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Abstract

In this master thesis we study the character of jumps occurring in a financial asset
pricing process with IBM stock. We present a formal definition of jumps and find
that based on this definition, the durations between upward jumps and the sizes of
downward jumps have a heavy-tail distribution, but the durations between downward
jumps and the sizes of upward jumps have light-tail distribution. By the BDS test, it
is shown that the durations between jump are correlated. Here the AR(1) model is
suggested to be the proper model for the logarithm of jump duration. The occurrence
of jumps can be treated as a counting process. In our counting process model, we
discuss the stochastic intensity, the distribution of jump duration, the distribution of
arrival times and the properties of the counting process.
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Chapter 1

Introduction

The issue to build a model beyond Black-Scholes is a classical topic in the field of
mathematical finance. And in last thirty years many models have been suggested;
most of them can be classified into two kinds: stochastic-volatility models and jump-
diffusion models. Stochastic-volatility models use a stochastic volatility instead of the
constant volatility in the Black-Scholes model with or without jumps, while Jump-
diffusion models add a jump part to the Black-Scholes model (see e.g. [21]). Gener-
ally speaking, compared with stochastic-volatility models, jump-diffusion models are
simpler and can qualitatively catch the financial market phenomena, like the large
fluctuations in the asset prices (see e.g. [21]).

In jump-diffusion models for financial asset pricing, jumps are usually defined as
all the discontinuities in a sample path of a Brownian motion; however as in the real
world the stock prices are never continuous, such a definition will be quite difficult to
put into practice. To solve this problem, people usually argue that when the difference
between two consecutive stock prices is larger than a certain threshold, then a jump
occurs. Unfortunately this threshold always varies to with different stocks. Moreover
people usually assume that the arrival time of jumps can be a Poisson process. Is this
assumption really true? Clearly a formal definition of jumps is needed.

In this master thesis we study the issue of defining jumps for stock prices. Further,
we will study the properties of jumps.

Chapter 2 gives a formal definition of the jumps, the concepts of jump size and
jump duration.

In Chapter 3 we investigate the probability distribution properties of jump size
and jump duration.

Chapter 4 is in part devoted to the study of dependence structures of jump size
and jump duration. Furthermore we discuss the models for jump duration.

In Chapter 5 we provide an idea about the possibility to establish a new jump
model for asset pricing.

And finally in Chapter 6, we make some concluding remarks, as well as discuss
the future research.
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Chapter 2

Exploring Jump-Diffusions

In this work we use IBM stock prices, from 3-Jan-1984 to 22-Oct-2004, as our price
process. We remove the sample mean from the corresponding log returns and then
divide them with the sample standard deviation1. Compared with the standard nor-
mal distribution, the devolatilized log returns are more heavy-tailed, as can be seen
in Figure 2.2 and 2.3.
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Figure 2.1: The IBM adjusted
close prices from 3-Jan-1984 to
22-Oct-2004
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Figure 2.2: The devolatilized log
returns of IBM stock prices

2.1 What are Jumps?

In jump-diffusion models, asset prices are modeled as Levy processes with a nonzero
Gaussian component and a jump part (see [9], pp 103); and jumps are represented
as the rare events - crashes or sudden upsurges (see [14]). Such models can explain
why heavy tails will appear in the marginal distribution for some stochastic price
processes. In other words, the jumps reflect the heavy tailed part on a distribution.

1The sample mean µ̂ = 5.47e − 4 and the sample standard deviation σ̂ = 0.0191
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Figure 2.3: QQ plot of the devolatilized log returns on IBM stock prices

Definition 1 (Jump) For an asset price process Xt, a threshold α (α > 0) and −α
are set on both the positive and the negative side of the devolatilized log returns of Xt.
Once the devolatilized log return exceeds the threshold on either side at time t, i.e.

| logXt − logXt−1 − µ̂

σ̂
| ≥ α,

we say that a jump occurs at time t.

Following this definition, we set natural definitions of jump size and duration
between jumps.

Definition 2 (Jump size) When a jump occurs at time t, the jump size is the dif-
ference of the log prices, i.e.

{jump size}t = logXt − logXt−1.

Obviously the jump size at time t equals the value of the log return at time t.

Definition 3 (Duration between jumps) When a jump occurs at time t and the
next jump occurs at time s, where t > s, we say that the duration between these two
consecutive jumps is t− s.

The following investigation of jumps are based on the above three definitions.

2.2 Jumps of IBM Stock Prices

Since jumps are rare events, it is reasonable to set the threshold α = 2.00. According
to the definition of jump (Definition 1), we register the time when jumps occurs. The
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corresponding log returns2 are the size of jumps.

Definition 4 (Jump–up & Jump–down) If the size of a jump > 0, then this jump
is upward; and if the size < 0, then this jump is downward.

Considering that the size of downward jumps is always negative, for simplicity, we
will take the absolute value for the size of downward jumps in following parts.

It is well known that the size of downward jumps tend to be larger than that of
upward jumps for many asset prices (see e.g. [14]). Hence it is motivated to investigate
whether upward jumps and downward jumps really have different properties.
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(a) The size of upward jumps
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(b) The size of downward jumps

Figure 2.4: The histograms of the jump size

Number Max Value Min Value
Size of jump-up 138 0.1236 0.0388
Size of jump-down 116 0.2682 0.0379

Table 2.1: Information about the jump size

In this thesis, we only consider the duration between two consecutive jumps. And
as argued above, we would like to separate the durations for upward jumps and
downward jumps, as well as their jump sizes.

Number Max Value Min Value
Duration for jump-up 138 620 1
Duration for jump-down 116 365 1

Table 2.2: Information about the duration between jumps

2According to the definition of height of jump (Definition 2), these log returns are non-
devolatilized. In the following parts, if the log returns are not specifically indicated to be devolatilized,
then they are non-devolatilized.
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Figure 2.5: The histograms of the duration between jumps

2.3 Distribution Test

F. B. Hanson and J. J. Westman [14] consider that the sizes of jumps are uniformly
distributed and the jump process is a space-time Poisson process. However, through
observing the histograms of the jump size (Figure 2.4), we see that the heights of
neither upward jumps nor downward jumps are uniformly distributed. And in the
following part, we will investigate whether the increments of jump process, i.e. the
duration between jumps, are exponentially distributed.

2.3.1 Goodness of Fit

We choose Kolmogorov-Smirnov (KS) distance as the statistical test for assumptions
about distribution. The test statistic (see e.g. [16]) is given by

KS = max
x∈R

∣
∣
∣Femp(x) − Ffit(x)

∣
∣
∣,

where Ffit is the fitted distribution function and Femp is the empirical distribution
function , which is given by

Femp(x) =
#(Xi ≤ x, i = 1, . . . , n)

n
, n = the number of total observations.

In practice, we can calculate KS distance with the following formula (see e.g. [16]):

KS = max
1≤i≤n

(

max
{∣
∣(i− 0.5)/n− F (X(i))

∣
∣,

∣
∣(i+ 0.5)/n− F (X(i))

∣
∣
})

,

where X(1) ≤ . . . ≤ X(n) is the ordered data set.

8



2.3.2 Testing Results

First we use the Maximum Likelihood (ML) method to estimate the parameter λ of
the exponential probability density function,

fExp(x) = λe−λx, x > 0,

which is the distribution of durations between jumps in Poisson models. Then we test
goodness-of-fit with the KS-distance.

λ KS test
durations for jump-up 0.0263 0.1481

durations for jump-down 0.0232 0.2529

Table 2.3: The estimated parameters and KS-distance, with MLE method
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Figure 2.6: The comparison between empirical distribution of duration and exponen-
tial distribution with MLE method

Observing Figure 2.6, we can notice that the empirical distribution of duration
between upward jumps fits the exponential distribution quite well, though its KS-
distance 0.1481 is a little too large to indicate that we really have exponential distri-
bution; however for the durations between downward jumps, the empirical does not
fit Exponential distribution well, and its KS-distance is also very large, 0.2529. Hence
we conclude that Exponential distribution is not the best distribution for the jump
duration.
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Chapter 3

Distribution Fitting

In the previous chapter, we saw that the standard distribution assumptions about
the exponential distribution and the uniform distribution can not fit the data (jump
size and duration between jumps) well. In this chapter, we will try to find proper
distributions for these data.

3.1 Tail Behavior

3.1.1 Mean Excess Plot

With the mean excess plot, we can test the tail properties of jump size and jump
duration graphically. And this will be helpful to choose the proper distribution for
the data of jump size and jump duration, as it is usually in the tails problems with
fitted distributions occur.

The main idea is that with the help of mean excess plot, we choose the threshold
u such that the sample mean excess function is nearly linear above u, (see e.g. [15]).
We then consider the sample data, which exceed the threshold, to belong to the tail.
Then we can decide whether the tail is heavy or light.

Definition 5 (Mean excess function, see [10]) Let X be a random variable, then

e(u) = E(X − u|X > u), u ≥ 0,

is called the mean excess function of X.

The sample mean excess function is given by

en(u) =
1

Nu

n∑

i=1

(Xi − u)I{Xi > u},

where X1 . . . Xn, are iid random variables, u is the threshold, Nu = #{i : 1 ≤ i ≤
n,Xi > u} and I{X > u} is an indicator function. The mean excess plot consists of
the points (see e.g. [15])

{(Xk,n, en(Xk,n)) : k = 1, . . . , n− 1}.
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Figure 3.1: Mean Excess Plot

Using the mean excess plot, we find the threshold for duration to be 60 and the
threshold for size to be 0.06.

3.1.2 Log Transformation

One example of a heavy-tail distribution given by the probability density function

f(x) =
(1 + (x/δ)ρ)−β

C(δ, ρ, β)
, x > 0,

where δ > 0, ρ > 0 and β > 0. Heavy-tail distributions are also called polynomial
distributions, since when x is large,

1 − F (x) ≈ Cx−ρ,

Now for some C > 0 and ρ > 0, take logarithms on both sides and use the empirical
distribution FEmp(X(i)) = i

n instead of the distribution function F (x), i.e.

1 − F (x) ≈ Cx−ρ,

log(1 − F (x)) ≈ logC − ρ log x,

log(1 − i

n
) ≈ logC − ρ log xi. (3.1)
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Using the least square (LS) method to estimate logC and ρ, then we may observe
whether the linear relation (3.1) really holds, and decide whether data are heavy-tail
distributed.

One example of a light-tail distribution has a probability density function,

f(x) =
xβ−1e−λxα

C(β, λ)
, x > 0,

where α > 0, β > 0 and λ > 01. And light-tail distributions are also called exponential
distributions, since when x is large,

1 − F (x) ≈ C1x
−ρ exp{−C2x

α}.

We can use the similar method as above to decide whether data are light-tail dis-
tributed; however here we need to take logarithm twice, i.e.

1 − F (x) ≈ C1x
−ρ exp{−C2x

α},
log(1 − F (x)) ≈ logC1 − ρ log x

︸ ︷︷ ︸

negligible

−C2x
α

≈ −C2x
α,

log(− log(1 − F (x))) ≈ logC2 + α log x,

log(− log(1 − i

n
)) ≈ logC2 + α log xi. (3.2)

Now with the data of jump durations and jumps sizes, which exceed the thresholds,
we may estimate the coefficients ρ and logC for heavy-tail distribution and check for
linearity.

ρ logC No. of data
upward jump duration 1.5146 6.1787 25

downward jump duration 1.5650 6.6709 26

Table 3.1: coefficients for heavy-tail distribution, with the threshold u = 60
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Figure 3.2: Polynomial Curves for Jump Duration (Heavy-tail)

And similarly we estimate the coefficients α and logC2 for light-tail distribution
and check the fit by looking for linearity in a plot of the transformed data (3.2).
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ρ logC No. of data
upward jump size 3.5089 −9.7521 34

downward jump size 2.3132 −6.5922 26

Table 3.2: coefficients for heavy-tail distribution, with the threshold u = 0.06
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Figure 3.3: Polynomial Curves for Jump Size (Heavy-tail)

α logC2 No. of data
upward jump duration 1.9031 −9.4589 25

downward jump duration 2.3477 −11.9262 26

Table 3.3: coefficients for light-tail distribution, with the threshold u = 60
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Figure 3.4: Exponential Curves for Jump Duration (Light-tail)

α logC2 No. of data
upward jump size 4.7874 11.4798 34

downward jump size 2.7809 6.2745 26

Table 3.4: coefficients for light-tail distribution, with the threshold u = 0.06
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Figure 3.5: Exponential Curves for Jump Size (Light-tail)

Observing the figures above, we conclude that the upward jump duration and the
downward jump size are heavy-tail distributed, and the downward jump duration and
the upward jump size are light-tail distributed.

3.2 Distributions

Here we choose four distributions to test. They are the Generalized Pareto Distribu-
tion, the Pearson VII Distribution, the Generalized Hyperbolic Distribution and the
Gamma Distribution. The first two distributions have the heavy-tailed property; and
the last two have the light-tailed property2.

3.2.1 Generalized Pareto Distribution

The density function of the Generalized Pareto (GP) distribution is given by

fGP(x;u, σ, ξ) =
1

σ
(1 + ξ

x− u

σ
)−1/ξ−1 for x > u,

where u ∈ R is a threshold, ξ ≥ 0 is a shape parameter and σ > 0 is a scale parameter
(see e.g. [16]). The distribution function is given by

FGP(x;u, σ, ξ) = 1 − (1 + ξ
x− u

σ
)−1/ξ for x > u.

3.2.2 Pearson VII Distribution

The Pearson VII distribution has the density function,

fPearson(x;m, c) =
2Γ(m)

cΓ(m− 1
2

√
π)

(1 + (
x

c
)2)−m for x > 0,

1In fact when α = 1, this distribution is called semi-heavy-tail distribution.
2Actually they are semi-heavy tailed and have α = 1.
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with the distribution function,

FPearson(x;m, c) =
2Γ(m)x2F1(

1
2 ,m,

3
2 ,−x2/σ2)√

πσΓ(m− 1
2 )

for x > 0,

where m > 1/2 is a shape parameter and c > 0 is a scale parameter (see e.g. [16]).

3.2.3 Generalized Hyperbolic Distribution

The probability density function for the Generalized Hyperbolic (GH) distribution is
given by

fGH(x;λ, α, β, δ, µ) =
(α2 − β2)λ/2(δ2 + (x− µ)2)(λ−1/2)/2

√
2παλ−1/2δλKλ(δ

√

α2 − β2)

×Kλ−1/2(α
√

δ2 + (x− µ)2)eβ(x−µ) for x ∈ R,

where Kλ is the modified Bessel function of the third kind

Kλ =
1

2

∫ ∞

0

yλ−1e−x(y+1/y)/2dy for x ∈ R,

(see e.g. [16]). The permitted values of the parameters are as follows:

λ, β, µ ∈ R with







δ ≥ 0 and |β| < α if λ > 0,

δ > 0 and |β| < α if λ = 0,

δ > 0 and |β| ≤ α if λ < 0.

3.2.4 Gamma Distribution

The probability density function for the Gamma distribution is given by

fGamma =
xα−1e−λxλα

Γ(α)
for x ∈ [0,∞),

and the corresponding distribution function is given by

FGamma = P (α, λx) for x ∈ [0,∞),

where P (a, z) is a regularized gamma function. (see e.g. [22])

3.3 Test Results

3.3.1 Heavy-tail Part

For the data of the upward jump duration and the downward jump size, which are
considered as heavy-tail distributed, we use the GP distribution and the Pearson
VII distribution to fit them with ML method. Notice that when estimating the
parameters for the downward jump size, we shift the data set, i.e. let the data set
minus the minimum value of the data. The fitting results are as follows.
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General Pareto
ξ σ KS Distance

Duration for jump-up 0.376565 23.5202 0.0398764
Size of jump-down 0.369871 0.0114926 0.0556826

Pearson VII
m c KS Distance

Duration for jump-up 1.20422 25.022 0.0556826
Size of jump-down 1.26035 0.0132479 0.0681976

Table 3.5: Parameters for GP and Pearson VII estimated by ML and KS distance
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Figure 3.6: Comparison of empirical distribution and fitted distribution for the data
of upward jump duration
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Figure 3.7: Comparison of empirical distribution and fitted distribution for the data
of downward jump size

3.3.2 Light-tail Part

Similarly we use the GH distribution and the Gamma distribution to fit the data
of the downward jump duration and the upward jump size, which were found to be
light-tailed. Note that our data are all positive; however for the GH distribution,
data can be both positive and negative. Hence it is necessary to set a cutoff point to
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keep the GH distribution just working on the positive side. Also another thing that
need to be mentioned here is that when estimating the parameters of the Gamma
distribution, we shift the data set; the idea is that we consider the data set minus the
minimum value of the data, so that the whole data set starts out close to the zero
point.3 The fitting results are as follows.

Generalized Hyperbolical Distribution
cutoff λ α β

Duration for jump-down −24.155 0.139297 4.31309 4.30681
Size of jump-up 1.94047 −4.80819 5.37966 4.55007

δ µ KS Distance
Duration for jump-down −0.845762 0.79237 0.0545647

Size of jump-up 0.0387968 −11.2119 0.113873

Table 3.6: Parameters for GH distribution estimated by ML and KS distance

Gamma distribution
α λ KS Distance

Duration for jump-down 0.576991 74.6291 0.132548
Size of jump-up 0.697845 0.0234174 0.0640025

Table 3.7: Parameters for Gamma distribution estimated by ML and KS distance
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Figure 3.8: Comparison of empirical distribution and fitted distribution for the data
of downward jump duration

3.3.3 Conclusions

Observing the comparing plots of empirical distribution and fitted distribution, we
find that for the upward jump duration and the downward jump size, both the GP
distribution and the Pearson VII distribution fit data quite well; and according to

3In practice, we also have to plus a very small number, e.g. 0.000000001, to keep the data greater
than zero such that the computer code can work correctly.
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Figure 3.9: Comparison of empirical distribution and fitted distribution for the data
of upward jump size

the KS distances, the GP distribution performs a little better than the Pearson VII
distribution.

Further according to the comparing plots and the KS distances for the light-tail
part, we consider that the GH distribution can fit the data of the downward jump
duration well; and for the upward jump size, the Gamma distribution can fit well.

In conclusion, these test results show that the upward jump duration and the
downward jump size are heavy-tail distributed, and the downward jump duration
and the upward jump size are light-tail distributed.
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Chapter 4

Dependence Structure Test

As discussed in Chapter 2, the jump process for asset pricing is usually modelled as
a Poison process. This implies two assumptions. The first assumption that the dura-
tion between jumps are exponentially distributed fails, as we have shown in previous
chapters. Another assumption, that the duration between jumps are independent
random variables, also need to be checked. In this chapter, we will test dependence
structure for both jump duration and jump size.

4.1 BDS Test

Here we use the BDS statistic (see [7]) to test dependence structure of the time series
for both jump duration and jump size. The BDS statistic is defined as

wm,n(ǫ) =
√
n−m+ 1

cm,n(ǫ) − cm1,n−m+1(ǫ)

σm,n(ǫ)
. (4.1)

Here n is the sample size, m is the embedding dimension, and cm,n(ǫ) is defined as

cm,n(ǫ) =
2

(n−m+ 1)(n−m)

n∑

s=m

n∑

t=s+1

m−1∏

j=0

Iǫ(Xs−j , Xt−j),

where

Iǫ(Xs−j , Xt−j) =

{

1 if |Xs−j −Xt−j | < ǫ,

0 otherwise.

And the consistent estimator σ2
m,n(ǫ) is

σ2
m,n(ǫ) = 4

[

km + 2

m−1∑

j=1

km−jc2j + (m− 1)2c2m −m2kc2m−2
]

,
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where

c = c1,n(ǫ) ,

k = kn(ǫ) =
6

n(n− 1)(n− 2)

n∑

t=1

n∑

s=t+1

n∑

r=s+1

hǫ(Xt, Xs, Xr),

hǫ(i, j, k) =
1

3

[
Iǫ(i, j)Iǫ(j, k) + Iǫ(i, k)Iǫ(k, j) + Iǫ(j, i)Iǫ(i, k)

]
.

Since the BDS statistic is asymptotically N(0, 1) distributed and is two-sided, the
null of independence and identical distribution will be rejected at 5% level when
|wm,n(ǫ)| > 1.96. (See [3])

4.2 Dependence Test Results

This test is carried out with the Matlab code of Ludwig Kanzler, (see [17]). Here
the testing objectives are non-normally distributed and with a small sample size,
therefore, besides the bds function, we also need the bdssig function. The return
value of the bdssig function will be 0.005, 0.01, 0.025, 0.05 or 1. For example, when
the return value is 0.01, the equivalent two-sided significance level will approximately
be 0.02, (the detailed description for these two functions can also be found in [4]).
The test results are as follows.

m = 2 m = 3 m = 4 m = 5 m = 6 m = 7 m = 8 m = 9 m = 10
w 0.5985 0.9521 0.7380 0.3449 0.0172 −0.5839 −0.8183 −0.8076 −0.7000

return 1 1 1 1 1 1 1 1 1

Table 4.1: Size of upward jump

m = 2 m = 3 m = 4 m = 5 m = 6 m = 7 m = 8 m = 9 m = 10
w 1.3159 1.4190 0.9864 0.8537 0.0529 −0.6276 −1.1339 −0.8389 −0.7461

return 1 1 1 1 1 1 1 1 1

Table 4.2: Size of downward jump

m = 2 m = 3 m = 4 m = 5 m = 6 m = 7 m = 8 m = 9 m = 10
w 1.3159 5.5038 6.3020 6.4904 6.3721 6.7194 7.2741 7.8510 8.3401

return 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050

Table 4.3: Duration for upward jump

m = 2 m = 3 m = 4 m = 5 m = 6 m = 7 m = 8 m = 9 m = 10
w 1.2599 2.1148 2.6047 3.2856 3.2031 3.7322 4.4233 5.1866 5.8934

return 1.0000 1.0000 0.0500 0.0250 0.0250 0.0100 0.0050 0.0050 0.0050

Table 4.4: Duration for downward jump
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According to the test results in the above tables, we conclude that the data of
jump sizes for both upward jumps and downward jumps are independent. However,
for durations for upward jumps and downward jumps, the data are dependent. In the
following figures, we also see that the durations of jump are clustered but the jump
sizes are not.
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Figure 4.1: Stems of jump duration
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Figure 4.2: Stems of jump size

4.3 Modelling for Jump Duration

In the previous section, the BDS test results show that the jump durations for both
jump-up and jump-down are correlated. In this section we will try to find a proper
model for jump duration.
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4.3.1 AR(1) Model

The AR(1) model is given by

yn = a0 + a1yn−1 + σǫn, (4.2)

where a0 and a1 are constants, and ǫn ∼ N(0, 1).

Here, taking the logarithm for data of jump-up duration and jump-down duration,
we estimate the parameters a0 and a1 by LS method, and estimate the parameter σ
of the residual by ML method. The estimated parameters are listed in the following
table.

a0 a1 σ
Duration for jump-up 2.17197 0.223581 1.31999

Duration for jump-down 2.34962 0.115215 1.53022

Table 4.5: Estimated parameters for jump duration

With the estimated parameters for the jump-up duration, we simulate one sam-
ple path and compare the empirical distribution of simulated sample data with the
original data. And same to the jump-down duration.
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Figure 4.3: Simulated Sample Paths and Empirical Distribution Comparing
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Observing the comparing plots of empirical distributions, we find that the em-
pirical distributions of the data simulated by the AR(1) model can fit the empirical
distributions of the original data very well. For further verification of the AR(1)
model, we simulated 1000 sample paths for jump-up and jump-down respectively and
compare their empirical distributions with the empirical distributions of the original
logarithmic data with the KS distance test1.

mean variance min max
KS distance 0.0993 8.1053e− 4 0.0435 0.2319
p value 0.535 0.0776 9.4238e− 4 0.9993

Table 4.6: KS distance and p value for 1000 simulations of jump-up duration

mean variance min max
KS distance 0.1322 0.0014 0.0507 0.2917
p value 0.2706 0.0651 6.9142e− 6 0.9993

Table 4.7: KS distance and p value for 1000 simulated paths of jump-down duration
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Figure 4.4: Histogram of KS distance

According to the results of KS distance test, there are 33 simulations for jump-up
duration rejected by the KS test in 1000 simulations; and for jump-down duration
there are 198 simulations rejected in 1000 simulations. Hence we can consider that the
AR(1) model performs very well for jump-up duration. And though in the jump-down
duration case, the performance of the AR(1) model is not as good as that in jump-up
duration case, we still consider the AR(1) model as a reasonably proper model for
jump-down duration.

1Here we use the Matlab built-in function, “kstest2”.
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Chapter 5

Counting Process

Letting N(t) be a counting process for counting the jump times, we consider the jump
model for asset pricing can be

St = S0 exp
{

µt+ σWt +

N1(t)
∑

i=1

ξ1i −
N2(t)
∑

i=1

ξ2i

}

, (5.1)

where N1(t) and N2(t) count the number of upward jumps and downward jumps
separately; ξ1i and ξ2i are the upward and downward jump size. In the last chapter,
we find that duration for jumps are correlated and the logarithm of the data can be an
AR(1) process. With these results, we will investigate the relation between the jump
duration model and the intensity process, λ(t), of the counting process. Moreover we
will also discuss the properties of the counting process N(t).

5.1 Stochastic Intensity

Definition 6 (Stochastic Intensity, (see C. G. Bowsher [6] Definition 3)) Let
N(t) be a simple point process on [0,∞] that is adapted to some filtration {Ft}, and
let λ(t) be a positive, Ft-predictable process. If

E[N(s) −N(t)|Ft] = E[

∫ s

t

λ(u)du|Ft] P -a.s.,

for all t, s such that 0 ≤ t ≤ s, then λ(t) is the (P,Ft)-intensity of N(t).

The relation between the stochastic intensity λ(t) and the compensator of a count-
ing process A(t) is given by

A(t) =

∫ t

0

λ(s)ds.

If A(t) is differentiable, then
λ(t) = A′(t−),
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(see [18]). Further the compensator A(t) of N(t) exists uniquely. Hence the stochastic
intensity λ(t) also exists uniquely. In other words, one predictable process λ(t) can
characterize one counting process N(t).

Theorem 1 (F. C. Klebaner [18] Theorem 9.6) Let N be a counting process gen-
erated by the sequence Tn, and denote by Un+1 = Tn+1 − Tn the interarrival times,
T0 = 0. Let Fn(t) = P (Un+1 ≤ t|T1, . . . , Tn) denote the regular conditional distribu-
tions, and F0 = P (T1 ≤ t). Then the compensator A(t) is given by

A(t) =

∞∑

i=0

∫ t∧Ti+1−t∧Ti

0

dFi(s)

1 − Fi(s−)
. (5.2)

For a counting process, we have

N(t) =

∞∑

n=1

I(Tn ≤ t), N(0) = 0,

where T1, T2, . . . denotes the arrival time of the events1. Applying Theorem 1, we can
get the compensator A(t) of the counting process, and if the conditional distribution
Fn are continues with F0 = 0, we can simplify equation (5.2) and get

A(t) = −
∞∑

n=0

log(1 − Fn(t ∧ Tn+1 − t ∧ Tn)), (5.3)

(see [18]). We have

t ∧ Tn+1 =

{

t if t < Tn+1,

Tn+1 if t ≥ Tn+1,
(5.4)

and

t ∧ Tn =

{

t if t < Tn,

Tn if t ≥ Tn.
(5.5)

Since {Tn} are the sequence of arrival times, we have Tn+1 > Tn. Hence with equa-
tion (5.4) and equation (5.5), we have

t ∧ Tn+1 − t ∧ Tn =







0 if t < Tn < Tn+1,

t− Tn if Tn ≤ t < Tn+1,

Tn+1 − Tn if Tn < Tn+1 ≤ t.

(5.6)

Letting g(t, Tn, Tn+1) denote t ∧ Tn+1 − t ∧ Tn, we can assume that g(t, Tn, Tn+1)
is a continuous function of time t with “parameters” Tn and Tn+1. Note that Tn and
Tn+1 are not the parameters in normal sense, they are random variables (stopping
times). In other words, Tn is distributed with a certain distribution, so is Tn+1.

The sequence of stopping time, T1, T2, . . . , Tn, . . ., divide [0,∞) into many small
intervals, i.e. [Tn, Tn+1), n = 1, 2, 3, . . . . For any certain time t, it must locate
in one of these small intervals and must locate in only one interval, (since there is

1In this report, the events are the jumps of the stock prices.
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no intersection part in these small intervals). Now let t locate in [Tk, Tk+1), i.e.
Tk ≤ t < Tk+1. With equation (5.6), we know that for this interval, [Tk, Tk+1),

t ∧ Tn+1 − t ∧ Tn = t− Tk.

And for the small intervals on the left side of [Tk, Tk+1), all of T1, T2, . . . , Tk−1 are less
than t. Hence for these intervals, [Tj , Tj+1), j = 0, 1, . . . , k − 1, with equation (5.6),
we know that

t ∧ Tn+1 − t ∧ Tn = Tj+1 − Tj , j = 0, 1, . . . , k − 1.

Similarly for the intervals on the right side of [Tk, Tk+1), all the stopping time,
Tk+1, Tk+2, . . ., are greater than t. Hence for these intervals, [Ti, Ti+1), i = k +
1, k + 2, . . ., according to equation (5.6), we can get that

t ∧ Tn+1 − t ∧ Tn = 0, i = k + 1, k + 2, . . . .

Through the analysis above, we can expand the series on right-hand side of equa-
tion (5.3) in the following form,

A(t) = −
∞∑

n=0

log(1 − Fn(t ∧ Tn+1 − t ∧ Tn))

= −
[

log(1 − F1(T2 − T1)) + log(1 − F2(T3 − T2)) + · · ·+

+ log(1 − Fk−1(Tk − Tk−1)) + log(1 − Fk(t− Tk))+

+ log(1 − Fk+1(0)) + log(1 − Fk+2(0)) + · · · · · ·
]

. (5.7)

Using equation (5.7), we find that there is only one term containing the time t, that
is the term log(1 − Fk(t− Tk)). Hence differentiation of both sides of equation (5.7)
gives

A′(t) = − d

dt
log(1 − Fk(t ∧ Tk+1 − t ∧ Tk))

= − d

dt
log(1 − Fk(t− Tk))

=
F ′

k(t− Tk) d
dt(t− Tk)

1 − Fk(t− Tk)

=
fk(t− Tk)

1 − Fk(t− Tk)
. (5.8)

Here we assume the conditional distribution function Fk(s) is differentiable and let
fk(s) = d

dsFk(s) denote the crresponding conditional density function.

However we need to notice that T1, T2, . . . are a sequence of random variables,
so for a certain time t, the small interval [Tk, Tk+1) in which t is located is also in
random, i.e. k is a random variable. Hence to improve the expression of A′(t) in
equation (5.8), we introduce two random variables, TN(t) and TN(t)+1, in which the
subscripts are random. Let TN(t) denote the time when the last event happens just
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before time t (or exactly at time t) and TN(t)+1 denote the time when the first event
happens after time t. With these two random variable, we have

TN(t) ≤ t < TN(t)+1,

in other words, for any certain time t, it is located in the random interval [TN(t), TN(t)+1).
Hence we use N(t) instead of k in equation (5.8) and get a new expression of A′(t),

A′(t) =
fN(t)(t− TN(t))

1 − FN(t)(t− TN(t))
. (5.9)

If we assume that all the conditional density function fn(s), n = 1, 2, . . . are continuous
functions, then equation (5.9) is also the expression of the stochastic intensity λ(t) =
A′(t−), i.e.

λ(t) =
fN(t)(t− TN(t))

1 − FN(t)(t− TN(t))
. (5.10)

Based on our result in the previous chapter, i.e. the logarithm of the jump duration
can be an AR(1) process, we can use the expression (5.10) to compute λ(t). Recall
that the AR(1) model is given by

yn = a0 + a1yn−1 + σǫn,

where a0 and a1 are constant, and ǫn ∼ N(0, 1). And in Theorem 1, we let Un denote
the interarrival time between the nth event and the n− 1th event2. Then we have

yn = logUn

and

Un = Tn − Tn−1.

Since

Un+1 ≤ t⇐⇒ eyn+1 ≤ t,

we can get

Fn(t) = P (Un+1 ≤ t|T1, . . . , Tn)

= P (eyn+1 ≤ t|T1, . . . , Tn)

= P (ea0+a1yn+σǫn+1 ≤ t|yn)

= P (eσǫn+1 ≤ te−a0−a1yn |yn)

= ψ(te−a0−a1yn), (5.11)

here ψ(x) = 1√
2πσ

∫ x

0
1
ue−

(ln u)2

2σ2 du is the lognormal distribution function with param-

eters (0, σ). This is result quite obvious, since that in ea0+a1yn+σǫn+1 , yn just depends

2In this report, Un is also called as the duration between the jumps.
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on Tn − Tn−1 and ǫn+1 is independent from T1, . . . , Tn; hence ea0+a1yn+σǫn+1 just
depends on Tn − Tn−1, i.e. just depends on Un; or we can say it just depends on yn.

From (5.11), we have

Fn(t− TN(t)) = ψ((t− TN(t))e
−(a0+a1yn))

= ψ((t− TN(t))e
−a0U−a1

n )

= ψ((t− TN(t))e
−a0(Tn − Tn−1)

−a1). (5.12)

Since FN(t)(s) must be one of F0(s), F1(s), . . . , Fn(s), we therefore get

FN(t)
(t− TN(t)) = ψ((t− TN(t))e

−a0(TN(t)
− TN(t)−1)

−a1), (5.13)

and

fN(t)(t− TN(t)) = F ′
N(t)

(t− TN(t))

=
1√
2πσ

e−(a0+a1yn) 1

(t− TN(t))e−(a0+a1yn)
· e−

[log((t−TN(t)))e
−(a0+a1yn)]2

2σ2

=
exp

{

− 1
2σ2

[
− a0 + log(t− TN(t)) − a1 log(TN(t) − TN(t)−1)

]2
}

√
2πσ(t− TN(t))

.

(5.14)

Now the stochastic intensity λ(t) of the counting process N(t) in equation (5.1) is
given by

λ(t) =
exp

{

− 1
2σ2

[
− a0 − a1 log(TN(t) − TN(t)−1) + log(t− TN(t))

]2
}

√
2πσ(t− TN(t))

(

1 − ψ
(
e−a0(t− TN(t))(TN(t) − TN(t)−1)−a1

)) , (5.15)

where ψ(x) is the lognormal distribution function with parameter (0, σ).

5.2 Properties of the Counting Process

In the previous section, we discussed the counting process N(t) with the stochastic
intensity given by equation (5.15). Now we will further discuss the properties of this
counting process model.

5.2.1 Distribution Function for the Interarrival Time

Here we will compute FUn
(t), the distribution function for the interarrival time

Un, (n = 1, 2, . . .).

We have y1 = a0 + a1y0 + σǫ1, y0 = a0

1−a1
and get

y1 = a0 +
a1a0

1 − a1
+ σǫ1

=
a0

1 − a1
+ σǫ1,
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where ǫ1 ∼ N(0, 1) and y1 ∼ N( a0

1−a1
, σ2). Further U1 = ey1 , so that U1 is lognormal

distributed.

For FU1(t), we have

FU1(t) = P (U1 ≤ t) = F (ey1 ≤ t)

=
1√
2πσ

∫ t

0

1

u
e−

(log u−

a0
1−a1

)2

2σ2 du

=
1√
2πσ

∫ t

0

1

u
e−

(log(e
−

a0
1−a1 u))2

2σ2 du. (5.16)

Let e−
a0

1−a1 u = τ , then 1
udu = e−

a0
1−a1

1
τ · e

a0
1−a1 dτ = 1

τ dτ . And equation (5.16) can be
rewritten as

FU1(t) =
1√
2πσ

∫ te
−

a0
1−a1

0

1

τ
e−

log(τ)2

2σ2 dτ

= ψ(te−
a0

1−a1 ), (5.17)

where

ψ(x) =
1√
2πσ

∫ x

0

1

u
e−

(log u)2

2σ2 du

is the lognormal distribution function with parameters (0, σ).

For FUn
(t), n = 2, 3, . . ., we have

FUn(t) = P (Un ≤ t) =

∫ ∞

0

P (Un ≤ t|Un−1 = τ)fUn−1dτ, (5.18)

where fUn−1 is the density function of the interarrival time Un−1. And since yn =
a0 + a1yn−1 + σǫn and yn = logUn, we get

P (Un ≤ t|Un−1 = τ) = P (eyn≤t|eyn−1 = τ)

= P (ea0+a1yn−1+σǫn ≤ t|yn−1 = log τ)

= P (eσǫn ≤ te−a0−a1 log τ |yn−1 = log τ)

= ψ(te−a0−a1 log τ ). (5.19)

Letting F (t, τ) = ψ(te−a0−a1 log τ ), with equation (5.18), we get the recursive formula
for FUn

(t),

FUn
(t) =

∫ ∞

0

F (t, τ)fUn−1(τ)dτ. (5.20)

Putting equation (5.16) and (5.20) together, we have the distribution function for
the interarrival time

FUn
(t) =

{

ψ(te
− a0

1−a1 ) if n = 1,
∫ ∞
0
F (t, τ)fUn−1(τ)dτ if n > 1.

(5.21)
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5.2.2 Distribution Function for the Arrival Time

Let FTn
(t) denote the distribution function for the arrival time Tn, (n = 1, 2, . . .).

With the result of equation (5.16), we get

FT1(t) = P (T1 ≤ t) = P (U1 ≤ t) = ψ(te−
a0

1−a1 ). (5.22)

For FTn
(t), n = 2, 3, . . ., we have

FTn
(t) = P (Tn ≤ t) =

∫ t

0

P (Tn ≤ t|Tn−1 = τ)fTn−1(τ)dτ

=

∫ t

0

P (
n∑

j=1

Uj ≤ t|
n−1∑

j=1

Uj = τ)fTn−1(τ)dτ

=

∫ t

0

P (Un ≤ t− τ |
n−1∑

j=1

Uj = τ)fTn−1(τ)dτ. (5.23)

Let Rn(t, τ) = P (Un ≤ t|
∑n−1

j=1 Uj = τ). Then equation (5.23) can be written as

FTn
(t) =

∫ t

0

Rn(t− τ, τ)fTn−1(τ)dτ. (5.24)

Now the functionRn(t, τ), (n ≥ 2) can be computed recursively. BecauseR2(t, τ) =
P (U2 ≤ t|U1 = τ), with the definition of F (t, τ) in equation (5.19), we get

R2(t, τ) = F (t, τ). (5.25)

For Rn(t, τ), (n > 2), we have

Rn(t, τ) =

∫ τ

0

F (t, s)R′
n−1(s, τ − s)ds, n > 2, (5.26)

where R′
n−1(s, u) = ∂

∂sRn−1(s, u). We prove this by mathematical induction:

First when n = 3,

R3(t, τ) = P (U3 ≤ t|U1 + U2 = τ)

=

∫ τ

0

P (U3 ≤ t|U2 = s, U1 + U2 = τ)fU2 (s|U1 + U2 = τ)ds

=

∫ τ

0

P (U3 ≤ t|U2 = s)fU2(s|U1 = τ − s)ds (since U3 just depends on U2)

=

∫ τ

0

F (t, s)R′
2(s, τ − s)ds. (5.27)
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If the formula for Rn(t, τ) holds, then

Rn+1(t, τ) = P (Un+1 ≤ t|
n∑

j=1

Uj = τ)

=

∫ τ

0

P (Un+1 ≤ t|Un = s,
n∑

j=1

Uj = τ)fUn
(s|

n∑

j=1

Uj = τ)ds

=

∫ τ

0

P (Un+1 ≤ t|Un = s)fUn
(s|

n−1∑

j=1

Uj = τ − s)ds

=

∫ τ

0

F (t, s)R′
n(s, τ − s)ds. (5.28)

Hence equation (5.26) holds by induction.

Now we can write the distribution function for arrival time

FTn
(t) =

{

ψ(te
− a0

1−a1 ) if n = 1,
∫ t

0
Rn(t− τ, τ)fTn−1(τ)dτ if n ≥ 2,

(5.29)

where

Rn(t, τ) =

{

F (t, τ) if n = 2,
∫ τ

0
F (t, s)R′

n−1(s, τ − s)ds if n ≥ 3,
(5.30)

and F (t, τ) = ψ(te−a0−a1 log τ ).

5.2.3 Probability Distribution of N(t)

The probability of n jumps occurring up till time t is

P{N(t) = n} = P{N(t) ≥ n} − P{N(t) ≥ n+ 1}
= P{Tn ≤ t} − P{Tn+1 ≤ t}
= FTn

(t) − FTn+1(t)

=

∫ t

0

dFTn
(t) −

∫ t

0

Rn+1(t− τ, τ)fTn
(τ)dτ

=

∫ t

0

(1 −Rn+1(t− τ, τ))dFTn
(τ). (5.31)

Since N(t) =
∑∞

n=1 I(Tn ≤ t), the mean value of the jump times in [0, t] is

E[N(t)] =

∞∑

n=1

E[I(Tn ≤ t)]

=

∞∑

n=1

P (Tn ≤ t)

=
∞∑

n=1

FTn
(t). (5.32)
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5.3 Conclusions

Using the assumption that the logarithm of the jump duration is an AR(1) process,
we derive the analytical expression of the stochastic intensity λ(t). Moreover through
analysis of the properties of the counting process, we find the distributions for inter-
arrival times or arrival times.
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Chapter 6

Conclusions

In this project, we focus on jump characteristics for financial asset pricing. We give
a formal definition of jumps, based on which we analyze the properties of jump sizes
and jump durations for upward and downward jumps.

We have shown that the durations for jump-up and the sizes of jump-down are
heavy-tailed distributed, while the durations for jump-down and the sizes of jump-up
are light-tailed distributed. We also investigate the dependence structure for both
jump size sequence and jump duration sequence. Moreover one very interesting result
is that the duration between the jumps are correlated and the logarithm of the data
can be modelled as an AR(1) process. Though our test result is based on one stock, we
notice that it is a common phenomenon that in financial market, jumps are clustered.
Hence we think that for most stocks, jump durations are dependent and can not simply
be modelled as a Poisson process as is assumed in the literatures (see e.g. [14]).

Finally we discuss some properties of the new counting process model which we
can derive form our empirical findings.

In the future work, we need to test more stocks, and verify whether other stocks
have the similar tail properties of jumps as IBM stock and whether the jumps are
also correlated. Further in the previous chapters, we saw that the AR(1) model for
jump-down duration still can be improved: to find a better model for jump duration
is also one important part in future research.
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