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Abstract

In this thesis we investigate the Exact Algorithm that simulates weak, though
not approximate, solutions of stochastic di�erential equations. The method is based
on retrospective rejection sampling on measures and outputs a skeleton of a path
ω.

To a start, we only consider stochastic di�erential equations with bounded drift
and unit di�usion. Later, as the algorithm is extended, these constraints will be
somewhat relaxed.

Solutions simulated with the Exact Algorithm are compared to ones approx-
imated by Euler-Maruyama. By analyzing the behavior of the paths in several
time instances, we conclude that the Exact Algorithm is not only accurate but also
e�cient.
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1 Preliminaries

In this chapter we will de�ne some of the standard processes and methods to be used
in this thesis. We assume that the reader has knowledge about probability spaces,
stochastic processes and their corresponding �ltrations.

1.1 The Brownian bridge

De�nition 1. Let Wt, 0 ≤ t ≤ T , be a Brownian motion. Fix a, b ∈ R and de�ne the
Brownian bridge from a to b on [0, T ] as

W a→b
t = a +

(b− a)t
T

+ Wt −
t

T
WT .

Then

E[W a→b
t ] = a + (b− a)

t

T
, V ar[W a→b

t ] =
t(T − t)

T
.

For simplicity we denote the Brownian bridge W 0→0
t by W t.

1.2 The Bessel bridge

A Bessel bridge of dimension n in time t is the distance to the origin of an n-dimensional
Brownian bridge. De�ne the 3-dimensional Bessel bridge starting at 0 and ending at δ
for t ∈ [0, 1] as

B0→δ
t

D=

√( δt√
3

+ W 0→0
1,t

)2
+

( δt√
3

+ W 0→0
2,t

)2
+

( δt√
3

+ W 0→0
3,t

)2
,

where W 0→0
i,t , i = 1, 2, 3 are three independent Brownian bridges starting and ending at

0 for t ∈ [0, 1]. Note that this process is positive, which will be crucial for the algorithms
presented in Chapter 5.

1.3 Inverse Gaussian simulation

The inverse Gaussian distribution with parameters µ > 0 and λ > 0 has probability
density function (pdf)

f(x) =

√
λ

2πx3
exp

{−λ(x− µ)2

2µ2x

}
, for x > 0.

which we denote X ∼InvG(µ, λ). Drawing points from this distribution is not as straight-
forward as with the normal- or uniform distribution. John, William and Roy [9] suggest
the following method that will result in a random number simulated from InvG(µ, λ);

First, let X ∼ InvG(µ, λ) and de�ne Y as

Y = λ
(X − µ)2

Xµ2
.

Next, solving this equality for X will yield the two roots

X1 = µ +
µ

2λ

(
µY −

√
4µλY + µ2Y 2

)
5



and

X2 =
µ2

X1
.

Jonathan Shuster [12] showed that Y is a chi-square random variable with one degree of
freedom. Using this, it is shown in John, William and Roy [9] that X can be simulated
by choosing the root X1 with probability p1 = µ/(µ + X1) and X2 with probability
p2 = 1− p1.

1.4 Rejection sampling

When dealing with none-standard distributions, rejection sampling will be used to sim-
plify the simulations.

Algorithm 1 (Rejection sampling). Let f be the pdf from which we want to simulate
and g a pdf for which there are standard ways to draw from. Further, let M > 1 be a
constant such that

f(x)
g(x)

≤ M ∀x ∈ R.

Perform the following steps:

1. Sample x from g.

2. Sample u uniformly on [0, 1].

3. If u ≤ f(x)/Mg(x), set X = x.

4. Otherwise, restart from 1.

Now X is a random number with pdf f.

For an e�cient algorithm it is crucial that the envelope function g is as similar to f
as possible. As a matter of fact, a point x is accepted with probability

P
(
x accepted

)
= P

(
u ≤ f(x)

Mg(x)

)
=

∫
R

P
(
u ≤ f(x)

Mg(x)

)
g(x)dx

u∼Uni(0,1)
=

∫
R

f(x)
Mg(x)

g(x)dx

=
1
M

.
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2 Properties of stochastic di�erential equations

In this chapter we will present de�nitions and theorems involving stochastic integrals
and probability transition densities for stochastic processes. We assume that a stochastic
process Yt on [0, T ] is Ft-adapted. Furthermore, if

Q(A) = P
(
ω : Y (ω) ∈ A

)
for Borel sets A of C[0, T ] we call Q the distribution of Y .

We consider stochastic di�erential equations (SDEs) of the type

dYt = µ(Yt)dt + σ(Yt)dWt, (1)

where µ is the drift coe�cient and σ the di�usion coe�cient, satisfying the linear growth condition

|µ(x)|+ |σ(x)| ≤ K(1 + |x|), x ∈ R, t ∈ [0, T ]

for some constant K and the Lipschitz conditions

|µ(x)− µ(y)|+ |σ(x)− σ(y)| ≤ D|x− y|, x, y ∈ R, t ∈ [0, T ]

for some constant D.

2.1 Girsanov's theorem and other useful theory

Theorem 1 (Girsanov, see for instance [14], Chapter 7).
Let

dYt = µ(Yt)dt + σ(Yt)dWt, Y0 = y0, t ∈ [0, T ]. (2)

where µ, σ : R → R and de�ne

dW̃t = γ(Yt)dt + dWt, t ∈ [0, T ] (3)

where γ(y) : R → R is a bounded Borel function. Further, de�ne

P̃(A) =
∫

A
ZdP, A ∈ F̃ ,

where F̃ is the σ-algebra generated by W̃ . Z is the Radon-Nikodym derivative for P̃ wrt
P de�ned by

Z = ZT ,

where

Zt = exp
{
−1

2

∫ t

0
γ(Ys)2ds−

∫ t

0
γ(Ys)dWs

}
.

Then W̃t is a Brownian motion wrt P̃, E[Z] = 1 and we have

dYt = (µ(Yt)− γ(Yt))dt + dW̃ . (4)

This implies that (Yt, W̃t, P̃) is a weak solution to (4) if (Yt,Wt, P) is a (weak or strong)
solution of (2).

Theorem 2 (See for instance [6], p. 91). Let Q, W and Z be probability measures
on (Ω,F) such that Q is absolutely continuous wrt W and W is absolutely continuous
wrt Z. Then

dQ
dZ

=
dQ
dW

dW
dZ

7



2.2 Transformation

The Exact Algorithm requires unit di�usion SDEs. For σ integrable, this requirement
is achieved through the following transformation. Let Xt be a process de�ned by

Xt := g(Yt) :=
∫ Yt

y

du

σ(u)
, y < Yt, (5)

where Y is given by (1). By applying Itôs formula, we derive the SDE

dXt = g′(Yt)dYt +
1
2
g′′(Yt)d[Y, Y ]t1.

Calculating the derivatives and inserting dYt from (1) yields

dXt =
(µ(g−1(Xt))

σ(g−1(Xt))
− 1

2
σ′(g−1(Xt))

)
dt + dWt.

2.3 Transition densities

Let {Yt}t≥0 be a Markov stochastic process. A discrete set of observations Yt0 , . . . , Ytn

at time instances t0 < t1 < . . . < tn has joint density function:

fYt0 ,Yt1 ,...,Ytn
(y0, y1, ..., yn) =

( n∏
i=1

fYti |Yti−1
(yi|yi−1)

)
fYt0

(y0),

due to the Markov property of Y . Now, since fYti |Yti−1
(yi|yi−1) is the transition density

function for the stochastic process Yt, we denote it, as in more common manners, with

L =
n∏

i=1

p(yi, yi−1, ti, ti−1). (6)

When evaluating di�erent numerical methods for solving stochastic di�erential equa-
tions, (6) will be used to perform the statistical tests. The following theorem provides a
method to approximate the product (6), even if the analytical transition density function
is unknown.

Theorem 3 ([13] page 97). Consider the one-dimensional time homogeneous di�usion
type SDE

dYt = µ(Yt)dt + σ(Yt)dWt for t ≥ 0,

with µ ∈ C1(R) satisfying a global Lipschitz condition, and σ : R → R+ twice continu-
ously di�erentiable (slightly weaker conditions work). Let

G(y) =
(µ(g−1(y))

σ(g−1(y))
− σ′(g−1(y))

2

)2
+

d

dy

(µ(g−1(y))
σ(g−1(y))

− σ′(g−1(y))
2

)
,

where g(y) =
∫ y
0 1/σ(z)dz. Then the di�usion has transition density function

p(y, x, t, s) =

√
σ(x)√

2π(t− s)σ(y)3
exp

{
−(g(y)− g(x))2

2(t− s)
+

∫ y

x

µ(z)
σ(z)2

dz
}

× E
[
exp

{s− t

2

∫ 1

0
G

(
r(g(y)− g(x)) + g(x) +

√
t− s W r

)}]
,

(7)

where W t is a Brownian bridge on [0, 1].
1d[Y, Y ]t denotes the quadratic variation of Y

8



For the unit di�usion case, (7) simpli�es a lot. Since g(y) = y we will end up with
just

p(y, x, t, s) =
1√

2π(t− s)
exp

{
−(y − x)2

2(t− s)
+

∫ y

x
µ(z)dz

}
× E

[
exp

{s− t

2

∫ 1

0
G

(
r(y − x) + x +

√
t− s W r

)}]
,

where G(y) = µ(y)2 + µ′(y).

2.4 Euler-Maruyama

The approximative Euler-Maruyama (EM) scheme will be used as an aid when evalu-
ating the Exact Algorithm (EA). EM will create a discretized realization of Y , using a
somewhat naive method. Let ti, i = 0, 1, ...n be a partition of [0, T ]. Then

Yti+1 = Yti + µ(Yti)∆t + σ(Yti)∆W, Yt0 = y0,

is an approximative strong solution to (1).

9
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3 Exact Algorithm

The aim of this chapter is to present the theory behind the Exact Algorithm (EA). Later,
this algorithm will be applied to a selection of examples, and we will investigate issues
such as accuracy, e�ciency considering time and also compare it to the EM scheme. But
�rst, we formulate the problem to be solved.

The SDE (1) is often analytically unsolvable. If the functions µ and σ satisfy a
number of conditions, usage of EA might be considered to simulate paths from the
distribution of Y . Denote these paths as ω. To do this, �rst transform (1) to a SDE
with unit di�usion, using (5):

dXt = α(Xt)dt + dWt, t ∈ [0, T ], X0 = x0 ∈ R (8)

Denote the distribution of the solution of this latter SDE by Q. Note that after
having simulated ω from Q, we also need to invert the transformation in order for the
path to be a solution of (1).

3.1 The �rst Exact Algorithm

3.1.1 Retrospective rejection sampling

The main idea behind exact simulation is to do a rejection sampling on two probability
measures for random paths retrospectively. That is, �rst we generate the time instances
at which we evaluate the rejection event. Then we simulate the path from the proposal
measure Z at these times only, and call it a skeleton. Skeletons are accepted as an
realization from Q if an event has occurred at each of the time instances. This is the
major di�erence compared to approximation methods such as Euler-Maruyama. Instead
of discretized the path and approximate it at each time step, we are actually able to
produce a path from the sought distribution by a modi�ed rejection sampling.

Theorem 4 (Rejection Sampling on Probability Measures, [5] p. 2425). Let Q
be as above and Z a probability measures on C[0, T ] such that Q is absolutely continuous
wrt Z. Assume there is an ε > 0 such that

f := ε
dQ
dZ

≤ 1, Z-a.s.

Let (Xn, In)n>0 be i.i.d. random elements that belong to C[0, T ]⊗{0, 1} such that X1 ∼ Z
and P(I1 = 1|X1 = x) = f(x). De�ne τ = min{i > 0 : Ii = 0}. Then Xτ ∼ Q.

Now, all we need are the two measures Q and Z and a set of conditions, ensuring
that Theorem 4 can be applied. The theorem suggests that rejection sampling for weak
solutions of (8) should be done in three major steps.

Algorithm 2 (Outline of the Exact Algorithm).
1: Draw a path ω from Z
2: Simulate the rejection event I
3: If I occurred, accept ω as a realization from Q. Otherwise, go to 1.

11



3.1.2 Finding dQ/dZ

Let W denote the measure induced by the Brownian motion. Theorem 1 provides what
we need in order to derive the Radon-Nikodym derivative Z = dQ/dW knowing only
the SDE (8). Regarding W, consider the SDE

dXt = dWt. (9)

The solution is trivially distributed as W. We derive Z by applying Theorem 1 on the
SDEs (8) and (9) (with their corresponding probability measures);

Z = exp
{
−1

2

∫ T

0
α(Xt)2ds +

∫ T

0
α(Xt)dWt

}
. (10)

Unfortunately it is di�cult to work with Z in its current form. However, if we apply
the Itô formula to the Itô-integral, (10) simpli�es. De�ne A(x) by

A(x) :=
∫ x

0
α(y)dy, x ∈ R.

According to the Itô formula for an Itô-process:

A(XT ) = A(x0) +
∫ T

0
Ax(Xt)dXt +

1
2

∫ T

0
Axx(Xt)d[X, X]t

dXt=dWt⇐⇒∫ T

0
α(Xt)dWt = A(XT )−A(x0)−

1
2

∫ T

0
α′(Xt)dt,

thus, provided that α is di�erentiable, rewriting Z from the theorem above as

Z = exp{A(XT )−A(x0)−
1
2

∫ T

0
(α2(Xt) + α′(Xt))dt}.

Now recall Theorem 2:
dQ
dZ

=
dQ
dW

dW
dZ

,

calling for the Radon-Nikodym derivative dW/dZ.

Theorem 5 (End points, [3] p. 1079). Let ω = {ωt}0≤t≤T be an arbitrary element
of C([0, T ]), M = {Mt}T

t=0 and N = {Nt}T
t=0 be two stochastic processes on C[0, T ] with

corresponding probability measures M and N. Assume that fM and fN are the densities
of the ending points MT and NT respectively such that

fM (x), fN (x) > 0, ∀x ∈ R. If (M |MT = p) D= 2(N |NT = p) holds for all p ∈ R, then

dM
dN

(ω) =
fM

fN
(ωT ).

De�nition 2. De�ne the biased Brownian motion Ŵ as

Ŵ
D= (W x0 |W x0

T haspdfh)

2Equality in distribution
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where h(x) ∝ 3 exp{A(x) − (x − x0)
2/2T}, x ∈ R and let Z be the distribution of Ŵ .

Let W and Z correspond to M and N respectively in Theorem 5:

dW
dZ

∝ exp−(x− x0)2/2T

h
= exp{−A(XT )}.

Finally:
dQ
dZ

=
dQ
dW

dW
dZ

∝ exp
{
−1

2

∫ T

0
α2(Xt) + α′(Xt)dt

}
. (11)

For simplicity, de�ne Θ as

Θ(u) =
α2(u) + α′(u)

2
− k, (12)

where k ∈ R is chosen so that

k ≤ inf
u∈R

{α2(u) + α′(u)
2

}
.

Provided that Θ(x) is bounded, we have:

dQ
dZ

∝ exp
{
−

∫ T

0
Θ(Xt)dt

}
≤ 1, Z a.s.,

thus ful�lling the �rst condition for Theorem 4. To conclude, these are the conditions
needed to apply EA:

• α is di�erentiable (A1)

• Θ is bounded (A2)

• h(x) is integrable (A3)

3.1.3 The rejection event

Left to do is to decide the rejection event I.

Theorem 6 ([3], p. 1080). Let ω be an arbitrary element of C([0, T ]), M an upper
bound of Θ(ω) and Φ a Poisson process with unit intensity on [0, T ] × [0,M ]. Further,
let N be the number of points of Φ found below Θ(ω). Then, given this path ω:

P
(
N = 0

∣∣∣ ω
)

= exp

{
−

∫ T

0
Θ(ωt)dt

}
.

We now give an outline of the proof:
Since Φ is a Poisson process, the number of points N found below Θ(ω) (in the same area
that Φ operates) will also be Poisson distributed with parameter

∫ T
0 Θ(ωt)dt. Hence,

the probability of �nding no points under the function Θ(ω) is exp{−λN}0λ
N /0! =

exp{−
∫ T
0 Θ(ωt)dt}. 2

3f ∝ g if f = C ∗ g for some constant C
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From Theorem 6 we now know the rejection event I; 1[N=0]. Let ((x1, t1), .., (xn, tn))
be the Poisson process Φ mentioned above on [0, T ]. Since we already have at which
time instances the rejection event will be evaluated, it su�ces to simulate the path's
value ωti only at t1, .., tn.

When simulating these ωtis we perform a retrospective rejection sampling We simu-
late these ωtis in the following manner: �rst we draw the endpoint ωT from h (Def-
inition 2). Then, since Z is the Wiener measure for t ∈ [0, T ), we can simulate
ωti , i = t1, .., tn−1 iteratively, using ωti−1 together with ωT , starting with ωt1 . More
concrete, draw Brownian bridge proposals for ωti from the normal distribution:

N
(
ωti−1 +

ωT − ωti−1

T − ti−1
(ti − ti−1),

(T − ti)(ti − ti−1)
T − ti−1

)
. (13)

This way we avoid drawing a whole path ω from Z (which is impossible!). The Idea
behind this method is retrospective rejection sampling. The points ωti are if accepted
called a skeleton of ω, where ω is distributed according to Q.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ω0

ω1

Φ1
Φ2

ω2
ωT

Figure 1: The skeleton points ω0 , ωt1
,ωt2

and ω
T
together with the Poisson points
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Once we have the skeleton, ω0, ωt1 , ..., ωtn , ωT , we can simulate ωt at whatever time
instance t desired. Just choose tk such that tk ≤ t ≤ tk+1 and use the Brownian bridge
setup above with T = tk+1 and ti−1 = tk. Then add ωt into the skeleton.

Having this in mind, together with Theorem 4, we can �nally de�ne the Exact Al-
gorithm in its complete form:

Algorithm 3 (The �rst Exact Algorithm).

1. Draw the ending point ωT from h, for ω ∼ Z.

2. Simulate n, the number of points in the Poisson process Φ
a: If n = 0, set N = 0 and go to 5.
b: Else, draw n points uniformly on [0, T ]× [0,M ], ((t1,m1), ..., (tn,mn)).

3. for i=1 to n
Draw the point ωi at ti from the normal distribution in (13).

4. Calculate N =
∑n

i=1 1[mi>ωti ]
.

5. If the rejection event I = 1, output the skeleton of ω, otherwise go to 1.

15
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4 An extension of the Exact Algorithm

The constraint (A2) (Θ being bounded from above and below) limits EA to a small set
of SDEs. To expand this set of SDEs (A2) will be reformulated as

lim sup
x→∞

Θ(x) < ∞ (A2′)

or
lim sup
x→−∞

Θ(x) < ∞

i.e. relaxing the restriction of Θ being bounded from above.
To control the proposed paths we will draw their minimum in addition to the start

point and the endpoint (which is carried out as in the previous chapter). Then, by using
two Bessel bridges, we connect these three points.

4.1 Drawing the minimum from a Brownian path

The distribution of the minimum m and its time of occurrence τm conditioned on the
endpoint z ∈ R can be derived according to [7] (Chapter 2):

P(m ∈ db, τm ∈ dt|WT = z) ∝ b(b− z)√
t3(T − t)

exp
{
−b2

2t
− (b− z)2

2(T − t)

}
db dt (14)

where b ≤ min{z, 0} and t ∈ [0, T ]. We use the Theorem below, which provides an
algorithm that in a few steps renders points from the distribution above.

Theorem 7 ([3], p. 1083). Let E ∼ Exp(1) and de�ne S1 = (z −
√

2ET + z2/2). If
S1 = b is a realization of S1, set c1 = (z − b)2/2T and c2 = b2/2T .
Let U ∼ Uni(0, 1), I1 ∼ InvG(

√
c1/c2, 2c1) and I2 ∼ 1/InvG(

√
c2/c1, 2c2) indepen-

dently, and de�ne

V = I11[U<(1+1/
√

c1/c2)]
+ I21[U≥(1+1/

√
c1/c2)]

.

Then if S2 := T/(1 + V ), (S1, S2) is distributed according to (14).

Implementing this is rather straightforward in view of section 2.3 and the fact that
there are numerous methods for drawing from Exp(1) and Uni(0, 1). To simulate the
remaining points of the skeleton, Bessel bridges will come in handy.

Let Wm,τm be a Brownian motion starting at 0, conditioned on ending at z and
reaching its minimum m at time τm. Further, let B0→δ

t (3) be a three-dimensional Bessel
bridge from 0 to δ ≥ 0 with unit length. This process will be denoted as Bδ

t , 0 ≤ t ≤ 1.

Theorem 8 ([3], p. 1083). The processes Wm,τm
s , 0 ≤ s ≤ t and Wm,τm

s , t ≤ s ≤ T
are independent and has the same distribution as

√
tBδ1

(t−s)/t + m, 0 ≤ s ≤ t

and √
T − tBδ2

(s−t)/(T−t) + m, t ≤ s ≤ T

respectively where δ1 = −m/
√

t and δ2 = (z −m)/
√

T − t.

17



Now we are ready to present the �rst extension of EA, EA2.

Algorithm 4 (The second Exact Algorithm).

1. Draw a point ωT ∼ h.

2. Simulate the minimum m and its time of occurrence, τm.

3. Locate an upper bound M(m) for Θ(ωt), 0 ≤ t ≤ T .

4. Realize the unit Poison process Φ on [0, T ]× [0,M(m)].

5. Construct the skeleton of ω at the Poisson time instances using Bessel bridges.

6. Evaluate N.

7. If N = 0, output the skeleton, otherwise go to 1.

18



5 A third version of the Exact Algorithm

As a �nal extension of the Exact Algorithm (EA3), we aim to completely remove the
constraint of upper boundedness of Θ, thus leaving Θ bounded only from below. Re-
moval of this constraint will however create a new problem; the rectangle on which
we simulate the Poisson process will be unbounded. This is solved by restricting the
absolute maximum of a proposed path ω ∼ Z.

We will now present the the most interesting version of the Exact Algorithm, EA3,
but in a slightly di�erent manner than citeBeskos1.

5.1 Boundaries

Considering the absolute maximum of a Brownian bridge, this theorem is a step towards
�nding a boundary for the proposed path ω.

Theorem 9 ([10] p. 154). Denote by γ(t, a, b,K) the probability that under Wa→b
t a

path does not leave the interval [−K, K], where K > max(|a|, |b|). Then

γ(t, a, b,K) = 1−
∞∑

j=1

(vj − wj)

where

vj = exp
{
−2

t

(
2Kj − (K + a)

)(
2Kj − (K + b)

)}
+ exp

{
−2

t

(
2Kj − (K − a)

)(
2Kj − (K − b)

)}
and

wj = exp
{
−2j

t

(
4K2j + 2K(a− b)

)}
+ exp

{
−2j

t

(
4K2j − 2K(a− b)

)}
.

Changing perspective, assume we want to �nd K such that for a predetermined
probability p, a path does not leave [−K, K]. We cannot �nd a precise K corresponding
to this p, but if we can create a positive increasing sequence {ki}i≥1, p will be enclosed
by γ(t, a, b, ki−1) ≤ p ≤ γ(t, a, b, ki) for some i. Set J = ki−1 and L = ki and thus
J ≤ K ≤ L.

Theorem 10 ([2], p. 8). Let {Sj} be constructed as follows:

S2j−1 =
j−1∑
k=1

(vk − wk) + vj , S2j = S2j−1 − wj .

Then Sj is a Cauchy sequence such that

S2j < S2j+2 < S2j+1 < S2j−1 ∀j ≥ 1.

A sequence with these properties provides a direct way to sample γi = lim Si
j , j →

∞, where γi is the probability that a path does not leave the interval [−ki, ki].
Now, what will be the relation between the sequences Si

j and K? To answer this
question we �rst derive the distribution function for K. Denote by a the minimum of
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ω0 and ωT , and by b the maximum. For convenience, we shift the interval [a, b] to be
symmetric around zero.

F (ki) := pi = P(K ≤ ki) = γ
(
t,

a− b

2
,
b− a

2
,
|b− a|+ 2ki

2

)
.

Note that
P(K = ki) = P(F (ki−1) < U ≤ F (ki)), U ∼ Uni(0, 1).

From here on we assume a and b are already symmetrized.
The relation

1[U<γi] = 1[inf j : j even, Si
j>U ],

where U ∼ Uni(0, 1) is the last piece we need to �nd K. First de�ne S0
j = 0 for all

j ≥ 1. Next, by this relation between U and Si
j , we conclude that it is enough to �nd

i ≥ 1 and j odd such that Si−1
j < U < Si

j+1 in order to corner K.
Set J = ki−1 and L = ki. The paths we are interested in are all elements of

AK =
{

ω : sup
t∈[0,T ]

ω ∈ [b + J, b + L], inf
t∈[0,T ]

ω > a− L
}

⋃{
ω : inf

t∈[0,T ]
ω ∈ [a− L, a− J ], sup

t∈[0,T ]
ω < b + L

}
.

Although AK seems complicated, it is nothing but the set of paths in Z that live on
[−L,L] and either have its maximum in [J, L] or its minimum in [−L,−J ]. Thus, de�ning
M̃ as

M̃ = sup
x∈[−L,L]

Θ(x),

we know that the Poisson process will operate on the rectangle [0, T ] × [0, M̃ ] which
takes us one step closer to simulate the skeleton.

5.2 Rejection sampling on a restricted probability measure

In this step of the procedure we will create the skeleton. Instead of simulating paths from
Z until an element from AK is obtained, we apply rejection sampling on the restricted
probability measure for Brownian bridges, WAK

. With PE we denote a probability
measure P, induced by a stochastic process Xt, restricted to E. Now, de�ne

M∗
(J,L) =

{
ω : sup

t∈[0,T ]
ωt ∈ [b + J, b + L]

}
(15)

and
M(J,L) =

{
ω : inf

t∈[0,T ]
ωt ∈ [a− J, a− L]

}
(16)

and let

B =
1
2

WM∗
(J,L)

+
1
2

WM(J,L)
.

Drawing ω from B will ensure that either ω ∈ M∗
(J,L)

or ω ∈ M
(J,L)

. This will increase

the probability of a skeleton being drawn from WAK
. To conclude whether a skeleton

from B is also from WAK
, we look at the Radon-Nikodym derivative:
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Figure 2: The starting point ω0 and the ending point ω
T
together with the minimum of ω, ω

m
.

The area [0, T ]× ([b + J, b + L] ∪ [a− L, a− J ]) is colored gray.

Theorem 11 ([2], p. 10).

dWAK

dB
(ω) =

2W(ω ∈ M)
W(ω ∈ AK)

×
1[ω∈AK ]

1 + 1[ω∈M∗
(J,L)

∩M(J,L)]
.

5.3 Bessel proposals

From Theorem 8 we know how to create a skeleton when the minimum m (or the
maximum m∗) and its time of occurrence, τm (or τm∗) are known. The skeleton is
completed with Bessel points at the time instances simulated by the Poisson process.
To accept (or reject) the skeleton as a realization of WAK

, we turn to Theorem 11.
The indicators 1[ω∈AK ] and 1[ω∈M∗

(J,L)
∩M(J,L)] have to be simulated in order to decide on

rejection/acceptance. To evaluate them for a speci�c skeleton, we need the probability
that a Bessel bridge hits a certain level K.

(See [2] for more details) Let a = 0 and 0 < b < B < K for some B. Under the
probability measure induced by the Bessel bridge from 0 to b on [0, t] we denote by
δ(t, b, B;K) the probability that a path conditioned not to leave [0,K], does not leave
[0, B]. This probability can be calculated as follows:

δ(t, b, B;K) =
W(ω does not leave [0, B])
W(ω does not leave [0,K])

=
b−

∑∞
j=1

(
uj(t,−b, B)− uj(t, b, B)

)
b−

∑∞
j=1

(
uj(t,−b, K)− uj(t, b,K)

) ,

where uj(t, b,K) = (2Kj + b) exp
{
−2Kj(Kj + b)/t

}
. We also de�ne δ(t, b, B), the

probability that a Bessel bridge does not leave the interval [0, B]:

δ(t, b, B) = lim
K→∞

δ(t, b, B;K) = 1− 1
b

∞∑
j=1

(
uj(t,−b, B)− uj(t, b, B)

)
.

We can now use uj to construct a sequence {Sj} for �nding the interval determined by
δ, as we used vj and wj in Theorem 10.
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Theorem 12 ([2], p. 9). Let {Sj} be constructed as follows:

S2j−1 =
j−1∑
k=1

(uk(t,−b, K)− uk(t, b,K) + uj(t,−b, K)), S2j = S2j−1 − uj(t, b,K) (17)

with 0 < b < K and 3K2 − t > 0. Then Sj is a Cauchy sequence such that

S2j < S2j+2 < S2j+1 < S2j−1 ∀j ≥ 1.
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Figure 3: A skeleton of ω. The skeleton consists of six points; apart from the start and ending
points and the maximum m∗ also three points at the Poisson times instances.

We end this section by giving you the third Exact Algorithm, step by step.

Algorithm 5 (The third Exact Algorithm).

1. Draw a point ωT ∼ h.

2. Find AK for the path, and locate an upper bound M̃ for Θ(ωt), 0 ≤ t ≤ T .

3. Simulate either the minimum or the maximum (each with probability 1/2), condi-
tionally on ω being either in M or M∗ and its time of occurrence, τm or τ∗m. For
simplicity, assume that a minimum is drawn.

4. Realize the unit Poison process Φ on [0, T ]× [0, M̃ ].

5. Simulate ωti given this Poisson process.

6. Randomly pick U ∼ Uni(0, 1) and evaluate δ(t, b, L). If U < δ, set 1[ω∈AK ] = 1,
else set it to 0 and reject ω as coming from WAK

.

• If 1[ω∈AK ] = 1, randomly pick U ∼ Uni(0, 1) and evaluate δ(t, b, J, L). If
U < δ, set 1[ω∈M(J,L)] = 1, else set it to 0.

i. If 1[ω∈M(J,L)] = 0, accept the path as a realization from WAK
.
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ii. If 1[ω∈M(J,L)] = 1, accept the path as a realization from WAK
with

probability 1/2.

7. If the path is accepted, evaluate N. Otherwise go to 5.

8. If N = 0, output the skeleton, otherwise go to 1.
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6 Implementation of the Exact Algorithm

As a �rst evaluation of the Exact Algorithm, consider the SDE

dXt = sin(Xt)dt + dWt, X0 = x0, t ∈ [0, T ].

Now follows an analysis of the problem to �nd out if EA is applicable in this case.

6.1 Regarding Θ(x)

Since we have drift coe�cient α(x) = sin(x), set

Θ(x) =
sin2(x) + cos(x)

2
+

1
2
, x ∈ R,

as sin2(x) + cos(x) ≥ −1. The maximum of Θ(x) is now 9/8, thus satisfying condition
(A1) and (A2) with the demand of boundedness and di�erentiability. This suggests that
it is the �rst version of the Exact Algorithm (EA1) that ought to be considered.

6.2 Regarding h(x)

According to De�nition 2 this SDE's endpoint density is de�ned as

h(x) = C exp{1− cos(x)− (x− x0)2/2T}, x ∈ R,

where C is a normalizing constant. Due to the structure of h, rejection sampling is
required in order to simulate the ending points. For the simplicity of sampling from a
normal density, M φ(x, µ, σ) is chosen for enveloping (for some M ≥ 1).

Since h in this example is symmetric around zero, µ is set to the same. In cases when
it is trickier to �nd a suitable µ, rejection sampling once again comes in handy: simulate
a large number of points uniformly in the square [−N,N ]× [0, a], for some a ≥ max h(x)
and a large N . Investigate for which points (xi, yi), yi ≤ h(xi) holds and take the mean
over these xis to get an approximation of µ.

As for M and σ, two methods to �nd the optimal values are suggested, considering
di�erent aspects of φ and h. Since a desired property of the envelope function is for it
to be as close to the original function as possible, it seems reasonable to consider the
distance between the two functions, i.e.,

D(M,σ) =

√∫ ∞

−∞
(M ∗ φ(x, 0, σ)− h(x))2dx

and minimize it wrt M and σ.
The other option is to optimize the quota (accepted points)/(suggested points) from

the rejection sampling algorithm when altering M and σ.
When using either of these methods for computing the parameters we need to make

sure that
min

x∈[−N,N ]

(
M φ(x, µ, σ)− h(x)

)
≥ 0

for N large enough. This to ensure that the function φ in question is indeed an envelope
function.

Now, putting these pieces together with the pseudo-code presented in the end of
Chapter 4, the Exact Algorithm produces solutions to (6) in form of skeletons.
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6.3 Testing and results

Two di�erent tests were performed to check the accuracy of our precious EA1. Both
originate from the null-hypothesis

H0 : The paths produced by EM and EA1 come from the same distribution.

The �rst test compares the distribution of a single point at a �x time t (chosen to be
t = T). The second test takes into account a path's �nite dimensional density.

6.3.1 Endpoint test

This gives an indication whether the null-hypothesis stated above seems reasonable or
not. We produced two equally sized samples of paths with Euler-Maruyama and EA1
respectively. Then the Kolmogorov-Smirnov test with

H0 : The endpoint samples come from the same distribution.

was executed to get the p-values presented in the table below, i.e. the lowest levels on
which we can reject H0.

Euler- Elapsed time p-value, p-value,
Maruyama for 105 paths 105 paths 106 paths
2−2 0.36 sec 0 0
2−3 0.43 sec 0 0
2−4 0.97 sec 0 0
2−5 1.49 sec 0 0
2−6 1.81 sec 0.002 0
2−7 4.19 sec 0.442 0.045
2−8 7.69 sec 0.624 0.324

For comparison, the elapsed time for EA1 when simulating 105 paths was 5.68 sec.
Observing the p-values in the table above, it might be tempting to conclude that

they will continue to increase as the time increments of Euler-Maruyama are decreased.
However, this tendency will decline and the p-values start to �uctuate between 0 and 1
for increments smaller than 2−9.

6.3.2 Transition density test

Here we considered the distribution of a path at several time instances instead of at a
single point, thus making the test stronger.

To evaluate (6) we �rst needed to approximate the integral

I =
∫ 1

0
G

(
r(g(y)− g(x)) + g(x) +

√
t− sW r

)
,

which was done using Riemann sums with an underlying Brownian bridge discretized
to 150 time instances on [0, 1]. A 100 values of I (for 100 realizations of a Brownian
bridge) was then calculated to approximate the expectation

E
[
exp

{s− t

2
I
}]

.
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Figure 4: Comparison between the empirical endpoint densities for EA1 and Euler-Maruyama
with time increments 2−i, i = 2, 3, 4, 5, 8 with sample size 100, 000. As can be seen,
there is an obvious convergence as the time increments are decreased.

The simulated Brownian bridges were kept to be used for each path in order to achieve
stability of the expectation.

When it came to testing, Euler-Maruyama was assumed to give the correct solution.
We calculated the transition densities for 2500 simulated paths at 100 time instances. We
then evaluated one path simulated by EA1 and compared it to the empirical transition
density.

As we see in Figure 5, we can not reject the null hypothesis that Euler-Maruyama
and EA1 simulate paths with the same �nite dimensional distribution on a signi�cance
level of 20%.
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Figure 5: Log of the empirical �nite dimensional density of (6) together with its 10% quantiles.
The dashed line is the (logged) value of (6) for a path simulated by EA1.
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7 Implementing the �rst extension

For the second application of EA, we consider the logistic growth model (LGM):

dYt = rYt(1−
Yt

K
)dt + βYt dWt, t ∈ [0, T ], r, K, β > 0.

The process Yt will oscillate around K for t large enough. Here K is described as the
maximum population the system can hold. Altering β and r will a�ect the amplitude
and frequency of these oscillations respectively.

To transform Yt into a unit di�usion process we apply (5) with a slight modi�cation.
Let

Xt = −
∫ Yt

1

1
βu

du = − log(Yt)
β

, (18)

so that Yt = exp{−βXt}. It can be shown that Yt is strictly positive with probability
one for all parameter values and �nite time, which makes Xt well-de�ned. See [3] for
further references. For the rest of this chapter we will focus on

dXt =
(re−βXt

βK
− r

β
+

β

2

)
dt− dWt, t ∈ [0, T ], (19)

which we rewrite to the very same SDE but with positive unit di�usion coe�cient.

7.1 Regarding Θ(x) and h(x)

From (19) we now have α(x) = β/2− β/r + r exp{−βx}/(βK) so

Θ(x) =
(β

2
− r

β

)2
+e−βx r(β2 − 2r)

2β2K
+ e−2βx r2

2β2K2
− b,

b ≤ inf
x∈R

{α2(x) + α′(x)
2

}
.

Note that the negation in (18) is crucial in order to ful�ll the condition (A2′) of the
second Exact Algorithm (EA2), that is for lim supx→∞Θ(x) to be bounded.

De�ne h as

h(x) = exp
{(β

2
− r

β

)
x− r

β2K
e−βx − (x− x0)2

2T

}
, x ∈ R.

Figure 6 displays the endpoint probability density function for the transformed LGM
with its corresponding envelope function.

If we are interested in extending the time interval beyond [0, 1], there are strong rea-
sons not to apply EA on all of the area [0, T ] at once. For instance, it might take many
proposals before accepting a skeleton. Instead we divide the interval into smaller seg-
ments, where EA is recursively applied. For this procedure to be e�cient it is necessary
to �nd an envelope function for h on closed form. If this is not the case, a re-calibration
of the parameters has to be performed for each partition. This will be severely time
consuming.
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Figure 6: The endpoint density h together with an envelope function.

7.2 Results

The parameters are set to β = 0.5, r = 0.5, K = 1000, T = 1 and X0 = log(1000)/β.
The endpoint density is looked upon, as is the �nite dimensional density of Xt.

We notice resemblance in the endpoint pdfs of EA and EM (see Figure 7). However,
performing the Kolmogorov-Smirnov test on the same level as in the previous example
(2−8) will yield p-values too low not to reject the null hypothesis. It required increments
of the size 2−19 before obtaining p-values indicating non rejection.
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Figure 7: Displaying the empirical pdf of the endpoints for EA and EM

The elapsed time for EA2 in this problem is signi�cantly higher than in the previous
algorithm. Compared to EM with increment size 10−8, they will di�er with a factor
four. Although, when considering the elapsed time of EM with increments of the size
2−19, approximatively 3 hours, the strength of EA is once again obvious.

30



As for the �nite dimensional distribution of Xt, the null hypothesis regarding equality
can not be rejected.

Figure 8: Log of the empirical transition density function of (19) together with its 10% quan-
tiles. The dashed line is the (logged) value of (6) for a path simulated by EA2
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8 Conclusions

An endpoint test evaluated for both a SDE with sine drift and a logistic growth model
gives a �rst clear indication of similarity between paths simulated by the Exact Algorithm
and Euler-Maruyama. In the sine example a convergence towards EA can be observed
for the endpoint distribution as the time increments for EM is decreased. Furthermore,
in neither the sine nor the LGM case can we reject the null hypothesis that the �nite
dimensional density of paths simulated by EA and EM come from the same distribution.
This on a signi�cance level of 20%.

The runtime of the two simulation algorithms alters depending on the SDE. Generally
EA is faster than EM. However, for large values of the ending time T , a partitioning of
[0, T ] is needed in order to meet satisfactory accuracy. The parameters for the endpoint
function h will then have to be continuously re-calibrated, an updating sequence that
will slow the simulation process down considerably.

When comparing properties with other simulation methods such as EM, one impor-
tant feature is that EA is exact, whereas most other algorithms are approximative. Also,
EA allows us to control the range of the simulated solutions. This is particularly useful
for processes restricted to the positive y-axis.

A question that naturally arises is whether it is possible to derive another rejection
event that will result in a less restricted algorithm, still using the underlying idea of
rejection sampling on measures.

Although the Exact Algorithm is more demanding in both a mathematical sense
and at the implementational stage, its performance as a simulation algorithm can easily
compete with that of Euler-Maruyama.
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