̄>
p

De−ηk

επ
. (8)

4.2.2 UTILIZING THE TRAPEZOIDAL RULE

To determine option prices, an integral of the form∫
R+

e−ivk g (v)dv,

has to be evaluated. This integral can be approximated by, for example, utilizing the trape-
zoidal rule. The interval to be truncated is [0,∞). A point v̄ adequately large is chosen such
that the contribution of the integral beyond this point is infinitesimally small. Further-
more, let v = {v j = ( j −1)∆v, j = 1, . . . , N } be a discretization of the interval [0,∆t ] into N −1
subintervals, where ∆v is a given spacing. Finally, the grid point values of the integrand is
given by g j (k) = e−iv j k g (v j ), yielding the integral approximation∫

R+
e−ivk g (v)dv ≈

N∑
j=1

g j (k)∆v − 1

2

(
g1(k)+ gN (k)

)
∆v.
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To compute the numerical integration, the upper integration bound v̄ and the spacing
∆v need to be determined. The choice of the upper integration bound was derived in Equa-
tion (8). Determining the spacing can be more delicate, since eivk = cos(vk)+ isin(vk) os-
cillates with frequency that intensifies with k ([5], pp. 118-120).

The connection linking the fat tails and the decay of the characteristic function is of cru-
cial value. To be specific, a higher kurtosis yields a slower decay towards zero as v increases.
Thus, an extensive support might have to be used during the integration. Besides, a fine
grid is needed to meticulously determine the density close to the tails.

4.2.3 THE FAST FOURIER TRANSFORM

The fast Fourier transform is an efficient algorithm for simultaneously evaluating N sums
of the type

h∗
l =

N∑
j=1

e−i 2π
N ( j−1)(k−1)h j , k = 1, . . . , N ,

where N generally is a power of 2 [3]. The efficiency of the fast Fourier transform has led to
a major breakthrough in computational finance.

As was seen in Equation (6), using the inverse Fourier transform yielded call option prices
of the form

C (k) = e−ηk

π

∫
R+

e−ivkψη(v)dv,

where ψη(v) is the Fourier transform of the modified call price and η > 0 is a damping
parameter. Utilizing the trapezoidal rule, letting z = (1/2,1, . . . ,1,1/2) and v j = ( j − 1)∆v ,
produces an approximation to C (k):

C (k) ≈ e−ηk

π

N∑
j=1

e−iv j kψη(v j )z j∆v. (9)

The effective upper limit of the integration is v̄ = N∆v . Generally, call option values close
to being at-the-money attract most of the attention, which equates to k = lnK being close
to zero if S0 = 1. Assuming a regular log-strike spacing∆k yields a log-strike grid of the form

kl =−b + (l −1)∆k, l = 1, . . . , N , (10)

where b = N∆k/2.
Hence, combining Equation (9) and Equation (10), the call option approximation can be

written

C (kl ) ≈ e−ηkl

π

N∑
j=1

e−iv j [−b+(l−1)∆k]ψη(v j )z j∆v, l = 1, . . . , N .

However, since v j = ( j −1)∆v :

C (kl ) ≈ e−ηkl

π

N∑
j=1

e−i∆k∆v( j−1)(l−1)eibv jψη(v j )z j∆v = e−ηkl

π

N∑
j=1

e−i∆k∆v( j−1)(l−1)h j ,
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where h j = eibv jψη(v j )z j∆v . To apply the fast Fourier transform, the equation ∆k∆v =
2π/N must be satisfied, which signifies a restriction between the grid size of the log-strike
and the grid size of the characteristic function. Clearly, choosing a small ∆v in order to
acquire a fine integration grid yields a rather large log-strike spacing.

4.2.4 A EUROPEAN CALL OPTION PRICING ALGORITHM

To summarize, European call option prices can be derived by applying the following steps:

• Define the input grid sizes ∆v and ∆k, and also the number of integration points N .
The constraint ∆k∆v = 2π/N must be fulfilled.

• Establish the vectors v = {( j − 1)∆v, j = 1, . . . , N } and k = {−N∆k/2+ (l − 1)∆k, l =
1, . . . , N }.

• Define the damping parameter η and compute the Fourier transform of the modified
call

ψη(v) = e−r Tφ(v− (η+1)i)® [(η+ iv)¯ (η+1+ iv)].

• Evaluate the vector h = e−ik1v ¯ψη(v).

• If the trapezodial rule is used, let h1 = h1/2 and hN = hN /2.

• Apply the fast Fourier transform on h, yielding the output h∗.

• Retrieve the option values: C = e−ηk/π¯Re(h∗).

• The output is (k,C), where C(l ) equates to an option value with log-strike price kl , l =
1, . . . , N .

4.3 THE FRACTIONAL FAST FOURIER TRANSFORM

When implementing the fast Fourier transform, the constraint ∆k∆v = 2π/N is somewhat
impeding. The integration of the characteristic function stipulate the need of a fine grid,
however, a fine grid can yield very coarse output grids. For example, integrating over the
interval, say [0,150], using 1024 equidistant points yields∆v = 150/1023 = 0.1466. To utilize
the fast Fourier transform, the constraint ∆k = 2π/(N∆v) = 0.0418 must be satisfied. This
gives k1 =−N∆k/2 =−21.4%, hence merely a fraction of the 1024 output values lie within
the, say ±30% interval around the at-the-money strike price.

To decrease the output grid size, one method is to increase N . However, since the rea-
son for specifying the upper integration bound was to make the characteristic function
infinitesimally small outside this bound, increasing N will simply pad the input vector h
with zeros. It should come as no surprise that this will inevitably impede the speed of the
fast Fourier transform.
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Chourdakis [4] confronted this matter using the so-called fractional fast Fourier trans-
form. Given a parameter α, the fractional fast Fourier transform evaluates sums of the type

h∗
l =

N∑
j=1

e−2πα( j−1)(l−1)h j , l = 1, . . . , N .

However, invoking the fractional fast Fourier transform is not all sunshine and rainbows,
since to do so, a 2N -point fast Fourier transform has to be implemented three times. But as
Chourdakis shows, for a given degree of precision, the liberty of independently being able
to choose ∆v and ∆k can as a matter of fact ameliorate the speed.

To put the fractional fast Fourier transform into practice, the following outline can be
utilized:

• Let f1 and f2 be two (N ×1) vectors defined by

f1 = {e−iπα( j−1)2
, j = 1, . . . , N },

f2 = {eiπα(N− j+1)2
, j = 1, . . . , N }.

• Let h1 and h2 be two (2N ×1) vectors defined by

h1 =
(

h¯ f1

0

)
, h2 =

(
1® f1

f2

)
.

• Apply the fast Fourier transform on h1 and h2: h∗
1 = FFT(h1), h∗

2 = FFT(h2).

• The N first elements of the inverse fast Fourier transform h∗ = f1¯ IFFT(h∗
1 ¯h∗

2 ) cor-
respond to the N -point fractional fast Fourier transform.

Furthermore, independently selecting ∆v and ∆k yields the fractional parameter α= ∆v∆k
2π

that can be put to use in the fractional fast Fourier transform.
As was mentioned, many models do not have closed-form solutions. These models do

have, on the other hand, existing characteristic functions in closed form. Models of this
type are for example Lévy models. In Lévy models the log-price follows a Lévy process and
these models will be the scope of Section 5.
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5 LÉVY PROCESSES

Exponential Lévy models generalize the Black-Scholes model by allowing the asset prices to
jump while maintaining the independence and stationarity of the returns. There are many
justifications for introducing jumps in financial modeling. One reason is that asset prices
do jump and continuous-path models simply cannot handle this risk. In continuous-path
models, the probability that the asset price will move by a large amount over a short period
of time is exceptionally small, unless an unrealistically high value of the volatility is estab-
lished. Another reason for introducing jump models is the existence of the implied volatil-
ity smile in option markets, which implies that the risk-neutral returns are non-Gaussian
and leptokurtic. A clear indication of the presence of jumps is that the volatility smile be-
comes much more pronounced for short maturities [25] . In continuous-path models, the
law of returns for short maturities becomes more Gaussian, whereas in reality and in mod-
els with jumps the law of returns becomes less Gaussian.

Also, continuous-path models correspond to either complete or completable markets.
Jump models, on the other hand, correspond to incomplete markets. Thus, from a risk-
management perspective, jump models let investors quantify and take into account the
risk of large asset price movements over short time intervals, something that is absent in
continuous-path models.

5.1 BASIC THEORY OF LÉVY PROCESSES

DEFINITION 5.1. A stochastic process X = {X t }t≥0 is a Lévy process if it is càdlàg (right-
continuous with left limits) and satisfies the following properties:

• X0 = 0.

• X has independent and stationary increments.

• X is continuous in probability, that is, lims→0 P (|X t+s −X t | > ε) = 0 ∀t ≥ 0, ∀ε> 0.

• The probability of a jump is zero at any fixed time, that is, P (X t− = X t ) = 1 ∀t .

Brownian motion is the only non-deterministic continuous-path Lévy process. Other
notable examples of Lévy processes are the Poisson process and the compound Poisson pro-
cess [25]. These and other processes will be analyzed in the subsequent subsections.

5.1.1 INFINITE DIVISIBILITY

DEFINITION 5.2. A probability distribution F is infinitely divisible if it can be expressed as
the probability distribution of the sum of an arbitrary number of i.i.d. random variables
X1, . . . , Xn . The characteristic function of an infinitely divisible distribution is then called an
infinitely divisible characteristic function.

If X = {X t }t≥0 is a Lévy process then, for any t ≥ 0, the random variable X t will be in-
finitely divisible. The n i.i.d. random variables can, in this case, be represented by the i.i.d.
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increments (X t/n −X0, X2t/n −X t/n , . . . , X t −X(n−1)t/n). Conversely, for every infinitely divis-
ible distribution F , a Lévy process X = {X t }t≥0 can be constructed such that the law of X1 is
given by F .

5.1.2 THE LÉVY-KHINTCHINE REPRESENTATION

When a Lévy process X = {X t }t≥0 is infinitely divisible, its characteristic function is gener-
ally described by the Lévy-Khintchine formula [16]

φX (ω) = E[eiωX1 ] = exp

[
iµω− 1

2
σ2ω2 +

∫
R

(eiωx −1− iωx1|x|<1)dν(x)

]
,

which is uniquely defined by the Lévy triplet (µ,σ2,ν), where ν is a Lévy measure with ν(0) =
0. For the jump process to be a semi-martingale, the Lévy measure has to satisfy∫

R
(1∧x2)dν(x) <∞.

The measure ν of a Lévy process is equal to the expected number of jumps of a certain
height in a unit time interval. Small jumps and Brownian motion regulates the variation,
whereas the activity is regulated by all the jumps. Furthermore, the moment properties are
determined by large jumps [18].

5.1.3 FINITE AND INFINITE VARIATION PROCESSES

A Lévy process can be decomposed into a deterministic linear component, a Brownian
component, and a pure jump component ([16], p. 506). Setting the Lévy triplet to (µ,σ2,0)
yields the Lévy characteristic function of a Gaussian distribution:

φX (ω) = eiµω− 1
2ω

2σ2
.

Furthermore, setting the Lévy triplet to (µ,0,ν) yields a pure jump process.
In general, Lévy processes are described by their characteristic exponent ψ(ω) satisfying

φX t (ω) = E[eiωX t ] = (
E[eiωX1 ]

)t = etψ(ω),

where it is assumed that the process X t is infinitely divisible for any t . The characteristic
exponent can be decomposed as

ψ(ω) = iµω− 1

2
σ2ω2 +

∫
|x|≥1

(eiωx −1)dν(x)+
∫
|x|<1

(eiωx −1− iωx)dν(x),

where the component
∫
|x|≥1(eiωx − 1)dν(x) is a compound Poisson process. If σ = 0 and∫

|x|≤1 |x|dν(x) <∞, then almost all paths have finite variation.

The component
∫
|x|<1(eiωx −1− iωx)dν(x) is a square integrable pure jump martingale

with a countable number of jumps. Furthermore, the size of each jump is less than 1. A
compensating term iωx1|x|<1 is needed because the sum of the small jumps does not con-
verge [14]. If σ 6= 0 or if

∫
|x|≤1 |x|dν(x) =∞ then almost all paths have infinite variation.
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5.1.4 FINITE AND INFINITE ACTIVITY PROCESSES

A finite-activity process has a finite number of jumps in any finite interval, such that∫
Rdν(x) <∞ ([20], p. 76). Rare events, such as market crashes, can be modeled by a jump-

diffusion finite activity Lévy process. Two common jump-diffusion models are Merton’s
model and Kou’s model. In Merton’s model, the frequency of jumps is determined by a
compound Poisson process, where each jump size is drawn from a log-normal distribution.
In Kou’s model, the frequency of jumps is also determined by a compound Poisson pro-
cess, but each jump size is drawn from a double exponential distribution. Note that the
compound Poisson process has a finite measure and hence has a finite variation.

An infinite-activity jump process has an infinite number of jumps in any finite time in-
terval [26]. To construct an infinite activity Lévy process, a Brownian process can be subor-
dinated in time to a pure jump process.

Two examples of infinite activity processes are the variance-gamma process and the
normal-inverse Gaussian process. Note that the variance-gamma process has finite vari-
ation, whereas the normal-inverse Gaussian process has infinite variation ([16], pp. 506-
507).

5.1.5 THE POISSON PROCESS

DEFINITION 5.3. Let (τi )i≥1 be a sequence of exponential random variables with parameter
λ and let Tn =∑n

i=1τi . Then the process

Nt =
∑

n≥1
1t≥Tn ,

is called a Poisson process with parameter λ.

The Poisson process is a stochastic process that counts the number of events and the
time points at which the events occur in a given time interval. The inter-arrival times are as-
sumed to be independent and exponentially distributed with parameter λ> 0. The events
can represent jumps, hence the Poisson process is a pure-jump process with jumps of size
one. The characteristic function of a Poisson process is equal to [25]

φNt (ω) = E[eiωNt ] = eλt (eiω−1).

A realization of a Poisson process N = {Nt }t≥0 with intensity parameter λ = 10 is dis-
played in Figure 5.

5.1.6 THE COMPOUND POISSON PROCESS

The Poisson process itself is not suitable to model asset prices since the constraint that the
jump size is always equal to 1 is too restrictive. However, the Poisson process is still vital in
the construction of richer models.

29



Figure 5: A realization of a Poisson process Nt with intensity parameter λ= 10.

DEFINITION 5.4. Let {Yi }i≥1 be a sequence of independent random variables with law f
and let N = {Nt }t≥0 be a Poisson process with parameter λ independent from {Yi }i≥1. Then
the process X = {X t }t≥0 defined by

X t =
Nt∑

i=1
Yi ,

is called a compound Poisson process with jump intensity λ and jump size distribution f .

In other words, a compound Poisson process is a piecewise constant process where the
jump times follow a Poisson process and the jump sizes are i.i.d. random variables with a
given distribution [25].

Furthermore, the characteristic function of the compound Poisson process is given by

φX t (ω) = E[eiωX t ] = etλ
∫
R

(
eiωx−1

)
d f (x),

where the size and the intensity of the jumps are represented by the measure λd f (x).
A realization of a compound Poisson process X = {X t }t≥0 with intensity parameter λ= 10

and a standard Gaussian jump size distribution is displayed in Figure 6.

5.2 FINITE ACTIVITY JUMP-DIFFUSION PROCESSES

An exponential Lévy model has the form

St = S0eX t ,

where the asset price process {St }t≥0 is modeled as an exponential of a Lévy process {X t }t≥0.
Saying that an asset price process St is modeled as an exponential of a Lévy process X t
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Figure 6: A realization of a compound Poisson process X t with intensity parameter λ = 10
and a standard Gaussian jump size distribution.

simply means that its log-return ln(St /S0) follows a Lévy process, that is,

ln

(
St

S0

)
= X t .

Let X = {X t }t≥0 be a jump-diffusion process given by

X t =µt +σBt +
Nt∑

i=1
Yi , µ ∈R,σ≥ 0,

where B = {Bt }t≥0 is a standard Brownian motion and
∑Nt

i=1 Yi is a compound Poisson pro-
cess with jump intensity λ and jump size distribution f [23].

Since the compound Poisson process and the Brownian motion are independent, the
characteristic function of X t can easily be derived:

φX t (ω) = E[eiωX t ]

= E
[

e
iω

(
µt+σBt+∑Nt

i=1 Yi

)]
= eiµωtE

[
eiωσBt

]
E
[

eiω
∑Nt

i=1 Yi
]

= eiµωt e−
1
2σ

2ω2t eλt
∫
R(eiωx−1)d f (x)

= et
(
iµω− 1

2σ
2ω2+∫

R(eiωx−1)λd f (x)
)
.

5.2.1 MERTON’S JUMP-DIFFUSION MODEL

Merton’s jump-diffusion model tries to capture the negative skewness and excess kurtosis
encountered in the Black-Scholes model by simply adding a compound Poisson process.
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Merton’s jump-diffusion model is an exponential Lévy model where the Lévy process
{X t }t≥0 is given by [17]

X t =µt +σBt +
Nt∑

i=1
Yi ,

where {Bt }t≥0 is a standard Brownian motion. Hence, µt +σBt is a Brownian motion with
drift, while

∑Nt
i=1 Yi is a compound Poisson process.

The compound Poisson process contains two sources of randomness. One source of
randomness is a Poisson process with intensity parameter λ which causes random asset
price jumps. The other source of randomness is how much the asset price jumps, once
it jumps. In Merton’s jump-diffusion model, the log-price jump size follows a Gaussian
distribution, that is Yi ∼N (γ,δ2), which has a density function of the form

f (x;γ,δ) = 1p
2πδ2

e−
(x−γ)2

2δ2 .

Furthermore, the two sources of randomness are assumed to be independent of each
other. Thus, three extra parameters λ,γ, and δ are introduced to the Black-Scholes model.

Multiplying the jump intensity λ and the jump size density yields the Lévy measure

ν(x;λ,γ,δ) =λ f (x;γ,δ) = λp
2πδ2

e−
(x−γ)2

2δ2 .

When X is finite, its characteristic function is given by the Lévy-Khintchine formula
which is uniquely defined by the Lévy triplet. Hence, substituting the Lévy measure, the
characteristic function of X t is given by

φX t (ω) = e
t

(
iµω− 1

2σ
2ω2+∫

R(eiωx−1) λp
2πδ2

e
− (x−γ)2

2δ2 dx

)
= etψ(ω), (11)

where

ψ(ω) = iµω− 1

2
σ2ω2 +λ

(
eiγω− 1

2δ
2ω2 −1

)
.

By Equation (11), it is given that

φX t (ω) = E[
eiωX t

]
= e

iµωt−σ2ω2

2 t+λt

(
eiγω− δ2ω2

2 −1

)

= eiµωt−σ2ω2

2 t−λt eλteiγω− δ2ω2
2

= eiµωt−σ2ω2

2 t−λt
∞∑

k=0

(
λt

(
eiγω− δ2ω2

2

))k

k !

=
∞∑

k=0

e−λt (λt )k

k !
eiω(µt+kγ)−ω2

2 (σ2t+kδ2).
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By applying the inverse Fourier transform, the probability density function of X t is ob-
tained such that

fX t (x) =
∞∑

k=0

e−λt (λt )k

k !

1√
2π(σ2t +kδ2)

e
− (x−(µt+kγ))2

2(σ2t+kδ2) .

5.2.2 KOU’S JUMP-DIFFUSION MODEL

Kou’s jump-diffusion model is similar to Merton’s model. It is still an exponential Lévy
model where the Lévy process {X t }t≥0 is given by

X t =µt +σBt +
Nt∑

i=1
Yi ,

where {Bt }t≥0 is a standard Brownian motion. Hence, µt +σBt is a Brownian motion with
drift, while

∑Nt
i=1 Yi is a compound Poisson process. The difference is that in Kou’s jump-

diffusion model, the log-price jump size follows a double exponential distribution [12]

f (x; p1, p2,η1,η2) = p1η1e−η1x 1x≥0 +p2η2eη2x 1x<0, η1,η2 > 1.

The probability of an upward jump is denoted by p1, whereas the probability of a down-
ward jump is denoted by p2 = 1 − p1. Furthermore, the one-sided means are given by
µ1 = 1/η1 and µ2 = 1/η2. The decay of the tails for positive and negative jump sizes are
controlled by η1 and η2, respectively. Thus, five extra parameters p1, p2,η1,η2, and λ are
introduced to the Black-Scholes model.

Multiplying the jump intensity λ and the jump size density yields the Lévy measure

ν(x;λ, p1, p2,η1,η2) =λ f (x; p1, p2,η1,η2) =λ(
p1η1e−η1x 1x≥0 +p2η2eη2x 1x<0

)
.

Substituting the Lévy measure, the Lévy-Khintchine formula yields the characteristic
function of X t [16]:

φX t (ω) = etψ(ω),

where

ψ(ω) = iµω− 1

2
σ2ω2 + iλω

(
p1

η1 − iω
− p2

η2 + iω

)
.

5.3 INFINITE ACTIVITY PURE JUMP PROCESSES

Infinite activity processes have an infinite number of jumps in every finite time interval.
The dynamics of infinite activity processes are able to replicate small movements typical
of diffusion. As a consequence of the dynamics being so rich, there is no need to include
Brownian diffusion.

Two common infinite activity processes are the variance-gamma process and the normal
inverse Gaussian process.
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5.3.1 A SUBORDINATOR

Financial markets often exhibit a variety of trading rates. Typical behavior of the trading
rates might be long-time segments with a fair degree of tranquility followed by swift short-
time price changes. For example, business time might seem to slow down in periods of
market instability. This randomness can be reproduced by a drift-diffusion model subordi-
nated to a consistently increasing stochastic business time.

DEFINITION 5.1. A subordinator X = {X t }t≥0 is a one-dimensional Lévy process such that
t 7→ X t is non-decreasing.

Since X0 = 0, all subordinators take non-negative values only. By swapping the time pa-
rameter of a Brownian motion with an independent subordinator, a subordinated Brown-
ian motion is obtained. That is, if Bt is a Brownian motion and if X t is a subordinator, then
the process BX t is called a subordinated Brownian motion ([16], pp. 516-517).

5.3.2 THE GAMMA PROCESS

One option for a subordinating, non-decreasing stochastic time process is the gamma pro-
cess X = {X t }t≥0 ([20], pp. 52-53). The probability density function of the gamma distribu-
tion is equal to

f (x;α,β) = βα

Γ(α)
xα−1e−βx .

Furthermore, the moments of the gamma distribution are:

• Mean:
α

β
.

• Variance:
α

β2
.

• Skewness:
2p
α

.

• Kurtosis: 3

(
1+ 2

α

)
.

The gamma distribution has a semi-heavy right tail. Its characteristic function is given by

φX (ω) =
(
1− iω

β

)−α
,

and it has a Lévy triplet of the form[
α

β
(1−e−β),0,

α

x
e−βx 1x>0 dx

]
.
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Moreover, the characteristic function of X t is given by

φX t (ω) =
(
1− iω

β

)−αt

.

A realization of a gamma process X = {X t }t≥0 with shape parameter α = 3 and rate pa-
rameter β= 4 is displayed in Figure 7.

Figure 7: A realization of a gamma process X t with shape parameter α= 3 and rate param-
eter β= 4.

5.3.3 THE VARIANCE-GAMMA PROCESS

The variance-gamma process X = {X t }t≥0 can be seen as a gamma subordinated Brownian
motion with drift. Let Gt be a gamma process with parameters α = β = 1/ξ > 0, where ξ is
the volatility of the time change. This way the variance-gamma process can be expressed
as ([16], pp. 518-522)

X t = θGt +σBGt .

Since the Lévy measure has finite mass, the variance-gamma process has an infinite
number of jumps in every finite time interval ([20], p. 58). The distribution of the variance-
gamma process is infinitely divisible and has stationary and independent increments. Fur-
thermore, it is negatively skewed when θ < 0 and positively skewed when θ > 0. The char-
acteristic function of X is given by ([20], pp. 57-59)

φX (ω) =
(
1− iξωθ+ 1

2
σ2ξω2

)−1/ξ

,

whereas the charateristic function of X t is given by

φX t (ω) = (
φX (ω)

)t =
(
1− iξωθ+ 1

2
σ2ξω2

)−t/ξ

.
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The moments of the variance-gamma process are:

• Mean: θ.

• Variance: σ2 +ξθ2.

• Skewness:
θξ(3σ2 +2ξθ2)

(σ2 +ξθ2)3/2
.

• Kurtosis: 3

(
1+2ξ− ξσ4

(σ2 +ξθ2)2

)
.

A realization of a variance-gamma process X = {X t }t≥0 with θ = 0.4,σ = 5, and ξ = 0.01
is displayed in Figure 8. The subordinating gamma process models the business time or

Figure 8: A realization of a variance-gamma process X t with parameters θ = 0.4,σ= 5, and
ξ= 0.01.

the trading time and is a subordinate input to the drift diffusion process. Even though the
conduct of market participants follows a Brownian drift and variance process for a unit of
business time, the quota of business time in one unit of real time is stochastic. For instance,
the arrival of vital revelations can lead to an increase in the gamma business time relative
to one unit of real time. Hence, in one unit of real time, market participants will make more
trades which equates to the sensation of time slowing down under periods of increased
perceptiveness and stress.

5.3.4 THE INVERSE GAUSSIAN PROCESS

A subordinating time process for the normal-inverse Gaussian process is the inverse Gaus-
sian process X = {X t }t≥0 which outlines the time distribution for a Brownian motion with
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positive drift β to get to a fixed positive level α ([20], pp. 53-54).
The probability density function of the inverse Gaussian distribution is

f (x;α,β) = αp
2π

eαβx−3/2e
− 1

2

(
α2

x +β2x
)
, x > 0.

The moments of the inverse Gaussian distribution are:

• Mean:
α

β
.

• Variance:
α

β3
.

• Skewness:
3√
αβ

.

• Kurtosis: 3

(
1+ 5

αβ

)
.

The characteristic function of X is given by

φX (ω) = e
−α

(p
−2iω+β2−β

)
.

and it has a Lévy triplet of the form[
α

β
(2N (β)−1),0,

1p
2π

αx−3/2e−β
2x/21x>0 dx

]
,

where N (x) denotes the standard Gaussian distribution.
Moreover, the characteristic function of X t is

φX t (ω) = (
φX (ω)

)t = e
−αt

(p
−2iω+β2−β

)
.

A realization of an inverse Gaussian process X = {X t }t≥0 with parameters α= 2 and β= 3
is displayed in Figure 9.

5.3.5 THE NORMAL-INVERSE GAUSSIAN PROCESS

The normal-inverse Gaussian process X = {X t }t≥0 with parameters α > 0,−α < β < α, and
δ > 0 can be seen as an inverse Gaussian subordinated Brownian motion with drift. Let It

be an inverse Gaussian process with parameters a = 1 and b = δ
√
α2 −β2. X t is given by

([16], pp. 523-524)
X t =βδ2It +δBIt .

The probability density function of the normal-inverse Gaussian distribution is

f (x;α,β,δ) = αδ

π
eδ
p
α2−β2+βx

K1

(
α
p
δ2 +x2

)
p
δ2 +x2

,
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Figure 9: A realization of an inverse Gaussian process X t with parameters α= 2 and β= 3.

where Kλ is the modified Bessel function of the third kind with index λ.
A large value of α yields light tails, whereas a small value of α yields heavy tails. A pos-

itive β yields positive skewness, a negative β yields negative skewness, whereas β equal
to zero yields a symmetric distribution. The characteristic function of the normal-inverse
Gaussian process is equal to

φX (ω) = e
−δ

(p
α2−(β+iω)2−

p
α2−β2

)
,

which is infinitely divisible, and it has a Lévy triplet of the form[
2δα

π

∫ 1

0
sinh(βx)K1(αx)dx,0,

δα

π

eβxK1(α|x|)
|x| dx

]
.

Furthermore, the characteristic function of X t is given by

φX t (ω) = (
φX (ω)

)t = e
−δt

(p
α2−(β+iω)2−

p
α2−β2

)
.

The moments of the normal-inverse Gaussian distribution are:

• Mean:
δβ√
α2 −β2

.

• Variance:
α2δ

(α2 −β2)3/2
.

• Skewness:
3β

α
p
δ(α2 −β2)1/4

.
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• Kurtosis: 3

(
1+ α2 +4β2

δα2
√
α2 −β2

)
.

A realization of a normal-inverse Gaussian process X = {X t }t≥0 with parameters α= 6,β=
0.8, and δ= 1 is displayed in Figure 10.

Figure 10: A realization of a normal-inverse Gaussian process X t with parametersα= 6,β=
0.8, and δ= 1.

5.4 RISK-NEUTRAL CHARACTERISTIC FUNCTIONS

One way to procure the equivalent martingale measure under Q for a variety of Lévy pro-
cesses, is to mean-correct the exponential ([16], pp. 531-536). Since jump-diffusion mod-
els are not able to create an admissible self-financing strategy to replicate every contingent
claim, they are incomplete. Thus, to price the contingent claims, an equivalent martingale
measure is needed. For ease of notation, let S0 = 1. Under the risk-neutral measure Q, it
holds that E[St ] = E[eX t ] = er t and by definition φX t (ω) = E[eiωX t ].

If ω = −i, then φX t (−i) = E[eX t ] = er t . Thus, utilizing the characteristic exponent ψ(ω)
yields

ψ(−i) = lnφ(−i)

t
= r.

5.4.1 THE BLACK-SCHOLES MODEL

Under the true measure the characteristic function of X t = µt +σBt , Bt ∼ N (0, t ) in the
Black-Scholes model is given by

φX t (ω) = et
(
iµω− 1

2σ
2ω2

)
= etψ(ω).
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The characteristic exponentψ(ω) can further be decomposed into a drift partψd(ω) and
a non-drift part ψn-d(ω) such that

ψd(ω) = iµω,

ψn-d(ω) =−1

2
σ2ω2.

In risk-neutral valuation, the risk-neutral drift is given by

µr-n = r −ψn-d(−i) = r −
(
−1

2
σ2(−i)2

)
= r − 1

2
σ2,

yielding the risk-neutral characteristic exponent

ψr-n(ω) = i

(
r − 1

2
σ2

)
ω− 1

2
σ2ω2.

Hence, under the risk-neutral measure, the characteristic function of X t in the Black-
Scholes model has the form

φr-n(ω) = et
(
i
(
r− 1

2σ
2
)
ω− 1

2σ
2ω2

)
.

5.4.2 MERTON’S JUMP-DIFFUSION MODEL

Under the true measure the characteristic function of X t =µt +σBt +∑Nt
i=1 Yi , Bt ∼N (0, t ),

Nt ∼ Pois(λ), Yi ∼N (γ,δ2) in Merton’s jump-diffusion model is given by

φX t (ω) = exp

[
t

(
iµω− 1

2
σ2ω2 +λ

(
eiγω− 1

2δ
2ω2 −1

))]
= etψ(ω).

As before, the characteristic exponent can further be decomposed into a drift partψd(ω)
and a non-drift part ψn-d(ω) such that

ψd(ω) = iµω,

ψn-d(ω) =−1

2
σ2ω2 +λ

(
eiγω− 1

2δ
2ω2 −1

)
.

In risk-neutral valuation, the risk-neutral drift is given by

µr-n = r −ψn-d(−i)

= r −
(
−1

2
σ2(−i)2

)
−λ

(
eiγ(−i)− 1

2δ
2(−i)2 −1

)
= r − 1

2
σ2 −λ

(
eγ+

1
2δ

2 −1
)

,

yielding the risk-neutral characteristic exponent

ψr-n(ω) = iµr-nω− 1

2
σ2ω2 +λ

(
eiγω− 1

2δ
2ω2 −1

)
.

Hence, under the risk-neutral measure, the characteristic function of X t in Merton’s jump-
diffusion model has the form

φr-n(ω) = etψr-n(ω).
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5.4.3 KOU’S JUMP-DIFFUSION MODEL

Under the true measure the characteristic function of X t =µt +σBt +∑Nt
i=1 Yi , Bt ∼N (0, t ),

Nt ∼ Pois(λ), fY (y ; p1, p2,η1,η2) = p1η1e−η1 y 1y≥0 + p2η2eη2 y 1y<0 in Kou’s jump-diffusion
model is given by

φX t (ω) = exp

[
t

(
iµω− 1

2
σ2ω2 + iλω

(
p1

η1 − iω
− p2

η2 + iω

))]
= etψ(ω).

Once again, the characteristic exponent can further be decomposed into a drift part
ψd(ω) and a non-drift part ψn-d(ω) such that

ψd(ω) = iµω,

ψn-d(ω) =−1

2
σ2ω2 + iλω

(
p1

η1 − iω
− p2

η2 + iω

)
.

In risk-neutral valuation, the risk-neutral drift is given by

µr-n = r −ψn-d(−i)

= r −
(
−1

2
σ2(−i)2

)
− iλ(−i)

(
p1

η1 − i(−i)
− p2

η2 + i(−i)

)
= r − 1

2
σ2 −λ

(
p1

η1 −1
− p2

η2 +1

)
,

yielding the risk-neutral characteristic exponent

ψr-n(ω) = iµr-nω− 1

2
σ2ω2 + iλω

(
p1

η− iω
− p2

η2 + iω

)
.

Hence, under the risk-neutral measure, the characteristic function of X t in Kou’s jump-
diffusion model has the form

φr-n(ω) = etψr-n(ω).

5.4.4 THE VARIANCE-GAMMA PROCESS

Under the true measure the characteristic function of the variance-gamma process X t =
θGt +σBGt , Gt ∼ Γ(1/ξ,1/ξ) is given by

φX t (ω) = (
φX (ω)

)t

=
(
1− iξωθ+ 1

2
σ2ξω2

)−t/ξ

= e−
t
ξ ln

(
1−iξωθ+ 1

2σ
2ξω2

)
= etψ(ω).

The characteristic exponent has no drift part, but it does have a non-drift part ψn-d(ω) of
the form

ψn-d(ω) =−1

ξ
ln

(
1− iξωθ+ 1

2
σ2ξω2

)
.
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In risk-neutral valuation, the risk-neutral drift is given by

µr-n = r −ψn-d(−i)

= r −
(
−1

ξ
ln

(
1− iξ(−i)θ+ 1

2
σ2ξ(−i)2

))
= r + 1

ξ
ln

(
1−ξθ− 1

2
σ2ξ

)
,

yielding the risk-neutral characteristic exponent

ψr-n(ω) = iµr-nω− 1

ξ
ln

(
1− iξωθ+ 1

2
σ2ξω2

)
.

Hence, under the risk-neutral measure, the characteristic function of the variance-gamma
process X t has the form

φr-n(ω) = etψr-n(ω).

5.4.5 THE NORMAL-INVERSE GAUSSIAN PROCESS

Under the true measure the characteristic function of the normal-inverse Gaussian process
X t =βδ2It +δBIt , It ∼ IG(1,δ

√
α2 −β2) is given by

φX t (ω) = e
−δt

(p
α2−(β+iω)2−

p
α2−β2

)
= etψ(ω).

Once again the characteristic exponent has no drift part, but it does have a non-drift part
ψn-d(ω) of the form

ψn-d(ω) =−δ
(√

α2 − (β+ iω)2 −
√
α2 −β2

)
.

In risk-neutral valuation, the risk-neutral drift is given by

µr-n = r −ψn-d(−i)

= r −
(
−δ

(√
α2 − (β+ i(−i))2 −

√
α2 −β2

))
= r +δ

(√
α2 − (β+1)2 −

√
α2 −β2

)
,

yielding the risk-neutral characteristic exponent

ψr-n(ω) = iµr-nω−δ
(√

α2 − (β+ iω)2 −
√
α2 −β2

)
.

Hence, under the risk-neutral measure, the characteristic function of the normal-inverse
Gaussian process X t has the form

φr-n(ω) = etψr-n(ω).
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6 COMPUTER SIMULATION

In this section, the procedures used to simulate the preceding processes will be presented.
It is assumed that random number generators providing standard Gaussian and uniform
random numbers are available.

6.1 SIMULATING BASIC PROCESSES

First the simulation of the standard Brownian motion and the Poisson process will be pre-
sented ([20], p. 101) since they lay the foundation for more intricate processes.

6.1.1 BROWNIAN MOTION

A standard Brownian motion B = {Bt }t≥0 is effortless to simulate since it has stationary, in-
dependent, and Gaussian distributed increments.

Let ∆t denote a small time step and let {Yi }i≥1 denote a series of standard Gaussian ran-
dom variates. It follows that a standard Brownian motion can be simulated by

• B0 = 0,

• Bi∆t = B(i−1)∆t +
p
∆tYi , i ≥ 1.

6.1.2 THE POISSON PROCESS

A Poisson process N = {Nt }t≥0 with intensity parameter λ is simulated by utilizing the
method of exponential spacings. The method of exponential spacings makes use of the
fact that the inter-arrival times of the jumps follow an exponential distribution with mean
λ−1.

To obtain a series of exponentially distributed random variates {Yi }i≥1 with mean λ−1,
the following transform can be made

Yi =− ln(Ui )

λ
,

where {Ui }i≥1 is a series of uniformly distributed random variates on the unit interval.
Let ∆t denote a small time step and let

• S0 = 0,

• Si = Si−1 +Yi , i ≥ 1,

where Si is the i th arrival time and Yi is the i th inter-arrival time. Then a sample path of
the Poisson process N is given by

• N0 = 0,

• Ni∆t = sup(k : Sk ≤ i∆t ), i ≥ 1.
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6.2 SIMULATING LÉVY PROCESSES

6.2.1 THE COMPOUND POISSON PROCESS

To simulate a sample path of the compound Poisson process X = {X t }0≤t≤T , the following
procedure is applied:

• Generate a Poisson distributed random variate N with intensity parameter λT . N
corresponds to the total number of jumps on the interval [0,T ].

• Generate a series of uniformly distributed random variates U = {Ui }N
i=1 on an interval

of length T . U corresponds to the the jump times.

• Generate a series of independent jump sizes Y = {Yi }N
i=1 with law f .

A sample path of the compound Poisson process is then given by

X t =
N∑

i=1
Yi 1Ui≤t .

6.2.2 MERTON’S AND KOU’S JUMP-DIFFUSION MODELS

As has been mentioned, a general jump-diffusion process X = {X t }t≥0 corresponds to a
Brownian motion with drift coupled with a compound Poisson process, that is,

X t =µt +σBt +
Nt∑

i=1
Yi , Yi ∼ f .

Let t1, . . . , tn be a set of equally spaced fixed time points, i.e., ∆t = ti − ti−1. A discretized
trajectory of the Lévy jump-diffusion X is simulated by ([18], p. 29):

• Generate a Poisson distributed random variate N with intensity parameter λT .

• Generate a series of uniformly distributed random variates U = {Ui }N
i=1 on an interval

of length T . U corresponds to the jump times.

• Generate a standard normal random variate and transform it into a normal variate,
say Gi . The variance of Gi is equal to σ∆t .

• Simulate the law of of the jump size Y . In other words, simulate the random variates
Yi with law f .

A sample path of X is then given by

Xi∆t =µi∆t +
i∑

j=1
G j +

N∑
k=1

Yi 1Ui≤ti .
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6.2.3 THE GAMMA PROCESS

Let Y = {Yi }i≥1 be a series of random numbers following a Γ(a∆t ,b) distribution, where
∆t denotes a small time step. A sample path of a gamma process G = {Gt }t≥0 following a
Γ(at ,b) distribution is then given by ([20], p. 109)

• G0 = 0,

• Gi∆t =G(i−1)∆t +Yi , i ≥ 1.

6.2.4 THE VARIANCE-GAMMA PROCESS

Earlier it was noted that a variance-gamma process X = {X t }t≥0 with parameters σ > 0,
ξ> 0, and θ can be seen as a gamma subordinated Brownian motion with drift.

Let B = {Bt }t≥0 denote a standard Brownian motion and let G = {Gt }t≥0 denote a gamma
process with parameters α = β = 1/ξ. A sample path of a variance-gamma process is then
given by ([20], pp. 109-110)

X t = θGt +σBGt .

6.2.5 THE INVERSE GAUSSIAN PROCESS

In able to simulate a sample path of an inverse Gaussian process, an inverse Gaussian ran-
dom number generator has to be utilized. The following procedure generates inverse Gaus-
sian random numbers from an IG(α,β) distribution ([20], pp. 111-113):

• Generate a random variate v ∼N (0,1).

• Set y = v2.

• Set x = α

β
+ y −√

4αβy + y2

2β2
.

• Generate a random variate u uniformly distributed on the unit interval.

• If u ≤ α

α+βx
return x, otherwise return

α2

β2x
.

Let g = {gi }i≥1 be a series of random numbers following an IG(α∆t ,β) distribution, where
∆t denotes a small time step. A sample path of an inverse Gaussian process I = {It }t≥0

following an IG(αt ,β) distribution is then given by

• I0 = 0,

• Ii∆t = I(i−1)∆t + gi , i ≥ 1.
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6.2.6 THE NORMAL-INVERSE GAUSSIAN PROCESS

As was mentioned, a normal-inverse Gaussian process X = {X t }t≥0 with parameters α >
0,−α<β<α, and δ> 0 can be seen as an inverse Gaussian subordinated Brownian motion
with drift.

Let B = {Bt }t≥0 denote a standard Brownian motion and let I = {It }t≥0 denote an inverse
Gaussian process with parameters a = 1 and b = δ

√
α2 −β2. A sample path of a normal-

inverse Gaussian process is then given by ([18], p. 59)

X t =βδ2It +δBIt .
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7 MODEL CALIBRATION

To calculate option prices, it is necessary to calibrate the models with respect to option
quotes found on the market. The option quotes that will be used come from plain vanilla
options.

7.1 MODEL INPUTS

The option quotes will be based on index options. Index options are calls and puts where
the underlying asset is a stock market index. The indices being treated in this thesis are
NDX, DJX, and SPX. The reason is that they are European style indices.

Other significant calibration inputs are interest rates and dividends, both of which are
not straightforwardly obtained. The interest rate cannot be assumed to be constant be-
cause we will calculate option prices across many different maturities. Moreover, one of the
major difficulties for traders pricing index options is to retrieve dividend estimates. How to
acquire interest rates and dividends will be discussed in the subsequent subsections.

7.1.1 THE RISK-FREE INTEREST RATE

The risk-free interest rate is the theoretical rate of return on investment with zero risk and
thus represents the interest an investor would expect from a perfectly riskless investment
over a given period of time. The risk-free rate is in theory an investor’s minimum expected
return on any investment since additional risk is not acceptable unless the potential rate of
return is greater than the risk-free rate. In practice the risk-free rate does not exist because
even the most secure investments involve a small amount of risk.

Since the options are priced across different maturities, the interest rate cannot be as-
sumed to be constant. In the case of USD investments, rates on U.S. Treasury bills, bonds,
and notes are often used as an estimate of the varying risk-free interest rate. Since we will
consider maturities ranging from 94 days to 1004 days, the Treasury yield curve will be
based on rates on Treasury bills and short-term over-the-counter Treasury notes, both of
which are quoted in Table 12. If longer maturities would have been considered, then also
rates on Treasury bonds would have been included when constructing the Treasury yield
curve. Figure 11 displays the resulting Treasury yield curve.

Table 1: U.S. Treasury quotes on Tuesday, March 17, 2015.

Maturity Yield Maturity Yield Maturity Yield
Mar. 19, 2015 0.025 Dec. 15, 2015 0.261 Mar. 15, 2017 0.683
Mar. 26, 2015 0.033 Dec. 31, 2015 0.260 Mar. 31, 2017 0.713
Apr. 2, 2015 0.025 Jan. 15, 2016 0.262 Apr. 15, 2017 0.727
Apr. 9, 2015 0.028 Jan. 31, 2016 0.276 Apr. 30, 2017 0.756
Apr. 16, 2015 0.043 Feb. 15, 2016 0.298 May 15, 2017 0.762

Continued on next page

2Recovered from online.wsj.com.
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Table 1 – continued from previous page

Maturity Yield Maturity Yield Maturity Yield
Apr. 23, 2015 0.033 Feb. 29, 2016 0.308 May 31, 2017 0.797
Apr. 30, 2015 0.025 Mar. 15, 2016 0.328 June 15, 2017 0.805
May 7, 2015 0.025 Mar. 31, 2016 0.337 June 30, 2017 0.816
May 14, 2015 0.028 Apr. 15, 2016 0.374 July 15, 2017 0.834
May 21, 2015 0.030 Apr. 30, 2016 0.389 July 31, 2017 0.847
May 28, 2015 0.023 May 15, 2016 0.419 Aug. 15, 2017 0.854
June 4, 2015 0.020 May 31, 2016 0.434 Aug. 31, 2017 0.887
June 11, 2016 0.028 June 15, 2016 0.431 Sep. 15, 2017 0.898
June 18, 2015 0.033 June 30, 2016 0.427 Sep. 30, 2017 0.919
June 25, 2015 0.033 July 15, 2016 0.454 Oct. 15, 2017 0.927
July 2, 2015 0.038 July 31, 2016 0.449 Oct. 31, 2017 0.941
July 9, 2015 0.038 Aug. 15, 2016 0.503 Nov. 15, 2017 0.961
July 16, 2015 0.038 Aug. 31, 2016 0.505 Nov. 30, 2017 0.977
July 23, 2015 0.053 Sep. 15, 2016 0.517 Dec. 15, 2017 0.985
July 30, 2015 0.056 Sep. 30, 2016 0.526 Dec. 31, 2017 0.998
Aug. 6, 2015 0.081 Oct. 15, 2016 0.555 Jan. 15, 2018 1.015
Aug. 13, 2015 0.089 Oct. 31, 2016 0.560 Jan. 31, 2018 1.038
Aug. 20, 2015 0.099 Nov. 15, 2016 0.573 Feb. 15, 2018 1.046
Aug. 27, 2015 0.107 Nov. 30, 2016 0.578 Feb. 28, 2018 1.065
Sep. 15, 2015 0.186 Dec. 15, 2016 0.593 Mar. 15, 2018 1.067
Sep. 30, 2015 0.192 Dec. 31, 2016 0.605 Mar. 31, 2018 1.102
Oct. 15, 2015 0.196 Jan. 15, 2017 0.634 Apr. 30, 2018 1.118
Oct. 31, 2015 0.212 Jan. 31, 2017 0.639 May 15, 2018 1.108
Nov. 15, 2015 0.233 Feb. 15, 2017 0.670 May 31, 2018 1.149
Nov. 30, 2015 0.261 Feb. 28, 2017 0.662

7.1.2 OPTION QUOTES

Out of all index options available, not all are well-priced. For example, deep-in-the-money
and deep-out-of-the-money options are often illiquid, or have a price close to nothing.
Hence, for calibration purposes, some option quotes have to be excluded. Which option
quotes to be kept for calibration will be based on the following guideline:

• Solely options in the vicinity of being at-the-money will be included. The cut-off
point will be approximately ±25% in the neighborhood of the strike price.

• Options with little time to maturity have a price close to their intrinsic values. Hence,
we will solely include options with a time to maturity being no less than one month.

• A large bid-ask spread may exist when a market is not being actively traded on and
has low volume. Therefore the options may not be well-priced. Hence, solely options
for which the relative spread3 is less than or equal to, say 12%, will be included.

3Relative spread: 2× ask price−bid price
ask price+bid price .
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Figure 11: U.S. Treasury yield curve on Tuesday, March 17, 2015.

All the data, such as index option quotes, index futures quotes, and rates on Treasury bills
and short-term over-the-counter Treasury notes were collected on Tuesday, March 17, 2015.
The reason why index futures quotes were collected is that they will be used when estimat-
ing the dividends as will be seen in the next subsection.

Tables 2-44 present option quotes across a variety of maturities.

Table 2: NDX market quotes on Tuesday, March 17, 20155.

Strike price 94 days 185 days 277 days
3300 1082.80 1091.80 1104.60
3325 1048.30 1067.80 1081.80
3350 1033.90 1047.40 1059.90
3375 1009.70 1020.80 1037.10
3400 985.30 999.50 1013.90
3425 961.00 974.10 990.70
3450 936.70 951.30 968.40
3475 912.50 928.10 947.30
3500 888.30 905.10 924.70
3525 863.60 882.10 903.20
3550 839.30 859.20 881.10

Continued on next page

4Recovered from oic.ivolatility.com.
5On Tuesday, March 17, 2015, 361 NDX call option prices were quoted on the market, out of which 210

market quotes fulfilled the above preconditions.
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Table 2 – continued from previous page

Strike price 94 days 185 days 277 days
3575 815.30 836.40 859.00
3600 789.90 813.80 837.70
3625 766.30 791.30 815.90
3650 742.40 768.60 794.30
3675 718.60 745.50 772.90
3700 696.50 723.30 751.90
3725 673.00 701.50 731.20
3730 666.90
3735 663.60
3740 659.00
3745 654.30
3750 648.50 679.70 710.00
3755 643.70
3760 640.30
3765 634.50
3770 629.70
3775 625.10 658.70 689.30
3780 621.40
3785 617.10
3790 612.50
3795 607.90
3800 602.00 637.10 669.20
3805 598.70
3810 594.10
3815 588.30
3820 584.90
3825 580.40 615.30 648.40
3830 575.80
3835 569.80
3840 565.50
3850 557.60 594.00 628.20
3875 533.50 574.10 608.80
3900 512.50 552.20 588.40
3925 488.70 532.80 568.20
3950 467.70 512.50 549.60
3975 445.00 491.60 530.30
4000 424.70 472.40 511.50
4025 402.30 452.70 493.30
4050 381.20 433.30 475.00
4075 360.80 413.50 456.20
4080 410.60
4085 406.00
4090 402.80
4095 399.00
4100 340.30 394.60 439.10
4105 391.60
4110 387.20
4115 383.70
4120 380.00

Continued on next page
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Table 2 – continued from previous page

Strike price 94 days 185 days 277 days
4125 320.20 376.30 421.50
4150 300.60 358.70 403.20
4155 354.30
4160 350.90
4165 347.60
4170 343.60
4175 280.80 340.60 386.30
4180 336.60
4185 334.00
4190 329.30
4195 325.60
4200 266.50 322.40 369.80
4225 246.20 304.90 353.10
4250 227.00 288.50 336.60
4275 210.20 271.70 321.40
4300 191.20 255.80 305.90
4325 178.70 240.20 290.70
4350 162.70 225.00 274.80
4375 147.50 210.70 262.30
4400 133.20 196.30 246.60
4425 119.50 183.00 232.80
4450 104.00 169.90 219.90
4475 93.40 157.40 207.50
4500 83.00 144.60 195.20
4525 70.70 133.60 183.40
4550 61.80 122.00 172.00
4575 52.10 110.60 160.90
4600 44.10 100.40 150.50
4625 37.20 91.10 139.90
4650 31.20 82.50 123.50
4675 74.10 121.50
4700 66.60
4725 101.50
4750 52.30 93.70
4775 46.30 86.00
4800 40.30 78.70

Table 3: DJX market quotes on Tuesday, March 17, 20156.

Strike price 94 days 185 days 277 days
130 48.25 48.10 49.50
135 43.30 43.35 45.30
136 42.35

Continued on next page

6On Tuesday, March 17, 2015, 175 DJX call option prices were quoted on the market, out of which 101 market
quotes fulfilled the above preconditions.
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Table 3 – continued from previous page

Strike price 94 days 185 days 277 days
137 41.35
138 40.40
139 39.40
140 38.40 38.60 39.95
141 37.45
142 36.50
143 35.50
144 34.55
145 33.60 33.95 36.25
146 32.60
147 31.65
148 30.70 31.25
149 29.75 30.35
150 28.80 29.45
151 27.85 28.50
152 26.90 27.60
153 25.95 26.75
154 25.05 25.85
155 24.00 24.95 26.10
156 23.05 24.15
157 22.15 23.25
158 21.25 22.40
159 20.30 21.55
160 19.40 20.70 21.95
161 18.55 19.85
162 17.65 19.05
163 16.80 18.20
164 15.90 17.40
165 15.05 16.60 18.05
166 14.20 15.85
167 13.35 15.05
168 12.55 14.30
169 11.75 13.50
170 10.95 12.75 14.25
171 10.15 12.05
172 9.40 11.30
173 8.65 10.65
174 7.95 9.85
175 7.25 9.20 10.70
176 6.60 8.55
177 5.90 7.90
178 5.30 7.30
179 4.65 6.70
180 4.10 6.10
181 3.55 5.55
182 3.05 5.05
183 2.57 4.55
184 2.14 4.05
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Table 4: SPX market quotes on Tuesday, March 17, 20157.

Strike price 94 days 185 days 277 days 458 days 640 days 1004 days
1550 514.30 515.50 524.10 532.00 546.80 575.40
1560 504.50
1570 495.50
1575 490.30 491.80 501.20 510.30 526.30 556.70
1580 485.50
1590 475.90
1600 465.90 468.30 478.50 488.90 506.10 538.30
1610 456.40
1620 446.50
1625 441.60 445.00 455.90 467.90 486.00 520.00
1640 436.80
1650 427.10 422.00 433.60 446.70 466.20 502.00
1660 417.70
1670 407.80
1675 398.10 398.90 411.40 426.00 446.60 484.30
1680 393.30
1690 388.50
1700 378.90 375.50 389.50 427.30 466.70
1710 369.40
1720 359.90
1725 350.40 353.60 367.80 385.30 408.20 449.40
1730 345.60
1740 340.90
1750 331.40 330.70 346.50 365.50 389.40 432.40
1760 321.80
1770 312.40
1775 303.10 309.40 325.20 345.90 370.90 415.60
1780 298.50
1790 294.00
1800 284.80 288.10 304.60 326.60 352.60 399.00
1810 275.60
1820 266.50
1825 257.40 266.80 284.20 307.70 334.70 382.80
1830 252.60
1840 248.10
1850 239.60 245.40 264.20 289.20 317.10 366.80
1860 230.40
1870 221.40
1875 213.00 225.00 244.60 271.00 299.90 351.10
1880 208.80
1885 204.30
1890 199.80
1895 195.30
1900 191.20 204.80 225.40 253.30 282.80 335.70
1905 187.10

Continued on next page

7On Tuesday, March 17, 2015, 636 SPX call option prices were quoted on the market, out of which 249 market
quotes fulfilled the above preconditions.
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Table 4 – continued from previous page

Strike price 94 days 185 days 277 days 458 days 640 days 1004 days
1910 183.00
1915 178.80
1920 174.60
1925 170.10 185.90 203.20 236.00 266.40 320.60
1930 166.00 199.60
1935 161.70
1940 157.80 192.30
1945 153.50
1950 149.30 166.40 185.20 216.40 250.30 305.70
1955 145.50
1960 141.40 178.10
1965 138.00
1970 133.70 171.10
1975 129.90 148.40 167.70 199.30 234.60 291.20
1980 125.80
1985 122.60
1990 118.80
1995 114.60
2000 111.00 128.50 150.90 183.50 215.40 277.00
2005 107.00
2010 101.10
2015 97.50
2020 93.80
2025 90.50 111.30 134.80 168.20 200.80 262.90
2030 86.90
2035 83.30
2040 79.90 125.50
2045 76.80
2050 73.40 95.60 153.60 186.40 249.70
2055 70.10
2060 67.10
2065 63.90
2070 60.80
2075 57.80 80.40 101.80 139.50 172.50 236.50
2080 54.80
2085 51.90
2090 49.00 94.00
2095 46.40
2100 43.70 66.60 88.60 159.20 220.10
2105 41.10
2110 38.50
2115 36.00
2120 33.60
2125 31.30 54.00 75.60 111.00 146.60 207.80
2130 29.30
2135 27.10
2140 25.10
2145 23.10
2150 21.30 42.60 98.70 134.50 195.60

Continued on next page
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Table 4 – continued from previous page

Strike price 94 days 185 days 277 days 458 days 640 days 1004 days
2155 19.50
2160 17.80
2165 16.20
2170 14.80
2175 13.40 32.60 87.30 184.10
2180 12.00
2200 24.20 109.50 172.90
2225 17.30 99.10 162.30
2250 11.90 89.40 151.80
2275 80.30 141.70
2300 132.10
2325 123.00
2350 111.40
2375 103.20
2400 95.20
2425 87.80
2450 80.70
2475 74.00

7.1.3 FUTURES QUOTES AND DIVIDENDS

One of the main difficulties for traders pricing index options is to estimate the expected
dividends. A workaround to this problem is to not use any dividend estimates at all but
instead derive the expected dividends from futures contracts. Futures quotes for a variety
of maturities are available on the market and the goal is to derive dividend yields from
futures prices.

Let S0 be the price of an asset that pays a continuous dividend yield q per annum and let
r be the risk-free interest rate. The price of a futures contract F0 maturing at T is then given
by ([20], pp. 21-22)

F0 = S0e(r−q)T .

Since F0,S0,r , and T are easily retrievable, the expected dividend yield q can straight-
forwardly be found. In the event of an option maturing between two futures maturities,
interpolation can be used to retrieve q .

Table 5-78 display futures quotes of the indices NDX, DJX, and SPX across a variety of
maturities and the resulting discount factors.

Maturity Futures prices Discount factor
June, 2015 4,370.50 -0.00030
September, 2015 4,243.50 -0.01554
December, 2015 4,244.00 -0.02318

Table 5: NDX futures quotes. The spot price is equal to 4,375.63.

8Recovered from www.barchart.com.
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Maturity Futures prices Discount factor
June, 2015 17,777 -0.00104
September, 2015 17,617 -0.00663
December, 2015 17,527 -0.01382

Table 6: DJX futures quotes on Tuesday, March 17, 2015. The spot price is equal to
17,849.08.

Maturity Futures prices Discount factor
June, 2015 2,066.20 -0.00101
September, 2015 2,059.60 -0.00360
December, 2015 2,053.30 -0.00771
June, 2016 2,043.90 -0.01851
December, 2016 2,039.00 -0.03008
December, 2017 2,046.50 -0.03709

Table 7: SPX futures quotes. The spot price is equal to 2,074.28.

7.2 PARAMETER ESTIMATION

Estimating the parameters in able to calibrate the models is not always easy. However, one
way to do it is to simply utilize the option prices at hand.

Let Cq = {C (k),k = 1, . . . , N } be a collection of option quotes and let Cm = {C (k;θ),k =
1, . . . , N } be a collection of option prices derived from the given model. To retrieve the set
of parameters θ, we simply minimize a sum of N squared residuals with respect to θ, such
that [23]

θ̂ = arg min
θ

N∑
k=1

(C (k)−C (k;θ))2 .

7.2.1 THE METHOD OF STEEPEST DESCENT

The method of steepest descent is based on the idea that if the multivariable function F (x)
is defined and differentiable in a neighborhood of a point a, then F (x) experiences the most
rapid decrease if one goes from a in the direction of the negative gradient of F at a, that is,
in the direction of −∇F (a) [27]. Hence, if

b = a−γ∇F (a),

for γ adequately small, then F (a) ≥ F (b).
Thus, assuming an initial guess x0 for the local minimum of F , one can generate a se-

quence9

xn+1 = xn −γ∇F (xn), n ≥ 0,

which hopefully converges to the wanted local minimum such that

F (x0) ≥ F (x1) ≥ F (x2) ≥ . . . .

9The value of γ is allowed to change at every iteration.
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The value of γ is allowed to change at every iteration. In fact, robust gradient descent
methods must always rescale the step size empirically depending on local properties of the
function:

• If after a step the function value increases, the step size was too large. Thus, the step
must be undone and the step size must be decreased.

• If after a step the function value decreases, the step size might have been too small.
Hence, one can try to increase the step size.

The function F to minimize is of course the difference between the option quotes and the
model option prices, and the vector x0 is an initial guess of the model parameters. Since
we do not have a closed-form expression for F , the gradient of F has to be approximated
which can be done by utilizing the finite difference method. Hence, using this method with
a forward difference step size h, the elements of ∇F are approximated by

∂F

∂x
= F (x +h)−F (x)

h
, h > 0.

In the mathematical formulation the gradient is defined in the limit as h goes to zero.
However, in practice it is often sufficient to choose a very small value for h, and ideally it
should be chosen in a way such as to avoid numerical issues. Thus to utilize the method of
steepest descent in this setting, two step sizes need to be established, namely γ and h. It
should be noted that the gradient descent method is fairly slow close to the minimum.
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8 RESULTS

8.1 THE BLACK-SCHOLES MODEL

As has been mentioned, the goal of this thesis is to show that the utilization of exponential
Lévy models in option pricing can produce better results compared to the utilization of the
classical Black-Scholes model.

Figures 12-17 display the results of the Black-Scholes model applied to the Nasdaq-100
Index, the Dow Jones Industrial Average, and the S & P 500 Index. Historical volatilities used
as input are given in Table 810.

Index 10 days 20 days 30 days
NDX 0.1466 0.1181 0.1200
DJX 0.1792 0.1364 0.1311
SPX 0.1584 0.1169 0.1178

Table 8: Current historical volatilities on Tuesday, March 17, 2015.

It is clear that even though some of the model prices fit the market quotes quite well, the
general impression is that overall the model’s ability to capture the option prices is inad-
equate. This also holds true when trying to calibrate the model by changing the volatility
input. Furthermore, the mean absolute percentage errors of the Black-Scholes model are
given in Table 9.

Index Mean absolute percentage error
NDX 0.1283
DJX 0.0946
SPX 0.1988

Table 9: The mean absolute percentage errors of the Black-Scholes model applied to the
given indices.

10Recovered from oic.ivolatility.com.
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(a) The Nasdaq-100 Index. 94 days to maturity.

(b) The Nasdaq-100 Index. 185 days to maturity.

Figure 12: The Black-Scholes model applied to the Nasdaq-100 Index. Rings are market
quotes, crosses are model prices.
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(a) The Nasdaq-100 Index. 277 days to maturity.

(b) The Dow Jones Industrial Average. 94 days to maturity.

Figure 13: The Black-Scholes model applied to the Nasdaq-100 Index and the Dow Jones
Industrial Average. Rings are market quotes, crosses are model prices.
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(a) The Dow Jones Industrial Average. 185 days to maturity.

(b) The Dow Jones Industrial Average. 277 days to maturity.

Figure 14: The Black-Scholes model applied to the Dow Jones Industrial Average. Rings are
market quotes, crosses are model prices.
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(a) The S & P 500 Index. 94 days to maturity.

(b) The S & P 500 Index. 185 days to maturity.

Figure 15: The Black-Scholes model applied to the S & P 500 Index. Rings are market quotes,
crosses are model prices.
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(a) The S & P 500 Index. 277 days to maturity.

(b) The S & P 500 Index. 458 days to maturity.

Figure 16: The Black-Scholes model applied to the S & P 500 Index. Rings are market quotes,
crosses are model prices.
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(a) The S & P 500 Index. 640 days to maturity.

(b) The S & P 500 Index. 1004 days to maturity.

Figure 17: The Black-Scholes model applied to the S & P 500 Index. Rings are market quotes,
crosses are model prices.
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8.2 EXPONENTIAL LÉVY MODELS

Employing the method of steepest descent, all of the exponential Lévy models were cal-
ibrated and their parameters were estimated and improved until their respective mean
squared error was sufficiently small. The step size h of the finite difference derivative was
held fixed at a small, constant value.

Figures 18-41 display the results of Merton’s jump-diffusion model, Kou’s jump-diffusion
model, the variance-gamma model, and the normal-inverse Gaussian model. The im-
provements with respect to the Black-Scholes model are clearly apparent. The mean ab-
solute percentage errors for each model are given in Table 10.

It should be noted that the method of steepest descent is a first-order optimization algo-

Index Merton Kou Variance-gamma Normal-inverse Gaussian
NDX 0.0709 0.0654 0.0732 0.0143
DJX 0.0311 0.0540 0.0432 0.0126
SPX 0.0591 0.0448 0.0176 0.0873

Table 10: The mean absolute percentage errors of the exponential Lévy models applied to
the given indices.

rithm which finds local minima11, hence the results are very much connected to the initial
guess of the parameters. Consulting the tables, it is clear that the model which is best at
mimicking both the Nasdaq-100 Index market quotes and the Dow Jones Industrial Aver-
age market quotes under the given framework is the normal-inverse Gaussian model. The
variance-gamma model has the smallest mean absolute percentage error for the S & P 500
Index.

11Since steps are taken proportional to the negative of the gradient of the function at the current point.
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(a) The Nasdaq-100 Index. 94 days to maturity.

(b) The Nasdaq-100 Index. 185 days to maturity.

Figure 18: Merton’s jump-diffusion model applied to the Nasdaq-100 Index. Rings are mar-
ket quotes, crosses are model prices.
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(a) The Nasdaq-100 Index. 277 days to maturity.

(b) The Dow Jones Industrial Average. 94 days to maturity.

Figure 19: Merton’s jump-diffusion model applied to the Nasdaq-100 Index and the Dow
Jones Industrial Average. Rings are market quotes, crosses are model prices.
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(a) The Dow Jones Industrial Average. 185 days to maturity.

(b) The Dow Jones Industrial Average. 277 days to maturity.

Figure 20: Merton’s jump-diffusion model applied to the Dow Jones Industrial Average.
Rings are market quotes, crosses are model prices.
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(a) The S & P 500 Index. 94 days to maturity.

(b) The S & P 500 Index. 185 days to maturity.

Figure 21: Merton’s jump-diffusion model applied to the S & P 500 Index. Rings are market
quotes, crosses are model prices.
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(a) The S & P 500 Index. 277 days to maturity.

(b) The S & P 500 Index. 458 days to maturity.

Figure 22: Merton’s jump-diffusion model applied to the S & P 500 Index. Rings are market
quotes, crosses are model prices.

71



(a) The S & P 500 Index. 640 days to maturity.

(b) The S & P 500 Index. 1004 days to maturity.

Figure 23: Merton’s jump-diffusion model applied to the S & P 500 Index. Rings are market
quotes, crosses are model prices.
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(a) The Nasdaq-100 Index. 94 days to maturity.

(b) The Nasdaq-100 Index. 185 days to maturity.

Figure 24: Kou’s jump-diffusion model applied to the Nasdaq-100 Index. Rings are market
quotes, crosses are model prices.

73



(a) The Nasdaq-100 Index. 277 days to maturity.

(b) The Dow Jones Industrial Average. 94 days to maturity.

Figure 25: Kou’s jump-diffusion model applied to the Nasdaq-100 Index and the Dow Jones
Industrial Average. Rings are market quotes, crosses are model prices.
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(a) The Dow Jones Industrial Average. 185 days to maturity.

(b) The Dow Jones Industrial Average. 277 days to maturity.

Figure 26: Kou’s jump-diffusion model applied to the Dow Jones Industrial Average. Rings
are market quotes, crosses are model prices.
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(a) The S & P 500 Index. 94 days to maturity.

(b) The S & P 500 Index. 185 days to maturity.

Figure 27: Kou’s jump-diffusion model applied to the S & P 500 Index. Rings are market
quotes, crosses are model prices.
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(a) The S & P 500 Index. 277 days to maturity.

(b) The S & P 500 Index. 458 days to maturity.

Figure 28: Kou’s jump-diffusion model applied to the S & P 500 Index. Rings are market
quotes, crosses are model prices.
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(a) The S & P 500 Index. 640 days to maturity.

(b) The S & P 500 Index. 1004 days to maturity.

Figure 29: Kou’s jump-diffusion model applied to the S & P 500 Index. Rings are market
quotes, crosses are model prices.
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(a) The Nasdaq-100 Index. 94 days to maturity.

(b) The Nasdaq-100 Index. 185 days to maturity.

Figure 30: The variance-gamma model applied to the Nasdaq-100 Index. Rings are market
quotes, crosses are model prices.
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(a) The Nasdaq-100 Index. 277 days to maturity.

(b) The Dow Jones Industrial Average. 94 days to maturity.

Figure 31: The variance-gamma model applied to the Nasdaq-100 Index and the Dow Jones
Industrial Average. Rings are market quotes, crosses are model prices.
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(a) The Dow Jones Industrial Average. 185 days to maturity.

(b) The Dow Jones Industrial Average. 277 days to maturity.

Figure 32: The variance-gamma model applied to the Dow Jones Industrial Average. Rings
are market quotes, crosses are model prices.
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(a) The S & P 500 Index. 94 days to maturity.

(b) The S & P 500 Index. 185 days to maturity.

Figure 33: The variance-gamma model applied to the S & P 500 Index. Rings are market
quotes, crosses are model prices.
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(a) The S & P 500 Index. 277 days to maturity.

(b) The S & P 500 Index. 458 days to maturity.

Figure 34: The variance-gamma model applied to the S & P 500 Index. Rings are market
quotes, crosses are model prices.
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(a) The S & P 500 Index. 640 days to maturity.

(b) The S & P 500 Index. 1004 days to maturity.

Figure 35: The variance-gamma model applied to the S & P 500 Index. Rings are market
quotes, crosses are model prices.
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(a) The Nasdaq-100 Index. 94 days to maturity.

(b) The Nasdaq-100 Index. 185 days to maturity.

Figure 36: The normal-inverse Gaussian model applied to the Nasdaq-100 Index. Rings are
market quotes, crosses are model prices.
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(a) The Nasdaq-100 Index. 277 days to maturity.

(b) The Dow Jones Industrial Average. 94 days to maturity.

Figure 37: The normal-inverse Gaussian model applied to the Nasdaq-100 Index and the
Dow Jones Industrial Average. Rings are market quotes, crosses are model prices.
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(a) The Dow Jones Industrial Average. 185 days to maturity.

(b) The Dow Jones Industrial Average. 277 days to maturity.

Figure 38: The normal-inverse Gaussian model applied to the Dow Jones Industrial Aver-
age. Rings are market quotes, crosses are model prices.
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(a) The S & P 500 Index. 94 days to maturity.

(b) The S & P 500 Index. 185 days to maturity.

Figure 39: The normal-inverse Gaussian model applied to the S & P 500 Index. Rings are
market quotes, crosses are model prices.
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(a) The S & P 500 Index. 277 days to maturity.

(b) The S & P 500 Index. 458 days to maturity.

Figure 40: The normal-inverse Gaussian model applied to the S & P 500 Index. Rings are
market quotes, crosses are model prices.
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(a) The S & P 500 Index. 640 days to maturity.

(b) The S & P 500 Index. 1004 days to maturity.

Figure 41: The normal-inverse Gaussian model applied to the S & P 500 Index. Rings are
market quotes, crosses are model prices.
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9 DISCUSSION AND CONCLUSIONS

In this thesis we talked about the shortcomings of the classical Black-Scholes model used
for option pricing. As an alternative to the Black-Scholes model we introduced exponential
Lévy models, namely Merton’s and Kou’s jump-diffusion models, and two pure jump mod-
els governed by the variance-gamma process and the normal-inverse Gaussian process.
The underlying assets were the indices Nasdaq-100, Dow Jones Industrial Average, and S
& P 500. The fractional fast Fourier transform was used to retrieve option prices from the
corresponding characteristic functions. What separates the fractional fast Fourier trans-
form from the regular fast Fourier transform and speaks in favor of the former is that we
are given the liberty to independently choose the grid sizes of the integration and the log-
strike price, and hence the characteristic function information can be used more efficiently
typically yielding less function evaluations resulting in computational time savings.

The models were calibrated with the method of steepest descent and non-linear least
squares. However, as was mentioned, the method of steepest descent is very much con-
nected to the initial guess of the parameters and is relatively slow close to the minimum.
Hence, an extension to this thesis could be to use another calibration method.

As seen in Chapter 8, all of the exponential Lévy models improved on the Black-Scholes
model across all markets. It should however be noted that we used a very simple form of
the Black-Scholes model, utilizing only a single, constant volatility parameter.

In this thesis, asset price jumps were included as a way of trying to improve on the Black-
Scholes model and to capture its stylized facts. A further extension could be the inclusion
of stochastic volatility, that is, to model and to calibrate option prices taking into account
both the occurence of jumps and the possibility of the volatility being stochastic.

An even further extension to this thesis could be to model exotic option prices by cali-
brating a stochastic volatility model to vanilla option prices and then calculate the prices
of more complicated options, such as barrier options etc.

An important topic we only mentioned briefly while deriving the Black-Scholes equa-
tion is that of hedging. It is a vital topic because risk is a crucial yet problematic element
of investing. In complete markets, hedging is pretty straightforward since risk can be com-
pletely avoided simply by purchasing the replicating portfolio. Incomplete markets, on the
other hand, necessitates additional criteria in able to determine viable hedging strategies.
Thus, hedging could perhaps also be an extension to this thesis.
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