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Abstract

In this thesis we model the system price from the Nordic power exchange with
the seasonal autoregressive fractionally integrated moving average (SARFIMA) pro-
cess. The innovation process is a generalized autoregressive conditionally heteroskedas-
tic (GARCH) process, or an exponential GARCH (EGARCH) process. The autoregres-
sive conditional mean function is made periodic in order to capture the weakly pattern.
All parameters are estimated simultaneously by the method of approximate maximum
likelihood. The model effectively captures the dependencies in the data.
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1 Introduction

During the last two and a half decades, many countries world wide have decided to
deregulate and liberalize their power sectors. The general motivation is a belief that
introduction of market forces can stimulate efficiency when it comes to investment and
technical development. The energy sector has traditionally been regarded as a natural
monopoly, but because of transmission improvements and development of new genera-
tion technologies, the restructuring has become practically possible.

A reform in Chile in 1982 paved the way for the process. The idea was to separate
generation and distribution companies. In 1986, the privatization began in large scale
and led to the creation of a wholesale power trading platform.

Great Britian followed the Chilean example and reorganized their power sector in
1990. The power market only included England and Wales initially, but from 2005
Scotland as well. In 1992, the Nordic market opened in Norway and later on in Sweden
1996, Finland 1998 and Denmark 1999. In 1994, markets in Australia (Victoria and
South Wales) began their operation. This was 1998 followed by the launch of the
Australian National Electricity Market (NEM). About the same time, New Zealand
restructured their power sector with the official opening of a market in 1996. A number
of markets in North America began operating in the late 90s’, among them New York.
In 1998, California followed and Texas and Alberta in Canada three years later. The
trend of an increasing number of liberalized markets is most notable in Europe, but also
visible world wide.

1.1 Nord Pool

Nord Pool is the name of the Nordic power market. It was the first multinational power
exchange in the world. Nord Pool consists of the following parts:

e The physical market Elspot. In order to participate in this market, a connection
that makes it possible to deliver to or take power from the main grid is required.
Of the total power consumed in the Nordic region, about 40 % is traded on Elspot.

e The hour-ahead market Flbas, that is operational in Sweden, Finland and the
eastern part of Denmark. Here, Elspot participants can adjust imbalances in
their positions up to 2 hours prior to delivery.

e The financial market Eltermin. Here, power derivatives such as forwards, futures
and options are being traded.

The participants in Nord Pool include generators, suppliers, retailers, traders, financial
institutions and large consumers.

Nord Pool is often referred to as a successful market. The main reason for this is
its fragmented structure, with over 350 generation companies. For example, the market
share of Nord Pool’s largest player Vattenfall is only about 20%. Another explanation
is the storage ability and production flexibility that comes from the large amount of
hydropower available in the Nordic region.

1.2 Price setting

Despite its name, Elspot is not really a spot market, but rather a day-ahead market.
Here, one-hour-long physical power contracts are traded, i.e., the price is fixed for each



1 INTRODUCTION 2

hour. Every day before 12 pm, the participants informs the market administrator how
much electric power and to what price, they want to buy or sell a specific hour the
following day. Volume histograms Vien(p) and Viuy(p) are then created for each hour,
denoting the total amount of electricity that the participants wants to sell and buy as a
function of the price p. Now, if Vi, (P) = Vien(P) for some price P, then P is defined
as the spot price, also called the system price. Byers with a bid p > P and sellers asking
a price p < P will get a transaction at the system price. These are the only cases where
transactions will take place. However, if the system price does not exist, then there will
be no transactions at all.

Now, the system price could result in grid congestions, so called bottlenecks. In this
case, Nord Pool computes area prices that differ from the system price. The idea behind
this price adjustment is to avoid that the limited capacity of the transmission grid is
exceeded.
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2 Stylized facts about electricity prices

We will now review some of the characteristic features of electricity spot prices

2.1 Seasonality

Electricity cannot be economically stored. There is therefore a need to keep production
and consumption in realtime balance. As a result of this, seasonal and cyclical fluctu-
ations in demand are reflected in the spot price. There is an intra-day variability, that
comes from the behavior of the consumers. Also, the business week causes an intra-week
variation, mainly due to weekend effects. Furthermore, the temperature dependence of
demand results in a within-year seasonality.

Most of the seasonal variations in the price comes from the demand side. However,
at some markets the supply is also affected by seasonality. For example, in the Nordic
region, large amounts of hydropower are traded and water reservoir levels are dependent
on snow melting and precipitation. Hence, temperature and weather affects both supply
and demand and therefore the price.

2.2 Mean reversion

Under extreme market conditions, large price fluctuations can in the short run be ob-
served in the power market. However, in the long run, supply will be adjusted and the
price will move towards the cost of producing electricity. Some mean reversion can also
be explained by the temperature dependent demand curve.

2.3 Volatility

Electricity spot prices are very volatile. If we use the classical notion of volatility, the
standard deviation of log-returns, the volatility of the system price from Nord Pool that
we model in this thesis is about 7%. This can be compared with the volatility of very
volatile stocks which is under 4%. Volatility clustering is also present in most electricity
price series.

2.4 Jumps and spikes

A spike is a large price jump followed by a quick return to the same level. Some
typical spikes in our price data can be seen in Figure 1 below. The spike behavior is
often explained by the non-storability of electricity, since shocks in supply or demand
cannot be smoothened. However, the size of some jumps are so large that another
explanation have been suggested: The spikes are caused by strategies of bidders. For
many participants, a sufficient supply of electricity is so important that they are willing
to pay very high prices to maintain it. Accordingly, agents place bids at the highest
allowed level, and since the suppliers know about this strategy, they respond in such a
way that they maximize their profit and the price gets very high.
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Figure 1: Some spikes in the price data.
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3 Time series

In this section we introduce the time series we use to model our price data. In particu-
lar, we make use of classical time series analysis, where dependencies are measured via
autocovariances or autocorrelations. The autocovariance function (ACVF) and auto-
correlation function (ACF) of a stationary stochastic process (X;);ecz are given by

B ~ Cov(X, Xo)
vx(h) = Cov(Xo, Xp) and px(h) = Var (X))

respectively. Their sample counterparts are given by the estimators

1 n—|h| B B .
’7’n,X(h) = ; ; (Xt _X)(Xt—|—|h\ —X) and pn,X(h) = %EO;,

respectively, where X is the sample mean.

The most simple test of the whiteness of a sample {Xi,...,X,} is to plot the
sample ACF. Most of the values should fall inside the horizontal lines +1.96/+/n, which
constitute the 95% asymptotic confidence band for a sample of standard Gaussian white
noise.

Another test of whiteness is based on the Ljung-Box statistic, given by

h 2
Q) =n(n+ 9y 25

—
=

The distribution of Q(h) can be approximated with the x? distribution with h degrees
of freedom. Therefore, we reject the hypothesis that (X1,...,X,,) comes from a white
noise sequence if Q(h) > x?_, where « is some appropriate level. The dependence can
then be further analyzed by calculating Q(h) for e.g., the absolute and squared sample.

3.1 ARMA processes

An important class of time series is autoregressive moving average (ARMA) processes.
A zero mean stochastic process (X;) is said to be an ARMA(p,q) process with if it is
stationary and satisfies the difference equation

Xe=01Xo1+ .o+ 0 Xy p + 021+ ..+ 047 + Zy, (1)

where {¢1,...,¢p,01,...,04} are real numbers and (Z;) is a white noise sequence called
innovations or noise. Furthermore, we say that a process (X;) with mean p € R is
ARMA(p,q) if (X; — p) is a zero mean ARMA (p,q) process.

3.2 Seasonal long memory processes

The ACF of an ARMA process (X;) at lag h converges fast to zero when h — oo,
meaning that there exist some d > 1 such that

d"px(h) =0 as h — oo,

This is why ARMA processes often are refereed to as short memory processes. In this
section we introduce a class of processes with a more slowly decaying autocorrelation.



3 TIME SERIES 6

The large amount of hydro power traded on the Nordic power market is the reason for
the presence of long memory in the electricity price series; one of the first discoveries of
long memory was in connection to river flows.

The backward-shift operator is denoted by B™ for n > 0, i.e., B"Xy = X; . For
D > —1 and s € N we define the seasonal difference operator VP (B) by the binomial
expansion

= D(1 - D)
D _ 2
v2(B):=(1-8B%)P §j<)— =1-DB — ———B" —...,
k=0

where

D\ _ (1 + D)
(k) T TA4+KET(A+D-k)

and I'(-) is the gamma function
Jot* e tdt for z € (0,00),
[(z) =< o0 for z € (—-N),
'l+z)/z for z € (—00,0)\ (—-N).

Now we are ready to introduce seasonal autoregressive fractionally integrated moving
average (SARFIMA) processes. Only a subclass of these is discussed, because the
general form does not come into play in the empirical analysis.

Definition. A zero mean stochastic process (Xi)icz is a seasonal autoregressive frac-
tionally integrated moving average process with period s and degree of seasonal differ-
encing D, denoted by SARFIMA(0,D,0)s, if it satisfies

VPX, =2, forteZ,
where (Zy)icz is a white noise sequence.

Now we give som properties of SARFIMA (0, D, 0)s processes: The following result
can be found in [3].

Theorem. Let (X;)icz be a SARFIMA(0, D,0)s process with —0.5 < D < 0.5. Then,
1. (Xi)tez is invertible with infinite autoregressive representation given by

T'(k — D)

NXy = X =7
(B t — Zﬂ-k t—sk t and 7Tk P(—D)P(k+1),

k=0

where 1, ~ k~P~1/T(=D) as k — cc.
2. (Xi)tez is stationary with infinite moving average representation given by

T'(k + D)

Xy =V(B%)Z; = Z¢th sk and i = (D) (k4 1)’

k=0

where ¢y ~ kP~1/T'(D) as k — oo.
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3. (Xi)tez has autocorrelation function of order k > 0, given by

I'(1—D)I'(k+D)/(T(D)T'(k—D+1)) for £=0,
px (sk+§&) =
0 for &e€{l,...,s—1},
(2)
where px (sk) ~ T(1 — d)k?¢=1/T(D) as k — oo.

When D > 0 we say that (X;)wez have seasonal long memory.

3.3 GARCH processes

Let us now take a look at the white noise sequence (Z;)icz in the preceding section.
This can be modeled as an i.i.d. sequence. However, often when it comes to financial
time series, such error processes exhibit conditional heteroskedasticity. This means that
the variance conditioned on the past, Var(Z;|Z;_1, Z;_o, ...), changes over time. One of
the most widely used models to capture this property is the generalized autoregressive
conditional heteroskedastic (GARCH) model of Bollerslev [2]: A stochastic process
(Xt)tez is a GARCH(p,q) process if it satisfies

Xt = UtZt for ¢t € Z, (3)

where (Z;)tez is an i.i.d. sequence of random variables with EZy = 0 and Var(Z) =1
and (0¢)tez is a nonnegative process satisfying the recursive equation

P q
ot :UH‘Z%'XtQ—i +Z/3jat2—j : (4)
i—1 j=1
Here the constants {w, a1,...,1,...} are required to be nonnegative in order to ensure

that o4 remains nonnegative.

The structure p = ¢ = 1 is sufficient for our purposes. In this case, a weakly
stationary solution of (3)-(4) exists if w > 0 and o + 8 < 1.

The simple structure of GARCH(p,q) processes imposes some limitations on them.
Firstly, the nonnegativity constraints can cause troubles when it comes to estimations.
Secondly, is reasonable from an economics point of view that positive shocks in a market
influence the conditional variance in a different way than negative. Negative changes in
e.g., stock returns, tend to be associated with increases in volatility and vice versa. This
so called leverage effect cannot be captured by the symmetry in equation (4). Because
of these drawbacks, we next introduce another GARCH-type process.

3.4 Exponential GARCH

The exponential GARCH (EGARCH) process of Nelson [7] is in its simplest form given
by
Xt = UtZt for t € Z, (5)

where (0¢)icz satisfies
logo? =w+ a|Zi_1|+vZ4_1 + Blogo? |, for t€Z (6)

with parameter values w, @,y € R and |8| < 1. Note that when v > 0, the volatility
responds asymmetrically to positive and negative values of (Z;), making the EGARCH
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process able to capture leverage effects. Moreover, it is easy to see that the sequence
(log 07)scz constitutes an ARMA (1,0) process with mean u = (w+ aE|Zg|)/(1 — ) and
white noise sequence (vZ;—1 + a(|Z;—1| — E|Zy])). It follows from the theory of ARMA
processes (see [4]), that the unique stationary solution of (6) is given by

o0

logot = a(l = B) '+ > B (vZ 1k + 0l Zi 1 4)-
k=0
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4 Distributions

4.1 Conditional distributions

The use of conditional maximum likelihood to estimate our model require that we specify
a conditional density. Besides the standard normal, we make use of two other densities:

e The Student-t distribution is often better than then Gaussian distribution to cap-
ture the observed kurtosis in financial data. Its density function, normalized to
have unit variance, is given by

T (4H) 1

fulz) = (v —2)I'(%) g (L+2?/(v —2) 0/

where v > 2 is the shape parameter.

e The generalized error distribution (GED) was suggested by Nelson [7]. In the case
of unit variance, its density function can be expressed as

1
= . B/ Y A )
.fl/(~77) )\V21+1/1/P(1/V) e 2 with A, 22/V1—‘(§),

v

where v > 0 is the tail-thickness parameter. When v < 2, the tails are heavier
than those of a normal distribution and when v > 2, they are lighter. For v = 2
the standard normal occurs and when v = 1 the Laplace distribution results.

4.2 Heavy-tailed and skewed distributions

Sometimes it is useful to investigate some property of a data set by fitting different
distributions to it. In this section we introduce two classes of distributions that often
are used for this purpose.

4.2.1 Generalized hyperbolic distributions

The Student-t distribution is a member of a more general class of distributions, namely
the generalized hyperbolic (GH) distributions. They are defined as having density func-
tion

fGH(x;Ma 51 aalga A)

2 _ Bg2\A/2 (52 _ . \2Y(A-2)/2
_ (@ =BV (0% + (x—p)?)\" 2 K12 (a /52 + (:v—,u)Z) eBlz—n)
V2ra 1262 K, ((5\/ ao? — ﬂ2)

with parameters

0>0 and || <a if A>0,
0>0 and || <a if A=0,
0>0 and |f|<a if A<O,

where K is the modified Bessel function of the third kind. Here the parameters 4 € R
and ¢ describe location and scale, « determines the shape and 3 the skewness. The
parameter X influence the amount of mass contained in the tails.
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The tail behavior of the GH distribution is classified as semi-heavy, which means
that the tails are much heavier than those of Gaussian laws, but lighter than the tails
of non-Gaussian stable laws. The behavior is described by the following asymptotic
relation.

fau(@; p, 6,0, 8,A) ~ |z teFethr a9 4 +o0,

up to a multiplicative constant .
We make use of the following subclasses of GH.

e For A\ =1, we obtain the hyperbolic (HYP) distributions.

e For A = %, we obtain the normal-inverse Gaussian (NIG) distributions. A conve-
nient feature of NIG distributions is that they are closed under convolutions, so
that sums of independent NIG random variables are NIG distributed. Most other
GH distributions does not share this property.

4.2.2 Stable distributions

Stable distributions are heavy-tailed (except when a = 2, see below). The following
result can be found in [9] and introduce stable random variables in terms of four alter-
native but equivalent definitions.

Theorem (Stable random variable). The following conditions are equivalent and
fully characterizes a stable random variable: A random wvariable X is said to have a
stable distribution if

1. for any a,b > 0, there exist ¢ > 0 and d € R such that
aXi +bXe L X +d,

where X1 and Xo are independent copies of X and 2 denotes equality in distri-
bution;

2. for any n > 2, there exist ¢, > 0 and d,, € R such that
X1+ Xod oot Xn e, X +dy;

3. X belongs to a domain of attraction, i.e., there exist a sequence of independent and
identically distributed random variables Y1,Ys, ... and sequences numbers ¢, > 0
and real numbers d,, € R, such that

YiI+Ye+...4Y,
RIS

Cn

d . . . .
where = denotes convergence in distribution.

4. there ezist parameters a € (0,2], 0 > 0, g € [-1,1] and u € R such that X has
characteristic function

mreitny — {~o®lt]* (1 - iBsign(t) tan ) +ipt} if a#1 .
e - .
exp {—olt| (1 +iB2sign(t) n|t]) +ipt}  if a=1
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The most common way to specify a stable distribution is through its characteristic
function (7) and we use X ~ S, (8,0, 1) to denote that specification. Here, « is called
the index of stability or tail exponent and determines the rate at which the tails taper
off. The Gaussian distribution results when « = 2. For a < 2, the variance is infinite
and when a > 1, the mean of the distribution exists. The parameters 8, o and u are
the skewness, scale and location parameters, respectively.

Regarding the tail-behavior of X ~ S, (5, 0, 1) in the non-Gaussian case when a < 2,
it can be shown (see [9]) that

limg 00 2°P(X >2) = Coi(1+ )0,
limg 00 2°P(X < —2) = Cui(1- )0,
where
11—«
- if a#1
Cp=1 / (/ @ Sin:cdx) = [(2 = a) cos(ma/2)

. 2 .
Z if a=1
™

Except for the three special cases a=0.5, 1, 2, the stable density and cumulative
distribution function do not have closed form expressions. This is a major drawback,
because e.g., maximum likelihood methodology becomes infeasible, or at least difficult
and computationally demanding. We make use of the quantile method described by
McCulloch [5] to estimate the stable parameters.

4.3 Goodness of fit

In order to quantitatively assess goodness-of-fit, we make use of test statistics based
on the vertical distance between the fitted distribution function F' and the empirical
distribution function (edf) F, of the sample (X1,...,X,), given by

1 n
Fo(z) = - Z lix,, <z}
m=1

where 1y} is the indicator function. The most basic of these statistics is the Kolmogorov
distance (KD), given by
KD = sup |Fy(z) — F(x)|.
z€R
We also make use of the Anderson-Darling (AD) test statistic, a weighted version of
KD which puts more weight in the tails of the distribution. It is given by

AD = sup V@) —F@)|
veie /Fn(@)(1 - F@))
Critical values of KD and AD are not known for most distributions F. It is possible

to estimate such values via bootstrap resampling. Our purpose is only to compare fits,
so we do not do this, but a description of the procedure can be found in [1].
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5 Modeling

In this section we consider a time series model for the daily average system price from
Nord Pool.

5.1 The data

The price period from 2003-01-29 to 2006-04-28 (about 1200 days) is used to estimate
the model. These numbers were provided through Nord Pool’s market data service [8].
The raw price and its first differences are shown in Figure 2 below and some descriptive
statistics are reported in Table 1. The presence of volatility clustering is quite obvious
from looking at the first differences in Figure 2. Furthermore, Table 2 below gives a
first indication of day of the week effects, even though these statistics are unreliable due
to the small sample size and high volatility.

The system price [EUR/MWh]
60 T T

50
40 -
30+ : - -

20 .

10
29-Jan-2003 28-Feb-2004 29-Mar-2005 28-Apr-2006

First differences

20
151 -
10 -

5 —
| A | | A AWAAAL AL f !

“ (| ‘

-5 i

_10} ,

-15
29-Jan-2003 28-Feb-2004 29-Mar-2005 28—Apr-2006

Figure 2: Raw data and first differences.
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Table 1: Descriptive statistics of the data.

Raw data | 1st differences
Max 58.63 15.16
Min 15.76 -12.95
Mean 32.1516 0.0067
Variance | 53.0133 4.3932
Skewness 1.4273 0.8925
Kurtosis 5.1399 11.1231

Table 2: Mean and standard deviation for first differences.

Mean | St. Dev.
Sun-Mon | 2.7722 2.0195
Mon-Tue | 0.0506 1.8521
Tue-Wed | 0.0081 1.4438
Wed-Thu | -0.0225 | 1.8966
Thu-Fri | -0.6323 | 1.7343
Fri-Sat | -1.3359 | 1.5845
Sat-Sun | -0.7930 | 1.2813

The quantile plot in Figure 3 below tells us that we can expect the data to have
heavier tails than the normal distribution.
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Figure 3: Normal quantile plot of the first differences.

15



5 MODELING 16

5.2 Preprocessing

The statistics and procedures we use to analyze the data, e.g., the sample ACF and
seasonal decomposition, are sensitive to outliers. To identify and remove these, we
borrow a procedure from [6] that goes as follows: The time series is divided into seven,
one for each day of the week. Next, every value that deviates more than three standard
deviations from the mean is replaced by the arithmetic average of its two adjacent
values. We do not want this manipulation of the raw data to influence the analysis in
any significant manner, so the procedure is only applied once. The resulting 18 outliers
does not occur on a particular day of the week.

The annual seasonality in our data is modest, so we do not incorporate it in the time
series modeling. Instead, it is filtered out as a part of the preprocessing. In particular,
we decompose the outlier treated data (P;) according to

Py =pi + S,
where S; is the sinusoid

. (t—D
St:A+Bt+CSln (W)

The coefficients {4, B, C, D} are calculated using nonlinear least squares. The result is
reported in Table 3 below. Clearly, the contribution from the annual seasonality to the
variability of the data is small. The estimated seasonal component and preprocessed
data can be seen in Figure 4.

Table 3: Estimated parameters of the seasonal component with 95% confidence intervals
and coefficient of determination R2.

ClL
A | 3005 (29.27,30.82)
B | 0.003192 | (0.002064,0.004319)
C | 2.807 (2.273,3.341)
D | -58.56 (-70.14,-46-97)
R? | 0.1073
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Outlier treated data and seasonal component
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Figure 4: Annual seasonality and preprocessed data.

5.3 The model

In this section we consider the following combination of the time series introduced in
Section 3 as a model for the preprocessed data (p;).

VSDXt = €4, (8)
Xi = pe— e,

where s = 7 and (¢) isa GARCH(1,1) or an EGARCH process with conditional standard
deviation process (o;). The conditional mean equation is given by

s
pe=$1pe 1+ beper Y kWi,
k=1

where the constants {d1,...,0,} represent the weakly pattern and where (W} ;) is the
daily dummy of day k. We sometimes use the notation dp,y in the sequel to be more
specific.

5.3.1 Approximate maximum likelihood estimation

In order to fit the model (8) by the maximum likelihood method, we first specify a
density function gy (x), where the extra parameter vector ¢ also has to be estimated.
To estimate 6 = {¢1,...,01,...,w,a,7,53,D} and ¢ we then proceed as follows: The
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infinite autoregressive polynomial in the left hand side of (8) is truncated and ap-
proximations €;(f) and &4(0) are extracted. These are plugged into the approximate
log-likelihood, given by

£©)= Y logfi(6),

where © = {6,} and

2 1 é(0) )
0) = - . .
0= g (53
The estimate of © is now given by
6 = argmax £(0).

In particular, as gy () we use the standard normal, Student-t and GED densities.

Because of the primitive optimization routines we use to find © (Quasi-Newton line
search and the simplex method), clever initial values are important. We perform the
following steps to find these in the GARCH(p,q) case.

1. Initial values for the conditional mean parameters {¢i,...,d1,...} are found by
linear regression.

2. The sample ACF of the residuals from the regression is then calculated to find Dy
from equation (2).

3. Next, initial values for the GARCH process are found by the MATLAB command
ugarch.

4. Finally, in the case with a conditional density parameter, the initial value for this
is found by the maximum likelihood method.

In the case with the EGARCH process, step 3 is replaced by a linear regression with
the conditional variance and residuals from the fitted SARFIMA-GARCH model.

5.4 Numerical results

In this section we report the estimation results of the different versions of (8) that we
consider. All of these are re-estimated with insignificant parameters constrained to zero,
until only significant ones remain. It holds for all versions that the weekly pattern is
only due to weekend effects, meaning that the only significant parameters are dnion, dsat
and dsyn. However, it is not obvious that dmy; is zero, but because it is useful to keep the
number of parameters down, this is not included. Of the autoregressive parameters, ¢,
is of course significant, and then the choice between ¢3 and ¢5 is somewhat arbitrary,
but both cannot be included.

The reported standard errors are calculated from second order numerical derivatives,
based on finite differences, and should therefore be interpreted with caution.

5.4.1 SARFIMA

The assumption oy = ¢ and use of the normal density, gives the estimates reported in
Table 4 below. By inspection of the residuals and corresponding quantile plot in Figure
5, we conclude that we deal with fairly heavy tailed data. To further investigate this,
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we fit the residuals to the hyperbolic, normal-inverse Gaussian and stable distribution.
The result can be seen in Table 5. Led by the goodness-of-fit statistics and cdf plots
in Figure 6, we conclude that best distribution is the stable, closely followed by the
normal-inverse Gaussian.

We do not report Ljung-Box values for this case, but the sample ACF plots in
Figure 7 gives an indication of linear dependence in the squared residuals, motivating
an extension of the model with a GARCH-type process.

Table 4: Parameter estimates for the SARFIMA-normal model.

‘ #1 ‘ ¢3 ‘ OMon ‘ dsat ‘ dsun ‘ w ‘ D
Est. | 0.8475 | 0.1203 | 2.4056 | -1.4058 | -1.0494 | 2.6219 | 0.1346
S.E. | 0.0210 | 0.0207 | 0.1592 | 0.1534 | 0.1571 | 0.1077 | 0.0262

Table 5: Parameter estimates and goodness-of-fit statistics.

| o« | B | o6 | pu | KD | AD
Normal | 2 0 |1.6192 | 0.0075 | 6.4877 | 105.8438
NIG | 0.3902 | 0.0092 | 0.9691 | -0.0107 | 3.5226 | 34.4141
HYP | 0.9658 | 0.0190 | 0.1169 | -0.0290 | 3.8752 | 40.8419
Stable | 1.4638 | 0.0247 | 0.7121 | 0.0057 | 3.6681 | 33.6867
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Figure 5: Residuals and their normal quantile plot in the SARFIMA model.
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Figure 6: Cumulative distribution function vs. empirical distribution function.



5 MODELING 22

Hyperbolic vs. empirical cdf
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Figure 6: Cumulative distribution function vs. empirical distribution function (contin-
ued).
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Figure 7: Sample ACF of the residuals(upper) and squared residuals(lower). The hori-
zontal lines are the 95% confidence bands for standard Gaussian white noise.
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5.4.2 SARFIMA-GARCH(1,1)

The parameter estimates are reported in Table 6. We see that the GARCH parameters
are all significant. Note however that the stationary assumption a + 8 < 1 is violated
in the normal case.

The sample ACF plots in Figure 9 and the whiteness of the residuals in Figure 8
implies that the model is able to capture the dependencies in the data. The Ljung-Box
values in Table 7 confirm this, at least for the residuals and squared residuals. In the
same table, the goodness-of-fit statistics suggests that the most accurate conditional
distribution specification for this model is given by the Student-t density. However,
according to the histograms plots in Figure 10, the GED density performs better in the
center of the distribution.

It can be seen in Figure 11 that the conditional standard deviation corresponds very
well with the price changes in the preprocessed time series.

Table 6: The SARFIMA-GARCH(1,1) parameter estimates.

Normal | Student-t GED

P 0.9099 0.9146 0.9252
(0.0168) | (0.0156) (0.0167)

o5 0.0792 0.0765 0.0690
(0.0168) | (0.0154) (0.0253)

OMon | 1.7694 1.8380 1.8944
(0.1071) | (0.0943) (0.0964)
dsat | -0.9991 -1.0136 -1.0122
(0.0938) | (0.0868) (0.0126)
Osun | -0.7728 -0.6718 -0.6042
(0.1020) | (0.0877) (0.1667)

w 0.0933 0.1714 0.1370
(0.0221) | (0.0615) (0.0417)

@ 0.3040 0.3325 0.2971
(0.0362) | (0.0799) (0.0569)

B 0.7065 0.6603 0.6798
(0.0267) | (0.0654) (0.0489)

D 0.1336 0.1024 0.0811
(0.0260) | (0.0220) (0.0127)

v — 3.7435 1.0459
(—) (0.4656) (0.0622)

Standard errors are given in parenthesis below each value.
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Table 7: SARFIMA-GARCH(1,1): Ljung-Box values for the residuals, squared residuals
and absolute residuals (Q(-)* — Q(-)***), with critical value 41.3377, and goodness-of-fit

statistics.

| Q*(28) | @ (28) | @***(28) | KD | AD |

Normal | 28.2833 | 21.6472 | 47.7182 | 2.2619 | 8.8909
Student-t | 29.1721 | 22.6492 | 48.0293 | 1.0691 | 1.5328
GED | 32.1133 | 21.9076 | 47.1917 | 1.2661 | 2.4842

Residuals
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0 200 400 600 800 1000 1200

Figure 8: Residuals of the SARFIMA-GARCH(1,1)-n model.
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Figure 9: Sample ACF for residuals, squared residuals and absolute residuals for the

SARFIMA-GARCH(1,1)-n model.
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Figure 10: Histograms, densities and cdf plots for the SARFIMA-GARCH(1,1) model.
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Figure 10: Histograms, densities and cdf plots for the SARFIMA-GARCH(1,1) model

(continued).
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Figure 10: Histograms, densities and cdf plots for the SARFIMA-GARCH(1,1) model
(continued).
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Price changes
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Figure 11: Price changes (upper) and conditional standard deviation in the SARFIMA-
GARCH(1,1)-n model (lower).
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5.4.3 SARFIMA-EGARCH

The parameter estimates are reported in Table 8. Interestingly, the EGARCH-parameter
v is not significant, so no leverage effect can be detected in our time series.

From the residuals in Figure 12, ACF plots in 13 and the Ljung-Box values in Table
9, we conclude that the model takes care of most dependencies in the data. However,
it does seem to perform a bit worse than the SARFIMA-GARCH(1,1) model.

The Student-t density seems to be the most correct conditional density if one is led
by the statistics in Table 9, but like in the case with SARFIMA-GARCH(1,1), the GED
density seems to perform better in the center of the distribution (see Figure 14).

Figure 15 shows that the conditional standard deviation corresponds well with the
price changes.

Table 8: The SARFIMA-EGARCH parameter estimates.

Normal | Student-t GED

b1 0.9215 0.9163 0.9261
(0.0163) | (0.0150) (0.0248)

o5 0.0682 0.0742 0.0679
(0.0165) | (0.0149) (0.0293)

OMon | 1.7174 1.7876 1.8319
(0.0962) | (0.0910) (0.0975)

dsat | -0.9966 -0.9874 -0.9989
(0.0887) | (0.0845) (0.1166)

Osun | -0.7593 -0.6693 -0.6192
(0.0956) | (0.0833) (0.0084)

w -0.3438 -0.3398 -0.3324
(0.0293) | (0.0473) (0.0442)

@ 0.5234 0.6067 0.5365
(0.0443) | (0.0917) (0.0732)
0.9342 0.8686 0.8975
(0.0147) | (0.0397) (0.0310)

D 0.1378 0.0949 0.0788
(0.0239) | (0.0206) (0.0239)

v — 3.7069 1.0468
(—) (0.4558) (0.0611)

Standard errors are given in parenthesis below each value.
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Table 9: SARFIMA-EGARCH: Ljung-Box values for the residuals, squared residuals
and absolute residuals(Q(-)* — Q(-)***), with critical value 41.3377, and goodness-of-fit
statistics.

| Q(28)* | Q(28)** | Q(28)** | KD | AD
Normal | 28.6899 | 24.2915 | 54.4548 | 8.7273 | 2.3766
Student-t | 32.0373 | 30.9112 | 51.9250 | 1.0269 | 1.2767
GED | 33.8280 | 27.3486 | 49.4528 | 1.1626 | 1.9642

Residuals
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Figure 12: The residuals of the SARFIMA-EGARCH-n model.
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Figure 13: Sample ACF plots for the SARFIMA-EGARCH-n model.
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Figure 14: Histograms, densities and cdf plots for the SARFIMA-EGARCH model.
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Figure 14: Histograms, densities and cdf plots for the SARFIMA-EGARCH model
(continued).
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Figure 14: Histograms, densities and cdf plots for the SARFIMA-EGARCH model
(continued).
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Figure 15: Price changes (upper) and conditional standard deviation for the SARFIMA-
EGARCH-n model (lower).

5.4.4 The importance of D

In order to determine the importance of the seasonal difference parameter D, we re-
estimate all models with the constraint D = 0. The Ljung-Box values for the residuals
of the SARFIMA, SARFIMA-GARCH and SARFIMA-EGARCH model in this case are
80.66, 62.36 and 69.47, respectively. Hence, all models perform considerably worse when
D = 0. Recall that the 95% critical value is 41.34, so we are left with severe dependence
in the residuals. The sample ACF plots in Figure 16 below indicates that most of this
comes from the seasonal long memory, with significant autocorrelations at lags = 7, 14
and 21, at least for the SARFIMA-GARCH and SARFIMA-EGARCH models.
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Figure 16: Sample ACF when D = 0.

5.5 Conclusions

The SARFIMA-GARCH(1,1) and SARFIMA-EGARCH processes, both with an au-
toregressive conditional mean equation that takes care of the weekly pattern, effectively
captures the dependencies in the system price from the Nordic power exchange. In par-
ticular, they capture the time varying standard deviation and seasonal long memory in
the price series. Leaving out the GARCH-type process results in heavy-tailed residuals.
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