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Abstract

The prices of energy futures tend to have a noise structure that cannot easily be described
with only a few factors. Therefore an infinite–dimensinoal model has been used to
model and simulate the price of energy futures as paths of infinite–dimensional L2–
valued stochastic processes was made. The simulations agreed with previous attempts.
The parameters of the model was then fitted to real price data. The results shared some
features with the recorded prices.
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1 INTRODUCTION

1 Introduction

1.1 Background

The electricity market is volatile and trading with future contracts is common. It is
therefore desirable to have a good model for the futures. Energy differs from most
other commodities. In contrast to most commodities electricity is non-storable and the
delivery has to be during a period of time rather than instantaneously. Also the prices
of the futures seem to have a complicated structure. For some commodities the price
fluctuations can be well described with only a few noise components, but Koebakker
and Ollmar [1] showed that many components were needed in order to explain the noise
structure of electricity prices. Therefore an infinite–dimensional model was developed
and simulated by Barth and Benth in [2].

1.2 Aim

The aim of this project is to simulate possible development of prices of energy futures
with the model suggested in [2]. Thereafter the parameters of the model will be fitted
to data from the real energy market and the results will be compared.

1.3 Limitation

No improvements to the model from [2] will be developed. Also no proper goodness-of-fit
test will not be developed or used.
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2 THEORY

2 Theory

2.1 Banach space valued integration

When integrating a L2(Ω)-valued process a normal Lebesgue integration is not avail-
able. Instead a generalisation to Banach space valued functions is used, called Bochner
integration.

Let (A,A , µ) be a measure space and let E be a Banach space. We say that a
function f : A→ E is Bochner integrable if there exists a sequence of of simple functions
fn such that

lim
n→∞

∫
A
||f − fn||E dµ = 0

where integration of course is in Lebesgue meaning, as the norm is real-valued. We will
see that in our case we get that E = L2([0, τ ]) and A = [0, T ], τ, T > 0.

Let fn =
∑n

i=1 1Aixi and
∫
fn =

∑n
i=1 µ(Ai)xi. We are now ready to define the

integral of any Bochner integrable function as∫
A
f dµ = lim

n→∞

∫
A
fn dµ.

The Bochner integral has a property closely related to triangular inequality in the
Lebesgue theory, namely that

||
∫
fdµ|| ≤

∫
||f ||dµ

and hence if the integral of the norm is finite, so is the norm of the integral. For further
details, see [3].

2.2 Lévy processes

When performing stochastic integration we want the notion of a driving noise to make
sense. More precisely we want to able to write M(t) =

∫ t
0 dM(t). This propertiy is called

infinite divisibility.

Definition M(t) is said to be an infinitely divisible process if for each choice of t > 0
and n ∈ N there exists a sequence Yi of i.i.d. random variables such that

M(t)
D
=

n∑
i=1

Yi and Yi
D
=M(

t

n
)

The most well-known such distribution is a one dimensional Brownian motion. In that
case we have that Yi

D
=N(0, tn). In general this property is had by a rich family of

processes, called Lévy processes. Further properties of these processes can be found in
[4].
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2.3 Numerical simulation 2 THEORY

Under reasonable continuity assumptions it is therefore possible on a and b, to define
a process by

X(t) =

∫ t

0
a(s,X(s))ds+

∫ t

0
b(s,X(s))dL(s) (1)

for a Lévy process driving noise dL(t). Note that this integral process can be understood
as Bochner integrals and that b : H → E, should be be understood as an operator
between two, not necessarily equal, Hilbert spaces.

2.2.1 Hilbert valued processes

Let us consider the special case where a Lévy process, M(t), not necessarily equal to
L(t), takes values in a separable Hilbert space, H. For any separable Hilbert space, there
exists a countable, orthonormal basis and we may write

M(t)(x) =
∞∑
i=0

(M(t), ei)Hei(x) (2)

where the ei:s form the basis. Note that since the Lévy process is infinitely divisible each
inner product will also be a Lévy process.

Let us consider Equation 1 with L defined as in Equation 2, b as an operator, mapping
H → L2([0, τ ]) and a as an L2-valued function. With these assumptions we get that X(t)
is an L2-valued process.

2.3 Numerical simulation

Considering the process described in Equation 1. We will focus on the case were X(t) is
L2([0, τ ])-valued. Before simulating a path of the process a discretisation in space of X
is needed. For this a method based on e.g., finite differences could be used. Note that
no additional noise needs to be added in this step.

After this discretisation has been done we arrive in a, possibly large if the grid is
fine, system of coupled ordinary stochastic differential equations.

If this system was deterministic there would have been several different numerical
methods available, e.g., Runge-Kutta or Euler. The Euler forward method generalises
well to the stochastic case. Some other numerically more efficient and frequently used
methods, such as the Runge-Kutta methods do not generalise quite as well. Therefore
focus will be on the Euler forward method.

Recall that for a deterministic (vector) valued function and a given partition 0 =
t0 < t1 < ... < tn = T the Euler forward can be recursively defined throughf(ti+1) ≈ f(ti) +

d

dt
f(t)|t=ti(ti+1 − ti)

f(0) = f0

with global convergence of order O(maxi(ti+1 − ti)).
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2.4 Noise generation 2 THEORY

The very same principle can be used in the deterministic case. If we consider the
process in Equation 1 a path can be simulated by{

X(ti+1) ≈ a(ti, X(ti))(ti+1 − ti) + b(ti, X(ti))(M(ti+1 −M(ti))

X(0) = X0

with global convergence of order O(
√

maxi(ti+1 − ti)). It is worth noting that in the
special case where b(t,X(t)) = b, i.e., does not depend on neither t, nor X(t) this coin-
cides with the higher order Milstein method which is known to have global convergence
of O(maxi(ti+1 − ti)). For further details, see [].

2.4 Noise generation

The representation in Equation 2 can be used and the inner products can be simulated
as independent Lévy processes,

M(t) ≈
N∑
i=0

√
λieiMi(t) (3)

where the λi:s are the eigenvalues of Q and Mi are i.i.d. real-valued Lévy processes.
A method for choosing N such that the error because of the truncation is smaller

then the error due to the discretisation was suggested in [5].
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3 ENERGY MARKET

3 Energy market

The energy market can be both volatile and illiquid. It can therefore be desireable for
both sellers and buyers to trade with futures in order to increase cash flow and reduce
risks.

For most commodity markets the goods are delivered instantly at some point in time
and are thereafter stored until it is needed. For energy, however, this is typically not the
case. Energy commodities, such as electricity are always delivered during a period of
time and cannot be stored. This makes the market highly volatile and the price can differ
depending on both time of day and season. On top of this there are several stochastic
factors affecting the price, such as weather and speculation.

In the Nordic and Baltic countries the spot price is determined at a common market
called Nord Pool. At Nord Pool only spot and day ahead prices are recorded. Instead,
the trading with futures is available in stock markets, e.g., OMX Nasdaq Stockholm.

3.1 Electricity futures

A future is a contract obliging the owner to buy, or sell, at a predetermined time of
delivery at predetermined price. Energy cannot be delivered instantaneously, but rather
during a period of time. For example, at OMX Nasdaq Stockholm it is possible to trade
electricity forwards with delivery periods ranging from one day to a year.

Thus the price of the future at any given time depends on both the Start of delivery
and the End of delivery.

3.2 Arbitrage

In some markets situations where it is possible to at the same time sell high and buy
cheap. This makes it possible to gain money instantaneously and risk free. Often when
modelling one assumes this behaviour does not occur. This is often referred to as a
no-arbitrage condition.
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4 MODELLING

4 Modelling

The model developed in [2] was used, so rather than going into too much details the
reader is referred there. However, there are a few modelling choices and results which I
would like to point out.

One might want to view the price as function of time, ţ start of delivery, T1 and end
of delivery T2, i.e., the price being a function F = F (t, T1, T2). Any reasonable domain
for for F would then require that

t ≤ T1 ≤ T2

and it would be hard defining a reasonable domain for a L2-process. However, using a
so called Musiela parametrisation, we may define a different function, G by

G(t, x, y) = F (t, T1, T2) with x = T1 − t and y = T2 − T1. (4)

Under a no-arbitrage condition it was shown that G must fulfil

yG(t, x, y) =

∫ y

0
G(t, x+ z, 0)dz (5)

and it is therefore sufficient to model g(t, x) = G(t, x, 0), with t ∈ [0, T ] and x ∈ [0, τ ]̧
for some choices of T and τ . In the sequel x will sometimes be referred to as the space
variable.

As usual in the scope of financial mathematics it is more natural to consider the
log-prices than the actual prices. Therefore, instead of modelling g(t, x) it is natural to
model the logarithm instead. To do this a L2([0, τ ])-valued process X = X(t) is defined
such that

log g(t, x) = δxX(t)

where δx, is an evaluation operator.

Again following [2] we arrive in the following L2-valued stochastic differential equation

dX = (
d

dx
X + a(t))dt+ b(t)dL(t),

or, equivalently, the process described by the integral

X(t) =

∫ t

0
(
d

dx
X(t) + a(t)) dt+

∫ t

0
b(t) dL(t),

where the integrals should be understood as Bochner integrals.

As the driving noise, dL two different Lévy process were chosen, first Brownian
motion and thereafter normal inverse Gaussian (NIG) processes.

Following [2] the initial and inflow conditions for Brownian motion are presented
in Equation 6 and the conditions for the NIG-drift are presented in Equation 7. The

9



4.1 Correlation of the driving noise 4 MODELLING

modelling choices imply that the process is stationary.

a(t)(x) =
σ2

2
e−2αx

b(t)(x) = σe−αx

X(0, x) = e−αx +
σ2

4α
(1− e−2αx)

X(t, τ) = e−ατ +
σ2

4α
(1− e−2ατ )

(6)



a(t)(x) = e(−αx)/2

b(t)(x) = K0(α̃x)/(π)e−αx

X(0, x) = e−αx +
K0(α̃)

πα
(1− e−2αx)

X(t, τ) = e−ατ +
K0(α̃)

πα
(1− e−2ατ )

(7)

4.1 Correlation of the driving noise

Any effect on the electricity price (due to drought, heavy rains, etc.) will most likely
not only affect the future price at one single maturity. It seems more reasonable that is
affects the price at maturities close to it maximum and then decaying with distance to
its maximum. This was taken care of by inferring a correlation in space. For simplicity
it will be assumed to be time independent.

Let us consider an arbitrary, but fix time, t. The driving noise, dL(t) may be corre-
lated with respect to the space variable, x. Considering two different points in space, x1
and x2 the driving field was correlated with

q(x1, x2) = e−κ|x1−x2|
2
.

To this end an uncorrelated field M(t) can be correlated with q and dL can be defined
by

dL(t)(x) =

∫ τ

0
dM(t)(y)q(y, |y − x|) dy.

4.2 Description of parameters

The parameters σ in Equation 6 and α̃ in Equation 7 influence to the volatility and jump
intensity respectively.

The parameter κ decides the range of the correlation; a large value of κ means a
fast decay in correlation. The interpretation of α is related to the cost of capital – a
high value of α simulates a high cost of capital. Furthermore, since the quantity of κ is
time−2 and the quantity of α is time−1, a simultaneous decrease or increase of κ and α
can be used for scaling.
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5 SIMULATION

5 Simulation

5.1 Parameters

The parameters σ in equation 6 and α̃ in equation 7 influense to the volatility and jump
intensity respectively.

The parameter κ desides the range of the corralation; a large value of κ means a
fast decay in correlation. The interpretation of α is related to the cost of capital – a
high value of α simulates a high cost of capital. Furthermore, since the quantity of κ is
time−2 and the quantity of α is time−1, a simultaneous decrease (or increase) of κ and
α can be used for scaling.

5.1.1 Choice of parameters

For comparability with the results in [2] the same parameter values were chosen, i.e.,
σ = 1

2 , α̃ = 10, κ = 2 and 10, α = 0.2 and 4 and T = τ = 1.

5.1.2 Effect of parameters

Especially in the Gaussian plots we see a lot of humps. These appear as a consequence
of the high dimensionality and the correlation structure. The smaller κ is, i.e., the larger
the correlation is, the wider and smoother humps are obtained.

From a large cost of capital, i.e., large α, we obtain a steep decay of the price. Also
the volatily at the large values of x becomes smaller. Since α can be used for scaling in
time this can be interpreted as for long maturities the volatility smaller than it is close
to the time of maturity.

We can clearly see that the simulations share a lot of properties with the ones per-
formed in [2]. The humps that appear are a consequence of the high dimensionality and
the spatial correlation. With a large value of κ, as in e.g., Figure 4 the humps becomes
steeper.

The parameters in equations Equation 6 and Equation 7 were chosen in accordance
with the chioces made by Barth and Benth in [2]

5.2 Numerics

The process was simulated in a way described in Section 2.3
For simplicity a equidistant grid in both time and space was chosen and for discreti-

sation in space a finite difference method was used. This is known to have a convergence
of O(∆x).

In [6] it was suggested to use a Fourier basis (cos nπτ x)∞n=0 as eigenvectors when
generating M in Equation 2.

As we can see in Equation 6 and Equation 7 b is independent of both t and X (but
of course not x) and hence the total global convergence rate is O(∆t+ ∆x)

The truncation of the Lévy process Equation 2 was chosen in accordance with the
recommendations in [5].
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6 RESULT
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Figure 1: Future simulation and spot curve for α = 0.2 and κ = 2 with Brownian drift.
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Figure 2: Future simulation and spot curve for α = 0.2 and κ = 10 with Brownian drift.
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Figure 3: Future simulation and spot curve for α = 4 and κ = 2 with Brownian drift.
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Figure 4: Future simulation and spot curve for α = 4 and κ = 10 with Brownian drift.
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Figure 5: Future simulation and spot curve for α = 0.2 and κ = 2 with NIG drift.
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Figure 6: Future simulation and spot curve for α = 0.2 and κ = 10 with NIG drift.
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Figure 7: Future simulation and spot curve for α = 4 and κ = 2 with NIG drift.
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Figure 8: Future simulation and spot curve for α = 4 and κ = 10 with NIG drift.
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6 Result

The effect of a large value of α is evident from Figures 1 to 4 – the decay in time is
substantially faster with higher value and the humps become smaller for large values
of x. This can be interpreted as both the price and the volatility being small for long
maturities. Also the effect of κ is clear. A high value gives steeper humps and somewhat
higher maxima. A smaller value on the other hand makes the humps smoother and
wider.

These effects are present also in the NIG driven processes. The main difference
between them and the Brownian processes is the smoothness of the curves. As NIG-
processes have jumps, this behaviour is also present in the future curves.

The simulations performed in [2] show similar results.
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7 Market data

At OMX Nasdaq Stockholm trading with electricity futures is available. The contracts
are only available a certain time before the maturity. Futures with delivery period one
month become available six months before start of delivery and they have delivery period
being from first to last of the actual month..

At Nord Pool, spot prices are recorded and publicly available. Such a set has been
used for parameter estimation.

7.1 Description of data

The data set consisted of closing prices from OMX Nasdaq Stockholm of electricity
forwards.

Using the Musiela parametrisation described in Equation 4 this corresponds toG(t, x, y)
with:


0 ≤ x ≤ 6 months

y = 1 month

0 ≤ t ≤ 70 months

The future prices and corresponding monthly average spotprice are shown in Figure
9 and Figure 10

7.2 Fitting the model to market data

Recall that the model does not simulateG(t, x, y) directly, but rather g(t, x) (orG(t, x, 0)).
An integration, as described in Equation 5, had to be performed before comparing sim-
ulation and recorded prices.

7.2.1 Estimating α

The simulated process is a martingale and hence E[log g(t, x)] = E[X(t, x)] = X(0, x),
which was specified as the initial condition, see Equation 6 and Equation 7. Furthermore,
using the mean value theorem on Equation 5 we see that there exists a z, 0 ≤ z ≤ 1 such
that g(t, x+ z) = G(t, x, 1). If we approximate that this z is the same for all values of t
and x we can estimate α as

min
α

∫ T

0

∫ τ

0
(log(

G̃(t, x, 1)

G̃(t, 0, 1)
)−X(0, x))2 dx dt

where G̃, is the market data.
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7.2 Fitting the model to market data 7 MARKET DATA
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Figure 9: Real prices of futures for the period 2012-01-01 to 2013-12-31.
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Figure 10: Monthly averages of spot price for the period 2009-10-01 to 2014-03-01.
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7.3 Comments on the fitted simulation 7 MARKET DATA

7.2.2 Estimating κ

Since the market data is of the form G(t, x, 1) it is nontrivial to estimate the covariance
of G(t, x, 0), which was simulated. The idea of measuring the wideness of the ridges has
been used as a small value will give long ridges.

A number of paths were simulated for different values of κ. Then a value of κ that
gave reasonably sized ridges was chosen.

7.2.3 Estimating σ and α̃

For any fix x0 the proces X(t, x0) will be a real valued Brownian motion or NIG-process.
For these processes the variance will be proportional to σ2t and t

α̃ respectively. The
proportional constant will depend on the values of α and κ and can be computed by
averaging over a large number of simulations. The point x0 = 0 was chosen and the
empirical value of the standard deviation was computed from the Nord Pool spot data.

A more thorough investigation of the behaviour of Nordic electricity prices was per-
formed in [1] and [7]. The estimates of variance and α are in line with what was estimated
in [7].

7.3 Comments on the fitted simulation

The fitted parameters for the process with Brownian drift were

α = 2.8 year−1

κ = 18 year−2

σ = 0.32 year−
1
2

A plot of the simulated prices can be seen in Figure 11 and Figure 12.
As expected the integration makes the the surfaces smoother in x than was the case

when only simulating g(t, x). Also the humps observed get squeezed out to ridges as
they get integrated. These ridges appear also in Figure 9.

The simulated surfaces are a lot smoother than the market prices. Both the covari-
ance operator and the integration make the simulations rather smooth, much smoother
than the recorded prices.
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Figure 11: Brownian curve fitted to the real futures.

26



7.3 Comments on the fitted simulation 7 MARKET DATA

Time to maturity (months)

0
1

2
3

4
5

6 Time (months)

0

5

10

15

20

G(t,x,1)

20

25

30

35

40

Figure 12: NIG curve fitted to the real futures.
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