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1 Lecture 1 6/9-02

The first five lectures cover classical distribution theory for Lévy processes and in-
finitely divisible distributions, following “Sato: A Course on Lévy Processes’. We
have added proofs when negotiable and of sufficient “general value”. Most of them co-
me from “Sato: Lévy Processes and Infinitely Divisible Distributions”, often slightly
modified. We have also added many exercises. They are all intended to be quite
straightforward (and it is a mistake when they are not).

Another example of standard literature on Lévy Processes is “Bertoin: Lévy Processes”. See also e.g.,
the relevant parts of “Feller: An Introduction to Probability Theory and Its Application”, “Fristedt & Gray:

A Modern Approach to Probability Theory” and “Kallenberg: Foundations of Modern Probability”.

1.0 Basic Notation

In Lectures 1-7, X ={X (t) };>0, X1, X2, ... denote R¢-valued stochastic processes,
and Y,Y},Y;, ... Ré-valued random variables (rv’s).

Processes and rv’s that feature are assumed defined on a common complete basic
probability space (2, §,P), when needed. A null-event isaset Ne€F with P{N}=0.

The probability distribution (law) PoY =t of Y on R? is denoted L(Y).

We write Y1 =4Y5 when L(Y;)=L(Y1), and X;=4;X5 when the fidi’s (see Def-
inition 1.9 below) of X; and X, coincide. Further, —4 denotes weak convergence.

The Borel sets in R? (the o-algebra generated by the open sets) is denoted B(R?).

For (¥, 8) ameasurable space (see Section 6.3), L9(32, S) = {measurable f:3—R}.

1.1 LevVy Processes and Additive Processes

Definition 1.1 X has independent increments if, for n€N and 0<t;<...<tp,

X(t1), X (t2) =X (t1), .-, X(tn) — X (tn_1) are independent.

Definition 1.2 X is time homogeneous if , for t>0,

L(X(t+s)—X(s)) does not depend on s>0.

Definition 1.3 X is stochastically continuous (also called continuous in probabil-

ity or P-continuous), if, for s>0,

X(t+s)—X(s) =p 0 as t—0.




Definition 1.4 X is cadlag (for “continu & droit avec limites & gauche”, also called

rell) if X (t) =X (w;t) is right continuous with left limits, except for w in a null-event.

Definition 1.5 X is an additive process in law (also called independent increm-

ent process in law) if the following conditions hold;

(1) X has independent increments;
(2) X(0)=0 a.s.;

(3) X is stochastically continuous.

Definition 1.6 X is a Lévy process in law if an additive process in law such that

(4) X is time homogeneous.

Definition 1.7 X is an additive process (also called independent increment pro-

cess) if an additive process in law such that

(v) X is cadlag.

Definition 1.8 X is a Lévy process if a Lévy process in law such that

(v) X is cadlag.

EXAMPLE 1 Brownian motion (Bm) and a Poisson process (Pp) are Lévy processes.
For independent identically distributed (iid) {¥;}2,, X = .1 v, is additive. #

EXERCISE 1 Make computer simulations of sample paths of Bm and Pp. Discuss

what sources of errors there are, if any.

Definition 1.9 The finite dimensional distributions (fidi’s) of a stochastic pro-

cess {Z(t)her are the probability laws

{{‘C(Z(tl)’ R Z(tn))}(tl,---,tn)ET" }nEN-

EXERCISE 2 Give examples of stochastic processes {Z;(t)}ier and {Z5(t) }ier
such that Z; =475, but P{Z,(t)=2Z(t) for all t€T} < 1. (In general, this “event”

may not be measurable, so that the probability is not even well-defined.)




Definition 1.10 X has stationary increments if

(X (t+h) =X (W) }eso =a {X () =X (0)}es0  for h>0.

EXERCISE 3 Explain how Definition 1.10 connects to the intuitive concept of stat-

ionary increments. Show that Lévy processes in law have stationary increments.

EXERCISE 4 Show that a time homogeneous process X has mean function E{
X(t)} = Kt for t>0, for some constant K € R?, when that mean is well-defined

(and a measurable function of ).

EXERCISE 5 Show that a Lévy process in law X has variance function Var{
X(t)} = Kt for t >0, for some constant non-negative definite matrix K € Ryyq,

when that variance is well-defined.

Definition 1.11 Two stochastic processes {Z(t)}ier and {Zy(t)}er are modi-

fications (also called indistinguishable by some authors) of each other, if

P{Z,(t)=2Z,(t)} =1 forall teT.

REMARK 1.12 Many authors (e.g., Protter) call Z; and Z, indistinguishable if
P{Z,(t)=2,(t) for all teT} =1.

However, people in “general stochastic processes” do not use this language, since the
above probability is not even well-defined without additional assumptions (e.g., cad-
lag, a.s. continuity, etc.). And under such assumptions, the two possible definitions

of indistinguishability typically coincide (see Exercise 6 below). #

EXERCISE 6 Show that the two alternative definitions of indistinguishability in-

dicated above coincide for cadlag processes X; and X,.

Theorem 1.13  Each Lévy process (additive process) in law has a modification that

is a Léuvy process (additive process).

Albeit quite straightforward under additional technical conditions (e.g., existence
of second moments), the general proof is delicate. It would occupy us for several lect-

ures. The usual approach is by oscillation analysis of martingales or Markov processes.




On http://www-history.mcs.st-andrews.ac.uk/history/Mathematicians/Levy_Paul.html We found

Paul Pierre Lévy

Born: 13 Sept 1886 in Paris, France
Died: 15 Dec 1971 in Paris, France

Paul Léwvy was borm into a family containing several mathematicians. His grandfather was a professor of mathematics while Paul’s father, Lucien
Léwvy, was an exsmniner with the Ecole Polytechnique and wrote papers on geometry. Paol attended the Lycée Saint Lonis in Pans and he achieved
outstanding success winnng prizes not only in mathematics but also in Greek, chemistry and physics. He was placed first for entry to the Ecole
Mormale Bupérienr and second for enwy to the Ecole Polytechnique in the Concours d’entrée for the two nstmtions.

He chose to arend the Ecole Polytechniqne and he while sdll an vndergraduare there published his first paper on semiconvergent seres in 1905,
After graduating in first place, Léwy took a year doing military service before entering the Ecole des Mines in 1907, While he studied at the Ecole
des Mines he also artended covrses arthe Sorbonne given by Darboux and Emile Picard. In addidon he amended lectres arthe Collége de France
by Georges Humbert and Hadamard.

It was Hadamard who was the major infloence in detenmining the topics on which Lévy would undertake research. Finishing his studies at the
Ecole des Mines in 1910 he began research m functdonsl snalysis. His thesis on this topic was exardned by Ermile Picard, Poincaré snd Hadamerd
in 1911 and he received his Doctenr &5 Beiences in 1912,

Léwy became professor Ecole des Mines in Paris in 1913, then professor of analysis at the Ecole Polytechnique in Pars in 1920 where he
remained untl he retired n 1959, Curing World War I Lévy served in the artillery and was mmvolved mn using his mathematical skills in solving
problems conceming defence against attacks from the sir. A young mathematcian B Gateanx was killed near the beginming of the war and
Hadamard asked Léwvy to prepare Gateanx’s work for publication. He did this but he did not stop at writng up Gateanx’s results, rather he took
Garesnx’s ideas snd developed them further publishing the materal after the war had ended in 1919,

As we indicated above Lévy first worked on functional analysis [12]:-

... Gong i the spirir of Volterra Thiz involved exrending the codonluz of functions of @ recd variable ro spaces where the polnts ore
curves, surfaces, sequences or functions.

In 1919 Lévy was asked to give three lectures at the Ecole Polytechnique on (see [9]):-
... motions of codeuduz of probabilitics ond the role of Gouzsion law in the theory of errors.

Taylor wiites in [12]:-
Az ther time there was no methermoziosd theory of probabilizy — ordy ¢ collecrion of small compurationsd problems. Now it iz &
Jully—fledzed brovek of wuthematios using techniques from ol branches of moder snodysis ond modting &z own contribuzion of
idens, problewms, resulrs ond usefil machinery o be opplied elsewhere. If there iz one person who hos influenced the esteblishment
ad growsh of probability theory more thon oy other, thes person maust be Fol Lévy.

Loéwe, in [9], gives a very colourful description of Léwy’s contributions: -
Foad Lévy was o poinder in the probebilistic world, Like the very greot pointing genivses, his podette was bis own ond biz paintings
tronarited forever ouwr vision of reclizy. . Hiz three main, somewhor overlopping, periods were: the limit laws period, the greor
period of additive processes and of matingodes painted in pothaime colowrs, ond the Brownion pethfindsr period.

Mot ondy did Léwy contribute to probability and functonsal analysis but he also worked on partial differental equations and series. In 1926 he

extended Laplace transforms to broader functdon classes. He undertook a large-scale work on generalised differential equations mn fonctonal

derivatives. He alzo stodied geometry.

Hiz main books are Lecors d snalyse fonctionnelle (1922, Codend des probabilirés (1925), Théorie de laddirion des voriabies aléoroines
(1937 -54), and Frocessus stochastigues of mowvernent browndien (1948).

In 1963 Lévy was elected to honorary mermbership of the London Mathematical Society. In the following year he was elected to the Académie des
Briences.

Loéve sums up his ardcle [9] in these words -

He was avery modest meon While believing fully in the power of rezionad thoughe. ... whenever [ pass by the Diembourg gerdens, £
still see us there strolling aifting in the sun on o bench; I still hear Riny speaking corefully Ris thougles. I hove frown @ greot mon.

Article by: JJ O Connor and B F Robertzon



1.2 Markov Property

Definition 1.14 A family F={F:}+>0 of o-algebras T CF is a filtration if it is
non-decreasing, i.e., §s 3¢ for 0<s<t.

Definition 1.15 X is adapted to a filtration F if X(t) is F;-measurable for t>0.

Definition 1.16 X is a Markov process wrt. a filtration F, if adapted to F with

P{X(t+s)e-|§s} =P{X(t+s)e-|X(s)}  for t+s>s>0.

Definition 1.17 X is a Markov process wrt. itself if it is a Markov process wrt.
the filtration {o(X(s):s€]0,t])}io-

EXERCISE 7 Show that if X is a Markov process, then it is Markov wrt. itself.

Definition 1.18 P(-,t,x,s) is a transition probability for a Markov process X if

P{X(t+s)e-|X(s)=z} = P(-,t,z,s) ae (dFx) for x€R*, for t+s>s>0.

Definition 1.19 A transition probability P(-,t,z,s) is time homogeneous if it

does not depend on the last argument s> 0.

Definition 1.20 A Markov process X is time homogeneous if it has a time homo-

geneous transition probability.

Fact 1.21 A Lévy process in law is a time homogeneous Markov process wrt. itself

with transition probability

P(-,t,xz,s) =P{X(t)e-—z}.

Proof. The Markov property follows from that, by independence of increments,
P{X(t+s) €| Fs} = P{X(t+s)—X(s) € -—X(s)|Fs} = P{X(t+s)—X(s) € -—X(s)| X(s)}.
We get a transition probability similarly, this time also using time homogeneity,

5




P{X(t+s)e-|X(s)=z} = P{X(t+s)—X(s)€-—z}. O
EXERCISE 8 Show that an additive process in law is a Markov process wrt. itself.

1.3 Infinitely Divisible Random Variables and Processes

Definition 1.22 Y is infinitely divisible (id) if, for each n€N,

Y=Yi+...4+Y, for some iid Yi,...,Y,.

The rv’s {Y;}r_; in Definition 1.22 that “divides” Y must have common char-

acteristic function (chf) ¢y, (0) = E{e"Y¥)} = ¢y (0)Y/" for R

Definition 1.23 For Y id, Y*¥/™ denotes an rv with chf goi,/" for neN.

Fact 1.24 For a Lévy process in law X, X(t) is id with X (t)*'/" =4 X (%) for
t>0 and neN.

Proof. X(t) =Y (X (5t)- X (E1t)) with X(5)—X(E1)=4X (L) iid. O

n

Fact 1.25 For Y id and t>0, there exists an v Y** with @y« =l .

Proof. By weak convergence, it is enough to check that ¢! is a chf for 0<t= % cQ.

But <plf//e is chf for a sum of k& iid rv’s with law L£(Y*!/¢), since goye:(py*l/z. a

EXERCISE 9 For Y id, show that Y* is id for ¢>0.

Fact 1.26 The £fidi’s of a Lévy process in law X are determined by L(X (t)) for
any choice of t>0.

Proof. To check that L£(X(t1),..., X (t,)) is determined by L£(X (t)), it is enough to
check that L£(X(t1), X(to)—X(t1),..., X (tn)—X(tn-1)) 1is, for 0<t;<...<t,. By
P-continuity and independence and homogeneity of increments, this holds if £(X(¢))
determines L£(X (t;—t;_1)) for ¢;—t;-1 =%t €tQ (to=0). This follows from

Ry 16 ke
PX(ti~tji-1) = Px(et;—t;_1)) — Pxkt) — PX(1)" O




Corollary 1.27 For a Lévy process in law X, we have @x(s) = go%) for s,t>0.

The next theorem is one of the most important in theory for stochastic processes.

Theorem 1.28 (KoLMocorROV CONSISTENCY) Given distribution functions {{
Fy:RF — [0, 1]}ser bren, there exists a stochastic process {Z(t)}er with these distri-

butions as its £idi’s, iff. the follounng two consistency conditions hold

(]-) E..,ti,1,tj,t¢+1,...,tj—1,ti,tj+1;-..(' < Li—15, L5y L1y v+ + 3 Xj—15 Ty Tjg1, - - ) == Ft(x);

(2) limwk+1—>00 F;f,tk+1 ($, 33k+1) = Ft(x)

The proof is not difficult, but requires a basic understanding of probability mea-

sures on cylinder sets, together with the general theory of weak convergence.

Fact 1.29 For Y id, there exists a Lévy process X with X(1)=4Y .

Proof. We specify the law of F . through that of F} ;,_4 . 4,—t,_,, for 0<t; <
... <ty, as that with chf @y (61)" @y (62)27" ... py(6,)" 1. These distributions
are consistent. Thus Kolmogorov’s Theorem gives us a process X, with these fidi’s,
that must be a Lévy process in law with X (1)=,;Y. By Theorem 1.13, there exists

a Lévy process with the same fidi’s. O

EXERCISE 10 Explain why the 1-dimensional Kolmogorov Theorem works for

d-dimensional processes.

EXERCISE 11 For Y id, why is a Lévy process in law X that satisfies X (1)=4Y

unique in law? (L.e., why does any other such Lévy process have the same fidi’s?)

Also process values of additive processes are id. But this is no longer an elementary

observation, and the proof requires some background results and notation.

Definition 1.30 A sequence {{Ynx}i»,}2, of rv’s is a null-array if Ynu,...,
Y,r. are independent for n€N, with

hrnnﬁoo maxi<g<r, P{‘Yn,k‘ >€} =0 fO'I" e>0.

The three (or so) page proof of ou next theorem is not difficult. But it belongs to

basic probability courses, rather than being suitable to give here.




Theorem 1.31 (KHINTCHINE) Y is id iff., for some null-array {{Y,x}3

TL:1 2

and for some constants b, €R?,

e Yor—bn = Y as mn—o00.

EXERCISE 12 Oneimplication in Khintchine’s Theorem is trivial: Prove that part.

Lemma 1.32 A P-continuous X is locally uniformly P-continuous, i.e., for ty>0,

limg 0 SUP; 1epo,t0], 15—t <5 P{{X(s)-X(t)[>e} =0 for e>0.

EXERCISE 13 Prove Lemma 1.32.

Fact 1.33 For an additive process in law X, any process value X (t) is id.

Proof. With r, =n and Y, = X(£t) - X(%1¢), we trivially have Y ;" Y, , =
X (t) =4 X (t). Thus Khintchine’s Theorem shows that X (¢) is id, if {{Yox}im,}o2,

is a null-array. This we get from Lemma 1.32, since, as n— o0,

maxi<g<r, P{|Yn,k“ >€} < Supr,sE[O,t], [r—s|<t/n P{|X(T) _X(8)| >8} —0. O

Id processes are defined by an infinite dimensional version of Definition 1.22.

Definition 1.34 A stochastic process {Z(t)}ier is id if, for each n€N,

{ZOher =a {Z1(t) }rer+. . . A{Zn(t) }ter  for some 1iid processes Zi,...,Z,.

EXERCISE 14 Show that Lévy processes are id processes.

Definition 1.35 An id Y has cumulant generating function (cgf)

Y(—i-) = In(py ().




1.4 Something I came to think of this time ...

Vilken eller vilka av dessa fiskar &r en 1) gidda, 2) hongddda, 3) horngédda,
niabbgidda, 5) skidda, 6) honskddda, 7) hornskidda, 8) ndbbskddda?




2 Lecture 2 10/9-02

2.1 Lévy-Khintchine Formula

The following result is one of the most fundamentally important in probability.

The proof is not really difficult, but too technical to be worthwhile doing here.

Theorem 2.1 (LEVY-KHINTCHINE) Y is id iff. there exists a triplet (A,v,v) of

A a symmetric non-negative definite d|d-matriz (the Gaussian covariance)
v a measure on R with v({0})=0 and [p.|y*Aldv(y)<oo (the Lévy measure),

vER? a constant

which in that case is uniquely determined, such that, for  €R?,

E{e/®V)} = exp{—1(0, A0) +i(0,7) + [oa(¢O —1—11<11i(0, ) dv(y)}.

That the integral in the exponent is well-defined follows from the requirements on
v and the fact that |e/®¥ —1—17,<11i(0,y)| = O(ly[*>) [O(1)] as |y| =0 [|y|— o).
The function 1yy<1} in Lévy-Khintchine Formula may be (often is) replaced with,
e.g., y/(1A|y]), or any other measurable function that is y+O(|y|?) [O(1)] as |y|—0
[ly| = o0]. The only (other) effect of this replacement is that the value of v changes.

EXERCISE 15 Explain the claim about replacement of 1<} above.

Corollary 2.2 If Y is id with triplet (A,v,7) such that
(the drift) Yo =7 — f|y‘<1 ydv(y) is well-defined and finite,
then we may rewrite the Lévy-Khintchine Formula with a new triplet (A,v,v)o, @S

E{e/Y)} = exp{—3(0, A0) +i(0,%) + [ra(e"P¥—1)dr(y)}  for OeR?.

Corollary 2.3 If Y is id with triplet (A,v,7) such that
(the center) "m=y+ f‘y|>1 ydv(y) is well-defined and finite,
then we may rewrite the Lévy-Khintchine Formula with a new triplet (A,v,v)1, as

E{e ")} = exp{—1(0, A0) +i(0, 71) + [pa(eO¥V—1—i(0, 1)) dv(y)} for O€R?.

10




On http://www-history.mcs.st-andrews.ac.uk/history/Mathematicians/Khinchin.html We found

Aleksandr Yakovlevich Khinchin

Born: 19 July 1824 in Kondrovo, Kaluzhskaya guberniya, Russia
Died: 18 Nov 1959 in Moscow, USSR

Aleksandr ¥akovlevich Khinchin 's father was an engineer. Khinchin attended the technical high school in Moscow where he became fascinated by
mathematcs. However mathematics was certainly not his only interest when he was at secondary school for he also had a passionate love of poetry and of the
theatre. He completed his secondary edncation in 1911 and entered the Faculty of Physics and hMathematics of Moscow University in that vear.

Ar undversity in Moscow Khinchin worked with Luzin and others. He was an outstanding student being partcularly interested in the metic theory of functons
and before he gradnated in 1916 he had already written his first paper on a generalisation of the Denjoy integral. This first paper began a series of publications by
Khinchin on propertes of functions which are retained after deleting a set of density zero at a given point. He summarnsed his contribations to this ares with the
paper Recherches sur lo structure des fonctions meqsurables in Fundomonta mozhermonion in 1927,

Afrer gradvating in 1916, Khinchin rerneined ar Moscow University undertaking resesech for his dissertadon which would allow him to become o vniversity
teacher. After a couple of years he began teaching in a nomnber of different colleges both in MMoscow and Ivanowo. The town of Ivanove, east of hoscow, was a
centre for the textile industey and it plays & surprisingly important part in the development of Russian mathematcs with sewveral of the major figures teaching in
the totwn.

Around 1922 Khinchin took up new mathematicsl interests when he began to stody the theory of numbers and probability theory. In the following year he
strengthened results of Hardy and Litdesrood with his introduction of the iterated logarthm published in Meoghemetische Seitechiift. With these ideas he also
strengthened the law of large numbers due to Borel

In 1927 Khinchin was appointed as a professor at Mozcow University and, in the same year, he published Beszie lows of probobelizy theory. Between 1932 and
1934 he laid the foundatons for the theory of stationsry random processes culminating in a major paper in Moghemarizche Annelen in 1934, Khinchin left
Moszcow in 1935 to spend two vears at Saratew University but retorned to Mloscow University in 1937 to continne his role of buidding the school of probahbiity
theory there in parmership with Kolmogorov snd others, inchuding in pardcular their student Gnedenko. From the 19405 his work changed direction again and this
time he became interested in the theory of statistical mechamics. In the last few years of his life his mterests tumed to deweloping Shannon’s ideas on
informaton theory.

We shall look at serme of Khinchin’s major publications and in this way get a feel for the large nomber of fmportant contributons he made in a remarkably large
range of topics. Same of these publications we have already mentioned in the brief description of his career which we gave sbove.

Ehinchin first published the book Consinaed Frootions in 1936 with & second edition being published in 1949 The book consists of three chapters, the first two of
which present the classicel theory of condnued fractons. The third chaprer, the longest and most important, containg an account of Khinchin®s own contibutons
to the topic of the meticel theory of Diophantne spproxdmations. Anether contrbuton by Khinchin to number theory is the short book Three pearl of number
theory which appeared in an English translanon m 1952,

The book Fighs lectwres on megheroziced anedysis by Khinchin ran to seweral edidons. It was first published in 1943 and the eight lectures it contains are:
Condromern; Liwdts; Funcdons; Series; Dedvatdve; Integral; Series expansions of functdons; and Differential equatons. The book was designed to be nsed to
supplement & standard course on the caloulus and gives & careful treatment of seme of the basic notons of mathematical analysis. Ivanov, reviewing the fourth
edition, wrote:—

The presentorion i smooth, elegont ond interesting ond mokes very enjovedle reading ..

Ehinchin published Mothemaziood Frinciples of Stezisticed Mechandes m 1943, It showed how to make classical statistical mechanics nto a mathematcally
ngorons subject, developing & consistent presentation of the topic. In 1951 he exrended the work of this 1943 book when he published Meozhemozical foundazions
of guomdwmn stozistics. This new publication on the topic appeared in a German translation in 1956 and then in an English translation in 1980, The book was
witten in such & way as to be nseful both to mathermatcians who wanted to become better acquainted with some applications of analysis to physics, and also to
physicists who wanted to understand more about the mathernatcsl foundations for their subject. Topics covered included: local limir theorems for sums of
ientically distabuted random veriables; the foundatons of quantom mechsanics; genersl principles of quantom statstics; the foundations of the statstics of
photons; entopy; and the second law of themmoedynamics. The book has been rated as being equal in quality to von Mewmann s masterpiece Meozhemazionl
Joundozions of guantum mechonics.

Khinchins book Mezxhemazionl Foundorions of Informetion Theory, wanslated into English from the original Russian in 1957, is important. It consists of English
translations of two articles: The endropy concept in proboebiity theory and Ok the bosic theorems of informetion thegry which were both published earlier in
Russian. The second of these ardcles provides a refinement of Shannon’s concepts of the capacity of & noisy channel and the entropy of & source. Khinchin
generalised some of Shannon’s results in this book which was written in an elementary style yet gave a comprehensive account with full details of all the
results.

In [6] Guedenke, who was a student of Khanchan, lists 151 publications by Khinchin on the mathematical theery of probability (the list iz given againn [4]).

Among the many honours which Khinchin received for his work was election to the Soviet Academy of Sciences in 1939 and the award of a State Prize for
scientfic achievements in the following year.

Were—Jones writes [9]:-

Khinchin wos o foscinoting figure .., not leest becouse of Ris early enthusziosms for poetry ond acting ond Ris lnks with such figures of the
revolirion af the poet Moyafovshy and members of the Mozcow Arez Theatre.

Article by: JJ O Coneor and £ F Robertaon
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Definition 2.4 The generating triplet of a Lévy process is the triplet of X(1).

EXERCISE 16 Compute all well-defined generating triplets for Bm and for Pp.

Definition 2.5 A Lévy process with generating triplet (A,v,~) is of
type A if A=0 and v(R?)<oc,
type B if A=0 and v(R')=o00 but flw
type Cif A#0 or flwlsl |z| dv(z) = o0.

<1 |z| dv(x) < oo,

Many important properties of Lévy processes and id rv’s vary with the type.

EXERCISE 17 Determine the types of Bm and Pp.

2.2 Compound Poisson Processes

Definition 2.6 A compound Pp is a Lévy process with generating triplet (0, co,0)o,

where ¢>0 is a constant and o a probability measure on RY with o({0})=0.

Compound Pp are crucail in the proof of many theorems on id phenomena.

EXERCISE 18 Determine the generating triplets (-,-,-) and (-,-,-); for a com-

pound Pp. Show that a Lévy process is a compound Pp iff. it has generating triplet
(0,v,0)q with v(R?) € (0, 00).

Theorem 2.7 Let {N(t)};>0 be a Pp with intensity ¢, and {YV;}°, iid rv’s,
independent of N, with L(Yy) =0 where o({0})=0. Denoting S,=),_, Yy for
n€N, X(t)=Snw) is a compound Pp with generating triplet (0, co,0)o.

Proof. Cadlag sample paths and X (0) =40 are immediate. P-continuity follows from
P{|X (t+5)—X(s)|>e} <P{|IN(t+s)=N(s)| >0} =1—e 50 as t—0.

Independence and homogeneity of increments come by conditioning on the values of

N involved, see Exercise 19 below. The generating triplet is the claimed one, since

B{e/0X M)} = Y {0} She ¢ = expfe fou(¢ 00— 1) do(y)}. O
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EXERCISE 19 Show that the process Sy in Theorem 2.7 has independent and

time homogeneous increments.

EXERCISE 20 The [&] part of Lévy-Khintchine Formula is easy: Show that it

is enough to prove that ¢(6) = exp{ [pa ("% —1—17,<13i(0,y)) dv(y)} is a chf for
any Lévy measure v [i.e., measure with [, |y[*Al dv(y) <oc]. Prove that ¢ is a chf
by considering exp{f‘ 109)—1—14<13i(0, y)) dv(y)} and sending €0.

2.3 Moments

Definition 2.8 A function ¢:R?—[0,00) is submultiplicative if

gz+y) <ag(x)g(y) for z,yeRY,  for some constant a>0.

EXERCISE 21 Show that products of submultiplicative functions are submulti-
plicative, as are g(z)=|z|V1 and g(z)=el"" for be(0,1].

Theorem 2.9 (Krucrov) For g locally bounded submultiplicative measurable,

and X a Lévy process with Lévy measure v, the following conditions are equivalent:
(1) E{g(X(t))} <oo for some t>0;
(2) E{g(X(t))} <oo for each t>0;

(3) f|w|>1 g(z) dv(z) < oco.

EXERCISE 22 Show that, for a Lévy process X with Lévy measure v, E{
| X ()|} < oo for some (each) ¢>0 iff. f\x\>1 |z| dv(x) < oo.

Corollary 2.10 An id Y with triplet (A,v,7) has well-defined expected value,

which in that case coincides with the center 7y, iff.

f$|>1 |z| dv(z) < 0.

Proof. The existence issue is contained in Exercise 22. Assuming existence, expressing
E{e"%Y)} with the triplet (A4,v,v):, we readily get 0 B} | o= i(m). O

Existence of an odd derivative at zero for a chf is necessary but not sufficient for
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existence of the corresponding odd moment. However, existence of an even derivative

at zero for a chf is equivalent with existence of the corresponding even moment.

Lemma 2.11 g(z) < be®®l for some constants b,C>0.

Proof. With b = max{1/a,sup,¢p 1 9()}, we get, for |z[€[n—1,n],

9(z) = g(3p_, &) < a"g(Z)" < @™l < b(ab)®! = belm@lal O

Lemma 2.12 An R-valued id rv with triplet (A, U,%1)1 such that U has bounded

support, has an entire chf.

Proof. Since |(e¥+h)—1—jy(6+h))—(e™'—1—iyh)|/|h| = O(|0|?) as |#|— 0, uniformly

for |h| small enough, the following chf is differentiable, by elementary arguments,

0(0) = exp{—FA0? +iF10+ [p(e¥—1—iyd)di(y)}, 0€C. O

Lemma 2.13 For an R-valued rv Y with entire chf, E{e®/Y1} <00 for C>0.

Proof. Existence of ¢ (0) gives E{Y?"}<oo for n€N. Specifically,
o(0) = 0 @ (0) 07 (nl) = S, B{Y"} 0% (nl)  for HEC.
This power series is absolutely convergent on C, so that
S o B 01 (nl) < 00 = Y B{YZ}[6R/((2n)) <o for 6€C.
Clearly, it is enough to show that E{cosh(C|Y|)} < co. However,

E{cosh(CY[)} = E{3 22, (CY)*/((2n)1)} = 302, E{Y*"} C*/((2n)!) < co. O

Proof of Kruglov’s Theorem. Let X have generating triplet (A,v,~y). Denote vy=
Vlgg<iy and vy =vlgysiy. Let X0 and X' be independent Lévy processes with
generating triplets (A, vg,y) and (0,v1,0),, respectively, so that X =4 X+ X1,

(1)=(3) If E{g(X(t))}<oo, since X(t)=4X°(t)+X'(t), we conclude that
Jrasra 9(x+Y) dFx10)(y) dF 500y (2) <00 = [ra g9(x+y) dFx1)(y) < 00
for some z€R?. By Lemma 2.11, g(y) < ag(—2z)g(z+y) < abeCll g(z+17), so that
Jra 9(y) dFx1 ) (y) = E{g(X' ()} < oo.
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For v;(R?) >0, since v;(R?)<oo, by Exercise 18, X! is a compound Pp. Thus

00 > B{g(X' ()} = B{g(Sww)} = 502 B{g(Su)}5re .
In particular, it follows that
00 > E{g(S1)} = [pag(@)do(z) =" [rag(@)dni(z) =7 [, 9(z) dv(2).
Of course, for v;(R%)=0, the right-hand side is trivially finite.
(3)=(2) When [, g(x)dvi(z) < oo, submultiplicativity gives
f(Rd)n g(xr+. . Fxn) dvy(z7) . . dvy(zy) < a7 [a 9(2) dvn ()]
From this we immediately get (cf. above)
E{g(X'(£)} = Yoo B{o(Sn)} 9 e < 3202 ) ! [y 9(x) dua (2)]" S < oo
Thus we are done if E{e®*’®|} < oo since, by submultiplicativity and Lemma, 2.11,
E{g(X (1))} < aB{g(X°(1))g(X" (1))} < abE{e" "I} E{g(X"(¢))}.
However, by Holder’s inequality together with Lemmas 2.12 and 2.13, we have

E{eCIX"(t)I} < E{eczﬁzl \X;?(t)l} < HZ:1 E{eC\X}S(t)\} <oo. O

EXERCISE 23 Explain the representation X =4 X°+X"' in the above proof.

EXERCISE 24 Explain why Lemmas 2.12 and 2.13 really apply to X2 ().
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2.4 Something I came to think of this time ...

JJUST WHAT IS5 IHDIAW SUMMER AWD DID IHDIAWS EEALLY HAWE
ANYTHING TO DO WITH IT?®...
Eu: Eill Deedler, Weather Historian, WF0 Detroit/Pontiac Mi

An early American writer described Tndian Swmmer well when he
wrote, "The air is perfectly quiescent and all is stillness, as
if Hature, after her exertions during the Summer, were now at
rest." Thisz passage belongs to the writer John Bradbunry and was
written nearly an "eternitp" ago, back in 1317, But this passage
iz as relevant todap as it was wap back then, The temm "Indian
Summer" dates back to the 18%th centuwry in the United states. It
can be defined as "any spell of wamm, quiet, hazp weather that
map ocenr in October or ewen early Howember." Basically, aunbtuomn
iz a transition season as the thunderztooms and sewere weather of
the summer giwve wap to a tamer, calmer weather period before the
turbulence of the winter commences.

The temm "Indian Swmmer" iz generally associated with a period of
considerably sbowve nommal temperatures, accompanied by dop and
hazy conditions wshered in on a south or sowthwesterly breeze.
Several references make note of the fact that a toue Indian
Summer can not occur wntil there has been a killing frostifreeze.
Since frost and freezing temperabtures generally work their wap
sonth through the £all, this would give credence to the
possibility of seweral Indian Summers oconrcing in a £all,
especiallp across the northern areas where frost/freezes nsually
come earlp.

While almost exclusivelp thonght of as an aobtumnal ewent, I was
surprized to read that Indian Summers hawe been giwen credib for
warm spells as lake as December and Janmary (but then, just where
does that leawe the "Jammarm Thaw" phenomenont). Another topic of
debate abont Indian Summer has been "location, locabion".
Evidently, =some writers hawe made reference to it as native only
to Hew England, while others hawe stated it happens owver most of
the United states, even along the Pacific coast. Probably the
most common or accepted wiew on location for an Tndian Summer
wonld be from the wid-Atlantic staktes nocth into Rew England, and
than west across the ohio Wallew, Great Lakes, Midwest and Great
Flains states. In other words, locations that generally have a
winter on the horizon! BFut then, what sbout the king of winkter
weather in the United states, Alaskar Do they hawve an "Indian
Summer", or something similar? Some places in Alaska are lucky to
havwe a "summer", let alone an Indian Summerc! one would certainly
hawe to throw ont the notion of it wswally happending in october
or Howember, when, winter genmerally has alceady taken an
aggressive foothold on much of the ztate. What about other
locations that come to mind, The Rocky wWountain States and parcts
of canada, particularitp in the east and south? Hobe: If anpone
reading thiz has any infomation on Indian Svnmers in those areas
questioned, or just thoughts on Indian Summers in general, leawve
us a noke in onr "guestbook" section.

A typical weather map that reflects Indian Summer weather
inwolwes a large acea of high pressure along or just off the
East Coast. Occasionally, it will be thizs same high pressure that
produced the frostffreeze conditions only a few nights before, as
it mowed ont of Canada across the Plains, Midwest and Great Lakes
and then finallp, to the Bast Coast. Much wammer temperatores,
from the deep south and Southwest, are then pulled north on
sontherly breczes cesulting from the clockwise rotabion of wind
around the high pressure. It is characteristic for these
conditions to last for ak least a few daps to well ower a week
and there map be sewveral cases before winkter sets in. Such a mild
spell iz uwsnally broken when a shtrong low pressure spstem and
abttending cold front poushes across the region. This dramatic
change results from a sharp shift in the wpper winds or "jet
stream" from the south or southwest to nocthwest or north. of
conrse, there can be some modifications to the abowe weather map
scenario, but for simplicity and common occurrence sake, this is
the general weather map.

How we come to the origin of the temm itself, "Indian Summec" .
ower the pears, there has been a considerable amount of interest
giwven to thisz topic in literature. Probably one of the most
intensiwve studies occurred way back acownd the toon of the
century. A paper by Albert Matthews, written in 1902, made

an exhanstive study of the historical wsage of the bexm.
Ewvidently, the credit for the first unsage of the tem was
mistakenly giwven ko a man by the name of Major Ebenezer Dennm,
who used it in his "Jowonal", dated dctober 13th, 17394, The
jonrnal was kept at a town called Le Boeunf, which was near the
preszent dap cityp of Erie, Pennsplwania. Mabthews howewer,
vncowered an earlier wsage of the bemm in 177% by a frenchman
called 5t. John de Crewecoenr. It appeared in a letber Crewvecoenr
wrote dated "Gemman-flats, 17 Janwier, 1772." The following is a
translation of a portion of the letter:

"sometimes the rain is followed by an interval of calm and
wamth which iz called the Indian Summer; its characteristics
are & trangquil atmosphere and general smokiness. Up to this
epoch the approaches of winter are doubtfnl; it arriwves about
the middle of Rowvember, although snows and brief freezes often
occur long before that date.”
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3 Lecture 3 13/9-02

3.1 Stable Random Variables and Processes

Definition 3.1 Y is stable if, for each n€N, with Yi,...,Y, iid copies of Y,
Yi+...+Y,=qbY +¢c  for some constants b=b(n)>0 and c=c(n)eR?,

Y is strictly stable if it is possible to take c¢(n)=0 for neN.

Definition 3.1 may be rewritten Y*/7 =, %Y—%. And so stable rv’s are id.

Definition 3.2 A Lévy process X with X (1) (strictly) stable is called a (strictly)

stable Lévy motion.

Definition 3.3 An R-valued stochastic process {Z(t)}her is stable if, for each
neN, with Zy,...,7, iid copies of Z,

Zi+...+ 2y =qgbyZ+c, for some constant b,>0 and function c,:T—R.

Z s strictly stable if it is possible to take c, =0 for neN.

Sato uses the old-fashioned language to call stable Lévy motions stable processes.
This was standard some decades ago, when stable processes in the sense of Definition
3.3 had not been studied. Now most authors have switched to the language we use.

Stable distributions are among the few most important id distributions. Two reas-
ons are their stability under additon (Definition 3.1), and the explicitness of their chf
(see below). Stable processes occupy a similar position among id processes. They ha-

ve become fashionable since naturally having heavy tails and long range dependence.

EXERCISE 25 Show that stable Lévy motions are stable processes.

Definition 3.4 Y is trivial (or degenerate), if Y =4c¢ for some constant c€R?.

Definition 3.5 A Lévy process X is trivial if X (1) is trivial.

EXERCISE 26 Show that a Lévy process X is trivial iff. X =;{ct};>o for some

constant c€R?.
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Theorem 3.6 For Y non-trivial stable, there exists a unique constant o€ (0, 2]
such that

Y* =, tY°Y +¢ for t>0, for some constant c¢=c(t) € R?.

For Y non-trivial strictly stable, ¢(t)=0 for t>0.

The proofis not difficult, but a bit technical. It belongs to basic probability courses.

Definition 3.7 A stable Y is called a-stable, a€(0,2], whenever
Y* =4 tY +¢  for t>0, for some constant c¢=c(t) € R

Y is called strictly a-stable if c¢(t)=0 for t>0.

EXERCISE 27 For Y (strictly) a-stable, show that Y* is (strictly) a-stable for
t>0. Show that values of (strictly) a-stable Lévy motions are (strictly) a-stable.

Definition 3.8 X is self-similar with index k>0 if

{X (M)} 0 =a {A"X(t) }>0 for A>0.

Fact 3.9 A Lévy process is self-similar iff. it is a strictly stable Lévy motion.

Proof. Self-similarity and Corollary 1.27 give X (1)*'/" =4 X (%) =4 n %X (1).

n

Take Y strictly stable and X a Lévy process with X (1)=,Y. For Y trivial,
self-similarity with k=1 follows from Exercise 26. For Y non-trivial, so that Y is
strictly a-stable (Theorem 3.6), we get X (\t)—X(\s) =4 A/*(X (t)—X(s)), since

X(A(t—s5)) =g X (1)) =5 (A(t—35))Y2X (1) =g AY/eX (1)) =5 XX (t—s).
From this we conclude that, for 0<t;<...<t,,
(X (M), X (Mta—t1)), ..., X(AMtn—tn1))) =a WX (t1), X (ta—t1), ..., X (tn—tn_1)),
which by a familiar argument is equivalent with sought after

(X(M1), ..., X(\t)) =4 W2 X (1), ..., AY*X (t,)). O

We now give the two most important representations of stable chf. Historically, the

literature in this area, articles as well as books, is heavily polluted by technical errors, see “Hall: A comedy
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of errors: the cannonical form for a stable characteristic function”. The book “Samorodnitsky & Taqqu:

Stable Non-Gaussian Processes” from 1994 has put things in order. (Be careful with earlier literature!)

Theorem 3.10 Y is 2-stable iff. it is Gaussian. Y is a-stable, a.€(0,2), iff.

exp{— [sa [{0, 9)|*(1 =i tan("})sign((0, y))) dp(z) +i(0, )}, a#1
exp{— [ga [{0, ) (1+i2 In(|{0, y)|) sign((0, 9))) dp(z) +i(0, 7)}, a=1

for 0€R?, where u is a unique finite measure on S¢ = {xeR?:|z|=1}, and T€R?

E{ei(a,Y)} — {

a unique constant that is the drift vy for a€(0,1) and the center v, for a€(1,2).
Y is a-stable, a€(0,2), iff. it is id with triplet (0,v,~y) such that

B) = meSdf F1p(rz) r- @t dr d\(z) for BeB(RY),

where \ is a unique finite measure on S<.

The proof is somewhat difficult, and will not be attempted here. The result is

only marginally important for us, so there is really no reason to do it.

EXERCISE 28 In one direction Theorem 3.10 is trivial: Prove that part.

Corollary 3.11 An R-valued id rv Y is a-stable, o € (0,2), iff. it has triplet

(0,v,7) such that, for some unique constants ci,cy>0,
dv(z) = (c11(0,00) () + C21( oy (2)) [2|7@FVdz  for z€R.
An R-valued rv Y is a-stable, a€(0,2), iff.

E{eiey} _ {exp{—c|0|a(1—zﬂtan(%)sign(9)) +i07}, a#l

for el
exp{—c|0|(1+i52 In(|0])sign(0)) + 07}, a=1

with ¢>0, p=272¢€ [—1,1] and T €R constants that are unique for Y non-trivial.

Here 7 is the drift vy for a€(0,1) and the center (mean) v, for a€(1,2).

For Y with the chf in the second part of Corollary 3.11 we write Y ~ S,(c, 3, 7).

EXERCISE 29 Derive Corollary 3.11 from Theorem 3.10.

Corollary 3.12  For an R-valued a-stable rv, a€(0,2), E{|]Y[P}<oo iff. p<a.

EXERCISE 30 Prove Corollary 3.12.
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There are four univariate a-stable distributions that are known explicitely in clos-
ed form, one of which is the trivial distribution. The other three are given in Exer-

cises 31-33 below. Further, the distribution with a:% and B=0 is called Holtsmark distribution.

EXERCISE 31 Show that an rv with the density below is S (c, 0, 7)-distributed

f) = (c¢/7) ((y—7)*+c)~t  for yeR  (CAUCHY DISTRIBUTION).

EXERCISE 32 Show that an rv with the density below is S 2(c, 1, 7)-distributed

fly) =+/c/@r) (y—7) 3%e /w7 for y>r  (LEVY DISTRIBUTION).

EXERCISE 33 Show that Gaussian rv’s are 2-stable. Are they strictly stable?

There exists a simple explicit formula to simulate univariate a-stable rv’s in a

computer. Multivariate a-stable rv’s are considerably more difficicult to simulate.

Theorem 3.13 For V and W independent rv’s with uniform distribution over

%) and standard exponential distribution, respectively, and for constants o €

(_%:
2), ¢>0, Be[-1,1] and TER, we have

(0
sin[aV +tan ! (8 tan(%2))] (cos[(1—a)V —tan " (3 tan(Z2))]) Ve
(cos[tan (8 tan(Z2))]) /e (cos(V)) /@ Wi/a=1

+ 7~ Su(c, B, 7).

The proof is not difficult at all, but is of little interest from our point of view.

EXERCISE 34 Derive a formula for simulating Gaussian rv’s by sending a/12.
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3.2 Something I came to think of this time ...

Vi vacker er inte da ni skall ga hem!
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4 Lecture 4 17/9-02

4.1 Continuity Properties of id Distributions

Definition 4.1 A measure p on R? is

o discrete if p(RENC)=0 for some countable C CR?;

o continuous if p({z})=0 for zeR?;

o absolutely continuous if p(B)=0 for null-events Be€ B(R?).

Lemma 4.2 For p=pixpy with p; and p; non-zero finite measures on RY,
(1) p is discrete iff. p1 and ps are discrete;
(2) p is continuous iff. p1 or ps is continuous;

(3) p is absolutely continuous iff. p1 or ps is absolutely continuous.

EXERCISE 35 Prove Lemma 4.2.

Theorem 4.3 (DOBLIN) For a Lévy process X the following three conditions are

equivalent

(1) L£(X(t)) is continuous for each t>0;
(2) L(X(t)) is continuous for some t>0;
(3) X is of type B or type C.

Proof. —(3)=-(2) Let X be type A, i.e., A=0 and v(R?) < co. Then either
v(R%) =0, so that X is trivial and £(X(¢)) not continuous, or v(R%) >0, so that
X (t)—7ot is compound Pp and has an atom at 0 with mass P{N(t)=0} = e *®"),

(3)=(1) If A#0, then X has a non-trivial Gaussian component, which is contin-
uously distributed (albeit not necessarily absolutely continuous). Hence (1) follows

from Lemma 4.2.2. In the rest of the proof we may thus assume that v(R?)=oo0.

For v discrete, let {;}52, be the atoms with v({z;}) =m; > 0. Put mj=m AL, so
that Y72, mj=o0 (since > 22, mj=o00). Let X=4X)+X;, with X2 and X in-
dependent, and X? compound Pp with Lévy measure Un = 5 mo,. Put DY) =

sup{P{Y =xz}:2€R?}. Here D(Y;+Y3)<D(Y;) for Y; and Y, independent, since

P{(Vi+Yo=2} = [ P{Yi=2—1}dFy(y:) < D(V1) for zeR4.
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Hence D(X(t))<D(X2(t)). Let c,=v,(R?) and o,=c,'v,. Since D(o,*...x0,)

< D(0,) < c¢,*, by the construction of v,, we have, for any z€R?, as n— oo,
P{X0(t)=a} =e > 2 %C(an*. ko) ({2}) < ettt — 0.

For v continuous, let X° be a compound Pp with Lévy measure v, = V1{jz|>1/n}-
Since v, *...xv, is continuous (by Lemma 4.2.2), X%(¢) only has an atom at zero
with mass e “*—0 as n— o0, so that again D(X(¢))=0 [since <D(X2(t))].

General case. Since vy 1/qm) is finite, v =v.+vy with v, continuous and v, dis-
crete, and one of them infinite. To that guy we apply one of the above arguments,

giving continuity for that component, and thus for X (¢) by Lemma 4.2.2. O

EXERCISE 36 Explain in detail what is going on in the last part of the proof.

Corollary 4.4 For a Lévy process X the following three conditions are equivalent
(1) L(X(t)) is discrete for each t>0;
(2) L(X(t)) is discrete for some t>0;

(3) X is of type A with discrete Lévy measure v.

EXERCISE 37 Derive Corollary 4.4 from Theorem 4.3 (and Lemma 4.2).

Lemma 4.5 Given n€N, Y has a density fy € C*(R?), with corresponding part-

tal derivatives that all tend to zero at infinity, provided that

f]Rd 10]™ |y (0)] df < occ.

Proof. By elementary theory of chf, Y has a continuous density
fr(y) = 2m)™ [ e~ %) oy (9) df for yeRd.

Using the assumption of the lemma together with dominated convergence, we readily

get fy € C"(R?). The claim at infinity is the Riemann-Lebesgue Lemma. 0O

Theorem 4.6 (OREY) An R-valued id Y with Lévy measure v such that
lim inf, o 72 f[_r . 2?dv(z) >0  for some «a€(0,2),

has a density fy € C*°(R), all derivatives of which tends to zero at infinity.
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Proof. We check that the hypothesis of Lemma 4.5 holds for all n: Pick ¢; >0
such that f[_r . 2?dv(x) > c;r?~® for r >0 small enough. Pick ¢, >0 such that
1—cos(u) > cou? for |u|<1. By inspection of Lévy-Khintchin Formula, we get

[y (0)] < exp{ [ (cos(0z)—1) dv(z)} < exp{—cs f\w\Sl/lﬂ\ 0222 dv(z)} < e~e1e2ldl* O

EXERCISE 38 Show that non-trivial univariate a-stable rv’s have C®-densities.

4.2 Selfdecomposable Distributions

Definition 4.7 An id Y is selfdecomposable (or of class L), if there exists a func-

tion k:S%x(0,00)—[0,00), that is measurable in its first argument and non-incre-

asing in the second, such that, for some finite measure X\ on S¢, Y has Lévy measure

B) = [ csi [y 18(rz)k(z,r)dr/rd\(z)  for BeB(R?).

By Therem 3.10, univariate a-stable rv’s are selfdecomposable with k(z,r)=r".

EXERCISE 39 Show that exponential rv’s are selfdecomposable but not stable.

Definition 4.8 A Lévy process X with X(1) selfdecomposable is called a selfde-

composable process.

Definition 4.9 An R-valued Y is unimodal with mode a €R, if it has probability
distribution dFy(y) = c6.(y) + f(y)dy, for some constant c€[0,1] and subprob-

ability density f that is non-decreasing on (—oo,a) and non-increasing on (a,o0).

Unimodality is an important property that simplifies or even “saves” many proofs.

Theorem 4.10 (YAMAzZATO) Selfdecomposable distributions on R are unimodal.

The proof is technical, and not really of interest to us. It is famous for having

been preceeded by several faulty proofs, as well as disproofs (i.e., counterexamples).

Theorem 4.11 (SATO) Non-trivial selfdecomposable distributions on R are abso-

lutely continuous.
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Againg the proof is technical, and not of interest to us.

Theorem 4.12 Y is selfdecomposable iff., for each b>1,

oy (0) = oy (0/b)p,,(0) for OER?,  for some probability measure p, on R

Proof. This is quite long and technical and cannot be done here.
For the Lévy measure v of Y, we have, for b>1,
v(bB) = [eufy” Lep(ra)k(z,r)dr/rd\(z) = [wfy” 1a(Fz)k(z, 7b) di /7 dA(z) < v(B).

Write v =vy+vy, where vy(B)=v(bB) and v,(B)=v(B)—vy(B) are both Lévy

measures. Then Lévy-Khintchine Formula together with routine calculations give
oy () = oy (0/b) p(1-v-2)4,1,.(0). O

EXERCISE 40 Check the last formula in the proof of Theorem 4.12.

4.3 Subordination

Lemma 4.13 The chf of an R-valued id Y cannot be zero.

Proof. Let {¢,(0)}>, be univariate chf such that ¢,(f)—1 as n— oo for € in an

open interval around zero. For ay=a3=1, as=—-2, t;=0, ty=1 and t3=2¢, we get

0 < 3731 aiajon(ti—ti) = 60n(0) — A(in(t) +@n(—1)) + (#n(26) +n(-2t)),

by non-negative definiteness. Taking real parts and rearranging, this gives

Reon(£2t) = 5R(0n(26)+0n(—2t)) = 2R(pn(t)Hen(—1))—3¢0n(0) = 4Repn(£t) — 3¢, (0).

By iteration we therefore readily conclude that ¢,(6)—1 for #€R.

We have ¢, (0) = oy (0)/™ — 1 as n— o0, for # in an open interval around zero,

by continuity of ¢y. Thus <,0;/n—>1 on R. This means that ¢y (0)#0 for 6€R. O

Fact 4.14 An R-valued id Y is the weak limit of a sequence of compound Poison

distributions.

Proof. By Lemma 4.13, ¢y (0)Y"=1+n"tInpy(0)+0(n~2) — 1, so that
oy (0) ~ exp{n(py(0)/"—1)} ~ exp{n [, (e¥*—1) dFy.m(z)} as m—oo. O
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EXERCISE 41 Can Fact 4.14 be useful to simulate Y in a computer?

Corollary 4.15 A non-negative R-valued id Y is the weak limit of a sequence of

non-negative compound Poison distributions.

EXERCISE 42 Derive Corollary 4.15 from Theorem 4.14.

Definition 4.16 An R-valued Lévy process X is a subordinator if it is non-de-

creasing a.s.

EXERCISE 43 Show that an R-valued Lévy process X is a subordinator iff. its

generating id distribution X (1) is non-negative a.s.

The following theorem is of fundamental importance.

Theorem 4.17 An R-valued Léuvy process X is a subordinator iff. it is of type A

or B, with Lévy measure supported on (0,00) and non-negative drift 7o, i.e., iff.

E{e"*W} = exp{if0+ [0 (€ =1 dv(z)}  with 7 >0.

Proof. Let the right statement in the theorem hold. Clearly, it is enough to
show that the triplet (0,v,0) (with vy removed) corresponds to a non-negative rv.

For v(R)=0 this is trivial. For v(R)#0 we put v, =v1{g>1/n}. Then, as n— o0,

f((),oo) (ewz_l) dl/n(.’L‘) = f(o,oo) (ewm_l)l{\zbl/n} dl/(ﬂ?) - f(o,oo) (ewz_l) dl/(.’]?), (*)

i.e., (0,7p,0)9 —a (0,,0)p: Recall that X is type A or B when A=0 and f|w|<1
|z| dv(z) < oco. Thus [ |z|Aldr(z) < co, which gives dominated convergence in (x).
Now (0,7,0)¢ is a weak limit of non-negative compound Poisson rv’s, since v,

is supported on (0,00). Therefore (0,v,0), is non-negative.

Clearly, for the generating triplet (A,v,7v) of X, we cannot have A#0, see
Exercise 44 below. Hence, with 7, = v— fq<|z|g1 xdv(z), ¥(—if) is given by

Jiajen(€®1-i607) dv(2)+ [, . (€91 du(2) +iy, = U1 (—i0)+ Ty (i) +i0y, ()

for n€(0,1]. Let Y; and Y, be id with cgf’s W; and Wo, respectively. Since Y5
is compound Poisson, v1y4, must be supported on (0,00) for n>0 (Exercise

45 below), i.e., v is supported on (0,00). Since E{Y;} =0 (Exercise 46), similar
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arguing give that 7, >0 for n>0 (Exercise 47). Hence
& m /<

otherwise v, ——o0o as nl0. Therefore Y; —40 as 7]0, by dominated convergence.

||z dv(z) < oo, since

And so X (1) is of type A or B, with triplet (0,v,70)o, since we must have -y, — o
(by uniqueness of triplets). Consequently, v, >0. O

EXERCISE 44 Why is the Gaussian component zero for a non-negative R-valued

id rv?

EXERCISE 45 In (x*), why has v1{4>y support (0,00) for X (1) non-negative?
EXERCISE 46 In (), why is E{Y;}=0?

EXERCISE 47 In (x*), for X(1) non-negative, why is ~,>0 for n>07?

EXERCISE 48 Show that an a-stable Lévy motion is a subordinator iff. o <1,
B=1 and T=7>0.

EXERCISE 49 In Exercise 48, why is 7="?

Theorem 4.18 Let X, be a Lévy process with generating triplet (A,v,v), and X,
an independent subordinator with generating triplet (0,p,B)o. Then X =X 0X5 is
a Lévy process with generating triplet (121, U,%) given by
A = BA
D(B) = Bu(B) + [ig0 PAX1(1)* € B} dp(s) .
’3/ = ny -+ f(O,oo) f|$|§1 x dFXl(l)*S (x) dp(S)

EXERCISE 50 Explain why X is a Lévy process in Theorem 4.18.
EXERCISE 51 Try to derive the triplet (A, 7,4) in Theorem 4.18.
EXERCISE 52 Show that X(¢) really is a rv for >0 in Theorem 4.18.

EXERCISE 53 In Theorem 4.18, show that X is a subordinator if X; is.

Definition 4.19 In Theorem 4.18, the transformation of X, to X is called sub-
ordination by Xs. Further, any Lévy process with the law of X, for a suitable Xs,

18 called subordinate to X;.
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4.4 Something I came to think of this time ...

SAMHALL

MOTL IGHETEERH A% FORETAG

Vi vicker er da ni skall ga hem! OBS: Limmet &r hiilsovadligt att indandas.
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5 Lecture 5 20/9-02

5.1 Ornstein-Uhlenbeck Processes

Here we give an introductory coverage of id Ornstein-Uhlenbeck processes.

Let {L(t)};cr be an R¢-valued Lévy process. This means that L satisfies an obv-
ious version of Definition 1.8 [including L(0)=,40], extended to the whole real line.

For a constant ¢>0, the R¢-valued Ornstein-Uhlenbeck (QU) process is given by

Z(t) = [' e 9dL(s) for teR.

The stochastic integral can be defined as a limit of Riemann sums (see Lecture 6).

If Z is well-defined, it will be a stationary process, since by homogeneity of L,

{Z(t+h) hiew = {11 e=C=M) AL (s) biew = { [ e~ dL(s+h) biew =a {Z (1) b

By Riemman sums and id of L (Definition 1.34, Exercise 14), we see that Z is id.

Further, Z is a (continuous time) Markov [AR(1)-] process, because (trivially)

Z(t) = e Z(to) + [ eV dL(s)  for t>1,

and is a strong weak solution to the Langevin stochastic differential equation (sde)

dZ(t) = —cZ(t)dt +dL(t)  for t>0, Z(0)= [°_e*dL(s),
because the corresponding integrated equation holds, simply by insertion of Z,

- cfo s)ds + fo dL(s
= [° ewdL(s) —c [2 [T=" eI dL(r)ds + [ dL(s
= [° e dL(s —cf”) o e dsdL(r —cf”f e“(r=2) dsdL(r +f0dL
= [0 _e®dL(s) — [°_(e"—e" V) dL(r) — [i(1—e“ D) dL(r) + [ dL(s
= [* e dL(r) = Z(t).
Since W) =sYr), the cgf of Z(t) (independent of ¢ by stationarity) is
Uy (—i6) = In BNy — lim S Wy, (ie200) = [° W) (—ie6) ds.

Using Theorem 4.12, it follows that Z(t) is selfdecomposable, since, for b>1,

02 (0)/ 92 (8/b) = el Vr)(=ie0) ds= [0 Wrg(—iecto/b)ds _ oJ wnqey e Ve (—ie*6) ds

Here the right-hand side is a chf (that defines p, in Theorem 4.12), because (contin-

uous at zero and) the limit of a product of chf’s by Riemann sum approximation.
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To check when Z is well-defined, let L have generating triplet (A,v,7), so that
IO Wy (—iewd) ds = —L [0 (e, Ae*0) ds +i [°_(e*0,7) ds

2

+ [0 L fra ifec0, l/>(1{|ewy|51} — 1y <1y) dv(y)] ds
0 [ a (€509 —1— (€50, y)) 1jaeay <1y dv(y)] ds
+ f—oo[fRd el<ecse’y)—1) 1{|ecsy‘>1} dV(y)] ds.

Here the two first integrals on the right-hand side are trivially well-defined. The third

integral is well-defined, since it is “dominated” by the integral
6] feal 72" ey ds] 15y di(y) = 0] v({y €RY: Jy| > 1)) < o0
while, for some constant C' >0, the fourth is dominated by
C6]2 frna [~ WIO 62031012 4] dir(y) = C|0]2 fra LAy [2d(y) < o0
As for the fifth integral on the right, it is dominated by

2 fRd [fi)(ln(|y|)/c)+ ds|dv(y) = (2/c) f|y\>1 In(|y[) dv(y).

Thus the requirement ensuring that the 0U process is well-defined becomes

Jiyema . sy In(ly]) dv(y) < oo

5.2 Weak Convergence of ID Distributions

Theorem 5.1  For id {Y,}, with triplets (An,vn,Vn) we have Y, —q Y for
some Y, iff. Y is id with triplet (A,v,7) such that the following conditions hold;

(1) limy, 00 f|y‘>sf(y) dv,(y) = f|y‘>6f(y) dv(y) for bounded f€C(R?) and €>0;
(2) limsw limsup,,_, |<97 (AH_A)0> + f|y\§5<07 y>2d7/n(y)‘ =0 for OERd;

EXERCISE 54 1In one direction Theorem 5.1 is immediate: Prove that part.

5.3 Lévy-1t6 Decomposition

The Lévy-Ito decomposition expresses the sample function of an additive process
as a sum of a continuous part and an independent compensated sum of independent
jumps. It is very important! The proof is long and difficult and cannot be given here.
We state the result for Lévy processes only. The general formulation with additive

processes is only notationally more complicated.
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On http://www-history.mcs.st-andrews.ac.uk/history/Mathematicians/Ito.html W€ found

Kiyosi Ito

Born: 7 Sept 1915 in Hokusei-cho, Mie Prefecture, Japan

Kiyosi Ito studied mathematcs in the Faculty of Science of the Imperial University of Tokyo. It was during his stdent yesrs that he became atracted to probability theory. In [3] he
explains how this came abour:-

Ever since T was o studens, [ hove been axtracted to the fuct they stezistical lows reside in ingly rondom p Alrhough I Fnew thez probebilizy theory wes o
means of describing such phenomena, I was not savisfied with contemporary papers or works on probabilizy e.‘heory, since they didwot clearly define the random variable,
the bosic element of probebilizy theory. At thet time, fow ¢ ions regorded probability theory os n cahentic mozhemenical field, in the some strict sense the
th,ey regom‘ed Fifferenticd ond integral colonine. With cleor definition of read rumbers formulored oz the end of thel9th cerauy, differenziod ond integred calonlus Rad

i ino oo oauthentic w icod systers. When [ wes o studens, there were few reseqrchers in probebilizy; among the few were Kolmogorov of Russie, and

Panl Leﬂ aof Fronce.

In 1938 Ito graduated from the University of Tokyo and in the following year he was appointed to the Cabinet Btadstcs Burean. He worked there vntl 1943 and it was during this
petiod that he made his most outstanding contributions: -

Drring those five yeors I had much free time, thonks to the special considerarion given me by the then Director Koweshima .. Accordingly, ] was able 1o continue
srudying probability theory, by reading Kolmogorov's Sasic Concept ofP}’obczbz}zzy T?e,eory e Levy s Theory of&un of!ndepem‘echmdom Vericbles. At thez time, i
was commonly believed thet Levy s works were extremely difficult, since Levy, o pioneer in the new 1 field, exploined pr iiry theory bosed o hiz
Inuition. J ertempred to describe Levy 's ideas, using precise logic ther Kolmogorov might use. Introducing the concept of reguicrisezion, developed by Doob of the
Lnited Srezes, I fincdly devised stochastic differensicl equotions, after peinstaling solitery endecvours. My first poper was thus developed, todoy, i iz conumon practice
Jor mezhemezicions to use my method to describe Levy's theory.

In 1940 he published Ok the probabilizy distribazion on g compact group on which he collaborared with Yukiyosi Kawada. The background to Ito’s famons 1942 paper O stochastic
proceszes (Infinitely divisible lows of probability ) which he published in the Jopanese Jowmnal of Mothemaics is given in [2]:-

Brown, o botendst, discovered the motion of pollen parvicles in wozer. At the beginning of the twenticth contury, Brownien motion was studied by Einstein, Pervin ond
other physicists. fn 1923, agamst thiz scz,enzz_,fz,c background, Wiener defined probability meosures in porh speces, and used the concept of Lebesgue integrals 1o loy the

gl foundations of : iz, fn 1942, Dr. Ito begem to reconstruet from sorateh the concept of stochastic integrads, omd i3 ausocioted theory of
aradyzis. He crected the theory of : d&fferemz.cd quotions, which describe motion due to random events.

Although today we see this paper as a fundamental one, it was not seen as such by mathematicians at the time it was published. Ito, who still did not have & doctorate at this time,
wrould have to wait several vears before the importance of his ideas would be fully appreciated and mathematicians would begin to contrabure to developing the theory. In 1943 [to was
appointed as Assistant Professor in the Faculty of Science of Nagoya Imperial University. This was a period of high activity for Ito, and when one considers that this occurred during
the years of extrerne difficulty in Japan cansed by World War II, one has to find this all the more remarkable. Volume 20 of the Froceedings of the Tmperied Academy of Tofye contains
six papers by Ito: (1) On the ergodicity of o certadn stotionary process; (2) A kinemazic theory of turbulence; (3) On the nowmal stogionory process with no hysteresis; (4) A sorew line in
Hilbert spece ond iz applicezion to the probability theory; (5) Srochastic fnzegred; and (8) On Studenz s test.

In 1945 Ito was awarded his doctorate. He continued to develop his ideas on stochastic snalysis with many mportant papers on the topic. Among them were On & stochastic integral
cquazion (1948), On the stochastic inzegred (1948), Stochastic differentiol cquerions in ¢ differentioble menifold (1950), Brownicn motions in @ Lie group (1950), and O stochastic
differentiol equezions (1951).

In 1952 Ito was appointed to a Professorship at Kyoto University. In the following year he published his famons text Probabilizy theory. In this book, Ito develops the theory on a
probability space using terms and tools from measure theory. The years 1954-56 Ito spent at the Instimute for Adwanced Smdy at Princeton University. An important publicaton by Ito
in 1957 weas Stochastic processes. This book contained five chapters, the first providing an introduction, then the remaining ones smdying pr with independent increment
stationary processes, harkov processes, and the theory of diffusion processes. In 1960 Ito visited the Tata Institute in Bombay, India, where he gave a series of lectures surveying his
own work and thar of other on Markov processes, Levy processes, Brownian moton and linear diffusion.

Although Ito remained ag a professor at Kyoto University untl he retired in 1979, he also held positons as professor at Asrhns University from 1966 to 1969 and professor at Comell
University from 1969 to 1975, During his last three years at Kyoto before he retdred, Ito was Director of the Research Institte for Mathematical Sciences there. Afrer retiving from
Kyoro University in 1979 he did not retre from mathematics but continmed to write research papers. He was also appointed at Professor at Gakushoin University.

Ito gives a wonderful descrption mathematical beauty in [3] which he then relates to the way in which he and other mathematicians have developed his fundamental ideas: -
In precizsely budlt mozhermoniond structures, mezhemericions find the some sort of beeuy others find in enchaning picces of music, or in mognificent archirecture, There

is, however, one grea difference between the beauty of mathematicol structures ond that of grees art. Music by Mozar, for instonse, impresses greatly even those who
do not know musical theory, the cothedral in Cologne overwhelms spectorors even if they fnow nothing ebout Christionity. The beauty in mathemationd sxmcm’es

Rowever, connot be appreciored withous understonding ofczg?’oup of natmericed formadne thex express lows of logic. Ordy w iowes con read musical scores”
cortaining monry narmericad formaloe, and ploy ther “rmausic” in their heorts, Accordingly, [ once belisved thor wizhour mumericed forradae, T could never comvmasndcoze the
sweet melody ploved inmy hear. Stochostic differentiol equeions, called "Tto Formads,” ore cwrrently in wide use for describing p aof random fluctuszions over

rimme. When I first sex forgh stochestic differenicd equezions, however, my poper did not axtract cafention. Jt Wos over fer Yeors after my poper thet other
mozhemaicions begon reading wmy “wusicel scores” ond ploying wy Tmusic” with their “instruments.” By developing my “oviginel rmusicsd scores” into move eloborate
“mzic, " these resecrchers have contributed greatly to developing “Ito Formaula,”

Ito received many honours for his outstanding mathernatcal contibutions. He was awarded the Asahi Prize in 1978, and in the same year he received the Imperial Prze snd also the
Japan Academny Prize. In 1985 he received the Fujiwara Prize and in 1998 the Kyoto Prize in Bagic Sciences from the Inamord Foundation. These prizes were all from Japan, and a
furthier Japanese honovr was his election to the Japan Academy. However, he also received many honours from other countries. He was elected to the Mational Academy of Science of
the United States and to the Académie des Sciences of France. He received the Wolf Prize from Israel and honorary doctorates from the universides of Warwick, England and ETH,
Zurich, Switzerland.

In [2] this tribute is paid to Ito:-

Nowadeys, Dr. to's theory iz used in verious fields, in addizion to i, for cruad Fu due to random everts. Coleulozion using the "Ito calouluz” iz
coRRon ROT only to Scientists in physics, populction genetics, stockastic control theory, ond oe.‘h,er netured selences, bur also to mozhernoticed finonce in economics. fn
Ser, experes in finaneiol affeirs refer to Jto celouluz as "Tro's formade ™ Dr. Ito iz the foxher of the modern stochastic enalysis thet hos been systemezically developing
during the twentieth century. This ceaseless development hos been lod by meny, including Dr. Fro, whoze work in this regord is remarkable for iz mothermaziood depeh
G stvong Intercetion with o wids renge of ereas. His work deserves special mention o3 involving one of the bosic theories provwdnent in mezhemeriool sciences during
this centuy.

Arecent monograph enttled fro 'z Stockastic Celondus and Frobebility Theory (1996), dedicared to Ito on the occasion of his eightieth birthday, contains papers which deal with recent
developrents of Ito’s ideas:—

Frofessor Kiyosi fro is well .'bwwn s the creator of the modem theory of stockastic eralysis. Although Ito first proposed his theory, row Anown oz Ito's stochastic

fyziz or fro's Fuaistic ool , ebout fifty years ago, its value in both pure and opplied mathematics is becoming grecter ond greater. For almost oll modern theories
a2 the forefront of probability and ree‘,ca‘edfz,e-ids Tto 'z anadysis i indispensable a3 on essentiol instrument, ond & will remain so in the future. For exgmple, o bagic
Sormade, colled the Tro formade, iz well Frown and widely used in fields op diverse gz physics ond economics.

Article by: 77 O Clonnor and E F Roberzson
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Definition 5.2 Let (S,8,0) be a o-finite measure space. An N-valued stochastic

process {N(B)}pes is a Poisson random measure on S with intensity measure o,

if the following conditions hold;

(1) N(B) is Po(o(B))-distributed for BES;

(2) {N(B;)}, are independent for disjoint {B;} ,CS;
(3) N(-,w) is a measure on S for wefd.

Theorem 5.3 (LEvy-ITO DECOMPOSITION) Let X be a Lévy process with gen-
erating triplet (A,v,~y). Define

N(B)=#{s:(s,X(s)—=X(s7))€ B}  for Borel BC (0,00)xR¢,
The follouning assertions hold:
(1) N s a Poisson random measure with intensity measure o given by
a((0,t]x B) = tv(B) for t>0 and BeB(R?).
(2) With a.s. locally uniform convergence in t, the following limit X, is a Lévy pro-
cess with generating triplet (0,v,0),

X1 (t) = lim, g f(o,ﬂx{sqx\g}[x dN(s,z) —xdo(s,z)] + f(o,t}x{|z|>1} xdN(s,x).

(3) Xo=X—-X; is a Lévy process with generating triplet (A,0,v). It is a.s. contin-

uwous and independent of X;.

Theorem 5.4 (Li&vy-ITO DECOMPOSITION) Let X be a Lévy process with gen-
erating triplet (A,v,v0)o. With the notation of Theorem 5.3, the following assertions
hold:

(1) The following process X3 is a Lévy process with generating triplet (0,v,0)o,
Xs3(t) = f(O,t]de xdN (s, ).

(2) X4=X—X3 is a Lévy process with generating triplet (A,0,7v). It is a.s. con-

tinuous and independent of Xs.

5.4 Sample Function Behaviour

Theorem 5.5 A Lévy process is a.s. continuous iff. its Lévy measure is zero.
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Proof. By Theorem 5.3, J = #{s€(0,t]: | X(s)—X (s )|>¢} satisfies
E{J} = E{N((0,t]x{z€R?: |x|>¢e})} = tfmx dv(r). O

Definition 5.6 A function f:]0,00)—R? is piecewise constant if there exist 0=t

<t <... with lim, ,, t,=00 and f constant on the intervals {[t,—1,t,)}52 .

Theorem 5.7 A Lévy process is a.s. piecewise constant iff. it is type A with ~,=0.

Proof. For A=0, v(R?)<oo and y;=0, by Theorem 5.4, the number of jumps
of X=4Xj3 in (0,¢] has a Po(tv(R?))-law, and thus is finite a.s.

Since #{s€(0,7] : | X(s)—X(s")|>¢} has a Po(tv({z €R?:|z| >¢}))-law, by
Theorem 5.3, v(R?) < oo, since otherwise the number of jumps in (0, ] is infinite a.s.,
by sending /0. For v(R?) <oo, X3 is piecewise constant by [&]. Now Theorem

5.4 gives A=0 and 7,=0, since X, is not piecewise constant, if non-zero. O

Theorem 5.8 (1) A Lévy process with infinite Lévy measure has jumping times

that a.s. are countable and dense in [0,00).

(2) A Lévy process with finite Lévy measure v has jumping times that a.s. are count-

able in increasing order, with the time to the first jump exp(v(R?))-distributed.

Proof. Jumps are countable for cadlag sample paths. Let 7. = inf{s>0:|X(s)—
X (s7)|>e}. By Theorem 5.3, unless zero or infinite, 7, is exp-distributed with

P{T. <t} = P{N((0,f]x{z€R?:[z|>e}) > 1} = 1 — exp{~t [, .. dv(2)}.

For v(R?) =00, lim. g P{T. <t} =1 for ¢t>0, giving assertion (1) (see Exercise 55
below). For v(R%) < oo, we get an exp(v(R?))-law as €0, and Theorem 5.3 gives the

claimed countability, since the number of jumps in (0,¢] has a Po(tv(R¢))-law. O

EXERCISE 55 Explain the argument in the proof of Theorem 5.8 for v(R?%)=occ.

Definition 5.9 The variation v(t, f) over (0,t] of f:[0,00)—=R% is defined

v(t, f) = sup{d_p_ |f(tx) = f(tk=1)| : 0=to<t1<...<t,=t, neN}.

The following important result is again proved making crucial use of the Lévy-1to

Decomposition. But now arguments are quite long and difficult.

33




Theorem 5.10 (1) A Lévy process X of type A or B with generating triplet (0, v,
Yo)o has a.s. locally finite variation V(t)=wv(t,X), that is a subordinator with gen-
erating triplet (0, p,|Yo|)o, where

p(B) = v({z€R?: |z| € B}) for BeB(R).

(2) A Lévy process of type C has a.s. locally infinite variation.

EXERCISE 56 Exercise E 22.1 in Sato’s book.

EXERCISE 57 Exercise E 22.5 in Sato’s book.

5.5 Recurrence and Transience

There are many results on recurrence and transience for Lévy processes. We only
display a single result, to give some flavour of the topic (see Sato’s book and tutorials

on more information). An application is given to stable Lévy motions.

Definition 5.11 A Lévy process X is reccurent if
lim inft_mo |Xt| =0 a.s.,

and transient if

limt_,oo |Xt| =00 a.s.

Theorem 5.12 Given an a>0, a Lévy process X is reccurent iff.
[ P{X ()| <a}dt =0 a.s.,

and transient iff.
JooP{IX(t)] <a} dt < oo a.s.

EXERCISE 58 Show that an R-valued non-trivial a-stable Lévy motion X, a#1,
may be written X (¢)=L(t)+7t, where L is strictly stable and 7 € R a constant.
Conclude that X is strictly a-stable iff. 7=0.

EXAMPLE 2 Let X(t)=L(t)+7t be an R-valued non-trivial a-stable, a€(1,2],
Lévy motion, with L strictly stable and 7 € R a constant (cf. Exercise 58). Recall
that L(1) has a density function fr(;), by Exercise 38. Assume that f;)(0)>0.
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By self-similarity of L (this is Fact 3.9), we have
S P{IL(#)|<a}dt = [[FP{L(D)|<t Va}dt > [ fra)(0)t Vadt = o0

(for some constant ¢y > 0). Hence L is reccurent, by Theorem 5.12. L., strictly
a-stable Lévy motions with a€(1,2] are reccurent.

If X is not strictly a-stable, so that 7#0, then we get
P{|X(t)|<a} = P{[tV*L(1)+7t|<a} = P{—tVea—rt! "V < L(1) <t~ Veq—rt' =V}

i.e., L(1) belongs to an interval of width 2¢t~'/®a located “around” —7t'~%/¢. By

unimodality of a-stable distributions (recall Section 4.2), this is at most
2% fray (£t a—7t' ) < 270 fry(—Lrttole)
for t large enough. Hence X is transient, by Theorem 5.12; since

St fuy (At dt = [ 2] (r(1-1/a)) fuq(—F) di < 0o, #

EXERCISE 59 Show that a non-zero a-stable Lévy motion, a € (0, 1), is transient.
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5.6 Something I came to think of this time ...

Go ahead, make my day punk!
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6 Lecture 6 27/9-02

In Lectures 6 and 7, as preparation for sde, we study stochastic integrals of non-
random functions wrt. additive processes, following the standard text “Rajput & Ros-

inski: Spectral Representation of Infinitely Divisible Processes”. the seatment has been stightly

“watered down” , since it is estimated that most participants do not benifit from the full truth.

6.1 Outline of Stochastic Integration wrt. Semi-martingales

Let G be an R-valued Gaussian additive process, where G(t) has triplet (A(?),0,
v(t)), with ~ of finite variation. For measurable z:[0,00) =R the stochastic integral

[fzdG exists & |Logzllao, = [fy A(s)z(s)2ds]? + [ |2(s)| d]v|(s) < 0.

We may integrate a predictable (essentially meaning left-continuous and adapted

to the filtration associated with G) R-valued process X wrt. G,
t .
Jo X dG  exists & P{||10,4X /(40,1 <00} = 1.

An continuous semi-martingale S is a time-changed version S = GoT of G,
where {T'(t)}:;>o is an non-decreasing, predictable and continuous stochastic process.
Formally, it is an additive process with time dependent stochastic triplet (AoT,0,

voT). We may integrate a predictable process X wrt. S,
fot X dS exists (fOI" tZO) = P{“]-[O,t]X”(AoT,O,'yoT) <OO} =1 (fOI‘ tEO)

The stochastic integral process { fot X dS}i>o is again a continuous semi-martingale.
For an R-valued additive process L such that L(t) has triplet (A(%),v(t),v(t))
[recall that L(t) is id by Fact 1.33], and measurable z:[0,00) =R, the integral

fOtCEdL exists & L0, (A0, < 00,
where ||-]/(4,,,) is a F-pseudo-norm on a Musielak-Orlicz space (see Section 6.3
below), that reduces to ||-||(a,,y) for L Gaussian v(t)=0. We may integrate a pre-

dictable (wrt. the filtration associated with L) process X wrt. L,
t :
Jy X dL exists 3 P{||10,4X ||(A,p,y) <00} = 1.

A not necessarily continuous semi-martingale S formally is an additive process

~

with (time dependent) stochastic triplet (A(t),7(t),#(t)). For a predictable X,
fJXdS exists (for ¢>0) & P{[[1pgX (4,04 <oc}=1 (for t>0).

The process { fg X dS}i>o is again a semi-martingale. (This is the general theory!)
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6.2 Representation of Additive Processes

Fact 6.1 For X additive in law, X (t)—X(s) is id for 0<s<t.

Proof. For s>0, X'=X(-+s)—X(s) is an additive process in law, because
(X (5), X'(t1), X' (t2) = X" (t1)y - - -, X' (tn) — X' (tn-1))
=4 (X (8), X(t14+5)—X(s), X (ta+8)—X(t1+58), ..., X(tn+s)— X (tn_1+5))

are independent for 0<t; <...<t,. The assertion thus follows from Fact 1.33. O

Fact 6.2 Given a family of probability densities {15, }o<s<t<oo OT Re, there exists
X that is additive in law with L(X(t)—X(s)) = uss for 0<s<t, iff. the following

conditions hold;
(1) Hrs*khst = Hrt fOT 0<r<s <t;

(2) pst —ado as sTt>0 andas tls>0 [in particular, py = 6y for t>0].

EXERCISE 60 Prove in Fact 6.2.

EXERCISE 61 Prove in Fact 6.2.

Definition 6.3 An X that is additive in law such that X (t) has triplet (A, vi, V:)
for t>0, has system of triplets {(A:, vi, Vi) }>o0-

Corollary 6.4 An additive process in law is unigely determined in law by its system
of triplets.

Proof. Let X and X' be additive with common systems of triplets. With p,; =
L(X(t)—X(s)) and pg, = L(X'(t)-X'(s)) for 0<s<t, we have o=y, for
t>0, by assumption. This gives

Hoskhy = Mo * sy = Hoy = L(X'()) = LIX (1)) = poy = po,sxpise  for 0<s<t.

Hence ), = 154, by using chf [since the chf of fg is non-zero, by Lemma 4.13,
since X (s) is id, by Fact 6.1]. It follows that X =; X' (see Exercise 62 below). O

EXERCISE 62 Explain why g, =), for 0<s<t, givesthe X =4 X' requested
in the proof of Corollary 6.4.
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Theorem 6.5 The triplets {(Ai, i, 1) hiso is system of triplets for an additive

process in law, iff. the following conditions hold;

(1) Ap=0, vy=0 and v =0;

(2) for 0<s<t, (0,As0) <(0,A4,0) for 0€R?, and vs(B)<v(B) for BeB(R?);
(3) as s—t>0, A;— Ay, vs(B)—vy(B) for BEB(R?) with 0¢clos(B), and vs—;.

Proof. For 54 the id law with triplet (A;— A, vi—v,, —7s), for 0<s<t,
conditions (1) and (2) of Fact 6.2 hold.

Property (1) expresses that X(0) =4 0. Further, £(X(t)—X(s)) is id, by
Fact 6.1, with triplet (A;—As, v,—vs, 7—7s), since OX(t) = PX(s)PX(t)-X(s)> SO that
Ox()-x(s) = Px(t)/Px(s)- This gives claim (2). As s—t, X(s) —4X (), by stochastic
continuity. Hence, by Theorem 5.1.3, vs—;, and by Theorem 5.1.2,

lim, o lim sup,_,, (6, (A;—A;)0) +f|y‘<€<9,y>2 dvs(y)| =0 for HeR?.

Thus A, — A;, since taking £>t, the property (2) and Dominated Convergence give

limlimsup [y, . (0,y)* dvs(y) < lim [, .0, 9)° dvi(y) < lim [, . 10F]y[*dvi(y) = 0.

{0 s—t
Moreover, v, <v; gives dvs(x) = g,(x)dv;(x) for some measurable g,:R? - R, for
s<t, by Radon-Nikodym, with g,1gy and g,} gy a.e. (v;), as s1s' <t and s|s' <t

by Exercise 64 below. Hence Monotone Convergence gives, as s1t, for £>0,

Vs(Lop2e1B) =[5 18(2)95(@) vi(@) = [, o, 16(2)ge(2) v3(2) = ve(1{j0)32} B).-

Similarly, vy(1{z>e}B) 4 v¢(1{jg/>:3B) as slt. This finishes the proof of (3). O

EXERCISE 63 Explain why (3) [together with a bit of (2)] gives stochastic conti-
nuity of X in the proof of in Theorem 6.5.

EXERCISE 64 Explain why g,1gy and g,lgy a.e. (v;) as s1s'<t and sls' <{,
respectively, in the proof of in Theorem 6.5.

Corollary 6.6 A family of triplets {(0,v4,0)}i>0 4s system of triplets for an addi-

tive process in law, iff.
v([0,t] x B) = 1(B) for t>0 and BeB(R?)
defines a measure on [0,00) xR, such that

v({t} xR =0 and f[o xR IA|z|2dv(s,x) < 0o for t>0.
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EXERCISE 65 Prove in Corollary 6.6.

EXERCISE 66 Prove in Corollary 6.6.

6.3 Some Facts from Measure Theory and Functional Analysis

Definition 6.7 A family S of subsets of a set S is a semi-ring if the following conditions hold;
(1) e S;

(2) A,BeS = ANBEeS;

(3) A,BeS = B~A=U,_, Ex for some disjoint {Ex}7_, CS.

Definition 6.8 A family R of subsets of a set S is a ring if the following conditions hold;
(1) AL BER = ANBEeR;
(2) A, BER = AAB = (A~B)U(B~A)€R.

EXERCISE 67 Show that rings are semi-rings. Show that there exists a smallest ring, the

generated ring, that contains any given semi-ring.

Definition 6.9 A family R of subsets of a set S is a §-ring if it is a ring such that

{AI2,CR = N AreR.

Definition 6.10 A family R of subsets of a set S is a o-ring if it is a ring such that

{A}2CR = Uil AreR.

Definition 6.11 A famliy S of subsets of a set S is o-R if

S=Uj Ax  for some {Ag}32, CS.

EXAMPLE 3 A o-ring R is a d-ring, since for {4}, CR, with A=[J;, Ay,
R AA U (AAAL) = AN[Ups (AN A = AN Moy (AU Ag) = Neey Ak

A “typical” é-ring (that is not a o-ring) is {BeB(R?): [, dz<oo}.
o-finite integration theory can be developed by considering measures (o-additive set functions)
over the o-R d-ring of sets with well-defined and finite measure (set function values). (See below

for notation!) In advanced integration theory and in stochastic integration, this is the standard. #

Definition 6.12 A family A of subsets of a set S 1is an algebra if it is a ring such that S € A.
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EXERCISE 68 Show that aring R is an algebra iff. it is closed under taking complements. Show

that there exists a smallest algebra, the generated algebra, that contains R.

Definition 6.13 A family A of subsets of a set S is a o-algebra if it is a o-ring such that S €.
A measurable space (S,2) is a set S together with a o-algebra 2 of subsets S.

EXERCISE 69 For a ring R, show that there exists a smallest é-ring, the generated é-ring, a

smallest o-ring, the generated o-ring, that is a o-algebra if R is 0-R, and a smallest o-algebra, the

generated o-algebra o(R), that contains R. What happens if R is a semi-ring instead?

Definition 6.14 A function p:8 — R=[-00,00] on a family S of subsets of a set S is an

additive set function if the following conditions hold;

(1) w®=0;
2) u(Uj—q Ar) = X5y 1(Ax) for disjoint {Ag}p_, CS with U,_, Ar€S.

EXERCISE 70 Show that (2) = (1), in Definition 6.14, if u(A)€€R for some A€S. Why can-

not an additive set function on a ring take both the values —oo and oo?

Definition 6.15 An additive set function p on a family S of subsets of a set S is o-additive if

p(Upey Ar) = Yooy w(Ar)  for disjoint {Ax}2, CS with U;., Ar €S.

Definition 6.16 A measure is a non-negative o-additive set function. A measure space (S, 2, )

is a set S together with a measure p on a o-algebra A of subsets of S.

Definition 6.17 A function p:S—R on a family S of subsets of a set S is o-finite if

BC Upe, A for some {Ap}32, CS with p(Ax)€R, for each BES.

EXERCISE 71 Which of Definitions 6.14-6.17 apply to u(A)=#{t:te A} for ACS?

Theorem 6.18 An additive set function p on a semi-ring S of subsets of a set S that is finite,
or non-negative (non-positive), has a unique extension to the generated ring (see Exercise 67). If

p s o-additive, then so is the extension.

Theorem 6.19 A o-additive set function on a ring R of subsets of a set S that is finite, or non-
negative (non-positive) and o-finite, has a unique extension to the generated §-ring (see Exercise

69) that is finite, or non-negative (non-positive) and o-finite, respectively.
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Theorem 6.20 A measure on a ring R of subsets of a set S has an extension to the generated

o-ring (see Exercise 69). The extension is unique and o-finite if the mesure is o-finite.

Definition 6.21 A function p:TxT —[0,00) is a pseudo-metric on the set T if the following

conditions hold;

(0) p(t,t)=0 for teT;

(1) p(r,t) < p(r,s)+p(s,t) for r,s,teT (A-inequality);
(2) p(s,t) = p(t,s) for s, teT (symmetry).

EXERCISE 72 Explain why, on the space of rv’s with well-defined mean, p(Y7,Y2) = E{|Y; —

Y5|} is a pseudo-metric, but not a metric.

Definition 6.22 A pseudo-metric p on a set T is a metric if

p(s,t)=0 = s=t for s,teT.

Virtually all results for metric spaces have versions for pseudo-metric spaces. In fact, often

results extends immediately, without any changes at all.

Definition 6.23 A function ||-||: T — [0,00) is a pseudo-norm (also called semi-norm) on a

linear space T (over R say), if the following conditions hold;

(0) lof =0
1) Is+2l < |Isll +11t]| for s,teT (A-inequality);
(2) (|At]] = |ALIE]] for AeR and teT (homogeneity).
Definition 6.24 A pseudo-norm ||-|| on T is a norm if
lt]l=0 = t=0 for teT.
EXERCISE 73 Show that for ||-|| a pseudo-norm (norm), ||-—-|| is a pseudo-metric (metric).
Definition 6.25 A function ||-||:T—[0,00) is a F-pseudo-norm (also called F-semi-norm) on

a linear space T (over R say), if the following conditions hold;

(0) llof}=0;

(D) lls+tll < [lsll+1ell - for s,t€T;

(2) ||[Aete—=At|| =0 whenever R3 A, —>A€R and t1,ty,...,t€T with ||t—t||—0.

Definition 6.26 An F-pseudo-norm ||-|| is an F-norm if

[t]l=0 = t=0 for teT.
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EXERCISE 74 Show that a pseudo-norm (norm) is an F-pseudo-norm (F-norm).

Definition 6.27 A pseudo-modular of moderate growth (pmmg) on a linear space T (over R say),

is a function ®:T —[0,00) such that the following conditions hold;

(0) @(0)=0;

(1) RoX— ®(At) is continuous, even, non-incresing on (—o00,0], and non-decreasing on [0, 00),
for teT;

(2) (s+t) < C(2(s)+2(1)) for s,teT, for some constant C >0.

EXERCISE 75 Define “modular of moderate growth”. Verify that ®(Y)=E{|Y|?} is a pmmg,
but not a pseudo-norm, on the space of Y that satisfy E{|Y|*} < cc.

Theorem 6.28 A pmmg ® on T induces a pseudo-metrizable topology on T with open subbasis

{{teT:®(t—t1)<ri,...,®(t—tn) <rn}}ts, . tn€T,r1,...,rn >0, nEN-

Further, addition and scalar multiplication are continuous (i.e., T is a topological vector space).

Theorem 6.29 (MUSIELAK-ORLICZ) Let (S,%A, 1) be a complete o-finite measure space, with 2
the Borel o-algebra of a separable topological space. Let 1:SxR—1[0,00) be a function such that
the following conditions hold;

(1) ¥(s,0)=0 for seS;

(2) ¥(s,-) is continuous, even, non-incresing on (—o00,0], and non-decreasing on [0,00), for s€S;
(3) (-,t) € LO(S,A) for teR;
(4) ¥(s,C1t) < Catp(s,t) for s€S and teR, for some constants Cp,Co>1.

Then (-, f(-)) € L°(S,2) for fel(S,2A), and
O(f) = [59(s, f(5))du(s)  is a pumg on  LY(S,2,pu) = {f€L(S,A) : &(f) <oo}.

The induced topology is complete pseudo-metric, with addition and scalar multiplication continuous.

If in addition ®(1)<oo, then LY (S, 2, u) is separable, with simple functions as a dense subset.

Definition 6.30 The space L¥ (S, A, u) in Theorem 6.29 is a Musielak-Orlicz space. If (s, )=
¥(-) does not depend on s€S, then it is an Orlicz space.

EXERCISE 76 Show that the space of rv’s with the modular (V) = E{|Y|A1} is an Orlicz
space, and that the convergence Y, »Y &qer (Y, —Y)—0 is convergence in probability.

EXERCISE 77 Many important Musielak-Orlicz spaces do not satsify ®(1) <oo. Give an example
of this. However, the criterion ®(1) <oo for denseness of simple functions can often be used anyway,

by a o-finiteness type of argument. Explain how!
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7 Lecture 7 1/10-02

7.1 Stochastic Integrals wrt. ID Random Measures

In Lecture 7, © is a 0-R d-ring of subsets of a set S. (Simply view & as a o-algebra!)

Definition 7.1 An independently scattered random measure (isrm) on (S, &) is

an R-valued stochastic process {A(A)}acs, such that the following conditions hold;
(1) {A(Ax)}r_, are independent for disjoint {Ag}r_1C6S;
(2) AUy Ak) =as. Yooy A(Ag) for disjoint {Ax}p2, €6 with |Jpe, Ar€S.

Definition 7.2 An id isrm (idisrm) is an isrm with id process values.

Theorem 7.3 A function A:&—L°(Q,F) is an idistm on (S, 6) iff.
E{e"} = exp{ifvy(A) — 3621 (A) + [ (69— 1—i0z1(4)<1y) dFa(z)}
for 0€R and A€S, for some (necessarily unique)

signed finite measure vy on &,
finite measure v; on S,

Lévy measures {Fy}acs on R with {F\(B)}pesw),o¢a0s(m) finite measures on &.

Conversely, given such vy, v1 and Fy, there exists an idisrm A with the chf above.

EXERCISE 78 Show that an idisrm on (S, &) is an id stochastic process. Ex-

plain why an isrm on R or Rt must be an idisrm.

EXERCISE 79 Motivate (or prove) Theorem 7.3.

Definition 7.4 For an idisrm on (S,8) with chf as in Theorem 7.3, the con-

trol measure \ is the unique extension to (&) of the measure on &

A= || + v + [ 1AZ? dF ().

Corollary 7.5 For an idisrm A on (S, &) with control measure \, we have

AMAp) =0 for {4,32,C6 & A(A)—0 whenever &3A/ CA, for neN.
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EXERCISE 80 Prove Corollary 7.5.

Definition 7.6 For an idisrm on (S, &) with chf as in Theorem 7.3 and control

measure )\, we define the characteristic (o2, p,b) by

o =dv/d), p(-,B) =dF.(B)/d\ and b= dvy/d\.

Fact 7.7 For the characteristic (02, p,b) of an idisrm with control measure X,

b(s)| + 0%(s) + g 1Az® p(s,dz) =1 a.e. ()

Proof. For A€&, we have

Lo llbl 40+ [L1AZ? p(-, dx)] AN = [vo(A)|+v1(A) + [ 1Az? dEy (x) = A(A) = [, d\. O

Fact 7.8 For an idisrm on (S,8) with control measure \ and characteristic
(02, p,b), we have, for ER and A€,

E{eiGA(A)} — eXp{fseA [7,9[)(8) . %920-2(5) -+ fR(eigw—l—igxl{‘z‘Sl}) p(S, dﬂ:)] d)\(S)}

EXERCISE 81 Prove Fact 7.8.

Definition 7.9 For an idistm A on (S,8), and a &-simple function f =
Sor_jakla,, with {Ag}e_, C & disjoint, the stochastic integral [ fdA is defined

f fdA = ZZ:I Qy, A(Ak)

Fact 7.10 For an idistm A on (S, &) with characteristic (o2, p,b) and control

measure \, we have for G-simple f:S5—R,
E{e?/1 Y} = exp{ [ [i0fb— 162 f20® + [ (97"—1—i0 f2lp<1y) p(-, dz)] dA}.
Hence [ fdA is id with triplet (Ay,vs,vs) given by
Ay = [, fPo%dA
vi = [o Jr 1) (f(5)x) p(s, dz)dA(s)
vr = J5lfo+ Jo Fo(qpa1<iy—1ga<ny) p(-, dz)] dA
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Proof. For f=3"7_ ayla,, Fact 7.8 shows that E{e?//?} is

[Tz exp{ [, [i0arb — 560%aio® + [ (e —1—ifayrlyz<iy) p(s, dx)] dA(s)}. O

EXERCISE 82 Verify the claim regarding the triplet (Ay,v,v;) in Fact 7.10.

Theorem 7.11 For an idistm A on (S, &) with characteristic (o2, p,b) and con-
trol measure X, the following function 1 satisfies the hypothesis of Theorem 6.29,

(s, 1) = [ sup |7][b(s)+Jg #(Lijra <ty =Lyiai<1y) p(s, da) 41707 (5)+ [ 1N[E2]* p(s, dx).

|7I<[¢]

The Musielak-Orlicz space 1LY (S, A, \) is metrized by the complete F-pseudo-norm
| flly = inf{c>0: &(f/c)<c} where = [G1(s, f(s)) dA(s).
We have feL¥(S,2A,A) if. ||flly<oo iff. ®(f)<oo iff.

Ssll 110+ fe 2(Xq o<ty = L<ay) p(, dz) [+ f20? + [ 1IA[fz]? p(-, dz)] dA < oo

Definition 7.12 With the notation of Theorem 7.11, we write L* for L¥ (S, 2, \).

Fact 7.13 For an idisrm A on (S,S), with the notation of Theorem 7.11, || [ f
dA— [ gdAlly = || f—glly is an F-pseudo-norm on I* = {[ f dA :simple f:S—R}.
The completion of I can be topologically identified with 1.*.

EXERCISE 83 Provide arguments for Fact 7.13.

Lemma 7.14 For an idistm A on (S,8), if {f.}2, and {f'}, are &-simple
sequences with || fo—fllws |f2—fllu—0 for feL®, then [ fodA— [ f,dA —p 0.

Proof. By Fact 7.10, [ f,dA— [ fdA is id with triplet (A, Vs,7,) given by

A, :fs fn—f' 202 d\
= Js e ¢ z— fu(s ) ) p(s, dz)dA(s)
T = sl fn n)b+ fR o= )2 (Lt ampyei<y = Lai<ny) p(- dz)] dA
It follows from Theorem 5.1, and the definition of ®, that [ f,dA— [ fLdA —40
when ®(f,— f;)—0. This in turn holds by Theorem 7.11, since || f,—f,|4x—0. O

EXERCISE 84 Elaborate on the details in the proof of Lemma 7.14.
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Definition 7.15 For an idistm A on (S, &), with the notation of Theorem 7.11,
the stochastic integral [ fdA of f€L) is defined as lim, o [ fndA, for any &-
simple sequence {fn}>>, such that || f,— fl|lx—0.

Corollary 7.16 For an idistm A on (S,8), [ fdA is id with triplet (Ay,vy,
v¢) asin Fact 7.10, and [ f,dA—p [fdA for some S-simple {f,}52,, for feLt.

For an idisrm A on R, the following process L is an additive process on R,
L(t) = A((0,t]) for t>0 and L(t) = A((t,0]) for t<O.

Conversely, for R-valued additive process {L(t)};cr, there exists an idisrm A on
R with {A((s,?])}ros<ter =a {L(t)—L(s)}ros<ter- The integral is denoted [ fdL.
For an R-valued Lévy process {L(t)}ier, the characteristic of dL coincide with

the generating triplet, and the control measure a multiple of Lebesgue measure.

EXERCISE 85 Verify the claims above for additive processes and Lévy processes.

REMARK 7.17 In the sequel, we will neither emphasize nor make crucial use of
the mathematical aspects of stochastic integration brought up in Lectures 6 and 7.

Rather, they are there to give a complementary view on things. #

7.2 Stochastic Integrals wrt. a-stable Lévy Motion

Let {L(t)}icr be a-stable Lévy motion, a€(0,1)U(1,2), with L(1) ~ S,(c, 8,0).
For a<1, since 79=0 (see Corollary 3.11), the last integral in Theorm 7.11 is

Jel Jo F(8)x1qps)01<1y dv(@)| ds + [o [z IA]f(s)z|? dv(z)ds.
EXERCISE 86 For a<1 and ¢>0, show that L =L(R).

For a>1, since y;=0 (see Corollary 3.11), the last integral in Theorm 7.11 is
Jel Jg F($)aLqps)a1>13 dv(@)| ds + [o [z IALf(s)z]? dv(z)ds.

EXERCISE 87 For a>1 and ¢>0, show that L =L(R).

EXERCISE 88 Determine L for {B(t)};cr R-valued Bm.
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7.3 Nagra tankar om forskningens psykopatografi ...

ur “Sigmund Freud (1910): Leonardo da Vinci - ett barndomsminne”:

“Beténker vi Leonardos kombination av 6verméaktig forskardrift och fértvinat sexualliv, inskrankt
till sa kallad ideell homosexualitet, dr vi bendgna att anvidnda honom som ménsterfall for var tredje
typ. Det skulle vara kdrnan och hemligheten i hans natur, att han - efter att infantilt ha anvént
vetgirigheten for sexuella intressen - lyckades sublimera stérsta delen av sin libido till forskarstridvan.

Men att presentera bevis for denna uppfattning dr forvisso inte latt.”

“Lat oss uttryckligen betona att vi aldrig rdknat Leonardo till neurotikerna, eller de “nervsjuka”
som den klumpiga termen lyder. Den som beklagar att vi 6ver huvud taget vagar ha patografiska
aspekter pa honom, den klamrar vid férdomar som vi i dag med rétta har 6vergett. Vi tror inte ling-
re att hédlsa och sjukdom, normal och nervést, klart kan skiljas at, och att neurotiska drag maste
uppfattas som bevis for allmédnn mindervirdighet. Vi vet i dag att neurotiska symptom &r ett substi-
tut for vissa borttrdngningar som vi maste géra under var utveckling fran barn till kulturménniska.
Att vi alla utfér sadana substitututbildningar och att det bara dr dessa substituts antal, intensitet
och fordelning som motiverar det praktiska begreppet sjukdom och slutsatsen om konstitutionell
mindervéirdighet. Utifran sma symptom i Leonardos personlighet kan vi nu féra honom till den neu-
rotikertyp som vi kallar ”tvangstypen”. Och kan jamfora hans forskande med neurotikerns ”grubbel-

tvang” och hans himningar med dessas sa kallade abuli (viljesvaghet, 6.a.).”

“I blomman av sin ungdom verkar Leonardo till en bérjan arbeta utan hamningar. Nar han i
sin livsforing utat gor fadern till férebild, sa upplever han i Milano en tid av manlig skaparkraft och
konstnérlig produktivitet. Déir erbjuds han ocksa av en slump ett fadersubstitut i form av hertig
Lodovico Moro. Men snart gor hans erfarenhet sig pamind: hans néstan totala undertryckande av
egentligt sexualliv dr inte bidsta forutsdttningen for att hans sexualitet ska kunna sublimeras i an-
nan aktivitet. Sexuallivet gor sig géllande som négot positivt, driftigheten och férmégan till snabba
beslut bérjar férlamas, tendensen att fundera och tveka upptrider redan vid Nattvarden som sto-
rande och avgor tillsammans med tekniken detta storslagna verks dde. Inom honom pagar nu lang-
samt en process som man bara kan jimféra med regressionerna hos neurotiker. Hans pubertetsut-
veckling till konstnér éverflyglas av hans tidiga infantilt betingade utveckling till forskare. Och den
andra sublimeringen av hans erotiska drifter ger nu vika fér den ursprungliga sublimeringen, forbe-
redd for den férsta borttridngningen. Han blir forskare, i borjan fortfarande i sin konsts tjénst, sena-
re oberoende av den och pa vig bort fran den. Sedan han forlorat den faderssubstituerande skydds-
patronen och livet blivit alltmer dystert sa utbreder sig denna regressiva substituering mer och mer.
Han blir "mycket irriterad av att mala”, som en brevskrivare till markgrevinnan Isabella d’Este
beréttar, som ovillkorligen ville ha en malning av honom. Hans férflutna som barn har tagit makten
6ver honom. Men forskandet, som nu ersitter hans konstnéirliga skapande, tycks ha nagra drag som
ar typiska fér hur omedvetna drifter aktiveras: omdéttligheten, den otyglade halsstarrigheten, ofér-

magan att anpassa sig till realiteter.”
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8 Lectures 8-9 4-8/10-02: Sections I.1-1.5 in Protter

The remaining lectures cover Chapters I-IIT of “Protter: Stochastic Integration
and Differential Equations”. Since Protter’s book is more readable than Sato’s, we
mainly indicate selection of material. We have added explanations when we found
that we were in need of such ourselves, or thought we had better arguments.

We do list many exercises. There are no exercises in Protter’s book, labeled as such.
But Protter leaves many verifications of minor details to the reader, and to check these
do in general make very useful exercises. Many of our exercises have this origin.

Our initial ambition is to cover Protter’s whole book, with few omissions.

See e.g., Chapter 1 in “Chung: Lectures from Markov processes to Brownian Motion” for more on

stopping times, and Chapter 6 in “Kallenberg: Foundations of Modern Probability” on martingales.

8.1 Basic Definitions and Notation: Section I.1 in Protter

Definition of filtration. (See also Definition 1.14.) Notice that Protter includes Fo, in the

filtration. Filtrations with other parametersets than [0, 00] are defined similarly.

Definition of usual conditions.

Convention: We always assume the usual conditions! But notice that the usual

conditions are not assumed for the natural filtrations introduced below.

Definition of stopping time. In the literature, stopping times are called Markov times, op-
tional times, predictable times, and strong stopping times, strong ... . (Without the usual conditions,

{T <t} €3; is not the same as {T'<t}€F;, and names are needed for for both these properties.)
Theorem 1, with proof. Proof: {T<t} =, {T<u} and {T<t} =, {T<u}. O
Definition of modification. (See also Definition 1.11.)

Definition of indistinguishable. Recall our Remark 1.12 on this language.

Definition of hitting time.
Theorems 3-4, with proof of Theorem 3. The analogue result for any Borel set is mentioned.
Theorem 5.

EXERCISE 89 Prove Theorem 5.

Definition of the stopping time o-algebra §Fr. Fr has many properties one intuitively

expects (see e.g., Exercise 90 below), but they do in general require a non-trivial proof.

EXERCISE 90 Show that Fr is a o-algebra for T a stopping time.
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Theorem 6, with proof of . (An “adapted” is missing at one place in the hypothesis.)

EXERCISE 91 Elaborate on the details in the proof of in Theorem 6.

EXERCISE 92 For S and T stopping times, show that FsCFr if S<T as.,
and that SSHST:SS/\T-

Because of the usual conditions, S<T a.s. is as good as S<T for all we?, e.g., when checking

memberships in filtrations. (Readers should make sure to take this in!)

Notation AX. Notice that AX is not c4dlag, except if it is the zero process.
EXERCISE 93 Show that AX is adapted when X is.

Theorem 7 (possibly with proof).

Corollary to Theorem 7. (That this really is a corollary is trivial.)

8.2 Martingales: Section 1.2 in Protter

Definition of martingale, supermartingale and submartingale. Many results are proved

e.g., for supermartingales, and thus hold automatically for martingales. They often follow also for

submartingales, by Exercise 94 below. Martingales with other parametersets are defined similarly.
EXERCISE 94 Show that —X is a supermartingale when X is a submartingale.

Definition of closed martingale. This is much more important than one may initially belive.

Theorem 9. Notice that the final statement “Such a modification is unique.” in the theorem
means that such a modification is indistinguishable from any other such modification. (This is a

direct consequence of the fact that modifications of cddlag processes are indistinguishable.)

EXERCISE 95 Show that modifications of martingales, supermartingales and sub-

martingales are still martingales, supermartingales and submartingales, respectively.

Corollary 1 to Theorem 9. (That this is a corollary is of course trivial.)
Convention: We always assume that martingales are right-continuous!

Theorem 10. (The “Moreover ......”-part of the result may be skipped, at least for now.)
EXERCISE 96 Why are (right-continuous) martingales c4dlag?

Notation \/ for o-algebras (filtrations).
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Definition of uniform integrability (ui).

EXERCISE 97 Show that {Y,}aecq is ui if sup,cq E{|YalP} < oo for some p>1.

Theorem 13. (Theorem 12 is included in Theorem 13.)
Theorem 16. This is really very important!

Theorem 17. For martingales, this is a version of Theorem 16 with other technical conditions.
EXERCISE 98 Why is TAt a stopping time for T a stopping time and t€ [0, 0o]?

Definition of stopped process.

Lemma 8.1 For S and T stopping times, {S<T}, {S<T}, {S=T} € Fsar-

Proof: By Exercise 99 below, it suffices to check that {S<T} € Fs,5r. Here {S<T} € Fr, since
{S<T}N{T <t} = Ngoser Upsres{S<rIN{r<T<s} € F; 1 &  as ilt.
To show that also {S<T}€gFs, it is enough to check that {S>T} € Fs, which we get from

{T<SIN{S<t} =Ny Nosserig Ugsres A THE<r}N{r<S<s} € F 1§  as &lt. O

Theorem 18, with proof. Proof: By Theorem 13, it is sufficient to prove that X =
E{X(T)|:}. This we get (recalling that Frr CF; by Exercise 92), provided that

X(T)l{T<t} is FiaT-measurable and E{X(T)I{th}|&t/\T} = E{X(T)I{th}m"t},
from the fact that, by Theorem 16,
Xinr = B{X(T)[§enr} = X(T)1ir<sy + B{X(T) 1754 |3:} = B{X(T)[3¢}-
The rv X (T)14r<s is Siar-measurable, since
{X(T)eBIn{T<t}n{tAT<s} ={X(EAT)eB}N{tNT <t} N {tAT <s}

_JXCADIEBYn AT <t} for szt o b B®
- {X(AT)eB}N {tAT<s} for s<te s for Be .

by definition of stopping c-algebras, since X (tAT) is Fiar-measurable by Theorem 6 (where tAT

is a stopping time by Exercise 98), and since {tAT <t} = UQ9u<t{t/\T§u} €F: CFs for s>t.
Since 17>} is Fiar-measurable, by Lemma 8.1, E{X(T)1{7>4|Fiar} = B{X(T)[FtAT}1{r>4}-
For HeF:y, HN{T >t} € Firr = F: N7 (cf. Exercise 92), since trivially in §;, and in Fr by

HO{T>t)n{T<s} = {{Hﬂ{T<t}cﬂ{T§s} €gs for sZte&‘
1] for s<t

Hence we get E{X(T)1;r>n|Fiar} =E{X(T)1{r>4|:}, using Lemma 8.1, since for H €§;,
E{B{X () 11> |3inr}1r} = B{B{X (T)[Fenr}liron1n} = E{E{X(T)1ir>n1u(3iar}}
= E{X(T)lr>y1n}
= E{E{X(T)1yr>4|3:}1u}. O
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EXERCISE 99 Why is it enough to check that {S<T} € Js,Fr in Lemma 8.17

Corollary to Theorem 18. Proof: By Lemma 8.1, 1i7<g) is Fsar-measurable, and thus

Sr-measurable, so that E{Y1(7<s}|§7T} is §sar-measurable, since

E{Y1ir<s}[81}1sar<ey = E{Y 81} lir<syl{r<s}

is §¢-measurable. This gives

E{E{Y1{7<5}|87}|8s} = E{E{Y 1{7<5}|8T}TsaT} = E{Y 1{1<5}|FsAT}

Similarly, E{E{Y1{755}|37}|8s} is §sar-measurable, and thus §s-measurable, since

E{E{Y|37}|8s}1{r>s511isar<sy = E{E{Y|37}|8 s} 1{r>s511¢s<e)

is §;-measurable (by Lemma, 8.1), which gives

E{E{Y 175 5}[87}8s} = E{E{Y {75 5}[87}8sar} = E{Y 175538 sAT}-

Adding things up, we conclude that E{E{Y|§F1}|§s} = E{Y|§sar}. O

Theorem 19.

Corollary 1 to Theorem 19.

EXERCISE 100 Prove Corollary 1 to Theorem 19.
Corollary 2 to Theorem 19.

EXERCISE 101 Prove Corollary 2 to Theorem 19.
Theorem 20. This is really very important!

Theorem 21, with proof.

8.3 Poisson Process, Brownian Motion: Section 1.3 in Protter

EXERCISE 102 Show that {X(¢)-E{X(1)}-t}:>0 and {[X(¢)-E{X(1)}-t]*~Var
{X(1)}-t}s>0 are martingales for a suitably integrable R-valued Lévy process X.

Theorem 24. This follows directly from Exercise 102.

Definition of natural filtration.

Definition of n-dimensional Brownian motion (Bm) and standard Bm. Stochastic cal-

culus uses a different definition of BM than is usual: The news are that BM is an adpated process,
with independent increments defined relative the o-algebra of “the past”, that nothing is said about

the value at zero, and that the variance matrix (at 1 say), may have non-zero off-diagonal elements.

93



Theorem 27. This follows directly from Exercise 102.
Theorem 28. This is well-known from basic stochastic calculus.

Theorem 29. This is well-known from basic stochastic calculus.

8.4 Levy Processes: Section 1.4 in Protter

Definition of Lévy process. The definition corresponds to Definition 1.6 of Lévy process in
law. The stochastic calculus Lévy process definition differs from the usual one in that the process is
adapted, with independent increments defined relative the o-algebra of the past. A stochastic cal-

culus Lévy process (in law) is always a “ususal” Lévy process in law (see Exercise 103 below).
EXERCISE 103 Why is a stochastic calculus Lévy process a Lévy process in law?

Convention: We always assume that Lévy processes are cadlag!

Theorem 31 (possibly with an idea of the proof).

EXERCISE 104 Show that {e?X()/E{e?®*(M}},5, is a C-valued martingale, and
has a cadlag modification, for X a Lévy process and f€R.

Theorem 32, with proof. The proof exemplifies that Optional Sampling often cannot be used
directly, since requiring closedness or bounded stopping times, so that one has to proceed e.g., by

limits of bounded stopping times, or by other technical tricks.
Corollary to Theorem 33. This is well-known from basic stochastic calculus.

Theorem 34.
EXERCISE 105 Give an alternative proof of Theorem 34.
Theorem 40.

EXERCISE 106 Give an alternative proof of Theorem 40.

8.5 Local Martingales: Section L5 in Protter

Definition of local martingale.

EXERCISE 107 Show that martingales are local martingales.

Definition of reducing stopping time.

Theorem 44, with proof. Help to Proof: In (a), by Theorem 17 for the ui martingale M (TA-),
first with stopping times SAt <t, and then with SAs <t, Corollary to Theorem 18 gives
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B{M(SAD|3.} = B{E{M(TAt)[Fsn}|§:} = B{M(TAL)[Fsns} = M(SAs)  for s<t.

Hence M(SA-) is a martingale, which is ui by Theorems 13 and 16 (see Exercise 108 below).
In (c), skip the details with My, to get an equally good proof, that is immediate from (a). O

EXERCISE 108 Show that M(SA-) is ui in the above proof.

Corollary to Theorem 44. This is immediate from Theorem 44.b.
Definition of local property.

Theorem 45.

EXERCISE 109 Prove Theorem 45.

Theorem 46.

EXERCISE 110 Prove Theorem 46.

Theorem 47, with proof. [It is not terribly difficult to prove that a local martingale X is a

martingale iff. it is of Dirichlet class DL, i.e., iff. {X(T'):T <t stopping time} is ui for each ¢>0.]
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8.8 Nagra tidiga tankar om detta med Bioinformatik (likn.) ...

ur “Falstaff Fakir (1895): Ny och nyttig larobok i zoologi. Fortjanstfull avhandling for

att erhalla en bra plats, med atskilliga illustrationer efter iaktagelser i naturen.”:

“Da ...... en bra plats sdsom direktor for zoologien nu ir ledig, gor jag vad jag linge tankt. Jag

mitt vetande om djuren,

och gér det med ritta. %

Djuren
indelar jag naturligtvis i tva slag:
I. Djur.
II. Odjur.

Som de sistndmda dro aldst, bjuder mig redan vérdnaden for dlderdomen att forst beskriva dem.

II. Odjur.
Odjuren skilja sig fran djuren dels genom sitt o, dels genom sin skapnad. De flesta av odjuren &ro
hur som helst, medan de mesta av djuren folja vissa reglor i avseende pa sitt skelett, sin farg, sin
sjal, sitt kynne, sina fédodmnen m.m. dylikt.

Det dldsta och vackraste odjuret ar

Leviathan.
Job omtalar detta odjur med en bestdmd hétskhet, och andra forf. i samma &mne &ro dven genom-
trangda av en viss aversion ...... Numera har den spelat ut sin roll och férekommer endast sporadiskt
vid lasaremdten i ...... Afrika, Stockholm m.fl. svartillgingliga trakter.

Féageln Phoenix
ar ett hundraarsodjur. Nar detta vackra flygfa uppnatt 100 ars alder, stiller det pa sin fodelsedag
till en mycket besynnerlig fest, genom att tinda eld pa sig sjilv, ......
Vad dessa faglar gora under mellantiderna, har alltjimt varit holjt i dunkel. Till och med rock-
emottagaren pa Hotel Phoenix i Stockholm vet int ddrom. Frid 6ver hans tiodring i alla fall.
Att sagde rockavdragare skulle hava goda kunskaper om

Fégeln Rock

skulle man géirna antaga. Men s3 ar icke fallet. Sagda fagel levde dock sikert forr i varlden, ...... Dar-
win pastar helt ratt, att det var en ko med en rock pa, men detta torde vara ett av de manga obevi-
sade hugskott, som pa sin tid sa ofta formorkade den eljest ganska klarsynte vetenskapsgubbens sjil.

Gripen star i heraldiskt hinseende mycket nara de s.k. statsdjuren, om vilka mera ......

Draken ...... levde mest av jungfrur samt av kristet blod. Syresdttningen i dess eget blod var sa
intensiv, att dess andedrakt var eld. ......

Endast en drakhona ar med visshet kidnd, den s.k. drakan i Babel, ......

Bibeln har sin Behemot att uppvisa, och Jamtland sitt unika Storsjé-odjur. ......

Helhésten &r, sdsom namnet angiver, en hel hiist, men dessutom ett spoke, ......

Fen-ris-ulven och Cerberus likna varandra déruti, att de bada &ro utdéda, men &ro varandra
olika genom antalet huvuden. ......

Sfinxen levde helst i Egypten, vanligen i sallskap med ......

Om vi se ndrmare pa Fagel Bla, finna vi densamma ofta antaga formen av en bok, ......

Stadsodjuren.
Av dessa finnes ett i varje respektabel stat; det underhéalles pa allménn bekostnad och dyrkas ......
Schweiziska huvudstadens Berns statsodjur dr en bjérn, och dven dess late fruktansvirt, sdsom
du nog ofta sjilv erfarit, och &nnu oftare skall erfara, sa vitt jag misstanker dig ritt. Lat denna
delikata vink forbattra ditt sinne, sd kan du med ljuvare samvetsfrid hora, vad jag i det f6ljande
skall sia for dig och de dina om de dnnu levande
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Djuren.
I. Djur.

Om det dr svart, ja, rent av omdjligt uppstélla ndgon indelning av de resp. odjuren emellan, stéller
sig detta dock jamforelsevis latt nar det giller de for oss alla mer &n vélkdnda djuren. Harvidlag
maste jag dock bestdmt protestera och avvika mot och fran gamla, slentrianméssiga uppdelningen
i daggdjur, faglar, fiskar, krypdjur, krik, o.s.v. - av skil, som jag strax skall blotta.

Férhallandet dr ndmligen, att det &r pa hog tid att dven inom zoologien inféra ett s.k.,

Naturligt system

sasom ju redan fallet dr i den vetenskapliga vixtvérlden eller botanismen. D& du alltsa ser pa en
krokodil med hogra 6ga och pa en luktviol med ditt vinstra 6ga, observerar du genast, att vixten
sitter tyst och stilla, medan djuret kvittrar, kviker, morrar m.m. - med andra ord: ror sig.

Denna huvudskillnad mellan djuren och vaxter tvingar oss uppstélla den sasom huvudprincip
vid de forras indelning i klasser och stand. D& emellertid all rorelse i allménnhet forsigar medelst
fotterna, uppdela vi djuren i tva bjéart fran varandra skilda grupper:

Djur med fétter och Djur utan fotter.

Sedan jag salunda fotat mitt system pa fotterna, vill jag endast i forbigdende ndmna, att en man
med pedantiska bdjelser ldtt ur den allménna principen kan uppstélla underklasser, sasom djur med
en fot (vakant), d:o med tva, d:o med tre fotter, med trettiotre fotter etc.

A. Djur med fétter.

Det hogsta och ddlaste djuret i zoologisk mening &r naturligtvis tusenfotingen, alldenstund han ute-
slutande bestar av fGtter, sdsom framgar av den fotogravyr jag i ett obevakat 6gonblick tog av ho-
nom. Dessa fotter dro jamt 1000, vilket gladjande férmatt mangen entusiastisk djurolog att gladje-
stralande skrika: ”Det var tusan!”

Over denna tusenfotings framstaende stéllning i systemet kinna sig dock de andra djuren icke
avundsjuka, hirvid foljande den gyllene och egyptiska vishetsregeln:

Obsalvera mycket noga:
med din lott, du far, dig foga!
Av dylika vishetsregler och vetenskapsdefinitioner vimlar i sjilva verket den egyptiska vitterheten;
och jag skall i det foljande draga fram nagra av dem ur deras dunkel, i den man de kunna upp- och
belysa vetenskapen. Over en pharaonisk munkskénks sakrofag i Mempispyramiden star tex. inristat:
Anjofisken i sin ask
passar praktigt efter gask.
(Forstar du en egyptisk pik, traffade lasare? Rodna géarna! Battra dig och bliv sasom béltan:
Béaltan utan skryt och skriavlan
later vérlden ha sin &vlan.)

Ehuru tusenfotingen star hogst hos vetenskapsméannen, dr dock lejonet sedan gammalt djurens ko-
nung, men atnjuter intet regelbundet apanage. Det &r lika gult som grymt, lever helst i Afrika och
av niggrar. Dessa senare béra kring fotkndlarna amuletter av koppar, vilka lejonet aldrig fortar, var-
uti man vill spara en gird at religionen.

A propos lejon ......

B. Djuren utan fétter

vilka &ro de forra underlégsna i de flesta hinseenden. Sa sakna de t.ex. fétter och tydlig sjil. Somliga
av dem kunna ndja sig med att helt simpelt krila, andra ater maste for sin existens pa ett eller an-
nat satt hava lart sig simma. Darfor ar t.ex. den fisk, som icke dr simkunnig, fullkomligt vérnlos,
om han faller i vattnet.

Ater andra varken simma eller krila, utan flyta menldst omkring pa Oceanen - s.k. urdjur - eller
sitta still pa ett eller annat virdelost foremal. T.ex. korallen, ......
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10 Lecture 10 15/10-02: Sections 1.6-7 and I1.1-3 in Protter

10.1  Stieltjes Integration: Section 1.6 in Protter

Definition of increasing process and finite variation process (FV). Notice that cidlag

is baked into the definition.

Remark. In my view, unlike Protter, it is best to also bake “adapted” into the definition of increa-

sing (FV) processes, since this is what we meet later, and the additional generality is not needed.

Definition of total variation process {|-|;}:>0.

EXERCISE 111 Show that a process has finite variation iff. it is the difference

between two increasing processes.

Definition 10.1 A stochastic process {X(t)}+>0 = {X(w;t)}+>0 is measurable if

X:Qx[0,00)=>R is  FxB([0,00))-measurable.

This is what Protter calls “jointly measurable”.

EXERCISE 112 Show that a process is measurable if right- or left-continuous.
Notation F'- A.

EXERCISE 113 Calculate N-N for a Pp N.

Theorem 48, with proof. The only non-immediate thing in the proof is the technicalities of

the measurability issue. These may well be skipped.

Corollary to Theorem 48, with proof. I prefer d|A|; to Protter’s notation |dA;| (which is

inconsistent, at best).

Theorem 49.
EXERCISE 114 Outline a proof of Theorem 49.

Theorem 50, with proof.

Corollary to Theorem 50.

EXERCISE 115 Prove Corollary to Theorem 50.
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10.2  Naive Stochastic Integration: Section 1.7 in Protter

Naive Stochastic Integration is Impossible!

10.3  Introduction to Semimartingales: Section II.1 in Protter

Definition of simple predictable process. Notice their left-continuity.

Notation S and S,.
Notation L°. Exercise 76 characterizes this topology.

Notation Ix(H). Please, look at this carefully!

Definition of total semimartingale.

Definition of semimartingale.

10.4  Properties of Semimartingales: Section II.2 in Protter

Theorem 1, with proof. This result is immediate (in the meaning “immediate”).

Theorem 2, with proof. This result is immediate.

EXERCISE 116 Give the full details of the continuity argument in proof of The-

orem 2 (i.e., that convergence in Q-probability follows from that in P-probability).

Theorem 3, with proof. This result is immediate.

Theorem 4, with proof. This result is immediate.

Theorem 5. This result is simple, but slightly technical to prove anyway.
Corollary to Theorem 5, with proof.

Theorem 6, with proof.

Corollary to Theorem 6. This is immediate from Theorem 6.

10.5 Examples of Semimartingales: Section I1.3 in Protter

Theorem 7, with proof. In the theorem, “finite total variation” means finite variation over

[0,00). In the proof, |||, is the sup- (uniform) norm over Qx[0,c0).

Theorem 10.2 (OPTIONAL SAMPLING) Let X be a submartingale and S and T stopping times.
If T is bounded, or if X is ui, then

E{X(T)[§s} 2 X(SAT).
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Theorem 8, with proof. In the theorem, “square-integrable” means sup;s, E{X (t)*} < oo.
Proof: Pick a t>0. Since H; is §r,-adapted, the Optional Sampling Theorem 10.1 (which applies
by Theorem 1.13, since X is ui by Exercise 97), give

E{(X(Ti41At) - X(TAL)) 31} = B{X(TiaAt)*~X(TAL) 31} — 2B{ X (TiaAt)— X (Tit) [F 1} X (i),
with the second term on the right zero. Hence it follows that

E{H}(X(Ti1 At) = X(TiA1))?} < || Hil RE{X(Ti1A8)? = X(TiAE)?}.
In a similar fashion, we see that

E{H;H;(X(T41At)— X(T; At))(X(Tj41 At)— X(T; AL))}
= E{E{X(Tj11At) = X(T; At)|S1, } Hi Hi( X(Tiy1 At) — X(TiAL)) }

Furthermore, X2 is a submartingale (by Corollary 1 to Theorem 1.19), so that
E{X(TAt)’} < E{E{X()’|37}} = E{X ()"}

for any stopping time T, by the Optional Sampling Theorem 10.1. We may assume that X (0) =
0, since X is a semimartingale iff. X —X(0) is. Putting things together, we get L?-continuity

E{Ixuny(H)?*} =E{>] 1H( X (Ti1 At) =X (TiA1)))°}
= E{Y "y H}(X(Ti1 At)—X (T;AL))?}
< |IH|2 i) B{X (Tiz1 A1) =X (Tint)*}
< HIZE{X(TuAt)?} < |HFE{X(t)*} 0  as H—s,0. O

Corollary 1 to Theorem 8, with proof. The proof also uses Theorem 1.44.a.

Corollary 2 to Theorem 8. Protter’s proof is not good in my opinion.
EXERCISE 117 Give a better proof of Corollary 2 to Theorem 8.

Definition of decomposable process.

Theorem 9, with proof.

Corollary to Theorem 9.

EXERCISE 118 Prove Corollary to Theorem 9.
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10.6 Vi tror i alla fall pa “the General Theory” ...
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11  Lecture 11 18/10-02: Sections I1.4-6 in Protter

11.1  Stochastic Integrals: Section I1.4 in Protter

Definition of D, . and bL.

Definition of convergence uniformly on compacts in probability ucp.

Notation X_;* .

Notation D,,, L,;, and blL,,. Notice that Dycp is complete metrizable.

cp

EXERCISE 119 Show that ucp-limits of cddl4g processes are cadlag.

EXERCISE 120 Show that D, is complete. Is it an Orlicz space?

Theorem 10.

Definition of Jx :S,,—Dyp-

Notation Jx(H), [ HdX and H-X.

Theorem 11, with proof.

Definition of Jx :L,, —D,.,. The continuity argument for extension used here is standard.

EXERCISE 121 Show in detail how continuity follows from that at 0 for Ix and Jy.

11.2  Properties of Stochastic Integrals: Section IL.5 in Protter

Theorem 12. This is simple for H simple predictable.
EXERCISE 122 Prove Theorem 12 in general, from the simple predictable case.
Theorem 13. This is simple for H simple predictable.
EXERCISE 123 Prove Theorem 13 in general, from the simple predictable case.

Protter’s Notation Hp - X [which I find a bit unusual (isn’t (H-X)p better?)].

Theorem 14. This is trivial for H simple predictable.
EXERCISE 124 Prove Theorem 14 in general, from the simple predictable case.
Corollary to Theorem 15.

EXERCISE 125 Prove Corollary to Theorem 15 [e.g., using the probability (Q+P)/2].
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Theorem 16. This is trivial for H §- and ®-simple predictable.
EXERCISE 126 Prove Theorem 16 in general, from the simple predictable case.

Theorem 17, with proof. This is trivial for H simple predictable.

Theorem 18, with proof. This follows from Theorem 14, and from Theorems 14 and 17, res-

pectively.

Corollary to Theorem 18, with proof. (One should not try to think too deep here, but

instead buy the proof as cheaply as possible.)

Theorem 19. Proof. It is a useful exercise to show associativity Ip.xua)(G) = Jx(GH)(t)
for GeS and HeL. Picking ¢>0, HeL, and G, —s,0, we have GpH —1,.,0, so that

IH—X(t/\-) (Gn) —associativity IX(t/\-) (GnH) = IJx(GrH)(t) =p 0 since Jx(GnH) “Ducp 0. O

EXERCISE 127 Prove the above claimed associativity for G€S and H€L.
EXERCISE 128 Prove associativity in general, from the case G€S and H €L.

EXERCISE 129 Why is the difficult middle part of Protter’s proof needed? (seets men.
Theorem 20.

EXERCISE 130 Elaborate on the details in the proof of Theorem 20. (The proof

of Theorem 8 may be useful as guidance.)

Definition of random partition o = {7y, ..., Ty}

Definition of sequence of random partitions tending to the identity.

Notation Y7 for Y e DUL and ¢ a random partition..

Theorem 21. This should be regarded as immediate from the continuity of Jx.
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11.3 Det ar viktigt att borja tidigt med “the General Theory”!

Darfor och pa allmann begaran forevisar jag nu for forsta gangen nagonsin tre pri-

vata fotografiska bilder av mig sjilv, och det i tre olika stadier av teoretisk genialitet:

Jag vill se bevis av precis allting, varenda litet dpsilon, jag menar epsilon. Det ar det som ar det

svara och viktiga, och som haller i lingden. Annars blir allt ett luftslott utan nagon ordentlig grund!

Det basta dr att bevisa utvalda resultat, och lata bli bevisa andra. Da kommer man nagon vart,

allt kdnns roligare och mera menigsfullt. Chansen dkar att man far verklig nytta av det man lart!

Bevis ar inte alls sdrskilt viktiga (tinker du forsoka hitta fel i dem, eller vad?), utan det dr sjilva

tolkningen och ev. tillimpbarhet som krdver eftertanke. Det ar ju foktiskt en verklig varld vi lever i!
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12 Lecture 12 22/10-02: Sections I1.6-8 in Protter

12.1  Quadratic Variation of Semimartingales: Section IL.6 in Protter

Definition of quadratic variation process.

Definition of quadratic covariation (bracket) process.

EXERCISE 131 Prove the polarization identity in Protter and [X,Y] = ([X+
Y, X+Y]-[X-Y,X-Y]).

Theorem 22.
Corollary 1 to Theorem 22, with proof.
Corollary 2 to Theorem 22, with proof.
Theorem 23.

Corollary.

EXERCISE 132 Prove Corollary to Theorem 25.

Definition of [X, X]°.

Definition of quadratic pure jump process.

Theorem 26, with proof.

EXERCISE 133 The idea in the proof of Theorem 26 is to show that [X, X]|=
AX - X. Why does this give the theorem?

Theorem 27.

Corollary 1 to Theorem 27, with proof.

Corollary 2 to Theorem 27, with proof.

Corollary 3 to Theorem 27.

Corollary 4 to Theorem 27.

EXERCISE 134 For a local martingale M with E{[M, M](c0)} < oo, show that
supyo B{M(t)*} = BE{[M, M](c0)}.

Corollary 5 to Theorem 27.

Theorem 28, with proof.
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EXERCISE 135 Why does [X,X]*=0=[X,Y]°=0 in the proof of Theorem 287

Theorem 29.

Theorem 30, with proof. (It is really something to be able to prove this so easy!)

12.2  It6’s Formula: Section IL.7 in Protter

Theorem 32.

Theorem 31 (regarded as a Corollary to Theorem 32), with proof.

EXERCISE 136 Explain how Theorem 31 follows from Theorem 32 for feC2.

Corollary to Theorem 32, with proof. This is “the usual” Itd’s Formula.

EXERCISE 137 Show that for Bm (B- B)(t) = :B%— 1.

2 2

EXERCISE 138 Prove Corollary to Theorem 32.

Theorem 33.

Definition of (Fisk-) Stratonovich integral [Y o dX.

Theorem 34.

12.3  Application of Itd’s Formula: Section II.8 in Protter

Theorem 36. Obviously, this is extremly important!

Definition of stochastic (Doléans-Dade) exponential.

Special cases of continuous semimartingale, and of Bm (called geometric Bm).
Theorem 37, with proof.

Corollary to Theorem 37, with proof.

EXERCISE 139 In the proof of Corollary to Theorem 37, why is [X,X] +

Theorems 38-39 and 41. These are fundamental in Bm stochastic calculus, and proofs belong

there, albeit simple. Theorem 41 is the famous DAMBIS-DUBINS-SCHWARZ THEOREM.
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13 Lecture 13 24/10-02: Sections II1.1-3 in Protter

This chapter develops technology needed to extend the stochastic integral Jx:L—D

from L to the larger class of predictable processes (see Section II1.8).

13.1 Introduction: Section III.1 in Protter

(Recall) Definition of decomposable process.

Definition of classical semimartingale.

Now follows a list of the main results of Chapter III:
Theorem 1. This is the main result!

Definition of (locally) natural process.

The natural processes are closely related to predictable processes.

EXERCISE 140 Explain all details of the argument that A(T'A - ) is natural for
A natural and T a stopping time.

Theorem 2, with proof.

EXERCISE 141 Why have continuous FV processes locally integrable variation?
Theorem 3.

13.2  The Doob-Meyer Decompositions: Section II1.2 in Protter
Definition of potential.

EXERCISE 142 Why exist lim; ,., E{X(#)} for non-negative supermartingales?

Theorem 4, with proof. This DooB DECOMPOSITION is the discrete analogue of the continuous

time DOOB-MEYER DECOMPOSITION, that in turn is crucial for us.
EXERCISE 143 Give all details of the existence part of proof of Theorem 4.

Theorem 5, with proof. Notice: Protter has forgotten to say that Z is UI in the theorem

(which is needed to prove Corollary to Theorem 6 below).
EXERCISE 144 Explain why Z is non-negative in the proof of Theorem 5.

Theorem 6.
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Corollary to Theorem 6, with proof.

Theorem 7.

13.3  Quasimartingales: Section IIL.3 in Protter

Definition of partition of [0, co].

Definition of variation of X along a partition.

Definition of variation of X.

Definition of quasimartingale.

EXERCISE 145 Which quasimartingales are martingales?
Theorem 8.

EXERCISE 146 In one direction Theorem 8 is easy: Prove that part.

Theorem 9, with proof.

EXERCISE 147 Explain how uniqueness in Theorem 9 follows from Lemma on

page 92 in Protter’s book (or in some other way).

EXERCISE 148 Why are locally integrable variation processes local quasimartin-

gales?

Definition of compensator.

Fact. Compensators of increasing processes with (locally) integrable variation are

increasing with (locally) integrable variation. With proof!

EXERCISE 149 Why are decreasing processes with adequate integrability prop-

erties (local) supermartingales?
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13.4 Theoretical Background for Chapters III-V in Protter’s Book

Following the introductory Chapters I-II, the main treatment of stochastic integrals and differential
equations is in Chapters III-V. To take in that material properly, a bit more is needed in terms of
theoretical background, than for the introduction. Most participants have much of that background
already. However, there will certainly be topics to “fresh up” for everyone, so that not too much
time is spent later on things of background character. For convenience, I have assembled a list of
what one ideally should know, to do well with Chapters III-V. Please notice that the listed material
is fundamental also in many other areas of applied probability, so that it is always well spent time

to work with it, if not well-known previously.

Section II1.2. The Doob-Meyer Decompositions. K.M. Rao’s proof is much more simple and intiutive

than previous ones, and uses basic potential theory. See e.g.,

Doob, J.L. (1983). Classical Potential Theory and Its Probabilistic Counterpart. Springer. Part 1.

Chapter IV. General Stochastic Integration. Here the Musielak-Orlicz space machinery outlined in
Lectures 6-7 comes into play. See e.g.,

Kwapien, S. and Woyczyniski, W. (1992). Random Series and Stochastic Integrals. Birkhduser.
Chapters 0 and 7-9.

Musielak, J. (1983). Orlicz Spaces and Modular Spaces. Springer. Chapters I-II.

Rao, M.M. and Ren, Z.D. (1991). Theory of Orlicz Spaces. Dekker.

Chapter V. SDE. In general, this chapter requires distribution theory together with elliptic PDE, and
variational calculus, deterministic and stochastic (i.e., Malliavin calculus). Standard texts are e.g.,
Federer, H. (1969). Geometric Measure Theory. Springer. (This one takes time, but is worth it!)
Hoérmander, L. (1983-4). The Analysis of Linear Partial Differential Operators. Springer. Part
I and Part III Chapters XVII-XIX.
Nualart, D. (1995). The Malliavin calculus and Related Topics. Springer.

Section V.2. HP-norms for Semimartingales. This requires Hardy spaces. See e.g.,

Douglas, R.G. (1972). Banach Algebra Techniques in Operator Theory. Academic. Chapter 6.

Section V.6. Markov Nature of Solutions. This requires Markov Processes. (Riktiga sana!) See e.g.,

Blumenthal, R.M. and Getoor, R.K. (1968). Markov Processes and Potential Theory. Academic.
Chapters 0-2.

Sections V.7-8. Flows of SDE and flows as Diffeomorhisms. This requires basic knowledge of infinite

dimensional differential geometry (Hilbert space generality), and of stochastic flows. See e.g.,
Kunita, H. (1990). Stochastic flows and stochastic differential equations. Cambridge. Chapters 4-5.
Okubo, T. (1987). Differential geometry. Dekker.

Chapters III-V. Rigorous treatment of stochastic differentials requires stochastic nonstandard analy-
sis. Elementary aspects of complex analysis in several variables is used on multidimensional complex
martingales, as is functors (Banach operator ideals), and probability in Banach spaces. See e.g.,
Hoérmander, L. (1988). Complex Analysis in Several Variables. North-Holland. Chapter 2.
Ledoux, M. and Talagrand, M. (1980). Probability in Banach Spaces. Springer.
Michnor, P.W. (1978). Functors and Categories of Banach Spaces. Springer.
Stoyan, K.D. and Bayod, J.M. (1986). Infinitesimal Stochastic Analysis. North-Holland.
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14 Lecture 14 6/11-02 8 am: Sections II1.4-5 in Protter
14.1 The Fundamental Theorem: Section II1.4 in Protter
Definition of predictable stopping time.

EXERCISE 150 Show that non-random times are predictable.
Definition of announcing a predictable stopping time.

EXERCISE 151 Explain why 7, = inf{t>0:|X(t)|>c—1} (n large enough)
announces 71" = inf{¢t >0 : |X(¢)| > ¢} for ¢ >0 a constant and X an adapted

continuous process with X (0)=0.

Definition of accessible stopping time.

EXERCISE 152 Explain why the time to the first jump for a Poisson process is

not accessible.

Definition of an envelop of an accessible stopping time.

EXERCISE 153 Find an envelop of a stopping time whose set of possible values

is countable.

Definition of totally inaccessible stopping time.

EXERCISE 154 Is the time to the first jump for a Poisson process totally inac-

cessible?
Notation 7T, for A€Fr and T stopping time.

EXERCISE 155 Prove that T, is a stopping time.

Theorem 10, with proof.

Theorem 12.

EXERCISE 156 Motivate Theorem 12.

Theorem 13.

Corollary to Theorem 13.
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14.2  Classical Semimartingales: Section ITL.5 in Protter
Theorem 14, with proof.

EXERCISE 157 Show that classical semimartingales are decomposable.

EXERCISE 158 Show that, for a classical semimartingale X, we really have
X=M+A, as in the proof of Theorem 14.

Corollary to Theorem 14, with proof.

Theorem 15, with proof.

Theorem 16, with proof.

EXERCISE 159 In the proof of Theorem 16, why is X (tA-) a supermartingale?
EXERCISE 160 Show that a submartingale is a semimartingale.

Theorem 17, with proof (albeit a bit longish).

EXERCISE 161 Explain the details of the inequalities E{fOtAT dlAl} <m+8+
E{|[(AM)(T)|} < oo, in the proof of Theorem 17.

EXERCISE 162 In the last computation in Theorem 17, motivate thorougly (not
just repeating Protter’s words) the exchange of order of limits E{lim...} = imE{...}.

EXERCISE 163 In the last computation in Theorem 17, prove the last equality.

Definition of special semimartingale.

Theorem 18.
EXERCISE 164 Check the proof of Theorem 18.

Definition of canonical decomposition.

Theorem 19, with proof.

EXERCISE 165 Explain how Theorem 13 gives X = X(0)+N+B, in the proof
of Theorem 19.

EXERCISE 166 Explain, using e.g., Exercise 148, why B is a local quasimartin-
gale, in the proof of Theorem 19.

Corollary to Theorem 19. (The proof of the Corollary is harder than that of the theorem!)

EXERCISE 167 Show that bounded jump Lévy processes are special semimartin-

gales (there it came!), and that Lévy processes with floo xdv(z) =00 are not.

72



14.3 Inte ens Forelasaren ar Perfekt ...

o it 1 ;
i i A i g - _ _
Lirare skiillde ut skolledning for stid- 5 *’ H:‘I__‘l.ﬁ'd’.'_*ih %‘5“‘&0‘?. LoE
! o 4. Pl : 2 =T
ning. Men hade inte stidal cgen garderob N 2 an B s
~ 2 F X
ke ; HELE
E‘ Joggande matematiker vestad positiv fir analyiiska E = = E
g 1] : T S 57 F S i o5 DA g BY
Flooasos? o steroider. Ansig konventionell trining fordummande & = g =
g5a s — B oa &S
O 2 B = F
- — ¥ EE i W S - T
= m i Misstinkt bakfull Chal- be"lj"} Avamomma? % F 3 o
& B ¥ OE & . b i B
g g g 8 W merslorskare rikoade Tl 2 oS =
oo F o GE ""@" R A, i R - R
o bR = e o o \g;‘;. -f E B E
£ s & B 5 & e & Boeoas &
2 O o e o i 5o A
=5 f5F o . T & 5% 7
= F o5 a4 L i H % p &
=i FiE S# FS & F 252
i pot & = A 4 W o 2 E 3
£ E s 3 @ ¥ 5P qe® b
S e g X e} gk L .}Qﬁ "
o= = i & terige .
B oz N e & "reen varnad av Poseldon. Nu fir
] r £ 3 . .
& oy ¥ --53’6 & L 43& att lia aalbat kalvhifrnoe § kafaren, An
i e Kl o T‘}\' i :
5 B Q*:"Qﬁ ‘bﬁ{} & % tirde marintresse, Posvidon misstinker ..
qsfﬁ o7 & a% %
= T ¥ : PTV v -
o= W o S B, &1¥ nT £
& & = % % i W -
-'\.A\ \?&’ @,ﬁ PIHHEUI\K: % . r-::-’;r,. e ':?}7
= o T @ i . e f
25 "\z\' - " k- T = Skl e S ]
’ . ﬁﬁ 5 £ ﬁg % ST T (o
W WALLIGA Tingpg ny w Ta @ B R W
Nvd rivmy i BATTRE %eoh . TR e Sm T
. = . SR TR gy pr,_r,-ku}%,]- Hir 9’?} 3&:,) H, o ,.; B
2l E . s . HAr . . % x b B~ B
: E‘ g j e stiranda na ?} % T'f-?"-'f' " B T E
:._"E 2z & Ode p t&ﬂkﬁ.'_'.aruv )ér e .F‘:?} u::;'ifn- T 5 o r&l‘l}.
5 & & o H B (- R B TR
- P =S L, T -;b
o 3 = & AW LT ISORAT BN RUROEIDIR, TR (g % ﬁa;‘,. % = ﬂ'q,. =
L = % _E q F ||_L_l,T ;,ap F i H l ujl_,'tlru[Fle_?J JT4 [ERER Y '}b G.H ?’% e -f",..
B ; & 7 (=]
i :_:'_ 5 i THE SUWUEE CPRIRIT i { sdrogyeg wd s o % *%ﬁ “% o
EZs g3 e S -
o oE & = = -FURN) SRy R e a0y O AR [y i ] ;55140161
= F O & b
E R 2o
" s
E _g Lirare chockeds (ilelorgsele- Shaopsed JoRseas 117, 18P T 1danRg
s
# & et wned shdnske brafatik SURIRIESE [[I1 APRIAIISATON UOSISELT

73

iNonleas@Ioganon I0I NP IPURIL



15 Lecture 15 8/11-02: Sections II1.6-8 in Protter

15.1 Girsanov’s Theorem: Section IIL.6 in Protter

Definition of equivalent probability measures.
Notation P~ Q.

Lemma before Theorem 20.
EXERCISE 168 prove Lemma.
Theorem 20, with proof.

EXERCISE 169 Verify that Z ! = Eq{%|&} in the proof of Theorem 20.
Theorem 21, with proof. (This is “usual” Girsanov’s Theorem.)

15.2  Bichteler-Dellacherie Theorem: Section II1.7 in Protter

Theorem 22.

15.3 Natural and Predictable Processes: Section I11.8 in Protter

Definition of predictable o-algebra.

Theorem 23.
EXERCISE 170 Check the details of the proof of Theorem 23.

Corollary 1 to Theorem 23, with proof. Notice: The conclusion should be that A is

locally natural (i.e., Protter has forgotten “locally”).
Corollary 2 to Theorem 23, possibly with proof.
Theorem 26.

Theorem 27.
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15.4 Lite Julpyssel.

Forst en vinpalor som ger tillrickligt kunnande i standardargangar for typviner, for
att lura nastan varje sommelier [men kriver att man har med den stora portmonin (med ett

undantag)]: Para alltsa ihop vin med ar. (Minnesluckor bor kunna hjilpas upp mha. www.)

Annus mirabilis, férutom Douro 1921, 1985

Annus mirabilis i Douro 1931

Cheval Blanc 1945, 1963, 1994

Cru Beaujolais 1947, (19827)

DRC 1961, (19827)

Haut Brion 1961, 1990

Hermitage la Chapelle 1967, 1983, 1988-1990
Latour 1971, 1982, 1998
Leoville las Cases, Pichon Comtesse de Lalande 1975

Marquis Alexandre de Lur-Saluce 1976, 1983, 1988-1990
la Mission haut Brion 1978, 1985, 1988-1990
Montrachet 1982

Montrose 1982

Mouton 1982, 1986

MSR 1982, 1985, 1988-1990
Palmer 1983

Petrus 1989

Le Pin 1990

Quinta do Noval Nacional 1990

Romanee Conti 1991

Syndicate Grande Marque 1994

Taylor 1995

Dessutom nagot om regioner, for att testa din sommelier. (Tappa ej initiativet!)

Baron Lacoste Lynchad av Comtessa efter Malmcitat Region ...... ?
Gevre Charmade LatRik Kamrer Region ...... ?
Petrus Evangelium Pinade Gay Pastor Region ...... ?

Goda losningar till dessa grundlaggande vinovningar raknas som en “Exercise”, i syfte
att uppna rimlig salongsfiighet. (Detta kan #ven doktorander ha nytta utav.) Dessutom,
den som lamnar den basta losningen vinner en lada 2620 Oltina La Revedere.
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A Appendix. Solutions to Difficult Exercises

EXERCISE 54 The easy part of Theorem 5.1 is that for id {V,,}°°, and Y with
triplets (A, v, 7,) and (A,v,7), respectively, Y, =,V if

(1) limnsoo [, f(¥) dvn(y) = [ 5. f(y) dv(y) for bounded feC(R?) and >0,

(2) limy limsup,,_,o, (0, (An—A)0) + [, (0, y)*dvn(y)| = 0 for H€R?, and

y|<e

(3) limy, 00 Y = 7.
Proof. Define measures p, on R? by dp,(y) = 1A{0,y)%dv,(y). By (2), for #€R?,

f\y|<5 dpn(y) < \y|<5<0> y)?dvn(y) < |y\<5<0ay>2an(y) + (0, An0) < K

for n>n, for some constants K; >0 and n€N. Thus this holds for all n€N, poss-

ibly with a greater value for K;. Hence Dominated Convergence gives

lim, o lim sup,,_, f‘y|<5 [e¥0¥) —1—4(0, y)+ %(0 y)?] dv,(y) = 0,
since [e"0¥)—1—i(f, y)+1(0, y)?| < K(0,y)* for a constant K >0. Further, (1) gives
lim [ e®—1-i(0,y) dv,(y) = [ e®¥—1—i(0,y) dv(y fe Oy)1—-i(0,y) dv(y)
" Jyl>e lyl>e

as €J0, using Dominated Convergence and that v is a Lévy measure at the end.

Now we get just by inspection the desired conclusion that, as n— oo,
i(0,7n)—2(0,A,0)+ [eXO9—1—i(0,y) dv, (y) — i(0,7)—1(0,40)+ [e“P¥)—1—i(0,y) dv(y).
Rd R4
Albeit correct in idea, there is an error in the proof in Sato’s book (in the direction

carried out above), and his definition of p, has to be changed to the above one. #

EXERCISE 91 Protter’s proof is not good in my opinion, and makes the problem
harder than it is. We give a quicker and more transparent argument below. First it
should be clerified that, if P{T'=00} > 0, then it is only processes X with a well-
defined (measurable) value X (oco) that feature in the theorem.

It suffices check that {X(T)eG}nN{T <t} € §; for open GCR, because then

{X(T)eG} ={X(0)eGIN{T=00} U, {X(T)eG}n{T <n} € 3.
But the required membership follows from cadlaguity and adaptedness of X, since

Lixneay Lirsy = im0 Xpg Lixcsitneay L sicr<iiin + lixweayLir=y  #
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